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Abstract Simultaneous confidence band is obtained for the trend function of time
series with heteroscedastic α-mixing errors, based on constant and linear spline
smoothing. Simulation study confirms that the bands have conservative coverage of
the true trend function. Linear band has been constructed for the leaf area index (LAI)
data collected in East Africa, which has revealed that the trigonometric curve in the
regional atmospheric modelling system (RAMS) is inadequate.

Keywords Berry–Esseen bound · Confidence band · Heteroscedastic error ·
Mixing · Polynomial spline · Trend

1 Introduction

In time series analysis, estimation of the trend is a very crucial first step. Consider a
time series realization {Yi }n

i=1, one common assumption is that Yi is decomposable
into a time varying trend plus a stationary error, i.e., Yi = m(i/n) + Xi in which
m(·) is the trend function and the errors {Xi }n

i=1 form a time series with mean zero.
Often it is assumed that the trend function m is of polynomial form, and the errors
{Xi }n

i=1 is stationary. Many actual time series data, however, exhibit strong deviation
from these set of assumptions, see for example, Beran and Feng (2002a), Beran and
Feng (2002b), and Feng (2004).
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276 J. Wang

Without loss of generality, consider the following model that incorporates
nonparametric time trend and heteroscedastic error

Yin = m (i/n) + σ (i/n) εin, i = 1, . . . , n (1)

in which m(i/n) is a smooth function of time i/n, the error Xi is expressed as
σ(i/n)εin , where σ(i/n) is the standard deviation of Xi and {εin}n

i=1 is a standardized
white noise sequence, E(εin) ≡ 0, E(ε2

in) ≡ 1.
Nonparametric regression problems have been long investigated through kernel and

spline smoothing in parallel. For kernel smoothing on independent data, satisfactory
asymptotics have been obtained for pointwise convergence, see Fan and Gijbels (1996)
and Härdle (1990). The uniform confidence bands of the kernel type are also available
in Bickel and Rosenblatt (1973), Silverman (1986), Härdle (1989), Xia (1998) and
Claeskens and Van Keilegom (2003). Most of the technical part for uniform conver-
gence rely heavily on the strong approximation theorem in Tusnády (1977). Practitio-
ners especially favor superior computational performance and easy implementation
procedure. Polynomial spline smoothers perform satisfactorily in both aspects. The
detailed asymptotics has been developed in Stone (1985), Stone (1994), Huang (1998)
and Huang (2003). Uniform confidence bands are also available in Zhou et al. (1998)
under homoscedastic, independent and normality assumption, and Wang and Yang
(2009a) under independent restriction only. Wang and Yang (2009b) has constructed
kernel type uniform confidence bands for component function in high-dimensional
additive models.

Nonparametric smoothing of weakly dependent data has been pursued in many
directions due to its superiority for modelling and forecasting nonlinear time series,
see Roussas (1988) and Roussas (1990) for kernel type smoothing, Fan and Yao (2003)
for local polynomial fitting, Huang and Yang (2004), and Xue and Yang (2006) for
spline type smoothing, and Cai (2002) for regression quantiles. Song and Yang (2009)
investigate the asymptotics normality of variance spline estimator. Under strong mix-
ing conditions asymptotic normality for pointwise estimators are available in the cases
of kernel regression in Liebscher (1999), and polynomial spline regression in Diack
(2001) and Huber-Carol et al. (2002). In addition Masry and Fan (1997) established
asymptotic joint normal distribution for derivatives of regression function. Rates for
uniform (strong) convergence under mixing condition was proposed for Nadaraya–
Watson regression estimation in Liebscher (2001). Zhou et al. (1998) constructed
the simultaneous confidence band for polynomial splines under i.i.d. cases. However,
uniform confidence bands for dependent observations, in particular in the strong mix-
ing condition, are unavailable for the nonparametric smoothers.

As an example, consider regional climate modelling in Olson et al. (2008), of the
phenological information, such as Leaf Area Index (LAI) and fractional cover, which
are important inputs of the climate modelling system. With modern satellite system,
the data are regularly collected over recent years. The observation does show clear
pattern of heteroscedasticity and dependence over time. It can be best described by
model (1). One major objective of the system is to update LAI in the model system if
the overall shape underlying the real data does not support the original LAI function.
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Modelling time trend 277

Such inference about the regression function is best done with the construction of
uniform confidence bands for hypothesized function.

The paper is organized as follows. Section 2 introduces main results about the con-
fidence bands on time series data. Implementation description and simulation results
are presented in Sects. 3 and 4. Data example illustrates the proposed model in Sect. 5.
Outline of the proof is in Appendix.

2 Main results

To introduce spline functions, divide interval [0, 1] into (N + 1) subintervals J j =
[t j , t j+1), j = 0, . . . , N − 1, JN = [tN , 1]. A sequence of equally spaced points

{t j }N
j=1, called interior knots, are given as

t1−p =· · ·= t0 = 0 < t1 < · · ·< tN <1= tN+1, t j =a + jh, j = 0, 1, . . . , N + 1,

(2)

in which h = 1/(N + 1) is the distance between neighboring knots and p is to
denote spline order. Order p = 1, 2 represent constant and linear spline respectively.
We denote by G(p−2) = G(p−2)[0, 1] the space of functions that are polynomials of
degree (p − 1) on each J j and have continuous (p − 2)th derivative on [0, 1]. For
example, G(−1) denotes the space of functions that are constant on each J j , and G(0)

the space of functions that are linear on each J j and continuous on [0, 1]. Denote
by C (p)[0, 1] the function space in which every function has continuous pth order
derivative.

Define the polynomial spline estimator based on data {Yin}n
i=1 drawn from model

(1)

m̂ p (·) = argmin
g(·)∈G(p−2)

n∑

i=1

{Yin − g (i/n)}2 , p = 1, 2. (3)

Necessary technical assumptions are as follows:

(A1) The regression function m ∈ C (p)[0, 1], p = 1, 2.
(A2) The standard deviation function σ(x) is continuous and positive on [0, 1].
(A3) The errors {εin}n

i=1 is a martingale difference that satisfies

E
(
εin
∣∣Fi−1,n

) = 0, E
(
ε2

in

)
= 1, E

(
|εin|3

)
< M0 < +∞, 1 ≤ i ≤ n,

in which Fi−1,n denotes the σ -field generated by {ε1,n, . . . , εi−1,n}.
(A4) There exist positive constants K0 and λ0 such that αn(k) ≤ K0e−λ0k holds for

all 1 ≤ k ≤ n − 1, where the strong mixing coefficient of order k is defined as

αn (k) = sup
B∈σ {εin ,i≤t},C∈σ {εin ,i≥t+k}

|P (B ∩ C) − P (B) P (C)| . (4)

(A5) The number of interior knots N = Nn satisfies (n/ log n)1/(2p+1) � N � n1/3.
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278 J. Wang

Assumptions (A1) and (A2) are the regular assumptions in nonparametric regres-
sion, same as in Huang (2003). Assumptions (A3) and (A4) are common ones in time
series literature. The knots number N follows order constraints consistent with Stone
(1985, 1994).

Define for any x ∈ [0, 1] its location index j (x) and relative location index δ(x) as

j (x) = jn (x) = min {[x/h] , N } , δ (x) = {
x − t j(x)

}
/h. (5)

It is clear that t j (x) ≤ x < t j (x)+1, 0 ≤ δ(x) < 1,∀x ∈ [0, 1], j (1) = N . Also
note that the relative location index equals 0 at all interior knots, i.e. δ(t j ) = 0, for
j = 0, 1, . . . , N , and δ(0) = 0, δ(1) = 1.

For any L2-integrable functions φ, ϕ on [0, 1], the theoretical and empirical inner
products are defined respectively as 〈φ, ϕ〉 = ∫ 1

0 φ(x)ϕ(x)dx, 〈φ, ϕ〉n = n−1∑n
i=1

{φ(i/n)ϕ(i/n)}. The corresponding L2 norms can be defined accordingly.
The B-spline basis functions that generate G(−1), are indicator functions on sub-

intervals J j , and defined as b j,1(x) = I j (x) = IJ j (x), j = 0, 1, . . . , N . The linear
B-spline basis of G(0), are b j,2(x) = K {(x − t j+1)h−1}, j = −1, 0, 1, . . . , N , where
K (u) = (1 − |u|)+ is the triangular kernel. For theoretical analysis, we use rescaled
(standardized) B-spline basis {B j,1(x)}N

j=0 and {B j,2(x)}N
j=−1 for G(−1) and G(0),

B j,p (x) ≡ ∥∥b j,p
∥∥−1

2 b j,p (x) , 1 − p ≤ j ≤ N , p = 1, 2. (6)

The inner product matrix of constant B-spline basis {B j,1(x)}N
j=0 is obviously an

identity matrix IN+1, while the inner product of linear B-spline basis {B j,2(x)}N
j=−1

is denoted as

V = (〈
B j ′,2, B j,2

〉)N
j, j ′=−1 = (

v j ′ j
)N

j, j ′=−1 . (7)

Note that the linear spline basis function only overlaps with its neighbors, matrix V
equals to a tridiagonal matrix which is approximated by (29) in Lemma 7. Define
inverse matrix of V as S, and the 2 × 2 diagonal submatrices of matrix S as follows

S = (
s j ′ j

)N
j, j ′=−1 = V−1, S j =

(
s j−1, j−1 s j−1, j

s j, j−1 s j, j

)
, j = 0, . . . , N . (8)

Define

	 =
(
σ 2

jl

)N

j,l=−1
=
{∫

σ 2 (v) B j,2 (v) Bl,2 (v) dv

}N

j,l=−1
, (9)

where the component σ 2
jl is a key quantity for heteroscedastic variance function,

which determines the width of confidence bands. The approximate pointwise variance
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Modelling time trend 279

function of the polynomial spline estimator m̂ p(x) for p = 1, 2, are

σ 2
n,1 (x) =

∫
I j(x) (v) σ 2 (v) dv

n
∥∥b j(x),1

∥∥2
2

=
∫

I j(x) (v) σ 2 (v) dv

nh
, (10)

σ 2
n,2 (x) = 1

n

N∑

j, j ′,l,l ′=−1

B j ′,2 (x) Bl ′,2 (x) s j j ′sll ′σ
2
jl , (11)

with j (x) defined in (5), B j ′,2(x) in (6), and sll ′ and σ jl in (8), (9).
The main theorem is to construct simultaneous confidence bands with polynomial

spline smoother. An asymptotic conservative 100(1 − α)% confidence band for the
unknown m(x) over the interval [0, 1] consists of an estimator m̂(x) of m(x), lower
and upper confidence limits m̂(x) − ln(x), m̂(x) + ln(x) at every x ∈ [a, b] such that

lim inf
n→∞ P

{
m (x) ∈ m̂ (x) ± ln (x) ,∀x ∈ [0, 1]} ≥ 1 − α.

Theorem 1 Under Assumptions (A1)–(A5), for a given 0 < α < 1, an asymptotic
100(1 − α)% conservative confidence band for m(x) over [0, 1] is

m̂ p (x) ± σn,p (x) {2p log (N + 1)}1/2 dn (α/p) , p = 1, 2

where the pointwise variance σn,1(x) as given in (10) can be approximated by σ(x)

{nh}−1 according to Lemma 3, σn,2(x) in (11) could be replaceable by σ(x){2nh/3}−1

�T (x)S j (x)�(x) according to Lemma 8, and where

dn (α) = 1 − {2 log (N + 1)}−1
[

log (α/2) + 1

2
{log log (N + 1) + log 4π}

]
.

(12)

To develop the asymptotics of the estimator m̂ p(x), estimation error m̂ p(x)−m(x)

is decomposed into a bias term and a noise term
The spline estimator m̂ p(x) can be expressed as a linear combination of the stan-

dardized B-spline basis, m̂ p(x) ≡ ∑N
j=1−p λ̂ j,p B j,p(x), where the coefficients {λ̂ j,p,

1 − p ≤ j ≤ N }T are solutions of the following least squares problem

{
λ̂1−p,p, . . . , λ̂N ,p

}T = argmin
RN+p

∑n

i=1

{
Yi −

∑N

j=1−p
λ j,p B j,p (i/n)

}2

.

(13)

Denote a pseudo function Y(i/n) ≡ Yin, 1 ≤ i ≤ n, then m̂ p(x) can be expressed as

m̂ p (x) = {
B j,p (x)

}T
1−p≤ j≤N

(〈
B j ′,p, B j,p

〉
n

)−1
1−p≤ j, j ′≤N

{〈
Y, B j,p

〉
n

}n
j=1−p

,
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280 J. Wang

which is the projection of response Y in spline space G(1−p) with respect to the
empirical inner product. Correspondingly we could define projections of true function
m(x) and pseudo function based on error E(i/n) ≡ {σ(i/n)εin}n

i=1, m̃ p(x) and ε̃p(x).
The error decomposition can be formulated as

m̂ p (x) − m (x) = {
m̃ p (x) − m (x)

}+ ε̃p (x) .

For notation simplicity, denote by ‖ · ‖∞ the supremum norm of a function r on
[0, 1], i.e. ‖r‖∞ = supx∈[0,1] |r(x)|, and the moduli of continuity of a continuous
function r on [0, 1] is denoted as ω(r, h) = maxx,x ′∈[0,1],|x−x ′|≤h |r(x) − r(x ′)|. By
the uniform continuity of r on an interval [0, 1], one has limh→0 ω(r, h) = 0.

The magnitude order of bias term m̃ p(x) − m(x) can be derived from the theorem
on page 149, de Boor (2001), and Theorem 5.1, Huang (2003).

The following proposition provides the asymptotic magnitude of the noise term
ε̃p (x), which plays a major role in the proof for Theorem 1 in Appendix.

Proposition 1 Under Assumptions (A2)–(A5), for a given 0 < α < 1, with σn,1(x)

given in (10) and σn,2(x) in (11)

lim inf
n→∞ P

[
sup

x∈[0,1]

∣∣∣σ−1
n,p (x) ε̃p (x)

∣∣∣ ≤ {2p log (N + 1)}1/2 dn (α/p)

]
≥ 1 − α.

Remark 1 The main theorem results show that the strong convergence rate of strong
mixing sequence is similar to that of i.i.d. cases in Wang and Yang (2009a), which is
quite intuitive and consistent with other smoothing estimators in both cases. But they
are very different particularly in the technical part. In Wang and Yang (2009a) the
approximation procedure relies on the strong approximation of empirical processes of
i.i.d. observations by Brownian bridge in both constant and linear spline cases. With
the Itô Isometry theorem, an exact distribution is available for contact case and hence
an exact confidence band; while for linear splines due to the tridiagonal structure of
the inner product of the basis vector, a maximization theorem is applied and a conser-
vative band is for linear splines. But in this paper, because of the dependent structure
(α-mixing) among the observations, an exact approximation to the empirical processes
is not available any more, but a conservative band can be obtained via Berry–Esseen
Bound in Sunklodas (1984). Liang and Uña-Álvarez (2009) used similar idea to inves-
tigate the uniform asymptotics for censored data under strong mixing conditions. As
in Liebscher (2001), Bernstein’s inequality in Bosq (1996) and upcrossing probability
in Leadbetter et al. (1983) are also popular tools in this paper to develop simultaneous
confidence band.

Remark 2 Following the suggestion of the referees and the associate editor, the stan-
dard deviation σ(x) in Theorem 1 is estimated by its polynomial spline estimator,
instead of the kernel type counterpart in implementation of the following section.
Song and Yang (2009) has shown that in their simulation studies bootstrap sampling
helps to achieve much more powerful regressors. Similar bootstrap methods can be
found in Härdle et al. (2004) and Yang (2008) for component function estimation in
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Modelling time trend 281

generalized additive models and additive models respectively in the setting of inde-
pendent and identically distributed observations. The asymptotic behavior of kernel
estimators after bootstrap sampling has been studied in Paparoditis and Politis (2000)
under mixing conditions. The author suspects the convergence rate and asymptotic
normality of Bootstrap sampling can be extended to other nonparametric smoothing
estimators including spline smoothing under similar dependent restrictions. It is an
interesting topic which needs further investigation, but beyond the scope of this paper.

3 Implementation

To implement the proposed confidence bands in Theorem 1, a sample {Yin}n
i=1 is

drawn from model (1). The number of interior knots for constant spline is taken to
be N = [c1n1/3(log n)−1/6] + c2, where c1 and c2 are positive integers, and knots
number corresponding to linear spline is N = [c1n1/5]+ c2. The knots are taken to be
equally spaced, as in (2). Since explicit formula for coverage probability does not exist
for the bands, there is no optimal method to select (c1, c2) supported by theoretical
inference. Härdle et al. (1997) had shown that adaptive knots selection could lead to
inconsistency in L∞ norm. In simulation, the simple choice of c1 = 5 and c2 = 1 for
constant band and c1 = 1 and c2 = 1 for linear band seem work well, so these are set
as default values.

The least squares problem for B-spline estimator m̂ p(·) in (13) can be solved via

the truncated power basis {1, x, . . . , x p−1, (x − t j )
p−1
+ , j = 1, . . . , N }. In the spline

space, given knots location and number, the truncated power basis is equivalent to the
previous mentioned B-spline basis functions in (6), i.e.

m̂ p (x) =
p−1∑

k=0

γ̂k xk +
N∑

j=1

γ̂ j,p
(
x − t j

)p−1
+ , p = 1, 2, (14)

where the coefficients {γ̂0, . . . , γ̂p−1, γ̂1,p, . . . , γ̂N ,p}T are solutions to the following
least squares problem

{
γ̂0, . . . , γ̂N ,p

}T =argmin
RN+p

n∑

i=1

⎧
⎨

⎩Yi −
p−1∑

k=0

γk (i/n)k −
N∑

j=1

γ j,p
(
(i/n) − t j

)p−1
+

⎫
⎬

⎭

2

.

Define vectors Zp = {Z1,p, . . . , Zn,p}T , p = 1, 2, with Zi,p = {Yi − m̂ p(i/n)}2.
Following two referees’ suggestion, the polynomial spline estimation is applied to
obtain the variance estimator of σ 2(x), σ̂ 2

p(x), p = 1, 2, based on data {i/n, Zi,p}n
i=1

σ̂ 2
p (x) = argmin

g(·)∈G(p−2)

n∑

i=1

{
Zi,p − g (i/n)

}2
, p = 1, 2. (15)

123



282 J. Wang

The consistency of the estimator is obtained in Song and Yang (2009)

max
p=1,2

sup
x∈[a,b]

∣∣∣σ̂ 2
p (x) − σ 2 (x)

∣∣∣ = Op

(
n−p/(2p+1)

)
= op (1) . (16)

The conservative band is computed with m̂ p(x) in (14) and dn in (28)

m̂ p (x) ± σ̂n,p (x) {2p log (N + 1)}1/2 dn (α/p) (17)

where the function σn,p(x) is approximated by two formulae given below. When
p = 1, σn,1(x) is approximated by σ̂n,1(x) = {σ̂ 2

1 (x)}1/2n−1/2h−1/2, where σ̂ 2
1 (x) is

defined in (15). It is a consistent estimator of σ 2
n,1(x) as n → ∞ according to (10) and

(16).
Similarly, according to (16), function σn,2(x) with explicit expression in (37) is

estimated consistently by

σ̂n,2 (x) =
{
�T (x) S j(x)� (x)

}1/2 {
σ̂ 2

2 (x)
}1/2 {2nh/3}−1/2 ,

with location index j (x) defined in (5), 2 × 2 matrix S j in (8), and σ̂ 2
2 (x) defined

above, �(x) defined as follows:

� (x) =
(

c j(x)−1 {1 − δ (x)}
c j(x)δ (x)

)
, c j =

{ √
2 j = −1, N

1 0 ≤ j ≤ N − 1
, (18)

To express the pointwise variance of linear spline bands explicitly, one needs to find
S j (x), a 2 × 2 block matrix of the inverse of tridiagonal matrix V. The solution for
the inverse of a tridiagonal matrix can be derived via two theorems, Equation (43) in
Gantmacher and Krein (1960) and Theorem 4.5 in Zhang (1999), please see Subsection
4.2, Wang and Yang (2009a) for details.

4 Simulation study

Simulated time series data is drawn from model (1) with

m (x) = sin(2πx), σ (x) = σ0
100 − exp (x − 0.5)

100 + exp (x − 0.5)
,

with noise level σ0 = 0.5, 1.0, sample size n = 100, 200, 500 and confidence level
1 − α = 0.95, 0.99.

In this study the errors {εin}n
i=1 are generated from an ARCH(1) model {vi , i ≥ 1},

{
v2

i = ω2
i z2

i , zi ∼ N (0, 1)

ω2
i = α0 + α1v

2
i−1

,
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which is a popular member in martingale difference family. As one referee and the
associate editor pointed out that a general ARCH model could not satisfy the error
assumption (A3) directly. Note that ARCH(1) sequence have a constant unconditional
variance α0/(1 − α1) given α1 < 1. Rescale the ARCH(1) sequence {vi } by its stan-
dard deviation is to obtain a martingale difference sequence with conditional mean 0
and unconditional variance 1. In particular, the sequence {v2

i , i ≥ 1} follows AR(1) if
3α2

1 < 1. Please see Fan and Yao (2003) and Schumway and Stoffer (2006) for details.
The error sequence of martingale differences {εin}n

i=1 are generated as follows:

εin = vi√
α0/ (1 − α1)

, 1 ≤ i ≤ n.

Simulation samples are firstly drawn from a ARCH model with coefficient α0 fixed
at 0.5. The degree of dependence depends on coefficient α1 which is taken α1 =
0, 0.1, 0.3, 0.5. Typically α1 = 0 is associated with a serially uncorrelated sequence,
and for normal errors in this study, it is an i.i.d. sequence. The larger the coefficient
α1, the stronger the dependence among the series {εin}.

As suggested in Song and Yang (2009), the bootstrap methods can improve the
power and hence mean of bootstrap variance estimators is employed to model the
pointwise variance. There are 200 Bootstrap samples randomly selected for all sim-
ulations. The Bayesian information criterion (BIC) is selected to optimize the knots
selection in variance estimation. Because of the special piece-wise polynomial struc-
ture of splines, in particular jump type in constant spline, relatively more knots are
selected in the constant spline estimation for variance estimation. While for linear
spline type, BIC leads to a satisfactory coverage outcome with very limited knots
number.

The empirical coverage probability are reported in Tables 1 and 2. If the simul-
taneous confidence bands constructed on the sample data as in (17) cover the true
curve at every point in the range of [0, 1], the coverage counts 1; otherwise 0. In each
simulation the number is counted out of 500 replications. The empirical coverage
probability is calculated as the percentage out of 500 replications for comparison. All
values outside (inside) the parenthesis are corresponding to coverage probability for
spline bands with nominal confidence level 0.99(0.95).

Table 1 Constant spline bands coverage probabilities in 500 replications, with confidence 0.95 and 0.99
inside/outside of the parenthesis

σ0 n α1 = 0 α1 = 0.1 α1 = 0.3 α1 = 0.5

0.5 100 0.890 (0.630) 0.848 (0.576) 0.806 (0.570) 0.718 (0.498)

200 0.924 (0.722) 0.906 (0.686) 0.868 (0.650) 0.824 (0.548)

500 0.956 (0.752) 0.922 (0.726) 0.874 (0.710) 0.840 (0.574)

1.0 100 0.926 (0.746) 0.900 (0.668) 0.860 (0.670) 0.778 (0.588)

200 0.968 (0.824) 0.934 (0.806) 0.904 (0.746) 0.864 (0.672)

500 0.986 (0.898) 0.978 (0.884) 0.946 (0.838) 0.940 (0.762)
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Table 2 Linear spline bands coverage probabilities in 500 replications, with confidence 0.95 and 0.99
inside/outside of the parenthesis

σ0 n α1 = 0 α1 = 0.1 α1 = 0.3 α1 = 0.5

0.5 100 0.996 (0.980) 0.996 (0.968) 0.948 (0.918) 0.858 (0.794)

200 1.000 (0.978) 0.994 (0.978) 0.974 (0.944) 0.900 (0.852)

500 1.000 (0.986) 1.000 (0.980) 0.992 (0.976) 0.954 (0.926)

1.0 100 0.988 (0.988) 0.988 (0.982) 0.938 (0.908) 0.894 (0.860)

200 1.000 (1.000) 0.998 (0.992) 0.970 (0.958) 0.904 (0.888)

500 1.000 (1.000) 1.000 (1.000) 1.000 (0.992) 0.958 (0.950)

Regardless of the noise level and dependence level, the confidence bands with confi-
dence 0.99 always have better coverage than those with confidence 0.95, especially all
the coverage probability are 100% for linear spline bands with confidence 0.99. With
sample size increasing, there is noticeable improvement in corresponding coverage
probability.

In both tables it is also found that confidence band with larger noise level 1.0 provide
better coverage than those with noise level 0.5, which is quite intuitive since larger
noise makes wider bands. Compared with i.i.d. cases (α1 = 0), confidence bands with
weakly dependent errors have relatively smaller coverage probability.

In all cases, linear confidence bands outperform constant bands. The trigonometric
function is differentiable to infinite order, so higher order spline produces high order
smooth curves to fit the data better and capture the shape better. Compared with con-
stant bands, linear bands could use fewer knots and have much better coverage. With
fewer knots, it could significantly reduce the computation burden.

The linear spline band is recommended because of its stable statistical property
and nice practical performance. In the following real data example at Sect. 5, I use the
linear spline estimation and its confidence band to model time series trend.

To illustrate the proposed method, a sample with size 200 or 500 is drawn to cre-
ate the graphs in Figs. 1 and 2. There are four types of symbols: points (data), solid
smooth curve (true curve), thin dashed line (spline estimator), and upper and lower
solid line (confidence bands). Compared with jump-type constant spline regression
lines and bands on the left, those on the right corresponding to linear splines show
better smoothness and capture the curve shape quite well. In all graphs, the confidence
bands with larger confidence 0.99 is wider than those with smaller confidence 0.95.
In addition, a larger sample produces narrower confidence bands.

5 Example of leaf area index

Many studies demonstrate the influence of land use and land cover change on local
and regional climate. The climate and land use interaction project, or CLIP (http://
clip.msu.edu) attempts to understand the nature and magnitude of the interactions of
climate and land use/cover change across East Africa. For details of the project, please
see Olson et al. (2008) and Wang et al. (2006). Phenological information reflecting
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Fig. 1 Plots of constant spline bands, linear confidence bands (solid lines), linear spline estimators
(dot-dashed line), simulated data (dots), and true curves (thin line)

the seasonal variability of vegetation is an important input variable in regional climate
models such as the regional atmospheric modelling system (RAMS). It varies among
different land cover types and geographic locations (latitude and longitude).

The RAMS version 4.4 is a state-of-the-art three-dimensional atmospheric model.
For a given land cover class, it provides functions for several vegetation characteristics
including LAI, fractional cover, roughness length, and displacement height. Although
these characteristics are interrelated, in this paper only LAI is considered temporally
and spatially for each land type.

The MODIS (Moderate Resolution Imaging Spectroradiometer) LAI product used
is available at 8-day temporal intervals with a 1 km spatial resolution covering the
entire study region in a two-dimensional tessellation. The data was obtained through
the NASA Land Processes Distribution Active Archive Center. The phenological dis-
crepancy between the RAMS model and the remote sensing measurement will show
that the pre-assumed function relationship (in RAMS) is significantly different from
the collected information of MODIS.
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Fig. 2 Plots of linear spline bands, linear confidence bands (solid lines), linear spline estimators (dot-dashed
line), simulated data (dots), and true curves (thin line)

To show the difference driven by the spatial affect, in particular the latitude, based
on MODIS data, I have employed the linear spline method to estimate LAI function by
formula (13) and its confidence bands in Theorem 1. The RAMS presumed function
curve is only considered at three latitudes, North 5◦(+5) , and South 5◦(−5). Each
grid block covers the area of 0.1 by 0.1 degrees, the longitudinal of three grid blocks
are chosen to be as close as possible. There are dozens of land cover types in East
Africa region. For illustration purpose, two popular land cover types are selected for
the study: deciduous woodland and deciduous shrubland with sparse trees.

To investigate the discrepancy, statistical hypotheses for each land type are set first:
H0 : LAI trend curve follows RAMS model vs. H1: Does not follow RAMS model.

In Fig. 3, columns correspond to different latitudes, and rows for land cover types.
The solid line represents the LAI hypothesized curve in the RAMS model, the central
dashed line is the linear spline regression line, and the dotted lines (upper and lower)
are the confidence bands derived from the MODIS data based on the proposed linear
splines.
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Fig. 3 Testing the time trend of leaf area index, linear confidence bands (upper and lower dotted lines),
linear spline estimators (central dashed line), real data (dots), and hypothesized curves (solid line)

Given that the significance level as low as 0.01, the RAMS curve falls outside of
the bands almost completely at every point at North 5 and South 5 latitude degrees.
Therefore the test confirms that the RAMS curves overestimate the LAI, with the dif-
ference being significantly large indicated from the small p-value < 0.01. Applying
the same methods to the data of other land cover types at different spatial locations
yields similar results.

Appendix: Technical results

In the proofs, denote by U (·), u(·) quantities of orders O(·) and o(·) uniformly over
x ∈ [0, 1] and/or 1 − p ≤ j ≤ N + 1.

Major technical results used in this section are the Bernstein’s Inequality
(Theorem 1.4 from Bosq (1996)), the Berry–Esseen Bound (Theorem 1 from
Sunklodas (1984)), and the upcrossing probability result (Theorem 1.5.3 from
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Leadbetter et al. (1983) ). We denote by 
 the standard normal distribution func-
tion. For detailed proof of lemmas and theorems, please see Wang (2009).

Theorem 2 (Sunklodas 1984) Let {ξi }n
i=1 be an α-mixing sequence with Eξi = 0.

Denote d := max1≤i≤n{E |ξi |2+δ}, 0 < δ ≤ 1, Sn = ∑n
i=1 ξi , σ 2

n := E S2
n ≥ c0n

for some c0 ∈ (0,+∞). If α(n) ≤ K0e−λ0n, λ0 > 0, K0 > 0, then there exist
c1 = c1(K , δ), c2 = c2(K , δ), such that

�n = sup
z

∣∣∣P
{
σ−1

n Sn < z
}

− 
(z)
∣∣∣ ≤ c1

d

c0σ δ
n

{
log

(
σn/c1/2

0

)
/λ
}1+δ

,

for any λ with λ1 ≤ λ ≤ λ2, where

λ1 = c2

{
log

(
σn/c1/2

0

)}b
/n, b > 2 (1 + δ) /δ; λ2 = 4δ−1 log

(
σn/c1/2

0

)
.

Recall that G(−1) is the space of functions that are constant on each J j , and G(0)

the space of functions that are linear on each J j and continuous on [0, 1]. One could
easily calculate the theoretical norms of their B-spline basis.

Lemma 1

‖b j,1‖2
2 =

∫
I 2

j (x) dx = h, j = 0, 1, . . . , N ,

‖b j,2‖2
2 =

∫
K 2

{(
x − t j+1

)
h−1

}
dx =

{
2h/3, 0 ≤ j ≤ N − 1
h/3, j = −1, N

,

〈
b j,2, b j ′,2

〉 =
∫

K

(
x − t j+1

h

)
K

(
x − t j ′+1

h

)
dx =

{
h/6,

∣∣ j − j ′
∣∣ = 1

0,
∣∣ j − j ′

∣∣ > 1
.

The next lemma connects theoretical and empirical norms. With the help of this
lemma, the stochastic form (empirical) of inner product matrix can approximate the
deterministic inner product, which provides an explicit expression to implement the
proposed estimation in Sects. 3 and 4.

Lemma 2 Under Assumption (A5), for p = 1, 2, as n → ∞

An,p = sup
g1,g2∈G(p−2)

∣∣∣∣
〈g1, g2〉n − 〈g1, g2〉

‖g1‖2 ‖g2‖2

∣∣∣∣ = O(n−1h−1) = o(1). (19)

Proof It can be shown that when p = 1, max0≤ j≤N ‖B j,1‖2
2,n = 1 + O(n−1h−1).
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For any g1(x) ≡ ∑N
j=0 λ j1 B j,1(x), g2(x) ≡ ∑N

j=0 λ j2 B j,1(x),

∣∣∣∣
〈g1, g2〉n − 〈g1, g2〉

‖g1‖2 ‖g2‖2

∣∣∣∣ =

∣∣∣∣∣∣∣

∑N
j=0 λ j1λ j2

(∥∥B j,1
∥∥2

2,n − 1
)

{∑N
j=0 λ2

j1

∑N
j=0 λ2

j2

}1/2

∣∣∣∣∣∣∣

≤
max0≤ j≤N

∣∣∣
∥∥B j,1

∥∥2
2,n −1

∣∣∣
∣∣∣
∑N

j=0 λ j1λ j2

∣∣∣
{∑N

j=0 λ2
j1

∑N
j=0 λ2

j2

}1/2

≤ max
0≤ j≤N

∣∣∣
∥∥B j,1

∥∥2
2,n −1

∣∣∣= O
(

n−1h−1
)

.

Proof for case p = 2 is similar to above procedures. ��

A.1 Proof of Theorem 1 when p = 1

The projections of true function m(x) and pseudo function based on error E(i/n) ≡
{σ(i/n)εin}n

i=1 can be formulated as follows

m̃ p (x)={B j,p (x)
}T

1−p≤ j≤N

(〈
B j ′,p, B j,p

〉
n

)−1
1−p≤ j, j ′≤N

{〈
m, B j,p

〉
n

}n
j=1−p

,

(20)

ε̃p (x)={B j,p (x)
}T

1−p≤ j≤N

(〈
B j ′,p, B j,p

〉
n

)−1
1−p≤ j, j ′≤N

{〈
E, B j,p

〉
n

}n
j=1−p

.

(21)

Note that ε̃1(x) is the error projected into the constant spline space with respect to
empirical inner product, can be represented by the following

ε̃1 (x) =
N∑

j=0

〈
E,B j,1

〉
n

∥∥B j,1
∥∥−1

2,n B j,1 (x) . (22)

Define ε∗
j ≡ 〈E,B j,1〉n = 1

n

∑n
i=1 B j,1(

i
n )σ ( i

n )εin , a similar estimator ε̂1(x) with
‖B j,1‖2,n replaced by ‖B j,1‖2 in (22) can be simplified as

ε̂1 (x) =
N∑

j=0

ε∗
j B j,1 (x)

∥∥B j,1
∥∥−1

2 =
N∑

j=0

ε∗
j B j,1 (x) , x ∈ [0, 1] . (23)

Later I will show that under Lemma 2, the difference between ε̃1(x) in (22) and ε̂1(x) in
(23) is asymptotically negligible and these two processes share a common asymptotic
distribution.

Let us first work on the pointwise variance of ε̂1(x).
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Lemma 3 Under Assumptions (A1) to (A3) and (A5), the pointwise variance of ε̂1(x)

can be approximated by σ 2(x)(nh)−1, i.e.,

E
{
ε̂1 (x)

}2 = σ 2 (x) (nh)−1 {1 + rn,1 (x)
}
, x ∈ [0, 1] , (24)

with supx∈[0,1] |rn,1(x)| → 0 as n → ∞. In addition |E{ε̂1(x)}2 − σ 2
n,1(x)| =

u((nh)−1), with σ 2
n,1(x) defined in (10).

Proof The main tools for the proof are Lemma 1 and continuity of function σ(x).
Note that E ε̂1(x) = 0. According to (23),

E
{
ε̂1 (x)

}2 = I j(x) (x)

n2h

{
n∑

i=1

B2
j(x),1

(
i

n

)
σ 2
(

i

n

)}
=

h( j(x)+1)∑

i
n =h j(x)

σ 2
( i

n

)

n2h2 ,

where the martingale difference sequence {εin, 1 ≤ i ≤ n} is an uncorrelated sequence.
Hence supx∈[0,1] |E{ε̂1(x)}2 − σ 2(x)(nh)−1|

≤ sup
x∈[0,1]

1

n2h2

∣∣∣∣∣∣∣

h( j(x)+1)∑

i
n =h j(x)

σ 2 (i/n) − (nh) σ 2 (x)

∣∣∣∣∣∣∣
= o

(
n−1h−1

)
,

which proves (24). Based on the continuity of the variance function, we have

sup
x∈[0,1]

∣∣∣B2
j(x),1(i/n) σ 2 (i/n) − B2

j(x),1 (x) σ 2 (x)

∣∣∣

≤ sup
x∈[0,1]

B2
j(x),1(i/n) ω(σ 2, h) = o(h−1)

In addition, supx∈[0,1] |E{ε̂1(x)}2 − σ 2
n,1(x)| is equal to

sup
x∈[0,1]

(nh)−1

∣∣∣∣∣∣∣

h( j(x)+1)∑

i
n =h j(x)

σ 2(i/n)

nh
−
∫

I j(x)(v) σ 2 (v) dv

∣∣∣∣∣∣∣
= o

(
(nh)−1

)
.

��
Next lemma proves that the difference between ε̃1(x) in (22) and ε̂1(x) in (23) is

negligible uniformly over x ∈ [0, 1], which is directly derived from (19).

Lemma 4 Under Assumptions (A1) to (A3) and (A5),

∣∣ε̃1 (x) − ε̂1 (x)
∣∣ ≤ An,1

(
1 − An,1

)−1 ∣∣ε̂1 (x)
∣∣, x ∈ [0, 1].
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The Berry–Esseen Theorem in Sunklodas (1984) is a critical tool to the main tech-
nical results in this paper. Major assumptions in this paper are on those moments
conditions: the second moment of a α-mixing sequence sum with order n, and finite
(2 + δ) moment. For simplicity, take δ = 1. To apply the Berry–Esseen result, one
needs to verify the moment conditions for a new defined sequence

ξi, j ≡ B j,1 (i/n) σ (i/n) εi , 1 ≤ i ≤ n, j = 0, . . . , N .

Lemma 5 Under Assumptions (A1) to (A3), there exist constants cσ,0, Cσ,0 ∈(0,+∞),
such that for each j = 0, . . . , N

σ 2
j = E

(
n∑

i=1

ξi, j

)2

= ncσ, j ≥ ncσ,0, (25)

d j = E |ξi, j |3 = E
{

B3
j,1 (i/n) σ 3 (i/n) |εin|3

}
≤ Cσ,0h−3/2. (26)

Proof For martingale difference sequence {εin,}n
i=1 we have E{εinεi ′n}=0 for i �= i ′,

and E{ε2
in} = 1, then ∀0 ≤ j ≤ N ,

cσ, j = σ 2
j /n = (nh)−1

∑

jh≤ i
n ≤( j+1)h

σ 2
(

i

n

)
≥ cσ,0 > 0.

Based on Lemma 1 and the continuity of functions σ 2(x), it implies that

E |ξi, j |3 ≤ B3
j,1 (i/n) σ 3 (i/n) E |εi |3 ≤ h−3/2Cσ,0,

where Cσ,0 = sup0≤x≤1{σ 3(x)E |εi |3} < ∞ since max1≤i≤n{E |εi |3} < ∞ given in
Assumption (A3). ��
Lemma 6

lim inf
n→∞ P

[
sup

x∈[0,1]

∣∣∣σ−1
n,1 (x) ε̃1 (x)

∣∣∣ ≤ {2 log (N + 1)} dn (α)

]
≥ 1 − α

Proof For any x ∈ [0, 1], the standardized term ε̂1(x) = h−1/2n−1∑n
i=1 ξi, j (x)

can be reexpressed as (E{ε̂2
1(x)})−1/2ε̂1(x) = σ−1

j (x)

∑n
i=1 ξi, j (x). Then one has that

|σ−1
n,1(x)ε̂1(x) − σ−1

j (x)

∑n
i=1 ξi, j | equals to

∣∣∣∣∣

[
σ−1

n,1 (x) −
(

E
{
ε̂2

1 (x)
})−1/2

]
B j(x),1 (x)

1

n

n∑

i=1

ξi, j(x)

∣∣∣∣∣ = u((nh)−3/2) = u(1)

since E{ 1
n

∑n
i=1 ξi, j }2 = n−2σ 2

j ≤ n−1C2
σ implies that 1

n

∑n
i=1 ξi, j = U (n−1/2), in

which σ 2
j = ncσ, j , Cσ = max0≤x≤1{σ(x)}, and d j ≤ Cσ,0h−3/2 as in (26).
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The sequence {ξi, j }n
i=1 is a stationary α-mixing sequence, with mean Eξi, j = 0.

Thus by Theorem 2 with δ replaced by 1, there exist positive constants c1 and c2 such
that

�n = max
0≤ j≤N

sup
z

∣∣∣∣∣∣∣
P

⎧
⎪⎨

⎪⎩

1
n

∑n
i=1 B j,1 (x) B j,1 (i/n) σ (i/n) εin

[
E
{
ε̂1 (x)

}2
]1/2 ≤ z, x ∈ I j

⎫
⎪⎬

⎪⎭
−
(z)

∣∣∣∣∣∣∣

= max
0≤ j≤N

sup
z

∣∣∣∣∣P
{

σ−1
j(x)

n∑

i=1

ξi, j(x) ≤ z

}
− 
(z)

∣∣∣∣∣+ o (1)

≤ c1

{
Cσ,0h−3/2

}

cσ,0σ j(x)

{
log

(
σ j(x)/

√
cσ,0

)
/λ
}2

.

For any c2·n−1{log(σ j (x)/
√

cσ,0)}b ≤ λ ≤ 12{log(σ j (x)/
√

cσ,0)}, b > 4, then

�n ≤ c1

{
Cσ,0h−3/2

}

cσ,0
{
ncσ,0

}1/2 12−2 ≤ C
(

nh3
)−1/2

.

Assumption (A5) leads to �n → 0 uniformly as n → ∞.

Define

aN =(2 log N )1/2 , bN =(2 log N )1/2− (2 log N )−1/2 (log log N + log 4π)

2
. (27)

Based on Theorem 1.5.3 in Leadbetter et al. (1983), one has

P

{
sup

0≤ j≤N

∣∣∣∣∣

n∑

i=1

ξi, j

σ j

∣∣∣∣∣>
− log (α/2)

aN+1
+bN+1

}

≤
N∑

j=0

P

{∣∣∣∣∣

n∑

i=1

ξi, j

σ j

∣∣∣∣∣>
− log (α/2)

aN+1
+bN+1

}
= α + U

((
nh3

)−1/2
)

Let − log(α/2)/aN+1 + bN+1 = {2 log(N + 1)}1/2dn(α), i.e.

dn(α) = 1 − {2 log (N + 1)}−1/2
[

log (α/2) + log log (N + 1) + log 4π

2

]
. (28)
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Therefore,

lim inf
n→∞ P

[
sup

x∈[0,1]

∣∣∣σ−1
n,1 (x) ε̂1 (x)

∣∣∣ ≤ {2 log (N + 1)}1/2 dn (α)

]

= lim inf
n→∞ P

[
sup

0≤ j≤N

∣∣∣∣∣σ
−1
j

n∑

i=1

ξi, j

∣∣∣∣∣ ≤ {2 log (N + 1)}1/2 dn (α)

]
≥ 1 − α.

��
Proof of Proposition 1 Based on Lemma 4, we have

∣∣∣∣∣ sup
x∈[0,1]

∣∣∣σ−1
n,1(x)ε̂1 (x)

∣∣∣− sup
x∈[0,1]

∣∣∣σ−1
n,1 (x) ε̃1 (x)

∣∣∣

∣∣∣∣∣ = Op

(
(nh)−1

)
= op (1) .

It implies that supx∈[0,1] |σ−1
n,1(x)ε̂1(x)| share the same asymptotic distribution as

supx∈[0,1] |σ−1
n,1(x)ε̃1(x)|. Hence

lim inf
n→∞ P

[
sup

x∈[0,1]

∣∣∣σ−1
n,1 (x) ε̃1 (x)

∣∣∣ ≤ {2 log (N + 1)}1/2 dn (α)

]
≥ 1 − α.

��
Proof of Theorem 1 From the approximation theorem in Pg. 154 in de Boor (2001)
and Theorem 5.1 in Huang (2003), we have ‖m̃1(x) − m(x)‖∞ = Op(h). Since
h �(nh)−1/2log1/2(N +1) according to Assumption (A5), the bias order is negligible
compared to the noise order. Applying Proposition 1,

lim inf
n→∞ P

[
m (x) ∈ m̂1 (x) ± σn,1 (x) {2 log (N + 1)}1/2 dn (α) ,∀x ∈ [0, 1]

]

= lim inf
n→∞ P

[
sup

x∈[0,1]
σ−1

n,1 (x) |ε̃1 (x)+m̃1 (x)−m (x)|≤{2 log (N + 1)}1/2dn (α)

]

= lim inf
n→∞ P

[
sup

x∈[0,1]

∣∣∣σ−1
n,1 (x) ε̃1 (x)

∣∣∣ ≤ {2 log (N + 1)}1/2 dn (α)

]
≥ 1 − α.

��

A.2 Proof of Theorem 1 when p = 2

In this subsection we examine some matrices used to construct linear confidence band
in Theorem 1. In what follows, we use |T | to denote the maximal absolute value of
any matrix T .

Lemma 7 The inner product matrix V of the B-spline basis {B j,2(x)}N
j=−1 defined in

(7) can be calculated
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V = (〈
B j ′,2, B j,2

〉)N
j, j ′=−1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
√

2/4 0 0
√

2/4 1 1/4
. . .

0 1/4 1
. . .

. . .

. . .
. . .

. . . 1/4 0
. . . 1/4 1

√
2/4

0 0
√

2/4 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (29)

Consider matrix S = (s j ′ j )
N
j ′, j=−1 ≡ V−1, let ξ̃ j ′ = {sgn(s j ′ j )}N

j=−1, apply
Lemma B.2 in the Supplement of Wang and Yang (2009a), then there exists a positive
Cs such that

N∑

j=−1

∣∣s j ′ j
∣∣ ≤

∣∣∣Sξ̃ j ′
∣∣∣ ≤ Cs

∣∣∣ξ̃ j ′
∣∣∣ = Cs, ∀ j ′ = −1, 0, . . . , N . (30)

The linear spline estimator of error term ε̃2(x) in (21) can be expressed as

ε̃2 (x) =
N∑

j=−1

ã j B j,2 (x) , x ∈ [0, 1] , (31)

where the linear spline coefficient vector ã = (ã−1, . . . , ãN )T is defined as

ã =
(

V + B̃
)−1

(
1

n

n∑

i=1

ξ L
i, j

)N

j=−1

,

where ξ L
i, j ≡ B j,2(

i
n )σ ( i

n )εi and term B̃ satisfies |B̃| ≤ An,2 = O(n−1h−1) by
Lemma 2.

Now define â =(â−1, . . . , âN )T by replacing (V + B̃)−1 with V−1 = S in above
formula, i.e.

â = S

{
1

n

n∑

i=1

ξ L
i, j

}N

j=−1

=
⎧
⎨

⎩

N∑

j=−1

s j ′ j

1

n

n∑

i=1

ξ L
i, j

⎫
⎬

⎭

N

j ′=−1

= 1√
n

Sξ,

with

ξ ≡
{

1√
n

n∑

i=1

ξ L
i, j

}N

j=−1

. (32)
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Recall that the location index j (x) defined in (5 ) and B j,2(x) in (6), ε̂2(x) can be
expressed as

ε̂2(x) =
N∑

j ′=−1

â j ′ B j ′,2 (x) =
j (x)∑

j ′= j(x)−1

â j ′ B j ′,2 (x)

=
j (x)∑

j ′= j(x)−1

1√
n

B j ′ ,2(x)

N∑

j=−1

{
s j ′ , j

1√
n

n∑

i=1

ξ L
i, j

}
. (33)

which is to approximate ε̃2(x) in (31). For simplicity define vectors D(x) and {� j }N
j=0

D (x) ≡ 1√
n

(
B j(x)−1,2 (x)

B j(x),2 (x)

)
, � j =

(
� j1
� j2

)
≡ S jξ, (34)

in which S j is a 2 × (N + 2) matrix with the ( j − 1)th and j th rows of matrix S only

S j =
(

s j−1,−1 s j−1,0 · · · s j−1,N

s j,−1 s j,0 · · · s j,N

)
, 0 ≤ j ≤ N . (35)

Then, one can write ε̂2(x) in (33) by the following matrix form

ε̂2(x) = DT (x) � j(x), x ∈ [0, 1] , (36)

Lemma 8 The pointwise variance of ε̂2(x) can be approximated by the function
σ 2

n,2(x) defined in (11), which satisfies

σ 2
n,2 (x) = 3σ 2 (x)

2nh
�T (x) S j(x)� (x)

{
1 + rn,2 (x)

}
, (37)

with supx∈[0,1] |rn,2(x)| → 0, j (x) is as defined in (5), �(x) as defined in (18) and
matrix S j in (8). And further

∣∣∣E
{
ε̂2

2 (x)
}

− σ 2
n,2 (x)

∣∣∣ = u(n−1h−1)

Consequently, there exist positive constants cσ , Cσ such that for n large enough

cσ (nh)−1/2 ≤ σn,2 (x) ≤ Cσ (nh)−1/2 , ∀x ∈ [0, 1] . (38)

Proof From (34) and (36), E{ε̂2
2(x)} is equal to

DT (x) cov
(
� j(x)

)
D (x) = DT (x) S j(x) cov (ξ)ST

j(x)D (x) .
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Note that {εin} is a martingale difference sequence with E(εin) = 0, E[εinεkn] =
0,∀i �= k, the jlth entry of the covariance matrix cov(ξ) is

u jl = 1

n

n∑

i=1

n∑

k=1

E
{
ξ L

i, jξ
L
l,k

}
= 1

n

n∑

i=1

B j,2

(
i

n

)
Bl,2

(
i

n

)
σ 2
(

i

n

)

=
∫

σ 2 (v) B j,2 (v) Bl,2 (v) dv + u (1) = σ 2
jl + u (1)

where σ 2
jl is the jlth entry of the matrix 	 defined in (9), i.e., | cov(ξ) − 	| =

max−1≤k,l≤N |ukl − σ 2
kl | = o(1).

Simple matrix computation leads to

S j(x)D (x) =
(

n−1/2 {B j(x)−1 (x) s j(x)−1, j + B j(x) (x) s j(x), j
})N

j=−1

and DT(x)S j (x)	ST
j (x)D(x) is the matrix product format of σ 2

n,2(x) in (11). Hence it

implies that |E{ε̂2
2(x)} − σ 2

n,2(x)| = u(n−1h−1).

The rest of proof is similar to Lemma B.4 in Wang and Yang (2009a). ��

Lemma 9 Under Assumptions (A1) to (A5),

max
0≤ j≤N

∣∣∣cov(� j ) − σ 2 (t j+1
)

S j

∣∣∣ = o (1) .

Proof Given S j in (35), the covariance matrix of � j is expressed as

cov(� j ) = cov(S jξ) = cov

{
1√
n

(∑n
i=1

∑N
j ′=−1 s j−1, j ′ξ L

i, j ′∑n
i=1

∑N
j ′=−1 s j, j ′ξ L

i, j ′

)}

Following the positive definite property of matrix S in Lemma B.2 in Supplement
of Wang and Yang (2009a),

R j,1 =
∣∣∣cov(� j ) − S j	ST

j

∣∣∣∞ ≤ C
∣∣∣ukl − σ 2

kl

∣∣∣ = u (1) .

S j	ST
j =

(∑N
k,l=−1 s j−1,kσ

2
kl s j−1,l

∑N
k,l=−1 s j−1,kσ

2
kl s j,l∑N

k,l=−1 s j,kσ
2
kl s j−1,l

∑N
k,l=−1 s j,kσ

2
kl s j,l

)
(39)

The variance element in above matrix

σ 2
kl =

∫
σ 2 (v) Bk,2 (v) Bl,2 (v) dv = σ 2 (tk+1) vkl + o

(
w
(
σ 2, h

))

= σ 2 (tl+1) vkl + o
(
w
(
σ 2, h

))
.
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in which vkl is the element of the inner product matrix of the linear spline basis
function, i.e. V = (vkl)−1≤k,l≤N . Replace σ 2

kl with σ 2(tl+1)vkl in (39), and denote

� j, j ′ =
N∑

k,l=−1

s j,kσ
2 (tl+1) vkl s j ′,l for j, j ′ = 1, . . . , N .

Based on the continuity assumption of the variance function σ 2(·), it is quite straight-
forward that the difference is also negligible

R j,2 =
∣∣∣∣S j	ST

j −
(

� j−1, j−1 � j−1, j

� j, j−1 � j, j

)∣∣∣∣∞
= u (1)

Since S = V−1 = (vkl)
−1, we have

∑N
k=−1 s j,kvkl = 1 when j = l, otherwise 0. So

� j−1, j = σ 2(t j )s j−1, j , and � j, j = σ 2(t j+1)s j, j , hence

R j,3 =
∣∣∣∣

(
� j−1, j−1 � j−1, j

� j, j−1 � j, j

)
− σ 2 (t j+1

) ( s j−1, j s j−1, j

s j, j−1 s j, j

)∣∣∣∣

≤ Cs

∣∣∣σ 2 (t j
)− σ 2 (t j+1

)∣∣∣ = u (h) = u (1)

It is clear that
∣∣∣cov(� j ) − σ 2 (t j+1

)
S j

∣∣∣ ≤ R j,1 + R j,2 + R j,3 = u (1).

which implies that σ 2(t j+1)S j approximations to covariance cov(� j ) uniformly.
Hence, the lemma follows. ��

Define {cov(� j )}−1/2 =
(

λ11, j λ12, j

λ21, j λ22, j

)
and � j ≡ S jξ as defined in (34). For any

0 ≤ j ≤ N ,

{
cov(� j )

}−1/2
� j =

(
λ11, j � j1 + λ12, j � j2

λ21, j � j1 + λ22, j � j2

)
= {

cov(� j )
}−1/2 S jξ,

�T
j

{
cov

(
� j
)}−1

� j =
∑

l=1,2

{
λl1, j � j1 + λl2, j � j2

} =
∑

l=1,2

1√
n

n∑

i=1

ηi, j,l

where ηi, j,l = ∑N
j ′=−1(λl1, j s j−1, j ′ + λl2, j s j, j ′)ξ L

i, j ′ , l = 1, 2.

Lemma 10 Under Assumptions (A1) to (A4),

lim sup
n→∞

P

⎧
⎨

⎩ max
0≤ j≤N

∣∣∣∣∣n
−1/2

n∑

i=1

ηi, j,l

∣∣∣∣∣

2

> 2 log (N + 1)
{

dn

(α

2

)}2

⎫
⎬

⎭ = α

2
.

123



298 J. Wang

Proof For simplicity we only prove the case of l = 1, and without specific notation,
ηi, j = ηi, j,1. Case of l = 2 can be derived similarly.

It is clear that Eηi, j = 0, E(
∑n

i=1 ηi, j )
2 =nE(λ11, j � j1 + λ12, j � j2)

2 = n. Based
on equations (30) and (38), and Lemma 9, the third moment

E
∣∣ηi, j

∣∣3 ≤ Ch−3/2 sup
{

E |ε|3
}

≤ CT M0h−3/2.

Then by Sunklodas lemma,

�n = max
j=−1,...,N

sup
z

∣∣∣∣∣P
{

n−1/2
n∑

i=1

ηi, j < z

}
− 
(z)

∣∣∣∣∣ = O

((
nh3

)−1/2
log2 n

)
.

Following similar procedure to the constant case, one has

P

{
max

0≤ j≤N

∣∣∣∣∣n
−1/2

n∑

i=1

ηi, j

∣∣∣∣∣ > {2 log (N + 1)}1/2 dn

(α

2

)}

≤ α

2
+ O

((
nh5

)−1/2
log2 n

)
+ u (1)

where dn is defined in (28). Hence

lim sup
n→∞

P

⎧
⎨

⎩ max
0≤ j≤N

∣∣∣∣∣n
−1/2

n∑

i=1

ηi, j

∣∣∣∣∣

2

> 2 log (N + 1) d2
n

(α

2

)
⎫
⎬

⎭= α

2
.

��
Lemma 11 Under Assumptions (A1) to (A5),

lim inf
n→∞ P

[
sup

x∈[0,1]

∣∣∣σ−1
n,2(x)ε̂2(x)

∣∣∣ ≤ 2 {log (N + 1)}1/2 dn (α/2)

]
≥ 1 − α.

Proof Note that ε̂2(x) = DT (x)� j (x), where D(x) and � j (x) are defined in (34).
Thus, standardization leads to

{
σ−1

n,2(x)ε̂2(x)
}2 = D (x)T � j(x)�

T
j(x)D (x)

D (x)T cov
(
� j(x)

)
D (x)

≤ �T
j(x)

{
cov

(
� j(x)

)}−1
� j(x),

where the inequality is a direct application of maximization lemma of Johnson and
Wichern (1992, page 166). It is obvious that

sup
x∈[0,1]

∣∣∣σ−1
n,2(x)ε̂2(x)

∣∣∣
2 ≤ max

0≤ j≤N

{
�T

j

{
cov

(
� j
)}−1

� j

}
.
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Thus

lim inf
n→∞ P

[
sup

x∈[0,1]

∣∣∣σ−1
n,2(x)ε̂2(x)

∣∣∣≤2 {log (N + 1)}1/2 dn (α/2)

]

≥ lim inf
n→∞ P

[
max

0≤ j≤N

{
�T

j

{
cov

(
� j
)}−1

� j

}
≤4 {log (N + 1)} {dn (α/2)}2

]

≥ 1−lim sup
n→∞

P

⎡

⎣ max
0≤ j≤N

∑

l=1,2

{
n−1/2

n∑

i=1

ηi, j,l

}2

>4 {log (N + 1)} {dn (α/2)}2

⎤

⎦

≥ 1−
∑

l=1,2

lim sup
n→∞

P

⎡

⎣ max
0≤ j≤N

{
n−1/2

n∑

i=1

ηi, j,l

}2

>2 {log (N + 1)} {dn (α/2)}2

⎤

⎦

≥ 1 − α/2 × 2 = 1 − α.

The last inequality derived from Lemma 10. ��

Lemma 12 Under Assumptions (A1) to (A5), we have

∣∣∣∣∣ sup
x∈[0,1]

∣∣∣σ−1
n,2(x)ε̂2 (x)

∣∣∣− sup
x∈[0,1]

∣∣∣σ−1
n,2 (x) ε̃2 (x)

∣∣∣

∣∣∣∣∣ = Op

(
n−1h−1

)
= op (1) .

Proof Similar proof as in Lemma B.11 in Wang and Yang (2009a). ��

Proof of Proposition 1 It follows from the two lemmas above. ��

Proof of Theorem 1 From the spline approximation theorem in Page 154 in de Boor
(2001) and Theorem 5.1 in Huang (2003), we have supremum order of bias ‖m̃2(x)−
m(x)‖∞ = Op(h2). Hence the bias order is negligible compared to the noise order
since h2 � (nh)−1/2 log1/2(N + 1). Applying Proposition 1

lim inf
n→∞ P

[
m (x) ∈ m̂2 (x) ± 2σn,2 (x) {log (N + 1)}1/2 dn (α/2) ,∀x ∈ [0, 1]

]

= lim inf
n→∞ P

[
sup

x∈[0,1]
σ−1

n,2 (x)|ε̃2 (x)+m̃2 (x)−m (x)|≤2 {log (N + 1)}1/2dn

(α

2

)]

= lim inf
n→∞ P

[
sup

x∈[0,1]

∣∣∣σ−1
n,2 (x) ε̃2 (x)

∣∣∣ ≤ 2 {log (N + 1)}1/2 dn (α/2)

]
≥ 1 − α.

��
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