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Abstract For general step-stress experiments with arbitrary baseline distributions,
wherein the stress levels change immediately after having observed pre-specified
numbers of observations under each stress level, a sequential order statistics model
is proposed and associated inferential issues are discussed. Maximum likelihood esti-
mators (MLEs) of the mean lifetimes at different stress levels are derived, and some
useful properties of the MLEs are established. Joint MLEs are also derived when an
additional location parameter is introduced into the model, and estimation under order
restriction of the parameters at different stress levels is finally discussed.

Keywords Accelerated life-testing · Step-stress experiment · Generalized order
statistics · k-out-of-n system · Location-scale family of distributions · Maximum
likelihood estimation · Order restricted inference

1 Introduction

Models and methods of accelerated life-testing are useful when technical systems
under test tend to have long lifetimes. Under normal operating conditions, as sys-
tems usually last long, the corresponding life-tests become too time-consuming and
expensive. In these cases, accelerated tests can be applied to reduce the experimental
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304 N. Balakrishnan et al.

time and hence the cost; see, for example, Bagdonavicius and Nikulin (2002), Meeker
and Escobar (1998), and Nelson (1980, 1990). One such accelerated life-testing is the
step-stress testing wherein the units under test are successively exposed to increasing
stress levels higher than under normal operating conditions. Then, additional model
assumptions lead to inferential results for the underlying life-distribution based on
observations taken under different stress levels. To begin with, we consider a simple
step-stress test involving just two different stress levels.

In step-stress models, usually a cumulative exposure model is assumed (Sedyakin
1966; Bagdonavicius 1978; Nelson 1980; Miller and Nelson 1983), in which the
remaining lifetime of a unit under test depends on the cumulative exposure up to the
present time. In an exponential, simple step-stress setting with parameters θ1 and θ2
in the first and the second stress levels, respectively, and time τ at which the stress
level changes, the underlying distribution of the lifetime of a unit is given by

Gθ1,θ2(t) =
{

F1(t), 0 < t < τ

F2

(
t + τ( θ2

θ1
− 1)

)
, t ≥ τ

, (1)

where

Fi (t) = 1 − e−t/θi , t > 0, i = 1, 2 ,

and the corresponding density function is

gθ1,θ2(t) =

⎧⎪⎪⎨
⎪⎪⎩

1

θ1
e−t/θ1 , 0 < t < τ

1

θ2
e
− t−τ

θ2
− τ

θ1 , t ≥ τ

.

This construction and its physical interpretation have been detailed by Miller and
Nelson (1983) and Nelson (1990). Note that G is a continuous distribution function
which becomes important when dealing with order statistics associated with the fail-
ures of systems. Moreover, in the intervals (0, τ ) and [τ,∞), G keeps the behaviour of
F1 and F2 in terms of constant failure rates (i.e., hazard rates) 1/θ1 and 1/θ2, respec-
tively. The point τ at which the stress level changes is simply the time point at which
the failure rate changes. The same applies to general step-stress models with stress
levels x1, . . . , xm , and change points τ1, . . . , τm−1 with failure rates 1

θ1
before τ1, 1/θi

between τi−1 and τi for i = 2, . . . , m − 1, and 1
θm

after τm−1.
Statistical inference for an exponential step-stress model has been developed by

Xiong (1998), Xiong and Milliken (1999), and Balakrishnan et al. (2007, 2009a,b).
For a recent overview of developments in this regard, one may refer to Balakrishnan
(2009). In this paper, we will focus on the case when the available data are Type-II
censored.

The multi-sample version of a simple step-stress experiment under Type-II censor-
ing has been discussed by Kateri et al. (2009), wherein the MLEs of the parameters
θ1 and θ2 as well as their exact distributions have been derived explicitly.
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In most step-stress models discussed so far in the literature, stress levels change at
pre-fixed time points. From this arises the problem that there may be no observations
under some stress levels resulting in the non-existence of MLEs for the parameters
corresponding to those stress levels. These probabilities of non-existence of the MLEs,
which may even be large depending on the model parameters, have been examined,
compared and illustrated in the case of a simple step-stress model by Kateri et al.
(2010). For alleviating this problem as well as for some other reasons associated
with the performance of a life-test, experimenters may consider increasing a stress
level only after having observed a pre-specified number of observations at the current
level of stress. Under this proposed alternative model, stress level changes are made
right after failure times of a specified number of failures; evidently, the change times
are random in this case. Compared to the original model, this approach ensures the
existence of the MLEs of all the parameters in the model.

Xiong and Milliken (1999), Teng and Yeo (2002), Xiong et al. (2006), and Wang
(2006) have all discussed step-stress models with random change times of stress. We
comment on these works in Sect. 2.3 after introducing the basic description of this
model. It should be mentioned that the step-stress model with level changes occurring
at pre-fixed time points, although simple and intuitive, has the problem of not only
the possible non-existence of the MLEs, but also quite complicated expressions for
the distributions and the moments of the MLEs; see, for example, Balakrishnan et al.
(2007, 2009b) for the single-sample case and Kateri et al. (2009) for the multi-sample
case. This is the situation even in the case of a simple step-stress model (two levels
of stress) and underlying exponential distributions. For example, even for this simple
set-up, there is no closed form of the bias of the MLE of θ1. Naturally, the general
case involving multiple stress levels becomes much more arduous, with the ensuing
exact inference becoming intractable unless some simplifying assumptions are made
about the parameters. In the Weibull step-stress model, for example, no closed-form
expressions are available for the MLEs even in the case of two stress levels, as shown
by Kateri and Balakrishnan (2008).

These issues provided us the impetus for proposing an alternative model for general
step-stress experiments, i.e., with two or more levels of stress, where, in the case of
underlying exponential distributions, we stick to the idea of having a step-function for
the failure rates over time. We adopt a general model in the analysis of ordered data
called “sequential order statistics” (see Kamps 1995a,b) to the step-stress situation.
This model, as the rest of the paper displays, enables exact inferential results within a
wide class of distributions, including exponential distribution as a special case.

2 Model

2.1 Sampling situation

The life-test under consideration consists of n test units, and a number of l ≤ n stress
levels are to be successively adopted. The parameters to be estimated based on the
step-stress test are denoted by θ1, . . . , θl > 0, corresponding to the l stress levels.
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The data may be Type-II censored resulting in r ≤ n complete lifetimes in total. The
numbers of observations under different stress levels are pre-fixed.

Starting with ρ1 > 0 observations under the first stress level with an underlying
distribution function F1 for the lifetimes given by

F1(t) = 1 − {1 − F(t)}1/θ1 , t > 0,

we successively obtain ρ j > 0 observations under the j th stress level with Fj being
the corresponding distribution function given by

Fj (t) = 1 − {1 − F(t)}1/θ j , θ j > 0, 2 ≤ j ≤ l.

In the representation of the level distributions, F is some baseline absolutely continu-
ous distribution that is assumed to be known. So, r = ρ1+· · ·+ρl . With ρ̃ j = ∑ j

i=1 ρi ,
the experiment then involves the j th stress level being set at the time of the ρ̃ j−1th
failure, resulting in a change of distribution from Fj−1 to Fj , for 2 ≤ j ≤ l.

Example 1 i) Let the baseline distribution be standard exponential, i.e.,

F(t) = 1 − e−t , t > 0, then Fj ≡ Exp(θ j ), 1 ≤ j ≤ l.

In this case, we obtain the same situation as under the cumulative exposure model
(1) in the sense that the hazard rate in each step of the experiment is constant.

ii) More generally, the baseline distribution could be taken as

F(t) = 1 − exp {−g(t) + μ} , t ≥ g−1(μ), μ ∈ R,

with g being differentiable and strictly increasing on (g−1(μ),∞). This model,
which provides great flexibility (cf. Cramer and Kamps 2001b), includes Weibull,
special Pearson Type-I, Pareto and Lomax distributions as special cases. In this
case, the Fj ’s are given by

Fj (t) = 1 − exp

{
−g(t) − μ

θ j

}
, 1 ≤ j ≤ l.

2.2 Setting in terms of sequential order statistics

Sequential order statistics (SOSs) were introduced by Kamps (1995a,b) as an extension
of the usual order statistics in connection with generalized order statistics for model-
ling sequential k-out-of-n systems, wherein the failures of components possibly affect
the lifetime distributions of the remaining ones. In this setting, a more realistic model
results for k-out-of-n system, wherein, upon the failure of a component, an increased
stress is put on the remaining active components. For more details on the model and
its properties and associated inferential results, one may refer to Cramer and Kamps
(1996, 2001a,b, 2003) and Balakrishnan et al. (2008).
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A sequential order statistics approach to step-stress testing 307

SOSs can be formally defined as follows. Let n ∈ N, α1, . . . , αn > 0 be
parameters and Bi ∼ Pow(αi (n − i + 1)), 1 ≤ i ≤ n, be independent random vari-
ables, where Pow(α) denotes a power function distribution with distribution function

uα, 0 < u < 1. Then, X (r)∗
d= F−1 (1 −∏r

i=1 Bi ), 1 ≤ r ≤ n, are called SOSs based
on the distribution function F . Here, we assume F to be absolutely continuous with
density function f . If, in particular, we choose α1 = · · · = αn = 1, we end up with
the usual order statistics from distribution function F .

The joint density function of the SOSs X (1)∗ , . . . , X (r)∗ is then given by

f X (1)∗ ,...,X (r)∗ (x1, . . . , xr )

= n!
(n − r)!

(
r∏

i=1

αi

)⎛
⎝r−1∏

j=1

(1−F(x j ))
m j f (x j )

⎞
⎠ (1−F(xr ))

αr (n−r+1)−1 f (xr ),

on the cone F−1(0+) < x1 ≤ · · · ≤ xr < F−1(1), r ≤ n,

with m j = γ j − γ j+1 − 1, 1 ≤ j ≤ r − 1,

γ j = (n − j + 1) α j , 1 ≤ j ≤ r. (2)

The latter parameters are associated with generalized order statistics (cf. Kamps
1995a,b).

SOSs can be interpreted as describing successive failures, where, after the failure of
some component, the lifetime distributions of the remaining components is allowed to
change, i.e., the conditional distribution of X (i)∗ , given the observation of the previous
failure, is

P
(

X (i)∗ > t |X (i−1)∗ = s
)

=
(

1 − Gi (t)

1 − Gi (s)

)n−i+1

, t > s, 1 ≤ i ≤ r,

with absolutely continuous distribution functions G1, G2, . . ..
In our situation, if Gi is chosen to be Gi (t) = 1 − {1 − F(t)}αi , we simply obtain

P
(

X (i)∗ > t |X (i−1)∗ = s
)

=
(

1 − F(t)

1 − F(s)

)αi (n−i+1)

, 1 ≤ i ≤ r.

The distribution is then assumed to stay the same within each level of stress. In this
setup, we then have r observations (as described earlier in Sect. 2.1) which are supposed
to be realizations of SOSs X (1)∗ , . . . , X (r)∗ based on F and the choice of parameters

α1 = · · · = αρ1 = 1

θ1
, αρ̃ j +1 = · · · = αρ̃ j+1 = 1

θ j+1
for 1 ≤ j ≤ l − 1; (3)

see Kamps (1995a,b) and Cramer and Kamps (2001b, 2003). We follow the conven-
tional notation that

∑b
j=a ∗ = 0 and

∏b
j=a ∗ = 1 for a > b.
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Hence,

mi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

θ1
− 1, 1 ≤ i ≤ ρ1 − 1

n − ρ1 + 1

θ1
− n − ρ1

θ2
− 1, i = ρ1

1

θ j+1
− 1, ρ̃ j + 1 ≤ i ≤ ρ̃ j+1 − 1, 1 ≤ j ≤ l − 1

n − ρ̃ j+1 + 1

θ j+1
− n − ρ̃ j+1

θ j+2
− 1, i = ρ̃ j+1, 1 ≤ j ≤ l − 2

.

With this, the joint density function of X (1)∗ , . . . , X (r)∗ , for r ≤ n [see (2)], and F(x0) =
0 (say), is given by

f X (1)∗ ,...,X (r)∗ (x1, . . . , xr ) (4)

= n!
(n − r)!

(
r∏

i=1

αi

)(
r−1∏
i=1

F̄mi (xi ) f (xi )

)
F̄γr −1(xr ) f (xr )

= n!
(n − r)!

⎛
⎝ l∏

j=1

θ
−ρ j
j

⎞
⎠

⎛
⎝ρ1−1∏

i=1

F̄
1
θ1

−1
(xi ) f (xi )

⎞
⎠ F̄

n−ρ1+1
θ1

− n−ρ1
θ2

−1
(xρ1) f (xρ1)

×
⎧⎨
⎩

l−1∏
j=2

⎛
⎝ ρ̃ j −1∏

i=ρ̃ j−1+1

F̄
1
θ j

−1
(xi ) f (xi )

⎞
⎠ F̄

n−ρ̃ j +1
θ j

− n−ρ̃ j
θ j+1

−1
(xρ̃ j ) f (xρ̃ j )

⎫⎬
⎭

×
⎛
⎝ r−1∏

i=ρ̃l−1+1

F̄
1
θl

−1
(xi ) f (xi )

⎞
⎠ F̄

n−r+1
θl

−1
(xr ) f (xr ),

where F̄ = 1 − F denotes the survival function.
On j th stress level, 1 ≤ j ≤ l, the conditional distribution of X (i)∗ , given X (i−1)∗ = s,

in the above setting, is given by

P
(

X (i)∗ > t |X (i−1)∗ = s
)

=
(

F̄j (t)

F̄j (s)

)n−i+1

, t > s,

ρ̃ j−1 + 1 ≤ i ≤ ρ̃ j , ρ̃0 = 0. (5)

Hence, the failures under the j th stress level can be viewed as the usual order statistics
from the distribution Fj . The failure rate of Fj is
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f j (t)

F̄j (t)
= 1

θ j

f (t)

F̄(t)
, 1 ≤ j ≤ l,

which is proportional to the failure rate of the baseline distribution.
If we assume exponential life-times, then, in the situation of Example 1 i) with

a standard exponential distribution as baseline distribution having constant failure
rate 1, we are actually assuming that the failures on the j th stress level are realizations
of the usual order statistics from an exponential distribution with parameter θ j , with
constant failure rate 1/θ j . SOSs, therefore, serve as a suitable stochastic model for the
description of a general step-stress model.

In the setting of Example 1 ii), the failure rate of Fj is given by 1
θ j

g′(t), which gives
rise to a model involving an adjustment of 1/θ j over time.

Generally, the model of SOSs reflects the conditional nature of the step-stress model
under consideration. Due to its Markovian property with the transition probabilities as
shown in (5), we are in the situation of a cumulative exposure model, since the history
of the experiment is not recorded.

2.3 Existing literature

As mentioned earlier in the Introduction, there exists limited work on random change
times of stress levels in step-stress experiments, and we shall make some comments
on them here.

Xiong and Milliken (1999) considered random stress change times in a general step-
stress experiment. Integral representations of the lifetime distribution of the experi-
ments were worked out for simple as well as for general step-stress models. With an
underlying exponential distribution, an explicit representation of the lifetime distri-
bution was presented in the simple step-stress model. In addition to illustrating their
inferential methods with a numerical example, they also discussed optimal test plan
under simple step-stress.

Teng and Yeo (2002) treated general step-stress experiments with failure-censored
structure and exponential failures, while assuming a log-linear life-stress relationship.
They further applied a least-squares approach for estimating the model parameters
and presented illustrative numerical examples.

Wang (2006) considered a step-stress situation wherein some stress level changes
when a pre-specified number of observations had been observed. From the description
of the experiment, Wang arrived at a joint density of the failure times as
a Weinman multivariate exponential distribution for ordered quantities [see Kotz et al.
(2000, p. 388)], which in turn may be viewed as one of the SOSs given in (2) corre-
sponding to the exponential case (Kamps 1995a, p. 54). Thus, the structure of SOSs is
implicitly present in this work. In the present notation, Wang introduced the statistics

T1 =
ρ1∑

i=1

X (i)∗ + (n − ρ1) X (ρ1)∗
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and

Tj+1 =
ρ̃ j+1∑

i=ρ̃ j +1

(
X (i)∗ − X

(ρ̃ j )∗
)

+ (
n − ρ̃ j+1

) (
X

(ρ̃ j+1)∗ − X
(ρ̃ j )∗

)
, 1 ≤ j ≤ l − 1,

where X (1)∗ , X (2)∗ , . . . denote the SOSs based on a standard exponential distribution
with parameter setting as in (3). Upon rewriting these statistics in terms of spacings
of SOSs, we end up with

T1 =
ρ1∑

i=1

(n − i + 1)
(

X (i)∗ − X (i−1)∗
)

, X (0)∗ = 0,

and

Tj+1 =
ρ̃ j+1∑

i=ρ̃ j +1

(n − i + 1)
(

X (i)∗ − X (i−1)∗
)

, 1 ≤ j ≤ l − 1.

Wang proved that T1, . . . , Tl are independent and gamma distributed. It will be shown
later in Sect. 3 that the quantities Tj/ρ j , 1 ≤ j ≤ l, are in fact the MLEs of θ1, . . . , θl

(cf. Theorem 1). Their independence and distribution in the general case is presented
in Theorem 2. Wang (2006) further assumed that the logarithm of the mean lifetime
of a test unit is a linear function of the stress level, and then discussed the estimation
of the intercept and slope parameters.

Xiong et al. (2006) discussed a simple step-stress test where again the change of the
stress level is made immediately after the failure with a pre-specified number. They
then assumed to observe only this particular failure and a pre-fixed failure terminat-
ing the experiment, and presented estimators of the corresponding parameters when
the mean lifetime was once again assumed to be a log-linear function of the stress
level.

3 Maximum likelihood estimation

In this section, we discuss the joint estimation of the model parameters without and
with an order restriction, as well as the joint estimation of a location parameter.

3.1 Maximum likelihood estimators of θ1, . . . , θl

Now, on the basis of the joint density function in (4), the MLEs of θ1, . . . , θl can be
obtained as given in the following theorem.
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Theorem 1 The unique maximum likelihood estimators θ̂1, . . . , θ̂l of θ1, . . . , θl ,
respectively, are given by

θ̂1 = − 1

ρ1

ρ1∑
i=1

(n − i + 1)(log F̄(xi ) − log F̄(xi−1))

and

θ̂ j = − 1

ρ j

ρ̃ j∑
i=ρ̃ j−1+1

(n − i + 1)(log F̄(xi ) − log F̄(xi−1)), 2 ≤ j ≤ l.

Proof The log-likelihood function is

l(θ1, . . . , θl; x1, . . . , xr ) = log L(θ1, . . . , θl; x1, . . . , xr )

= log
n!

(n − r)! −
l∑

j=1

ρ j log θ j

+ 1

θ1

⎛
⎝ρ1−1∑

i=1

log F̄(xi ) + (n − ρ1 + 1) log F̄(xρ1)

⎞
⎠

−
ρ1−1∑
i=1

log F̄(xi ) −
(

n − ρ1

θ2
+ 1

)
log F̄(xρ1)

+
l−1∑
j=2

⎧⎨
⎩ 1

θ j

⎛
⎝ ρ̃ j −1∑

i=ρ̃ j−1+1

log F̄(xi ) + (n − ρ̃ j + 1) log F̄(xρ̃ j )

⎞
⎠

−
ρ̃ j −1∑

i=ρ̃ j−1+1

log F̄(xi ) −
(

n − ρ̃ j

θ j+1
+ 1

)
log F̄(xρ̃ j )

⎫⎬
⎭

+
r−1∑

i=ρ̃l−1+1

(
1

θl
− 1) log F̄(xi ) +

(
n − r + 1

θl
− 1

)
log F̄(xr ) +

r∑
i=1

log f (xi )

Rewriting this log-likelihood function in terms of θ̂1, . . . , θ̂l , we get

l(θ1, . . . , θl; x1, . . . , xr )

= log
n!

(n − r)! −
l∑

j=1

ρ j log θ j − ρ1θ̂1

θ1

−
ρ1−1∑
i=1

log F̄(xi ) −
(

n − ρ1

θ2
+ 1

)
log F̄(xρ1)
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+
l−1∑
j=2

1

θ j

(
−ρ j θ̂ j + (n − ρ̃ j−1) log F̄(xρ̃ j−1)

)

−
l−1∑
j=2

⎛
⎝ ρ̃ j −1∑

i=ρ̃ j−1+1

log F̄(xi ) −
(

n − ρ̃ j

θ j+1
+ 1

)
log F̄(xρ̃ j )

⎞
⎠

+ 1

θl

⎛
⎝ r−1∑

i=ρ̃l−1+1

log F̄(xi ) + (n − r + 1) log F̄(xr )

⎞
⎠

−
r−1∑

i=ρ̃l−1+1

log F̄(xi ) − log F̄(xr ) +
r∑

i=1

log f (xi )

= log
n!

(n − r)! +
l∑

j=1

ρ j log
1

θ j
−

l∑
j=1

ρ j θ̂ j

θ j
+

r∑
i=1

log
f (xi )

F̄(xi )
.

Since log 1
θ j

= log
θ̂ j
θ j

− log θ̂ j ≤ θ̂ j
θ j

− 1 − log θ̂ j , the latter expression is bounded
from above by

log
n!

(n − r)! − r −
l∑

j=1

ρ j log θ̂ j +
r∑

i=1

log
f (xi )

F̄(xi )

with equality iff θ j = θ̂ j , 1 ≤ j ≤ l. Hence, the result. 
�

Theorem 1 presents the MLEs θ̂1, . . . , θ̂l of θ1, . . . , θl , respectively, in a general
step-stress situation with arbitrary number of stress levels as well as for an arbitrary
absolutely continuous baseline distribution.

Remark 1 In the particular case of only one observation at each stress level, i.e., ρ j = 1
for all 1 ≤ j ≤ l, the MLEs are as presented by Cramer and Kamps (1996).

Then, by adopting the ideas of Cramer and Kamps (1996), it is possible to derive
several useful properties of the MLEs in Theorem 1. It is easily seen that the rv’s
− log F̄(X (i)∗ ), 1 ≤ i ≤ r , are SOSs based on a standard exponential distribution.
Moreover, from Theorem 3.3.5 of Kamps (1995a, p. 81), it is known that the normal-
ized spacings

−nα1 log F̄(X (1)∗ ) and − (n − i + 1)αi (log F̄(X (i)∗ ) − log F̄(X (i−1)∗ )), 2 ≤ i ≤r,

are iid rv’s with standard exponential distribution. So, with V1, . . . , Vr denoting iid
Exp(1) random variables, we have the stochastic representations for the MLEs as
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θ̂1 ∼ θ1

ρ1

ρ1∑
i=1

Vi and θ̂ j ∼ θ j

ρ j

ρ̃ j∑
i=ρ̃ j−1+1

Vi , 2 ≤ j ≤ l.

Evidently, the MLEs are gamma distributed.
We shall now use the notation X ∼ �(a, b) for the random variable X having a

gamma distribution with parameters a > 0 and b > 0, i.e., with density function

f X (x) = 1

�(a)
b−a xa−1e−x/b, x > 0.

Note for c > 0, we have cX ∼ �(a, bc).

Theorem 2 The MLEs θ̂1, . . . , θ̂l of θ1, . . . , θl , respectively, possess the following
properties:

i) θ̂1, . . . , θ̂l are stochastically independent;
ii) θ̂ j ∼ �(ρ j ,

θ j
ρ j

) with E θ̂ j = θ j , 1 ≤ j ≤ l, i.e., the MLEs are unbiased, and

V ar(θ̂ j ) = θ2
j

ρ j
, 1 ≤ j ≤ l;

iii) (θ̂1, . . . , θ̂l) is a complete and sufficient statistic for (θ1, . . . , θl);
iv) (θ̂1, . . . , θ̂l) is the UMVUE of (θ1, . . . , θl);
v) The sequence of estimators (θ̂ j (ρ j ))ρ j is strongly consistent for θ j ,

i.e., θ̂ j (ρ j ) → θ j a.e. with respect to ρ j → ∞ for 1 ≤ j ≤ l;
vi) θ̂1, . . . , θ̂l are asymptotically normal, i.e.,

√
ρ j

(
θ̂ j
θ j

− 1

)
d→ N (0, 1), ρ j → ∞, 1 ≤ j ≤ l.

Proof i) and ii) are obvious.

iii) Sufficiency is directly obtained by Fisher–Neyman factorization.
To prove completeness, let h be a measurable function; then, the equation

Eθ1,...,θl h (θ̂1, . . . , θ̂l)

=
∞∫

0

. . .

∞∫
0

h(x1, . . . , xl)

l∏
j=1

1

(ρ j − 1)!
(

θ j

ρ j

)−ρ j

x
ρ j −1
j

× exp

(
− x jρ j

θ j

)
dx1 . . . dxl

= 0 for all θ1, . . . , θl > 0

implies h ≡ 0 a.e. following the arguments of Chiou and Cohen (1984).
iv) In view of ii) and iii), the assertion is an immediate consequence of

Lehmann–Scheffé theorem. 
�
In the special case of a standard exponential distribution as baseline distribution
[cf. Example 1 i)], the MLEs are linear estimators and are therefore the same as
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the best linear unbiased estimators (BLUEs). Since θ̂1, . . . , θ̂l are independent gamma
distributed random variables, standard routines may be used to construct confidence
intervals and also carry out statistical tests of hypotheses. It is also of great interest to
note that the properties of the MLEs presented in Theorem 2 are independent of the
baseline distribution function F !

3.2 Order restricted inference

The underlying hazard rates in the step-stress experiment are given by 1
θ j

, 1 ≤ j ≤ l,
which, in view of increasing stress put on the experimental units, may be assumed
to be non-decreasing as well. In other words, the distributions Fj , 1 ≤ j ≤ l, are
decreasingly ordered. We may, therefore, consider estimating θ1, . . . , θl under the
order restriction θ1 ≥ · · · ≥ θl . In the common situation of SOSs, order restricted
inference has been discussed by Balakrishnan et al. (2008, 2009a) in the context of
exponential step-stress experiments.

Theorem 3 The MLEs θ̂
(o)
1 , . . . , θ̂

(o)
l of θ1, . . . , θl , respectively, under the simple

order restriction θ1 ≥ · · · ≥ θl , are given by

θ
(o)
j = min

p≤ j
max
q≥ j

∑q
k=p ρk θ̂k

q∑
k=p

ρk

, 1 ≤ j ≤ l,

where θ̂1, . . . , θ̂l denote the MLEs presented in Theorem 1.

Proof The likelihood function in (4) (see also the proof of Theorem 1) can be expressed
as

L(θ1, . . . , θl; x1, . . . , xr )

= n!
(n − r)!

(
r∏

i=1

f (xi )

F̄(xi )

) ⎛
⎝ l∏

j=1

θ
−ρ j
j

⎞
⎠ l∏

j=1

exp

{
−ρ j

θ̂ j

θ j

}
.

Thus, with respect to isotonic regression and except for reversed order, we are in
the situation of Ex. 1.9 of Barlow et al. (1972, p. 45) for exponential distributions
[cf. Balakrishnan et al. (2008, 2009a)]. The weights in the isotonic regression are
given by ω( j) = ρ j , 1 ≤ j ≤ l. Hence, the result. 
�

3.3 Joint estimation of a location parameter

If the baseline distribution is chosen according to Example 1 ii), it is easily seen that
the location parameter μ may be simultaneously estimated as well.
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Theorem 4 Let F be as given in Example 1 ii). Then, the joint MLEs μ̃, θ̃1, . . . , θ̃l of
μ, θ1, . . . , θl , respectively, are given by

μ̃ = g
(

X (1)∗
)

,

θ̃1 = 1

ρ1

ρ1∑
i=2

(n − i + 1)
(
g(X (i)∗ ) − g(X (i−1)∗ )

)

and

θ̃ j = 1

ρ j

ρ̃ j∑
i=ρ̃ j−1+1

(n − i + 1)
(
g(X (i)∗ ) − g(X (i−1)∗ )

)
, 2 ≤ j ≤ l.

Proof From the representation of the log-likelihood function in the proof of Theo-
rem 1, we find the log-likelihood function, in our situation with log F̄(x) = μ− g(x),
as

l(μ, θ1, . . . , θl; x1, . . . , xr )

= log
n!

(n − r)! −
l∑

j=1

ρ j log θ j + n

θ1
(μ − g(x1))

− 1

θ1

ρ1∑
i=2

(n − i + 1) (g(xi ) − g(xi−1))

−
l∑

j=2

1

θ j

ρ̃ j∑
i=ρ̃ j−1+1

(n − i + 1) (g(xi ) − g(xi−1)) +
r∑

i=1

log g′(xi )

= log
n!

(n − r)! −
l∑

j=1

ρ j log θ j + n

θ1
(μ − g(x1)) −

l∑
j=1

ρ j

θ j
θ̃ j +

r∑
i=1

log g′(xi ).

Regarding μ, since μ ≤ g(x1), this expression attains its global maximum at g(x1) =
μ̃, say. Hence, we need to maximize

l(μ̃, θ1, . . . , θl; x1, . . . , xr )

= log
n!

(n − r)! +
l∑

j=1

ρ j log
1

θ j
−

l∑
j=1

ρ j

θ j
θ̃ j +

r∑
i=1

log g′(xi )

with respect to θ1, . . . , θl . Now, formally, we have arrived at the same expression as in
the proof of Theorem 1, and consequently θ̃1, . . . , θ̃l are the required MLEs. Hence,
the result. 
�
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Upon rewriting the MLEs μ̃, θ̃1, . . . , θ̃l in terms of F with F̄(x) = exp{−g(x)+μ},
we obtain

μ̃ = μ − log F̄(X (1)∗ ),

θ̃1 = − 1

ρ1

ρ1∑
i=2

(n − i + 1)
(

log F̄(X (i)∗ ) − log F̄(X (i−1)∗ )
)

and

θ̃ j = − 1

ρ j

ρ̃ j∑
i=ρ̃ j−1+1

(n − i + 1)
(

log F̄(X (i)∗ ) − log F̄(X (i−1)∗ )
)

, 2 ≤ j ≤ l.

Using the fact that the normalized spacings of generalized order statistics from a
standard exponential distribution are iid random variables with standard exponential
distributions (see Sect. 3.1), the above MLEs may again be stochastically represented
as

μ̃ ∼ μ + θ1

n
V1,

θ̃1 ∼ θ1

ρ1

ρ1∑
i=2

Vi ,

and

θ̃ j ∼ θ j

ρ j

ρ̃ j∑
i=ρ̃ j−1+1

Vi ,

with V1, . . . , Vr being iid Exp(1) random variables. Furthermore, by adopting the
arguments in the proof of Theorem 2 with respect to completeness and sufficiency, we
readily obtain the following theorem.

Theorem 5 The MLEs μ̃, θ̃1, . . . , θ̃l of μ, θ1, . . . , θl , respectively, possess the
following properties:

i) μ̃, θ̃1, . . . , θ̃l are stochastically independent;
ii) μ̃ has a two-parameter exponential Exp(μ, θ1

n ) distribution, with distribution
function

F μ̃(x) = 1 − exp
{
− n

θ1
(x − μ)

}
, x > μ;

iii) θ̃1 ∼ �
(
ρ1 − 1, θ1

ρ1

)
with E θ̃1 = ρ1−1

ρ1
θ1 and V ar(θ̃1) = ρ1−1

ρ2
1

θ2
1 , and

θ̃ j ∼ �
(
ρ j ,

θ j
ρ j

)
with E θ̃ j = θ j and V ar θ̃ j = θ2

j
ρ j

, 2 ≤ j ≤ l;
iv) (μ̃, θ̃1, . . . , θ̃l) is a complete sufficient statistic for (μ, θ1, . . . , θl).
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Since Eμ̃ = μ + θ1
n , μ̃ is biased, but we find ˜̃μ = μ̃ − ρ1

n(ρ1−1)
θ̃1 to be an unbiased

estimator of μ, since ˜̃
θ = ρ1

ρ1−1 θ̃1 is an unbiased estimator of θ1. Consistency and

asymptotic normality of the estimators θ̃1, . . . , θ̃l also follow easily [cf. the arguments
in Cramer and Kamps (2001a,b) and Section 3.2]. Moreover, the above unbiased esti-

mators ˜̃μ and ˜̃
θ can also be shown to be UMVUEs.
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