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Abstract In this paper, we present a variable selection procedure by using basis
function approximations and a partial group SCAD penalty for semiparametric
varying coefficient partially linear models with longitudinal data. With appropriate
selection of the tuning parameters, we establish the oracle property of this proce-
dure. A simulation study is undertaken to assess the finite sample performance of the
proposed variable selection procedure.
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1 Introduction

Varying coefficient models are commonly used for analysis of data measured repeat-
edly over time, such as time series analysis, longitudinal data analysis and functional
data analysis. In practice, however, only some of the coefficients vary with certain
covariate, hence one useful extension of the varying coefficient model is the semi-
parametric varying coefficient partially linear model. Under longitudinal data, the
semiparametric varying coefficient partially linear model has the following structure

Y (t) = X (t)T θ(t) + Z(t)T β + ε(t), (1)
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where β = (β1, . . . , βq)T is a q × 1 vector of unknown parameters, θ(t) =
(θ1(t), . . . , θp(t))T is a p × 1 vector of unknown functions, X (t) and Z(t) are covari-
ates, Y (t) is the response variable at time t , and ε(t) is a zero-mean stochastic process.
Here, we assume that t ranges over a nondegenerate compact interval, without loss of
generality, that is assumed to be the unit interval [0, 1].

Model (1) is a useful extension of the partially linear model (see Lin and Carroll
2001; Xue and Zhu 2007a) and varying coefficient model (see Xue and Zhu 2007b;
Wang et al. 2008). Moreover, Model (1) has been considered by Li et al. (2002),
Zhang et al. (2002), Fan and Huang (2005) and You and Zhou (2006) in the case of
i.i.d observations. For longitudinal data, when the number of covariates is small, Sun
and Wu (2005) and Fan et al. (2007) considered the estimation of the coefficients in
Model (1). However, when the number of covariates in Model (1) is large, an impor-
tant problem is to select the important variables in such model. Variable selection is
a very important topic in modern statistical inference. Variable selection procedures
that do not shrink coefficients include forward selection, backward, stepwise deletion,
and all subsets regression methods. These methods generate a sequence of models and
select the best submodel by hypothesis testing or goodness-of-fit testing. A criticism
of these procedures is that these selection procedures ignore stochastic errors inherited
in the stages of variable selections. Hence, the accuracy of the regression coefficient
estimators in the final model is somewhat difficult to understand. An alternative to
such procedures is methods that simultaneously shrink regression coefficients and set
some coefficients to zero, thereby, removing them from the final model. For linear
models, Fan and Li (2001) proposed a family of variable selection procedures based
on smoothly clipped absolute deviation penalty (SCAD), that include bridge regres-
sion (see Frank and Friedman 1993) and LASSO (see Tibshirani 1996). Fan and Li
(2004) proposed to use the SCAD penalty for variable selection in longitudinal data
analysis. Li and Liang (2008) adopted this methodology to select important variables
in the parametric components of semiparametric regression models. In addition, Wang
et al. (2008) proposed a group SCAD procedure for variable selection of pure varying
coefficient models with longitudinal data.

This paper extends the group SCAD variable selection procedure to the
semiparametric varying coefficient partially linear regression model. We propose a par-
tial group SCAD variable selection procedure that can select significant variables in the
parametric components and nonparametric components simultaneously. Furthermore,
this procedure can simultaneously select significant variables and estimate unknown
coefficients. We also study the asymptotic properties of the resulting estimators.
With proper choice of regularization parameters, we show that the variable selection
procedure is consistent, and the estimators of coefficients have oracle property. Here
the oracle property means that the estimators of the nonparametric components achieve
the optimal convergence rate, and the estimators of the nonzero coefficients in the para-
metric components have the same asymptotic distribution as that based on the correct
submodel. This indicates that the penalized estimators work as well as if the subset of
true zero coefficients were already known.

Our method offers the following improvements over existing methods. Firstly, we
regard the observation times as realizations from an arbitrary counting process that
can handle the inter-series dependence of the longitudinal data. In contrast, although
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Wang et al. (2008) proposed a group SCAD procedure of variable selection for vary-
ing coefficient models with longitudinal data, the model they considered is just a
special case of Model (1). In addition, they used the same constant tuning parame-
ter for all coefficients, that implies that all coefficients are equally penalized. This
is somewhat unfair, because we expect that the tuning parameter for zero coefficient
should be larger than that for nonzero coefficient. Thus, we can simultaneously unbi-
asedly estimate large coefficients, and shrink the small coefficients toward zero. In this
paper, the adaptive tuning parameters are used, and our simulation studies indicate that
the variable selection procedure based on the adaptive tuning parameters performs
better than that based on the constant tuning parameter. Secondly, although Li and
Liang (2008) have considered the problem of variable selection for Model (1), they
proposed a series of generalized likelihood ratio tests (GLRT) for selecting significant
variables in the nonparametric components. This procedure poses great challenges
because, for each submodel, it is necessary to estimate the varying coefficient func-
tions. This will dramatically increase the computational burden. In addition, the lim-
iting null distribution of the GLRT is a Chi-square distribution with diverging degrees
of freedom. Then, it is inconvenient to obtain critical values for the GLRT. In contrast,
our method can select significant variables in the parametric components and non-
parametric components simultaneously, as well as simultaneously select significant
variables and estimate unknown coefficients. This implies that our method can avoid
the heavy computational burden, which is the essential improvement over Li and Liang
(2008). In addition, our current statistical data set is longitudinal data, that is different
from Li and Liang (2008).

The rest of this paper is organized as follows. In Sect. 2, we first propose the partial
group SCAD variable selection procedure. Then, we present theoretical properties of
our variable selection procedure, including the consistency of the variable selection
procedure and the oracle property of the penalized estimators. In Sect. 3, based on local
quadratic approximations, we propose an iterative algorithm for finding the penalized
estimators. In Sect. 4, some simulations are carried out to assess the performance of the
proposed methods. Finally, in Sect. 5, we present a brief discussion of the results and
methods. The technical proofs of all asymptotic results are provided in the Appendix.

2 Variable selection via partial group SCAD

Suppose that we have a random sample of n subjects. For the i th subject, the response
variable Yi (t) and the covariate vectors Xi (t), Zi (t) are collected at time points t =
ti1, . . . , tini , i = 1, . . . , n, where ni is the total number of observations on the i th
subject. Thus,

Yi (ti j ) = Xi (ti j )
T θ(ti j ) + Zi (ti j )

T β + εi (ti j ), (2)

for i = 1, . . . , n, and j = 1, . . . , ni . We assume that Xi (ti j ), Zi (ti j ) and εi (ti j )

from different subjects are independent, and E{εi (ti j )|Xi (ti j ), Zi (ti j )} = 0. As in
Xue and Zhu (2007a), we also assume, in our asymptotic study, that ni is bounded
but the number of subjects n goes to infinity. In this paper, the time points, at which

123



216 P. Zhao, L. Xue

the observations on the i th subject are made, are characterized by a counting process
Ni (t) ≡ ∑ni

j=1 I (ti j ≤ t), i = 1, . . . , n, that is a random sample from a certain
population, where I (·) is the indicator function. Xi (t), Zi (t) and Yi (t) are observed
at the jump points of Ni (t). In this paper, we assume that the observation times are
independent of the covariates. That is,

E{dNi (t)|Xi (t), Zi (t)} = d�(t), i = 1, . . . , n,

where �(t) is an arbitrary nondecreasing function. Although this assumption is not
the weakest possible condition, it is imposed to facilitate the technical proofs, and it
can be satisfied in many applications.

Let B(t) = (B1(t), . . . , BL(t))T be B-spline basis functions with the order of M ,
where L = K + M + 1, and K is the number of interior knots. Then, θk(t) can be
approximated by

θk(t) ≈ B(t)T γk, k = 1, . . . , p.

Substituting this into Model (2), we can get

Yi (ti j ) = Wi (ti j )
T γ + Zi (ti j )

T β + εi (ti j ), (3)

where Wi (ti j ) = Ip ⊗ B(ti j ) · Xi (ti j ) and γ = (γ T
1 , . . . , γ T

p )T . Model (3) is a standard
linear regression model. Note that each function θk(t) in Model (2) is characterized
by γk in Model (3). This motivate us to adopt the following partial group version
of the SCAD regularized estimation for Model (3). That is, we estimate γ and β by
minimizing

Q(γ, β) =
n∑

i=1

∫ 1

0

{
Yi (t) − Wi (t)

T γ − Zi (t)
T β

}2
dNi (t)

+ n
p∑

k=1

pλ1k (‖γk‖H ) + n
q∑

l=1

pλ2l (|βl |), (4)

where ‖γk‖H = (γ T
k Hγk)

1/2, H = (hi j )L×L is a matrix with hi j = ∫
Bi (t)B j (t)dt ,

and pλ(·) is the SCAD penalty function with λ as a tuning parameter (see Fan and Li
2001), defined as

p′
λ(w) = λ

{

I (w ≤ λ) + (aλ − w)+
(a − 1)λ

I (w > λ)

}

,

with a > 2, w > 0 and pλ(0) = 0. Here, the tuning parameter λ is not necessarily the
same for all θk(·) and βl , and we denote λ as λ1k and λ2l , respectively in (4).

Although the longitudinal measurements are independent between different sub-
jects, they are likely to be correlated within each subject. We use the counting process
Ni (t) to divide the data into n groups in (4). This method can handle the inter-series
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dependency of longitudinal data. Let β̂ and γ̂ = (γ̂ T
1 , . . . , γ̂ T

p )T be the solution by

minimizing (4). Then, β̂ is the penalized least squares estimator of β, and the estimator
of θk(t) can be obtained by θ̂k(t) = B(t)T γ̂k .

Next, we study the asymptotic properties of the resulting penalized least squares
estimators. Let θ0(·) and β0 be the true values of θ(·) and β, respectively. Without loss
of generality, we assume that βl0 = 0, l = s + 1, . . . , q, and βl0, l = 1, . . . , s are all
nonzero components ofβ0. Furthermore, we assume that θk0(·) = 0, k = d+1, . . . , p,
and θk0(·), k = 1, . . . , d are all nonzero components of θ0(·). The following theorem
gives the consistency of the penalized least squares estimators.

Theorem 1 Suppose that the regularity conditions C1–C6 in the Appendix hold and
the number of knots K = Op(n1/(2r+1)), where r is defined in Condition C1 in the
Appendix. Then,

(i) ‖β̂ − β0‖ = Op(n
−r

2r+1 + an),

(ii) ‖θ̂k(t) − θk0(t)‖ = Op(n
−r

2r+1 + an), k = 1, . . . , p,

where an = max
k,l

{
|p′

λ2l
(|βl0|)|, |p′

λ1k
(‖γk0‖H )| : βl0 �= 0, γk0 �= 0

}
.

Furthermore, under some conditions, we show that such consistent estimators must
possess the sparsity property, that is stated as follows

Theorem 2 Suppose that the regularity conditions C1–C6 in the Appendix hold and
the number of knots K = Op(n1/(2r+1)). Let λmax = maxk,l{λ1k, λ2l}, and λmin =
mink,l{λ1k, λ2l}. If λmax → 0 and nr/(2r+1)λmin → ∞, as n → ∞. Then, with
probability tending to 1, β̂ and θ̂ (t) must satisfy

(i) β̂l = 0, l = s + 1, . . . , q,

(ii) θ̂k(t) = 0, k = d + 1, . . . , p.

By Remark 1 in Fan and Li (2001), we have that, if λmax → 0 as n → ∞,
then an = 0. Hence from Theorems 1 and 2, it is clear that, by choosing proper
tuning parameters, our variable selection method is consistent and the estimators of
nonparametric components achieve the optimal convergence rate as if the subset of
true zero coefficients were already known (see Schumaker 1981). Next, we show that
the estimators for nonzero coefficients in the parametric components have the same
asymptotic distribution as that based on the correct submodel. To demonstrate this,
we need more notations to present the asymptotic property of the resulting estimators.
Let β∗ = (β1, . . . , βs)

T and θ∗(·) = (θ1(·), . . . , θd(·))T , and β∗
0 and θ∗

0 (·) be the true
values of β∗ and θ∗(·), respectively. Corresponding covariates are denoted by Z∗

i , and
X∗

i , i = 1, . . . , n. In addition, let

� = E

{∫ 1

0
[Z∗(t) − μ(t)T X∗(t)]⊗2dN (t)

}

,

B = E

{∫ 1

0
[Z∗(t) − μ(t)T X∗(t)]ε(t)dN (t)

}⊗2

,
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where A⊗2 = AAT , μ(t) = 	(t)−1
(t), 	(t) = E{X∗(t)X∗(t)T |t} and 
(t) =
E{X∗(t)Z∗(t)T |t}. The following result states the asymptotic normality of β̂∗.

Theorem 3 Suppose that the regularity conditions C1–C6 in the Appendix hold and
the number of knots K = Op(n1/(2r+1)). Then,

√
n(β̂∗ − β∗) → N (0, �),

where � = �−1 B�−1.

Remark 1 Theorem 2 indicates that our variable selection procedure is consistent, and
Theorems 1 and 3 indicate that the penalized estimators have the oracle property. That
is, the estimators of the nonparametric components achieve the optimal convergence
rate, and the estimators of the nonzero coefficients in the parametric components have
the same asymptotic distribution as that based on the correct submodel.

3 Algorithm

Because Q(γ, β) is irregular at the origin, the commonly used gradient method is not
applicable. Now, we develop an iterative algorithm based on local quadratic approx-
imation of the penalty function pλ(·) as in Fan and Li (2001). More specifically, in
a neighborhood of a given non-zero w0, an approximation of the penalty function at
value w0 can be given by

pλ(|w|) ≈ pλ(|w0|) + 1

2

p′
λ(|w0|)
|w0|

(
w2 − w2

0

)
.

Hence, for given the initial value βl0 with |βl0| > 0, k = 1, . . . , q, and γk0 with
‖γk0‖H > 0, l = 1, . . . , p, we can obtain

pλ2l (|βl |) ≈ pλ2l (|βl0|) + 1

2

p′
λ2l

(|βl0|)
|βl0|

(
|βl |2 − |βl0|2

)
,

pλ1k (‖γk‖H ) ≈ pλ1k (‖γk0‖H ) + 1

2

p′
λ1k

(‖γk0‖H )

‖γk0‖H

(
‖γk‖2

H − ‖γk0‖2
H

)
.

Let Ui (t) = (Zi (t)T , Wi (t)T )T , α = (βT , γ T )T , and

�λ(α0) = diag

{
p′
λ21

(|β10|)
|β10| , . . . ,

p′
λ2q

(|βq0|)
|βq0| ,

p′
λ11

(‖γ10‖H )

‖γ10‖H
H, . . . ,

p′
λ1p

(‖γp0‖H )

‖γp0‖H
H

}

.

As a consequence, except for a constant term, (4) becomes

Q(α) =
n∑

i=1

∫ 1

0

{
Yi (t) − Ui (t)

T α
}2

dNi (t) + n

2
αT �λ(α0)α.
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This is a quadratic form and can be solved by

(
n∑

i=1

∫ 1

0
Ui (t)Ui (t)

T dNi (t) + n

2
�λ(α0)

)

α =
n∑

i=1

∫ 1

0
Ui (t)Yi (t)dNi (t). (5)

Hence, we obtain the following iterative algorithm
Step 1. Initialize α(0).
Step 2. Set α(0) = α(k), solve α(k+1) by (5).
Step 3. Iterate Step 2 until convergence, and denote the final estimator of α as α̂.

Then β̂ = (Iq×q , 0q×pL)α̂, and γ̂ = (0pL×q , IpL×pL)α̂, where Iq×q and IpL×pL are
q × q and pL × pL identity matrices, respectively, and 0q×pL and 0pL×q are zero
matrices.

In the initialization step, we obtain an initial estimator of α by using ordinary least
squares method based on Model (3). To implement this method, the number of interior
knots K , and the tuning parameters a and λ in the penalty function should be chosen.
Fan and Li (2001) showed that the choice of a = 3.7 performs well in a variety of
situations. Hence, we use their suggestion throughout this paper. In our simulations,
we can see that this choice works well, although a = 3.7 maybe is not the optimal
tuning parameter any more for the semiparametric models that we considered in this
paper.

In addition, from our simulation studies in Sect. 4, we can see that the performance
of the variable selection for the parametric components does not depend sensitively
on the choice of the number of interior knots (see Table 2). Hence, we can use the
similar method to choose the tuning parameters as in Wang et al. (2008) for pure
varying coefficient models. More specifically, we can estimate λ1k’s, λ2l ’s and K by
minimizing the following cross-validation score

CV (K , λ11, . . . , λ1p, λ21, . . . , λ2q) =
n∑

i=1

{
Yi − Z̃ T

i α̂(−i)
}2

,

where α̂(−i) is the solution of (4) after deleting the i th subject. The minimization
problem over a p + q + 1-dimensional space is very difficult. However, it is expected
that the choice of λ1k and λ2l should satisfy that the tuning parameter for zero coef-
ficient is larger than that for nonzero coefficient. Thus, we can simultaneously unbi-
asedly estimate the large coefficients, and shrink the small coefficients toward zero.
Hence, in practice, we suggest taking the following adaptive tuning parameters

λ1k = λ/

∥
∥
∥γ̂

(0)
k

∥
∥
∥

H
, λ2l = λ/

∣
∣β̂

(0)
l

∣
∣, k = 1, . . . , p, l = 1, . . . , q, (6)

where γ̂
(0)
k and β̂

(0)
l are initial estimators of γk and βl , respectively, by using ordi-

nary least squares method based on Model (3). Then, we can minimize the following
two-dimensional minimization problem
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CV(K , λ) =
n∑

i=1

{
Yi − Z̃ T

i α̂(−i)
}2

. (7)

In fact, such a choice of tuning parameters, in some sense, is the same rationale behind
the adaptive lasso (see Zou 2006), and from our simulation experience, we found that
this method works well.

4 Numerical results

In this section, we conduct some Monte Carlo simulations to evaluate the finite sample
performance of the proposed method. And as in Li and Liang (2008), the performance
of estimator β̂ will be assessed by using the generalized mean square error (GMSE),
defined as

GMSE = (β̂ − β)T E(ZZT )(β̂ − β).

The performance of estimator θ̂ (·) will be assessed by using the square root of average
square errors (RASE)

RASE =
{

1

M

M∑

s=1

p∑

k=1

[
θ̂k(ts) − θk(ts)

]2
}1/2

,

where ts, s = 1, . . . , M are the grid points at which the function θ̂ (t) are evaluated.
In our simulation, M = 200 is used.

We simulate data from Model (1) with n = 100, 150 and 200, respectively, and
make 1,000 simulation runs in each case. Furthermore, in each simulation, we gener-
ated covariates randomly according to the model Zl(t) = T (t) + el , l = 1, . . . , 10,
and Xk(t) = T (t) + ek, k = 1, . . . , 10, where el ∼ N (0, 1.5), ek ∼ N (0, 1), and
T (t) ∼ U (−0.5t, 0.5t) for given t . The counting process N (t) for the observation
times is set to be a random-effects Poisson process with intensity rate ζ , where ζ ∼
U (0, 1). Y (t) is generated according to Model (1), where ε(t) is a Gaussian process
with zero mean and covariance function E{ε(s)ε(t)} = exp(−2|t − s|). This set up
allows the data to be correlated in each subject and independent between different
subjects.

To perform this simulation, we take β = (β1, . . . , β10)
T with β1 = 1.2, β2 =

2.5, β3 = 0.5 and β4 = 2 to represent different important levels of the parametric com-
ponents, and θ(t) = (θ1(t), . . . , θ10(t))T with θ1(t) = 5.5 + 0.1 exp(2t − 1), θ2(t) =
0.8 + t (2 − t) and θ6(t) = 2 − 3 sin(π t) to represent different types of nonparametric
functions. While the remaining coefficients, corresponding to the irrelevant variables,
are given by zeros. Furthermore, in the following simulations, we use the cubic B-
splines, and the number of interior knots and the tuning parameters are obtained by (7).

We first compare the performance of the variable selection procedure based on the
adaptive tuning parameters (ATP) λ1k and λ2l defined by (6) with that based on
the constant tuning parameter (CTP) used in Wang et al. (2008). The latter is taking the
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Table 1 Variable selections by using the adaptive tuning parameters (ATP) and the constant tuning param-
eter (CTP)

n = 100 n = 150 n = 200

C I GMSE C I GMSE C I GMSE

β

ATP 5.661 0.003 0.015 5.775 0 0.012 5.874 0 0.008

CTP 4.756 0.001 0.050 5.555 0 0.016 5.821 0 0.009

θ(·)
ATP 6.650 0 0.073 6.893 0 0.016 6.977 0 0.011

CTP 6.091 0 0.101 6.584 0 0.027 6.971 0 0.012

same tuning parameter for all parametric components and nonparametric components
in the variable selection procedure, that is,

λ1k = λ2l ≡ λ, k = 1, . . . , p, l = 1, . . . , q,

where λ can be obtained using cross-validation score function as in Wang et al. (2008).
The average numbers of the estimated zero coefficients for the parametric components
and the nonparametric components are reported in Table 1. The column labeled “C”
gives the average number of coefficients of the true zeros correctly set to zero, and
the column labeled “I ” gives the average number of the true nonzeros incorrectly set
to zero. Furthermore, Table 1 also presents the median of GMSE for the parametric
components and the median of RASE for the nonparametric components over the
1,000 simulations.

From Table 1, we can see that the variable selections based on ATP and CTP both
become better in terms of model error and model complexity as n increases. We also
can see that, for given n, the performance of the variable selection based on ATP
performs better than that based on CTP. The latter cannot eliminate some unimportant
variables and gives larger model errors, and this is specially true when n is small. For
large n, the both variable selection procedures perform very similar.

Next, we evaluate the sensitivity of the partial group SCAD variable selection
procedure (gSCAD), proposed by this paper, for the parametric components and the
nonparametric components on the choice of the number of interior knots. In this
simulation, the number of interior knots is fixed at K = �0.5K0�, K0, 2K0 and 3K0,

respectively, where K0 is the number of interior knots obtained by (7). Furthermore, the
tuning parameter λ is obtained by (7) for given K in each case. The average numbers of
the estimated zero coefficients for the parametric components and the nonparametric
components are reported in Tables 2 and 3, respectively. In Tables 2 and 3, the row
labeled “Oracle” means the oracle estimators computed by using the true model when
the zero coefficients are known.

From Tables 2 and 3, we can see that the gSCAD variable selection for the paramet-
ric components and the nonparametric components becomes more and more closer
to the oracle procedure in terms of model error and model complexity as n increases
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Table 2 Variable selections for the parametric components with different numbers of interior knots by
gSCAD, where K1 = �0.5K0�, K2 = 2K0 and K3 = 3K0

n = 100 n = 150 n = 200

K C I GMSE C I GMSE C I GMSE

K0 5.665 0.003 0.016 5.776 0 0.012 5.877 0 0.008

K1 5.620 0.004 0.020 5.760 0 0.013 5.874 0 0.008

K2 5.617 0.036 0.025 5.754 0 0.014 5.875 0 0.008

K3 5.615 0.040 0.034 5.752 0 0.014 5.870 0 0.009

Oracle 6 0 0.011 6 0 0.007 6 0 0.005

Table 3 Variable selections for the nonparametric components with different numbers of interior knots by
gSCAD, where K1 = �0.5K0�, K2 = 2K0 and K3 = 3K0

n = 100 n = 150 n = 200

K C I GMSE C I GMSE C I GMSE

K0 6.650 0 0.074 6.854 0 0.038 6.976 0 0.011

K1 6.197 0.001 0.165 6.561 0 0.116 6.782 0 0.078

K2 5.499 0.034 0.234 5.923 0.012 0.131 6.417 0 0.095

K3 4.627 0.079 0.686 5.156 0.026 0.255 5.998 0 0.193

Oracle 7 0 0.018 7 0 0.015 7 0 0.010

in each case. We also can see that, for given n, the different number of interior knots
will affect the variable selection of gSCAD for the nonparametric components. It is
mainly because the different number of interior knots will affect the estimator of the
nonparametric components significantly. While the performance of gSCAD for the
parametric components does not depend sensitively on the choice of the number of
interior knots, and this is especially true when n is large.

Lastly, we compare the performance of the gSCAD variable selection with some
existing variable selection methods. For the parametric components, we compare the
performance of gSCAD with the variable selection procedure, says profile SCAD
(pSCAD), proposed by Li and Liang (2008). The basic idea of pSCAD variable selec-
tion procedure is to transform Model (1) into the following linear model

Y (t)∗ = Z(t)T β + ε(t), (8)

where Y (t)∗ = Y (t) − X (t)T θ̃ (t), and θ̃ (·) is a consistent estimator of θ(·) for given
β. Then, the SCAD procedure is used to select significant variables in the parametric
components and obtain the regularized estimator β̃ based on Model (8). The simulation
results are summarized in Table 4.

For the nonparametric components, we compared the gSCAD method with the
generalized likelihood ratio tests (GLRT) method proposed by Li and Liang (2008).
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Table 4 Variable selections for the parametric components with different variable selection methods

n = 100 n = 150 n = 200

C I GMSE C I GMSE C I GMSE

Methods

gSCAD 5.667 0.003 0.015 5.773 0 0.012 5.879 0 0.007

pSCAD 5.780 0.001 0.039 5.357 0 0.018 5.805 0 0.011

Oracle 6 0 0.012 6 0 0.007 6 0 0.005

Table 5 Variable selections for the nonparametric components with different variable selection methods

n = 100 n = 200

C I RASE Time (s) C I RASE Time (s)

Methods
gSCAD 6.650 0 0.074 2.35 6.976 0 0.011 4.994

GLRT 6.646 0 0.076 4.51 6.974 0 0.017 15.728

Oracle 7 0 0.008 0.515 7 0 0.004 0.645

Here, the basic idea of GLRT method is transform Model (1) into the following varying
coefficient model

Y (t)∗∗ = X (t)T θ(t) + ε(t), (9)

where Y (t)∗∗ = Y (t) − Z(t)T β̃, and β̃ is obtained by (8) based on pSCAD. Then, a
series of generalized likelihood ratio tests are used for selecting significant variables
in the nonparametric components based on Model (9). In this simulation, we only gen-
erate n = 100 and 200 subjects, respectively. The simulation results are summarized
in Table 5. In Table 5, we also represent the average computing time of each variable
selection procedure. From Tables 4 and 5, we can make the following observations:

(1) For the parametric and nonparametric components, the performances of all vari-
able selection procedures become more and more closer to the oracle procedure
in terms of model error and model complexity as n increases.

(2) For the parametric components, when n is large, the results based on gSCAD are
similar to that based on pSCAD. However, when n is small, the gSCAD method
outperforms pSCAD method. In addition, pSCAD method is less discriminate,
and can not eliminate some unimportant variables when n is small. This mainly
because we can not give a workable estimator θ̃ (·) when n is small, that may
affect the variable selection for β based on Model (8).

(3) For the nonparametric components, we can see that the performances of the
gSCAD method are similar to the GLRT method in terms of model error and
model complexity. However, the GLRT method needs much more computing
time than that the gSCAD method is used.
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5 Conclusion and discussion

We have proposed a variable selection procedure for semiparametric varying
coefficient partially linear models with longitudinal data. This procedure can select
significant variables in the parametric components and the nonparametric compo-
nents simultaneously. Furthermore, this procedure can simultaneously select signif-
icant variables and estimate unknown coefficients. Our method extends the group
SCAD penalty of Wang et al. (2008) from nonparametric setting to a semiparametric
setting. We have shown that the proposed method is consistent in variable selection,
and has the oracle property of the regularized coefficient estimators. Simulation stud-
ies indicated that the proposed procedure was very effective in selecting significant
variables and estimating the regression coefficients.

In this paper, we assume that the dimensions of the covariates X (t) and Z(t)
are fixed. However, if the dimensions p and q go to infinity as n → ∞, the vari-
able selection procedure proposed by this paper will not work any more. For such
high-dimensional problems, some work has been done for the variable selection in
linear models (see Fan and Lv 2008) and partially linear models (see Xie and Huang
2009). As a future research topic, it is interest to consider the variable selection for
the semiparametric varying coefficient partially linear models with high-dimensional
covariates. In addition, in this paper, we assume the total number of observations on
the i th subject, says ni , is bounded. Another interesting topic of further research is
investigating the case that the number of observations on each subject goes to infinity.

Appendix: Proof of Theorems

For convenience and simplicity, let C denote a positive constant that may be different
value at each appearance throughout this paper. Before we prove our main theorems,
we list some regularity conditions that are used in this paper.

C1 θ(t) is r th continuously differentiable on (0, 1), where r > 2.
C2 The intensity function of Ni (t), says f (t), is bounded away from 0 and infinity

on [0, 1]. Furthermore, we assume that f (t) is continuously differentiable on
(0, 1).

C3 Let G1(t) = E{Z(t)Z(t)T |t}, G2(t) = E{X (t)X (t)T |t}. Then, G1(t), G2(t)
and E{ε(t)2|t} are continuous with respect to t . Furthermore, for given t, G1(t)
and G2(t) are positive definite matrix, and the eigenvalues of G1(t) and G2(t)
are bounded.

C4 Let c1, . . . , cK be the interior knots of [0, 1]. Furthermore, we let c0 = 0, cK+1 =
1, hi = ci − ci−1 and h = max{hi }. Then, there exists a constant C0 such that

h

min{hi } ≤ C0, max{|hi+1 − hi |} = o(K −1).

C5 Let bn = max
k,l

{|p′′
λ2l

(|βl0|)|, |p′′
λ1k

(‖γk0‖H )| : βl0 �= 0, γk0 �= 0}, then bn → 0,

as n → ∞.
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C6 The penalty function satisfies

lim inf
n→∞ lim inf

βl→0+ λ−1
2l p′

λ2l
(|βl |) > 0, l = s + 1, . . . , q,

lim inf
n→∞ lim inf‖γk‖H →0

λ−1
1k p′

λ1k
(‖γk‖H ) > 0, k = d + 1, . . . , p.

These conditions are commonly adopted in the nonparametric literature and var-
iable selection methodology. Conditions C1–C3 are similar to those used in Xue
and Zhu (2007a) and Fan and Li (2004). Condition C4 implies that c0, . . . , cK+1
is a C0-quasi-uniform sequence of partitions of [0, 1] (see Schumaker 1981, p.216).
Conditions C5 and C6 are assumptions on the penalty function, that are similar to that
used in Wang et al. (2008), Fan and Li (2001), and Li and Liang (2008).

Proof of Theorem 1 Let δ = n−r/(2r+1) + an, β = β0 + δU1, γ = γ0 + δU2 and
U = (U T

1 , U T
2 )T . For part (i), we first show that, for any given ε > 0, there exists a

large constant C such that

P

{

inf‖U‖=C
Q(γ, β) > Q(γ0, β0)

}

≥ 1 − ε. (10)

Let �(γ, β) = K −1{Q(γ, β) − Q(γ0, β0)}, then, invoking βl0 = 0, l = s +
1, . . . , q, γk0 = 0, k = d + 1, . . . , p, and pλ(0) = 0, with a simple calculation,
we have that

�(γ, β) ≥ −2δ

K

n∑

i=1

∫ 1

0

{
εi (t) + Xi (t)

T R(t)
} {

Zi (t)
T U1 + Wi (t)

T U2

}
dNi (t)

+δ2

K

n∑

i=1

∫ 1

0

{
Zi (t)

T U1 + Wi (t)
T U2

}2
dNi (t)

+ n

K

s∑

l=1

[pλ2l (|βl |) − pλ2l (|βl0|)]

+ n

K

d∑

k=1

[pλ1k (‖γk‖H ) − pλ1k (‖γk0‖H )]

≡ I1 + I2 + I3 + I4,

where R(t) = (R1(t), . . . , Rp(t))T , and Rk(t) = θk(t) − B(t)T γk, k = 1, . . . , p.
From conditions C1, C2 and Corollary 6.21 in Schumaker (1981), we get that ‖R(t)‖ =
O(K −r ). Then, invoking condition C3, a simple calculation yields

n∑

i=1

∫ 1

0
Xi (t)

T R(t)
{

Zi (t)
T U1 + Wi (t)

T U2

}
dNi (t) = Op(nK −r‖U‖). (11)
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Then, notice that E{εi (t)|Zi (t), Xi (t)} = 0, we can prove that

1√
n

n∑

i=1

∫ 1

0
εi (t)

{
Zi (t)

T U1 + Wi (t)
T U2

}
dNi (t) = Op(‖U‖).

Together this with (11), it is easy to show that

I1 = Op(
√

nK −1δ)‖U‖ + Op(nK −1−rδ)‖U‖ = Op

(
1 + n

r
2r+1 an

)
‖U‖.

Similarly, we can prove that

I2 = Op(nK −1δ2)‖U‖2 = Op

(
1 + 2n

r
2r+1 an

)
‖U‖2.

Hence, by choosing a sufficiently large C, I2 dominates I1 uniformly in ‖U‖ = C .
Furthermore, by the standard argument of the Taylor expansion, we get that

I3 = K −1n
s∑

l=1

[pλ2l (|βl |) − pλ2l (|βl0|)]

=
s∑

l=1

K −1nδp′
λ2l

(|βl0|)sgn(βl0)|U1l |

+
s∑

l=1

K −1nδ2 p′′
λ2l

(|βl0|)|U1l |2{1 + o(1)}

≤ √
sK −1nδan‖U‖ + K −1nδ2bn‖U‖2.

Then, it is easy to show that I3 is dominated by I2 uniformly in ‖U‖ = C . With the
same argument, we can prove that I4 is also dominated by I2 uniformly in ‖U‖ = C .
Hence, by choosing a sufficiently large C , (10) holds. Then, by the convexity of Q(·, ·),
we have that

P

{

inf‖U‖≤C
Q(γ, β) > Q(γ0, β0)

}

≥ 1 − ε.

This implies, with probability at least 1 − ε, that there exists a local minimizer β̂ such
that ‖β̂ − β0‖ = Op(δ), that completes the proof of part (i).

Next, we prove part (ii). Note that

‖θ̂k(t) − θk0(t)‖2 =
∫ 1

0

{
θ̂k(t) − θk0(t)

}2
dt

=
∫ 1

0

{
B(t)T γ̂k − B(t)T γk + Rk(t)

}2
dt
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≤ 2
∫ 1

0

{
B(t)T γ̂k − B(t)T γk

}2
dt + 2

∫ 1

0
Rk(t)

2dt

= 2
∫ 1

0
(γ̂k − γk)

T B(t)B(t)T (γ̂k − γk)dt + 2
∫ 1

0
Rk(t)

2dt.

With the same arguments as the proof of part (i), we can get that ‖γ̂ − γ ‖ =
Op(n−r/(2r+1) + an). Then, a simple calculation yields

∫ 1

0
(γ̂k − γk)

T B(t)B(t)T (γ̂k − γk)dt = Op

{
(n

−r
2r+1 + an)2

}
. (12)

In addition, it is easy to show that

∫ 1

0
Rk(t)

2dt = Op

(
n

−2r
2r+1

)
. (13)

Invoking (12) and (13), we complete the proof of part (ii). ��
Proof of Theorem 2 We first prove part (i). From λ → 0, it is easy to show that an = 0
for large n. Then by Theorem 1, it is sufficient to show that, for any γ that satisfies
‖γ − γ0‖ = Op(n−r/(2r+1)), βl that satisfies ‖βl − βl0‖ = Op(n−r/(2r+1)), l =
1, . . . , s, and some given small ε = Cn−r/(2r+1), when n → ∞, with probability
tending to 1 we have

∂Q(γ, β)

∂βl
> 0, for 0 < βl < ε, l = s + 1, . . . , q, (14)

and

∂Q(γ, β)

∂βl
< 0, for − ε < βl < 0, l = s + 1, . . . , q. (15)

Thus, (14) and (15) imply that the minimizer of Q(γ, β) attains at βl = 0, l =
s + 1, . . . , q.

By a similar the proof of Theorem 1, we have that

∂ Q(γ, β)

∂βl
=

n∑

i=1

∫ 1

0
Zil(t)

{
Yi (t)−Zi (t)

T β−Wi (t)
T γ

}
dNi (t)

+ np′
λ2l

(|βl |)sgn(βl)

= −2
n∑

i=1

∫ 1

0
Zil(t)

{
εi (t) + Xi (t)

T R(t)
}

dNi (t)

−2
n∑

i=1

∫ 1

0
Zil(t)Zi (t)

T (β0 − β)dNi (t)
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−2
n∑

i=1

∫ 1

0
Zil(t)Wi (t)

T (γ0 − γ )dNi (t) + np′
λ2l

(|βl |)sgn(βl)

= nλ2l

{
λ−1

2l p′
λ2l

(|βl |)sgn(βl) + Op

(
λ−1

2l n− r
2r+1

)}
.

In addition, condition C6 implies that limn→∞ lim infβl→0 λ−1
2l p′

λ2l
(|βl |) > 0, and

note that λ2ln
r

2r+1 > λminn
r

2r+1 → ∞, it is clear that the sign of the derivative is
completely determined by that of βl , then (14) and (15) hold. This completes the
proof of part (i).

Applying the similar techniques as in the analysis of part (i) in this theorem, we
have, with probability tending to 1, that γ̂k = 0, k = d + 1, . . . , p. Then, the result of
this theorem is immediately achieved from θ̂k(t) = BT (t)γ̂k . ��

Proof of Theorem 3 Let γ ∗ = (γ T
1 , . . . , γ T

d )T , and γ ∗
0 be the true value of γ ∗. Corre-

sponding covariates are denoted by W ∗
i , i = 1, . . . , n. Then, Theorems 1 and 2

imply that, as n → ∞, with probability tending to 1, Q(γ, β) attains the minimal
value at (β̂∗T , 0)T and (γ̂ ∗T , 0)T . Let Q1n(γ, β) = ∂ Q(γ, β)/∂β∗ and Q2n(γ, β) =
∂ Q(γ, β)/∂γ ∗, then, (β̂∗T , 0)T and (γ̂ ∗T , 0)T must satisfy

1

n
Q1n((γ̂

∗T , 0)T , (β̂∗T , 0)T )

= 1

n

n∑

i=1

∫ 1

0
Z∗

i (t)
{

Yi (t) − W ∗
i (t)T γ̂ ∗ − Z∗

i (t)T β̂∗} dNi (t)

+
s∑

l=1

p′
λ2l

(|β̂l |)sgn(β̂l) = 0. (16)

1

n
Q2n((γ̂

∗T , 0)T , (β̂∗T , 0)T )

= 1

n

n∑

i=1

∫ 1

0
W ∗

i (t)
{

Yi (t) − W ∗
i (t)T γ̂ ∗ − Z∗

i (t)β̂∗} dNi (t)

+
d∑

k=1

p′
λ1k

(‖γ̂k‖H )
H γ̂k

‖γ̂k‖H
= 0. (17)

Applying the Taylor expansion to p′
λ2l

(|β̂l |), we get that

p′
λ2l

(|β̂l |) = p′
λ2l

(|βl0|) + {
p′′
λ2l

(|βl0|) + op(1)
}
(β̂l − βl0).

Furthermore, Condition C5 implies that p′′
λ2l

(|βl0|) = op(1), and note that p′
λ2l

(|βl0|)
= 0 as λmax → 0, then,

∑s
l=1 p′

λ2l
(|β̂l |)sgn(β̂l) = op(β̂

∗ − β∗
0 ). Hence, by (16), a
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simple calculation yields

1

n

n∑

i=1

∫ 1

0
Z∗

i (t)
{

Z∗
i (t)T (β∗

0 − β̂∗) + W ∗
i (t)T (γ ∗

0 − γ̂ ∗) + X∗
i (t)T R∗(t)

+ εi (t)
}

dNi (t) + op(β̂
∗ − β∗

0 ) = 0, (18)

where R∗(t) = (R1(t), . . . , Rd(t))T . Invoking (17), and using the similar arguments
to (18), we can prove that

1

n

n∑

i=1

∫ 1

0
W ∗

i (t)
{

Z∗
i (t)T

(
β∗

0 − β̂∗) + W ∗
i (t)T (

γ ∗
0 − γ̂ ∗) + X∗

i (t)T R∗(t)

+ εi (t)
}

dNi (t) + op
(
γ̂ ∗ − γ ∗

0

) = 0. (19)

Let	n = 1
n

∑n
i=1

∫ 1
0 W ∗

i (t)W ∗
i (t)T dNi (t), and
n= 1

n

∑n
i=1

∫ 1
0 W ∗

i (t)Z∗
i (t)T dNi (t),

then, by (19), we have that

γ̂ ∗ − γ ∗
0 = [	n + op(1)]−1 1

n

n∑

i=1

∫ 1

0
W ∗

i (t)
[

X∗
i (t)T R∗(t) + εi (t)

]
dNi (t)

+[	n + op(1)]−1
n

(
β∗

0 − β̂∗) .

Substituting this into (18), and a simple calculation yields

1

n

n∑

i=1

∫ 1

0
Z∗

i (t)
{

Z∗
i (t) − 
n	−1

n W ∗
i (t)

}T
dNi (t)

(
β̂∗ − β∗

0

)
+ op(1)

(
β̂∗ − β∗

0

)

= 1

n

n∑

i=1

∫ 1

0
Z∗

i (t)
{
εi (t) + X∗

i (t)T R∗(t) − W ∗
i (t)T

[
	−1

n + op(1)
]
�n

}
dNi (t),

(20)

where �n = 1
n

∑n
i=1

∫ 1
0 W ∗

i (t)[εi (t) + X∗
i (t)T R∗(t)]dNi (t). Note that

1

n

n∑

i=1

∫ 1

0

T

n 	−1
n W ∗

i (t)
{

Z∗
i (t)T − W ∗

i (t)T 	−1
n 
n

}
dNi (t) = 0,

and

1

n

n∑

i=1

∫ 1

0

T

n 	−1
n W ∗

i (t)
{
εi (t) + X∗

i (t)T R∗(t) − W ∗
i (t)T 	−1

n �n

}
dNi (t) = 0.
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Then, by (20), it is easy to show that

{
1

n

n∑

i=1

∫ 1

0
Z̆∗

i (t)Z̆∗
i (t)T dNi (t) + op(1)

} √
n

(
β̂∗ − β∗

0

)

= 1√
n

n∑

i=1

∫ 1

0
Z̆∗

i (t)εi (t)dNi (t) + 1√
n

n∑

i=1

∫ 1

0
Z̆∗

i (t)X∗
i (t)T R∗(t)dNi (t)

+ 1√
n

n∑

i=1

∫ 1

0
Z̆∗

i (t)W ∗
i (t)T

[
	−1

n + op(1)
]
�ndNi (t)

≡ I1 + I2 + I3, (21)

where Z̆∗
i (t) = Z∗

i (t) − 
T
n 	−1

n W ∗
i (t). Using the Central Limits Theorem, we can

obtain

I1
L−→ N (0, B), (22)

where
L−→ means the convergence in distribution. In addition, note that

n∑

i

∫ 1

0
Z̆∗

i (t)W ∗
i (t)T dNi (t) = 0,

we have that I3 = 0. Furthermore, a simple calculation yields

I2 = 1√
n

n∑

i=1

∫ 1

0

{
Z∗

i (t) − μ(t)T X∗
i (t)

}
X∗

i (t)T R∗(t)dNi (t)

+ 1√
n

n∑

i=1

∫ 1

0

{
μ(t)T X∗

i (t) − 
T
n 	−1

n W ∗
i (t)

}
X∗

i (t)T R∗(t)dNi (t)

≡ I21 + I22.

Invoking E{[Z∗
i (t) − μ(t)T W ∗

i ]X∗
i (t)T } = 0, we can prove

1√
n

n∑

i=1

∫ 1

0

{
Z∗

i (t) − μ(t)T X∗
i (t)

}
X∗

i (t)T dNi (t) = Op(1).

Together this with ‖R(u)‖ = o(1), it is clear that I21 = op(1). Similarly, we can prove
that I22 = op(1). Hence, we have that I2 = op(1). In addition, by the law of large
numbers, we have that

1

n

n∑

i=1

∫ 1

0
Z̆∗

i (t)Z̆∗
i (t)T dNi (t)

P−→ �, (23)
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where
P−→ means the convergence in probability. Then, invoking (21)–(23), and using

the Slutsky Theorem, we completes the proof of Theorem 3. ��
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