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Abstract We describe a simple approach for estimating the ratio ρ = σ2/σ1 of the
scale parameters of two populations from a decision theoretic point of view. We show
that if the loss function satisfies a certain condition, then the estimation of ρ reduces
to separately estimating σ2 and 1/σ1. This implies that the standard estimator of ρ can
be improved by just employing an improved estimator of σ2 or 1/σ1. Moreover, in the
case where the loss function is convex in some function of its argument, we prove that
such improved estimators of ρ are further dominated by corresponding ones that use
all the available data. Using this result, we construct new classes of double-adjustment
improved estimators for several well-known convex as well as non-convex loss func-
tions. In particular, Strawderman-type estimators of ρ in general models are given
whereas Shinozaki-type estimators of the ratio of two normal variances are briefly
treated.
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1 Introduction

The problem of estimating a scale parameter in the presence of another nuisance
parameter from a decision theoretic point of view has been extensively studied in the
literature. The methods of Stein (1964), Brown (1968), Brewster and Zidek (1974),
Strawderman (1974) and Kubokawa (1994a) for deriving better estimators than the
standard one are now classical in this context which encompasses the estimation of
the variance of a normal distribution with unknown mean as a typical case. These
improved estimators are scale equivariant. Note that in the case of a normal variance,
modifications of the above methods that yield improved non-scale equivariant esti-
mators have been developed by Shinozaki (1995). The review papers by Maatta and
Casella (1990), Pal et al. (1998), Kubokawa (1999) are very good sources for tracing
the origin and development of this problem.

The study of the analogous problem of estimating the ratio ρ = σ2/σ1 of the scale
parametersσ1 andσ2 of two populations, with dominant case that of estimating the ratio
of the variances of two normal populations with unknown means, followed naturally
from the respective one-sample problem, with considerable delay though. Gelfand
and Dey (1988) extended arguments of Stein (1964) and Brown (1968) and obtained
improved estimators of a normal variance ratio. For the same parameter, Madi (1995)
gave smooth improved estimators by adapting Brewster and Zidek (1974) method,
while Ghosh and Kundu (1996) constructed generalized Bayes estimators and proved
their dominance by establishing a two-sample extension of Kubokawa (1994a). Also,
Kubokawa (1994b) and Kubokawa and Srivastava (1996) presented improved estima-
tors for ρ in general models extending the one-sample method of Kubokawa (1994a).

The purpose of this work is to propose a simple alternative approach for deriving
improved estimators of ρ. Let δ01, δ02 and δ0 be the standard (i.e., the best equivariant)
estimators of 1/σ1, σ2 and ρ respectively under a loss function L . Also, suppose that
δ1 and δ2 are typical improved estimators of 1/σ1 and σ2 at our disposal. Then we set
as a goal in this paper to answer the question: how can δ1 and δ2 be used to produce
an improved estimator of ρ? We first show that if the loss satisfies

L ′(xy) = λ1(x)L
′(y)+ λ2(y)L

′(x), ∀x, y > 0 (1)

for some functions λ1 and λ2 then

δ1δ02 and δ01δ2 (2)

are better than δ0. Condition (1) holds for several commonly used convex as well as
non-convex loss functions such as squared error, entropy and Brown (1968) losses (see
Table 1). In this paper, δ1δ02 and δ01δ2 are referred to as single-adjustment improved
estimators as they use an improved estimator of only one of the parameters involved
in the ratio ρ, adjustment meaning shrinkage or expansion, accordingly. If, in addition
to (1), L(t) is convex in ln t then a stronger result is established, namely, that

δ = δ1δ2 (3)

is better than both δ1δ02 and δ01δ2, and hence δ0. Estimators such as δ which use
improved estimators of both 1/σ1 and σ2 will be referred to as double-adjustment
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improved estimators. Even more generally, it is shown that if L(t) is convex in some
monotone function u(t) with inverse v(t) then

δu = v
(
u(δ1δ02)+ u(δ01δ2)− u(δ01δ02)

)
(4)

is better than δ1δ02, δ01δ2 and δ0. As a function may be convex in more than one
(monotone) functions, it is conceivable that for the same loss we may end up with
more than one double-adjustment improved estimators of the form (4), for instance
this is the case with both squared error and entropy losses (see Table 2). The conditions
we require on δ1, δ2 for (2), (3) and (4) to hold are minimal.

This work is closely related to Kubokawa (1994b) and Kubokawa and Srivastava
(1996), where the loss is assumed to be (strictly) convex and the improved estimators
δ1, δ2 are (essentially) required to obey Kubokawa (1994a) sufficient conditions (also
stated in Sect. 3). Here, not only we relax the assumption of convexity of L to convex-
ity in u(t), but also succeed in obtaining a new and quite rich class of estimators, that
in (4), allowing δ1 and δ2 even to violate Kubokawa (1994a) conditions as long as they
dominate δ01 and δ02, respectively. Also, in our work, δ1 and δ2 are not necessarily
scale equivariant. Furthermore, if L(t) is convex then u(t) = t and (4) gives, as a
special case, Kubokawa (1994b) class of estimators, δ1δ02 + δ01δ2 − δ01δ02. On the
other hand, if L(t) is convex in u(t) = ln t then (4) simplifies to δ1δ2 in (3). Note
that Kubokawa and Srivastava (1996) have proven the superiority of this estimator
over δ01δ2 and hence over δ01δ02 by imposing some further conditions in the case of
convex L(t). The results of the present paper also extend Iliopoulos and Kourouklis
(1999) work on the estimation of the ratio of two normal generalized variances.

The advantage of our approach is transparent. Condition (1) guarantees that the
search for an estimator of ρ reduces to the estimation of 1/σ1 and σ2, the latter being
one-sample problems which are simpler to deal with, not to mention the fact that the
literature is rich in estimators δ1 and δ2 ready to be plugged into (2), (3) and (4). This
way, it is unnecessary to resort to two-sample extensions of one-sample arguments
in order to estimate ρ. Besides and unlike previous research, the approach allows for
non-convex loss functions and works for many types of improved estimators δ1 and δ2,
that is, Stein-type, Brown-type, Brewster and Zidek-type, Kubokawa-type and Straw-
derman-type, thus producing estimators of ρ in an integrated manner. In particular,
Strawderman-type estimators of ρ in general models having monotone likelihood ratio
properties are exhibited for the first time in the literature. In addition, in the case of two
normal populations, Shinozaki-type estimators of the ratio of the variances are given
under the squared error loss by modifying respective Strawderman-type estimators.

Section 2 contains the model, conditions and main results. In Sect. 3, several results
available in the literature are reobtained in a much simpler way as special cases of
our findings and new results that cannot be handled by previous work are given, as
applications of our approach. Finally, an Appendix contains some technical results.

2 Main results

Let S1, S2, T1, T2 be independent statistics such that for i = 1, 2, Si/σi and Ti/σi

have probability density functions

gi (s)I(0,∞)(s) and hi (t;μi , σi )I[κi (μi ,σi ),∞)(t), (5)
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respectively, where σi > 0, μi is a nuisance parameter and κi (μi , σi ) is some real
function of μi and σi such that κi (μ0i , σ0i ) = 0, for some μ0i and σ0i > 0. It is
well-known that scale equivariant estimators of σαi and ρ = σ2/σ1 have the form cSαi
and cS2/S1, respectively. Moreover, under the condition

(A) for any 0 < a < b the ratio gi (as)/gi (bs) is strictly increasing in s > 0,

the best scale equivariant estimator of σαi with respect to any absolutely continuous
and strictly bowl-shaped loss function of the form L(δ/σαi ) is δi,α = ci,αSαi , where
ci,α is the unique solution to the equation

Eσi =1{L ′(cSαi )S
α
i } = 0 (6)

with respect to c, provided the expectation exists and is finite. The existence and
uniqueness of ci,α follows from the fact that under condition (A) the functions c �→
Eσi =1{L(cSαi )} are strictly bowl-shaped as well (see Brewster and Zidek 1974, or
Kubokawa 1994a). The same holds true for the estimation problem of ρ since it is
the scale parameter of the distribution of S2/S1. For any absolutely continuous and
strictly bowl-shaped loss function of the form L(δ/ρ), condition (A) implies that the
function c �→ Eσ1=σ2=1{L(cS2/S1)} is also strictly bowl-shaped and so the best scale
equivariant estimator of S2/S1 is δ0 = c0S2/S1, where c0 is the unique solution to the
equation

Eσ1=σ2=1{L ′(cS2/S1)S2/S1} = 0. (7)

For notational convenience in what follows we will drop the subscripts from all
expectations and whenever allowable (e.g., by invariance) we will take without loss
of generality σ1 = σ2 = 1. Moreover, since we are interested in the estimation of ρ
we set c01 = c1,−1, c02 = c2,1 and δ01 = c01S−1

1 , δ02 = c02S2.

Theorem 1 Assume that the loss function satisfies (1) and E{λ1(c01S−1
1 )S−1

1 },
E{λ2(c02S2)S2} are finite. Then it holds c0 = c01c02, or, equivalently, δ0 = δ01δ02.

Proof Equation (1), the independence of S1 and S2 and Eqs. (6), (7) give

E
{

L ′
(

c01c02
S2

S1

)
S2

S1

}
= E

{
λ1

(
c01

S1

)
1

S1

}
E{L ′(c02S2)S2}

+ E{λ2(c02S2)S2}E
{

L ′
(

c01

S1

)
1

S1

}
= 0

and the result follows from the uniqueness of c0. ��
Remark 1 Condition (1) is satisfied by several popular loss functions such as the losses
(a)–(f) given in Table 1. Specifically, (a) is the squared error loss, (b) is the entropy
(or Stein’s) loss introduced in James and Stein (1961), (c) is Brown (1968) loss, (d)
and (e) are modifications of the squared error and entropy losses, respectively, used
by Pal (1988) and (f) is a symmetric loss which results as the sum of (b) and (e) and
has been treated by Pal (1988) and Kubokawa and Konno (1990).
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Table 1 Popular bowl-shaped loss functions that can be written in the form (1)

L(t) L ′(t) λ1(t) λ2(t) Convex in t Convex in ln t

(a) (t − 1)2 2(t − 1) t 1 � –

(b) t − ln t − 1 1 − 1
t

1
t 1 � �

(c) (ln t)2 2 ln t
t

1
t

1
t – �

(d)
( 1

t − 1
)2 2(t−1)

t3
1
t2

1
t3 – –

(e) 1
t + ln t − 1 t−1

t2
1
t2

1
t – �

(f) t + 1
t − 2 1 − 1

t2
1
t2 1 � �

Theorem 1 tells us that, under (1), the best scale equivariant estimator of ρ equals
the product of the best scale equivariant estimators of 1/σ1 and σ2.

In order to prove our next result we will need the following.

Lemma 1 Under the conditions of Theorem 1, both E{λ1(c01S−1
1 )S−1

1 } and
E{λ2(c02S2)S2} are positive.

Proof Let c′
2> c02 so that c01c′

2> c01c02 = c0. As c �→ E{L(cS2/S1)} and c �→
E{L(cS2)} are strictly bowl-shaped in c we have

0 = E{L ′(c01c02S2/S1)S2/S1} < E{L ′(c01c′
2S2/S1)S2/S1}

= E{λ1(c01S−1
1 )S−1

1 L ′(c′
2S2)S2 + λ2(c

′
2S2)S2 L ′(c01S−1

1 )S−1
1 }

= E{λ1(c01S−1
1 )S−1

1 }E{L ′(c′
2S2)S2} + E{λ2(c

′
2S2)S2}E{L ′(c01S−1

1 )S−1
1 }

= E{λ1(c01S−1
1 )S−1

1 }E{L ′(c′
2S2)S2},

since E{L ′(c01S−1
1 )S−1

1 } = 0. But c′
2 > c02 implies that E{L ′(c′

2S2)S2} > 0 and thus
E{λ1(c01S−1

1 )S−1
1 } > 0 too. The proof for E{λ2(c02S2)S2} is similar. ��

Remark 2 Although one may think that the functions λ1 and λ2 are positive (as those
displayed in Table 1), this is not always the case. In fact these functions are not
unique. It is easy to see that if (1) holds with some λ1 and λ2, then it also holds for
λ∗

1 = λ1 + βL ′, λ∗
2 = λ2 − βL ′ and any β ∈ R.

We now seek to improve upon δ0 by first using estimators of σ2 or 1/σ1 of the
following form. For i = 1, 2, let φi (wi ) be absolutely continuous functions on (0,∞)

and define

δφ1 =
{
φ1(W1)S

−1
1 if W1 > 0,

δ01 otherwise,
δφ2 =

{
φ2(W2)S2 if W2 > 0,

δ02 otherwise,
(8)

where Wi = Ti/Si . In location-scale models, δφi is a typical scale equivariant
estimator.

Theorem 2 Assume that (1) holds and limwi →∞ φi (wi ) = c0i , i = 1, 2. Then we
have the following.
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(i) δφ1δ02 improves on δ0 = δ01δ02 if and only if δφ1 improves on δ01.
(ii) δ01δφ2 improves on δ0 = δ01δ02 if and only if δφ2 improves on δ02.

Proof (i) Without loss of generality we can again take σ1 = σ2 = 1. Then using
Kubokawa (1994b), Condition (1) and Theorem 1 we have

E{L(δ0)} − E{L(δφ1δ02)} = E
{∫ ∞

1

d

dt
L

(
c02φ1(tW1)

S2

S1

)
dt I (W1 > 0)

}

= E
{∫ ∞

1
L ′

(
c02φ1(tW1)

S2

S1

)
c02W1φ

′
1(tW1)

S2

S1
dt I (W1 > 0)

}

= E
{∫ ∞

1
λ1(φ1(tW1)S

−1
1 )L ′(c02S2)c02W1φ

′
1(tW1)

S2

S1
dt I (W1 > 0)

}

+ E
{∫ ∞

1
λ2(c02S2)L

′(φ1(tW1)S
−1
1 )c02W1φ

′
1(tW1)

S2

S1
dt I (W1 > 0)

}

= c02E
{

L ′(c02S2)S2
}

E
{∫ ∞

1
λ1(φ1(tW1)S

−1
1 )W1φ

′
1(tW1)S

−1
1 dt I (W1>0)

}

+ c02E {λ2(c02S2)S2} E
{∫ ∞

1
L ′(φ1(tW1)S

−1
1 )W1φ

′
1(tW1)S

−1
1 dt I (W1>0)

}

= c02E {λ2(c02S2)S2} E
{∫ ∞

1

d

dt
L(φ1(tW1)S

−1
1 )dt I (W1 > 0)

}

= c02E {λ2(c02S2)S2}
{
E

{
L(c01S−1

1 )
} − E

{
L(φ1(W1)S

−1
1 )

}}

= c02E {λ2(c02S2)S2}
{
E{L(δ01)} − E{L(δφ1)}

}
,

where the fifth equality holds by the definition of c02. The result now follows
from Lemma 1.

(ii) It is similar to the proof of (i). ��
In Theorem 2, we have proven that under the above conditions in order to improve

on δ0 = δ01δ02 it suffices to improve separately on either δ01 or δ02 using a correspond-
ing estimator δφ1 or δφ2 , say, and then take the product δφ1δ02 or δ01δφ2 . Naturally,
one could ask whether the product δφ1δφ2 of these improved estimators dominates
the previous ones. This question was considered by Kubokawa and Srivastava (1996)
assuming (strictly) convex loss. Under a set of conditions SG1.a, SG1.b, SG2.a, SG2.b,
the authors showed that δφ1δφ2 dominates δ01δφ2 (only) and thus δ0. It is noted that
under (1) these conditions simplify to Kubokawa (1994a) one-sample conditions (also
given in Sect. 3). Below, using a very simple argument we establish the dominance
of δφ1δφ2 over δ01δφ2 and δφ1δ02 for a loss that is convex in ln t without imposing
SG1.b and SG2.b. The same argument was used by Iliopoulos and Kourouklis (1999)
in the special case of estimating the ratio of generalized variances of two multivariate
normal populations.

Theorem 3 Let δφi be as in (8), i = 1, 2. Assume that φ1 is non-increasing on
(0,∞) with limw1→∞ φ1(w1) = c01, φ2 is non-decreasing on (0,∞) with limw2→∞
φ2(w2) = c02 and the estimators δφ1δ02, δ01δφ2 dominate δ0 = δ01δ02 with respect

123



Estimating the ratio of two scale parameters: a simple approach 349

to the loss function L. If t L ′(t) is non-decreasing in t > 0 (i.e., L is convex in ln t)
then δφ1δφ2 dominates both δφ1δ02 and δ01δφ2 .

Proof The above assumptions imply that limW1→∞
{

L(δφ1δφ2) − L(δφ1δ02)
} =

L(δ01δφ2)− L(δ01δ02) and that

∂

∂W1

{
L(δφ1δφ2)− L(δφ1δ02)

} = φ′
1(W1)

φ1(W1)

{
δφ1δφ2 L ′(δφ1δφ2)− δφ1δ02L ′(δφ1δ02)

}
.

This partial derivative is non-negative since φ′
1 � 0 and the quantity in curly brack-

ets is non-positive as well. This follows from the facts that t L ′(t) is non-decreasing
and φ2 � c02 which means that δφ1δφ2 � δφ1δ02. Thus, L(δφ1δφ2) − L(δφ1δ02) �
L(δ01δφ2) − L(δ01δ02). By taking expectations and using the fact that δ01δφ2 domi-
nates δ0 we get that δφ1δφ2 dominates δφ1δ02. The proof for δ01δφ2 is similar. ��

In the case that L satisfies (1) and is also convex in ln t , by combining Theorems 2
and 3, we immediately obtain the following result.

Corollary 1 Let δφ1 , δφ2 in (8) be improved estimators of 1/σ1, σ2 satisfying

(i) φ1(w1) is non-increasing in w1 > 0 and limw1→∞ φ1(w1) = c01,
(ii) φ2(w2) is non-decreasing in w2 > 0 and limw2→∞ φ2(w2) = c02.

Assume that (1) holds and L is convex in ln t . Then δφ1δφ2 dominates both δφ1δ02 and
δ01δφ2 .

By taking a look at Table 1 we can see that the entropy loss as well as some other
popular loss functions are indeed convex in ln t and hence Corollary 1 applies. More
generally, we get the following result.

Theorem 4 Suppose that the assumptions of Theorem 3 hold for δφ1 , δφ2 , δ0 and L is
convex in some monotone absolutely continuous function u(t) with inverse v(t). Then
v
(
u(δφ1δ02)+ u(δ01δφ2)− u(δ01δ02)

)
dominates both δφ1δ02 and δ01δφ2 .

Proof The condition that L is convex in u(t)means that u′(t)−1L ′(t) ≡ v′(u(t))L ′(t)
and u(t) have the same kind of monotonicity. Similarly to the proof of Theorem 3,
observe that limW1→∞{L(v(u(δφ1δ02) + u(δ01δφ2) − u(δ01δ02))) − L(δφ1δ02)} =
L(δ01δφ2)− L(δ01δ02) and that

∂

∂W1

{
L
(
v
(
u(δφ1δ02)+ u(δ01δφ2)− u(δ01δ02)

)) − L(δφ1δ02)
}

= u′(δφ1δ02)
φ′

1(W1)

φ1(W1)
δφ1δ02

{
v′(u(δφ1δ02)+ u(δ01δφ2)− u(δ01δ02)

)

×L ′(v
(
u(δφ1δ02)+ u(δ01δφ2)− u(δ01δ02)

)) − v′(u(δφ1δ02)
)
L ′(δφ1δ02)

}
.

The proof now proceeds as in Theorem 3. ��
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The next result generalizes Corollary 1.

Corollary 2 Let δφ1 , δφ2 in (8) be improved estimators of 1/σ1, σ2 satisfying

(i) φ1(w1) is non-increasing in w1 > 0 and limw1→∞ φ1(w1) = c01,
(ii) φ2(w2) is non-decreasing in w2 > 0 and limw2→∞ φ2(w2) = c02.

Assume that (1) holds and L is convex in some monotone absolutely continuous func-
tion u(t)with inverse v(t). Then v(u(δφ1δ02)+u(δ01δφ2)−u(δ01δ02)) dominates both
δφ1δ02 and δ01δφ2 .

Theorem 3 is a special case of Theorem 4. Indeed, by taking u(t) = ln t we
have v(t) = et and so, v(u(δφ1δ02) + u(δ01δφ2) − u(δ01δ02)) = exp{ln(δφ1δ02) +
ln(δ01δφ2)− ln(δ01δ02)} = δφ1δφ2 . The squared error loss L(t) = (t − 1)2 is convex
in u(t) = tk, 1 � k � 2. Then, v(t) = t1/k and thus, the estimator v(u(δφ1δ02) +
u(δ01δφ2) − u(δ01δ02)) = {(δφ1δ02)

k + (δ01δφ2)
k − (δ01δ02)

k}1/k dominates both
δφ1δ02 and δ01δφ2 . For k = 1, this is just Kubokawa (1994b) estimator. As an addi-
tional example consider the loss function L(t) = ( 1

t − 1)2 which is clearly convex
in u(t) = t−k, 1 � k � 2. By Corollary 2, under this loss function, the estimator
v(u(δφ1δ02)+ u(δ01δφ2)− u(δ01δ02)) = {(δφ1δ02)

−k + (δ01δφ2)
−k − (δ01δ02)

−k}−1/k

dominates both δφ1δ02 and δ01δφ2 .
The above results can be extended to a broader class of estimators of σ2 or 1/σ1.

For i = 1, 2, let ψi (wi , si ) be absolutely continuous functions with respect to wi ,
defined on (0,∞)× (0,∞), and set

δψ1 =
{
ψ1(W1, S1)S

−1
1 if W1 > 0,

δ01 otherwise,
δψ2 =

{
ψ2(W2, S2)S2 if W2 > 0,

δ02 otherwise.
(9)

The next result provides single-adjustment improved estimators of ρ based on δψi .

Theorem 5 Assume that (1) holds and limwi →∞ ψi (wi , si ) = c0i , for every si >

0, i = 1, 2. Then we have the following.

(i) δψ1δ02 improves on δ0 = δ01δ02 if and only if δψ1 improves on δ01.
(ii) δ01δψ2 improves on δ0 = δ01δ02 if and only if δψ2 improves on δ02.

Proof Write E{L(δ0/ρ)} − E{L(δψ1δ02/ρ)} = E{∫ ∞
1

d
dt L

(
c02ψ1(tW1, S1)

S2σ1
S1σ2

)

dt I (W1 > 0)} and follow the proof of Theorem 2. ��
Analogously to Theorem 4, in the following theorem we obtain double-adjustment

improved estimators based on δψi , i = 1, 2. Its proof is similar to those of Theorems 3
and 4 and therefore is omitted.

Theorem 6 Let δψi be as in (9), i = 1, 2. Assume thatψ1 is non-increasing inw1 > 0
with limw1→∞ ψ1(w1, s1) = c01 for every s1 > 0, ψ2 is non-decreasing in w2 > 0
with limw2→∞ ψ2(w2, s2) = c02 for every s2 > 0 and the estimators δψ1δ02, δ01δψ2

dominate δ0 = δ01δ02 with respect to the loss function L. Assume also that L is con-
vex in some monotone absolutely continuous function u(t) with inverse v(t). Then
v
(
u(δψ1δ02)+ u(δ01δψ2)− u(δ01δ02)

)
dominates both δψ1δ02 and δ01δψ2 .
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It is evident, that combining Theorems 5 and 6 we can get similar results to those in
Corollaries 1 and 2.

The above results demonstrate that, under the conditions stated, the problem of esti-
mating ρ reduces simply to the estimation of 1/σ1 and σ2. That is, if one has available
or can derive improved estimators δφ1 , δφ2 or δψ1 , δψ2 then he/she can immediately
construct double-adjustment improved estimators for ρ through our approach, rather
than trying to extend an existing specific one-sample method of estimating a single
scale parameter. Conditions (i) and (ii) of Corollaries 1 and 2 (also appearing in The-
orems 3, 4) are mild and hold for typical improved estimators δφ1 and δφ2 , such as
Stein-type, Brown-type, Brewster and Zidek-type, Kubokawa-type and Strawderman-
type procedures. Thus, respective estimators of ρ are then easily found. For estimating
a normal variance, improved non-scale equivariant estimators of the form δψ2 in (9)
have been presented by Shinozaki (1995). Following his approach, improved Shino-
zaki-type estimators of the form δψ1 in (9) for a normal precision under the squared
error loss can also be constructed (see Subsection 3.3). Thus, by invoking Theorems 5
and 6, non-scale equivariant single as well as double-adjustment improved estimators
of the ratio of two normal variances are immediately obtained.

3 Applications

In this section we present several applications of our main results. We will need, in
addition to (A), the following conditions. From Sect. 2, we recall that κi (μ0i , σ0i ) = 0
and set hi (t) = hi (t;μ0i , σ0i ), t > 0 and Vi = Si/σi , i = 1, 2.

(B) For i = 1, 2, hi (t;μi , σi )/hi (t) is non-decreasing in t > 0.
(C) For 0 < a < b, i = 1, 2, hi (at)/hi (bt) is strictly increasing in t > 0.

3.1 Improved estimators of ρ based on Kubokawa’s one-sample method

For a strictly bowl-shaped loss L , Kubokawa (1994a) showed that under (A) and
(B) the estimators δφ1 and δφ2 of 1/σ1 and σ2 given by (8) improve on δ01 and δ02,
respectively, if

(i) φ1(w1) is non-increasing and limw1→∞ φ1(w1) = c01,

(ii) E
{

L ′(φ1(w1)V
−1
1 )V −1

1 | W1 � w1

}
� 0,∀w1 > 0,

(iii) φ2(w2) is non-decreasing and limw2→∞ φ2(w2) = c02,
(iv) E

{
L ′(φ2(w2)V2)V2 | W2 � w2

}
� 0,∀w2 > 0,

where expectations are evaluated at μi = μ0i and σi = σ0i . For instance, under (A),
(B) and (C), the Stein-type and the Brewster and Zidek-type estimators of 1/σ1 and
σ2 satisfy (i)–(iv) (see Kubokawa 1994a). Conditions (A), (B) and (C) are known
to hold, in particular, for normal, exponential (and hence lognormal and Pareto)
as well as inverse Gaussian distributions. Consequently, using δφ1 and δφ2 we can
immediately derive double-adjustment improved estimators for ρ by employing
Corollaries 1 and 2. A summary of these improved estimators for certain well-known
loss functions is given in Table 2. The loss functions marked with an asterisk are
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Table 2 Well-known convex and non-convex losses and respective classes of double-adjustment improved
estimators (∗: non-convex loss)

L(t) u(t) Improved estimator

(t − 1)2 tk , 1 � k � 2
{
(δφ1δ02)

k + (δ01δφ2 )
k − (δ01δ02)

k
}1/k

t − ln t − 1 tk , 0 < k � 1
{
(δφ1δ02)

k + (δ01δφ2 )
k − (δ01δ02)

k
}1/k

ln t δφ1δφ2

(ln t)2 ∗ ln t δφ1δφ2

( 1
t − 1)2 ∗ t−k , 1 � k � 2

{
(δφ1δ02)

−k + (δ01δφ2 )
−k − (δ01δ02)

−k
}−1/k

1
t + ln t − 1∗ t−k , 0 < k � 1

{
(δφ1δ02)

−k + (δ01δφ2 )
−k − (δ01δ02)

−k
}−1/k

ln t δφ1δφ2

t + 1
t − 2 tk ,−1 � k � 1, k �= 0

{
(δφ1δ02)

k + (δ01δφ2 )
k − (δ01δ02)

k
}1/k

ln t δφ1δφ2

Analogous estimators are obtained using δψi

non-convex and hence the respective estimators cannot be derived from the existing
literature. In the case of squared error loss, our class of estimators extends Kubokawa
(1994b) class δφ1δ02 + δ01δφ2 − δ01δ02. For the entropy loss, the improved estimators
δφ1δ02 + δ01δφ2 − δ01δ02 and δφ1δφ2 were also obtained by Kubokawa (1994b) and
Kubokawa and Srivastava (1996), respectively, the latter, however, by exploiting the
convexity of t − ln t − 1, whereas we employ its convexity in ln t . Especially, taking
δφ1 and δφ2 to be the Stein-type or the Brewster and Zidek-type improved estimators
of 1/σ1 and σ2, we get Stein-type and Brewster and Zidek-type estimators of ρ for
each of the above mentioned models and for each loss of Table 2. Also, Ghosh and
Kundu (1996) generalized Bayes estimators of the ratio of two normal variances are
single-adjustment improved estimators of the form δφ1δ02 or δ01δφ2 with δφ1 and δφ2

satisfying (i)–(iv) and hence their dominance follows from Theorem 2.

3.2 Improved estimators of ρ based on Strawderman’s method

Using a different method than Stein (1964), Brown (1968) and Brewster and Zidek
(1974), Strawderman (1974) and Maruyama and Strawderman (2006) obtained
improved estimators for the variance of normal distribution with unknown mean.
Lately, Strawderman (1974) method was extended to a general scale parameter by Bob-
otas and Kourouklis (2009). Below, we first derive Strawderman-type estimators for the
ratio ρ = σ2/σ1 of two normal variances. Let X1, X2, S1 and S2 be independent statis-
tics where X1, X2 have multivariate normal distributions Np(μ1, σ1 Ip), Nq(μ2, σ2 Iq)

with unknown mean vectors μ1, μ2 and S1/σ1, S2/σ2 have chi-square distributions
χ2

n , χ
2
m . We set W1 = ‖X1‖2/S1 and W2 = ‖X2‖2/S2.
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Example 1 (Squared error loss) In this case, δ01 = (n−4)S−1
1 and δ02 = (m+2)−1S2.

For estimating σ2, Maruyama and Strawderman (2006) derived the improved estimator
δφ2 = (1 + W2)S2/[(m + 2)(r2 + 1 + W2)], whereas Bobotas and Kourouklis (2010)
obtained the improved estimator δφ1 = (n − 4)(r1 + 1 + W1)S

−1
1 /(1 + W1) of 1/σ1,

for 0 < ri < r0i where r0i are specified constants, i = 1, 2. Since L(t) = (t − 1)2 is
convex in tk, 1 � k � 2, Corollary 2 provides the Strawderman-type estimator of ρ

δ = n − 4

m + 2

{(r1 + 1 + W1

1 + W1

)k +
( 1 + W2

r2 + 1 + W2

)k − 1

}1/k S2

S1
. (10)

Noticeably, neither δφ1 nor δφ2 satisfy Kubokawa (1994a) conditions (ii), (iv) given
above. The proof of this fact, for δφ2 , is given in Maruyama and Strawderman (2006,
p. 3829) and for δφ1 follows in a similar way. Thus, not even in the case k = 1, the
dominance of δ in (10) can be established by Kubokawa (1994b, Theorems 2.2 and
2.4) despite the fact that it has then the form of Kubokawa (1994b) double-adjustment
improved estimators. For k = 1, δ in (10) is also given in Bobotas and Kourouklis
(2010).

Example 2 (Entropy loss) In this case, δ01 = (n − 2)S−1
1 and δ02 = (1/m)S2. From

Maruyama and Strawderman (2006) and Bobotas and Kourouklis (2010) we use the
improved estimators of σ2 and 1/σ1, δφ2 = (1 + W2)S2/[m(r2 + 1 + W2)] and δφ1 =
(n − 2)(r1 + 1 + W1)S

−1
1 /(1 + W1), respectively, where 0 < ri < r ′

0i and r ′
0i are

specified constants, i = 1, 2. Since L(t) = t − ln t − 1 is convex in ln t and tk ,
0 < k � 1, by Corollaries 1, 2, we obtain the improved Strawderman-type estimators

δφ1δφ2 = n − 2

m

(r1 + 1 + W1)(1 + W2)

(1 + W1)(r2 + 1 + W2)

S2

S1
(11)

and

{
(δφ1δ02)

k + (δ01δφ2)
k − (δ01δ02)

k
}1/k

= n − 2

m

{(r1 + 1 + W1

1 + W1

)k +
( 1 + W2

r2 + 1 + W2

)k − 1

}1/k S2

S1
. (12)

In this case too, the dominance of these estimators cannot be ensured by Kubokawa
(1994b) or Kubokawa and Srivastava (1996). The estimator in (12) for k = 1 and
δφ1δφ2 in (11) were also derived by Bobotas and Kourouklis (2010).

Strawderman-type estimators of ρ in general models have not as yet appeared in the
literature. In the following example we obtain such estimators under the loss t+1/t−2.
Analogous results can be derived for other losses of Table 2 as well but are not given
here for the sake of brevity.

Example 3 Consider the symmetric loss L(t) = t + 1/t − 2 and assume the model in
(5). We also suppose that (A) and (B) hold. In this case δ01 = c01S−1

1 and δ02 = c02S2,
where c2

01 = E(S1)/E(S
−1
1 ) and c2

02 = E(S−1
2 )/E(S2). The expectations are evaluated
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at σ1 = σ2 = 1 and are assumed to be finite. In the Appendix it is shown that δ01 and
δ02 are improved by the Strawderman-type estimators

δφ1 =
⎧
⎨

⎩
c01

{
1 + r1

(1 + W1)ε1

}
S−1

1 if W1 > 0,

δ01 otherwise
(13)

and

δφ2 =
⎧
⎨

⎩
c02

{
1 − r2

(1 + W2)ε2

}
S2 if W2 > 0,

δ02 otherwise,
(14)

respectively, where εi > 0, 0 < ri < Bi (εi ), and Bi (εi ) is given in (16), i = 1, 2.
Since L(t) is convex in ln t and tk,−1 � k � 1, k �= 0, Corollaries 1 and 2 provide the
improved Strawderman-type estimators of ρ, δφ1δφ2 and δ = {

(δφ1δ02)
k +(δ01δφ2)

k −
(δ01δ02)

k
}1/k , i.e.,

δφ1δφ2 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c01c02

(
1 + r1

(1 + W1)ε1

)(
1 − r2

(1 + W2)ε2

)
S2

S1
if W1 > 0,W2 > 0,

c01c02

(
1 + r1

(1 + W1)ε1

)
S2

S1
if W1 > 0,W2 � 0,

c01c02

(
1 − r2

(1 + W2)ε2

)
S2

S1
if W1 � 0,W2 > 0,

δ01δ02 if W1 � 0,W2 � 0

and

δ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c01c02

{(
1 + r1

(1 + W1)ε1

)k

+
(

1 − r2

(1 + W2)ε2

)k

− 1

}1/k
S2

S1

if W1 > 0,W2 > 0,

c01c02

(
1 + r1

(1 + W1)ε1

)
S2

S1
if W1 > 0,W2 � 0,

c01c02

(
1 − r2

(1 + W2)ε2

)
S2

S1
if W1 � 0,W2 > 0,

δ01δ02 if W1 � 0,W2 � 0.

3.3 Improved estimators of the ratio of two normal variances
based on Shinozaki modifications

Let X1, X2, S1, S2 be as in the beginning of Sect. 3.2 and set Ti = ‖Xi‖2 for
i = 1, 2. For estimating σ2, Shinozaki (1995) proposed various methods for modifying
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classical improved scale equivariant estimators (e.g., Stein’s estimator). Shinozaki’s
estimators are not scale equivariant, improve on the best equivariant estimator of
σ2, and are expected to offer larger improvement in a certain region of the parame-
ter space. Here, we only discuss Shinozaki modifications of Strawderman-type esti-
mators of ρ = σ2/σ1 under the squared error loss. For estimating σ2, as a spe-
cial case of Shinozaki (1995, Theorem 2.3) we get the improved estimator δψ2 =

1
m+2 {1 − r2b2(S2 + T2)

S
ε2
2

(S2+T2)
ε2 }S2, where b2(·) is non-decreasing on (0,∞) and

satisfies 0 ≤ b2(·) ≤ 1, ε2 > 0 and 0 < r2 <
2qε2

m+q+2
�(q/2+m/2+2ε2+2)�(m/2+ε2+1)
�(q/2+m/2+ε2+2)�(m/2+2ε2+2) .

Following Shinozaki (1995) approach, we can modify a class of Strawderman-type
estimators of a normal precision given by Bobotas and Kourouklis (2010) and obtain

the improved estimator of 1/σ1, δψ1 = (n − 4){1 + r1b1(S1 + T1)
S
ε1
1

(S1+T1)
ε1 }S−1

1 ,
where b1(·) is non-decreasing on (0,∞) and satisfies 0 ≤ b1(·) ≤ 1, ε1 > 0 and
0 < r1 <

2pε1
n−4

�(n/2+ε1−2)�(n/2+p/2+2ε1−2)
�(n/2+2ε1−2)�(n/2+p/2+ε1−1) . The proof of this result is similar to

that of Theorem 2.1 in Bobotas and Kourouklis (2010). Therefore, using δψ1 and
δψ2 , Theorems 5 and 6 apply and give the improved Shinozaki-type estimators of

ρ,
{
(δψ1δ02)

k + (δ01δψ2)
k − (δ01δ02)

k
}1/k

, 1 ≤ k ≤ 2.

Appendix

We consider the model in (5) and construct Strawderman-type estimators for 1/σ1
and σ2 under the symmetric loss L(t) = t + 1/t − 2. The respective best equivari-
ant estimators are given by δ01 = c01S−1

1 , δ02 = c02S2, with c2
01 = E(S1)/E(S

−1
1 )

and c2
02 = E(S−1

2 )/E(S2). Following Strawderman (1974), for improving on δ01 and
δ02 we consider estimators of the form δφ1 , δφ2 in (13) and (14), respectively, where
as before Wi = Ti/Si and r1, r2 are positive constants to be determined below. For
convenience, we set ai = (−1)i , i = 1, 2, so that δφ1 and δφ2 can be written as

δφi =
⎧
⎨

⎩
c0i

{
1 − ai

ri

(1 + Wi )εi

}
Sai

i if Wi > 0,

δ0i otherwise.
(15)

Recall that μ0i , σ0i are defined in the beginning of Sect. 2 and Vi = Si/σi , i = 1, 2.

Theorem 7 Assume that Conditions (A) and (B) hold. Then, for every εi > 0, i = 1, 2,
the risk of δφi is strictly smaller than that of δ0i provided 0 < ri < Bi (εi ), where

Bi (εi ) = ai

{

1 − 1

c2
0i

Eμi =μ0i ,σi =σ0i

{
(1 + Wi )

−εi V −ai
i

}

Eμi =μ0i ,σi =σ0i

{
(1 + Wi )−εi V ai

i

}

}

, (16)

and ai is as in (15).
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Proof Due to the form of δ0i and δφi , their risks difference is given by

RD(δ0i , δφi )

= E
{
δ0i/σ

ai
i + (δ0i/σ

ai
i )

−1 − 2
}

− E
{
δφi /σ

ai
i + (δφi /σ

ai
i )

−1 − 2
}

= ri E
{

ai

(c0i (Si/σi )
ai

(1 + Wi )εi
−

[
c0i (Si/σi )

ai

(
1− airi

(1+Wi )εi

)
(1 + Wi )

εi
]−1)

I (Wi >0)

}

= ri ai

∫ ∞

0

∫ ∞

0

{
c0iy

ai
i

(1 + wi )εi
−

[
c0iy

ai
i

(
1 − airi

(1 + wi )εi

)
(1 + wi )

εi

]−1}

×yigi (yi )hi (wiyi ;μi , σi )I
(
wiyi > κi (μi , σi )

)
dyi dwi .

By a change of variables ui = 1/(1 + wi ), vi = (1 + wi )yi and setting βi =
max{κi/(1 − ui ), 0}, i = 1, 2, we obtain

RD(δ0i , δφi ) = ri ai

∫ 1

0

∫ ∞

βi

{
c0i u

εi +ai
i v

ai
i − uεi −ai

i

c0iv
ai
i (1 − airi u

εi
i )

}

×vigi (uivi )hi
(
(1 − ui )vi ;μi , σi

)
dvi dui

� ri ai

∫ 1

0

∫ ∞

βi

{
c0i u

εi +ai
i v

ai
i − uεi −ai

i

c0iv
ai
i (1 − airi )

}
vigi (uivi )

× hi
(
(1 − ui )vi ;μi , σi

)
dvi dui .

A straightforward calculation for each value i = 1, 2 separately entails that
RD(δ0i , δφi ) > 0 provided that

ri < ai

{
1 − 1

c2
0i

∫ 1
0 uεi −ai

i

∫ ∞
βi
v

1−ai
i gi (uivi )hi

(
(1 − ui )vi ;μi , σi

)
dvi dui

∫ 1
0 uεi +ai

i

∫ ∞
βi
v

1+ai
i gi (uivi )hi

(
(1 − ui )vi ;μi , σi

)
dvi dui

}

= ai
{
1 − c−2

0i Ii (εi ;μi , σi )
}
,

say. Using a similar argument as in the proof of the relations (2.11) and (2.14) in Bob-
otas and Kourouklis (2009), it can be shown that, under (A) and (B), I1(ε1;μ1, σ1) �
I1(ε1;μ01, σ01) > c2

01 and I2(ε2;μ2, σ2) � I2(ε2;μ02, σ02) < c2
02. Moreover, it is

easily seen that Ii (εi ;μ0i , σ0i ) = Eμi =μ0i , σi =σ0i

{
(1+Wi )

−εi V −ai
i

}
/Eμi =μ0i , σi =σ0i

{
(1+

Wi )
−εi V ai

i

}
and this completes the proof. ��
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