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Abstract Consider non-recurrent Ornstein–Uhlenbeck processes with unknown
drift and diffusion parameters. Our purpose is to estimate the parameters jointly from
discrete observations with a certain asymptotics. We show that the likelihood ratio of
the discrete samples has the uniform LAMN property, and that some kind of approxi-
mated MLE is asymptotically optimal in a sense of asymptotic maximum concentration
probability. The estimator is also asymptotically efficient in ergodic cases.

Keywords Ornstein–Uhlenbeck processes · Non-recurrency · ULAMN property ·
Discrete observations · Joint estimation · Asymptotic optimality

1 Introduction

On a filtered probability space (�,F , P, (Ft )t≥0), we consider 1-dim Ornstein–
Uhlenbeck (OU) processes X given by the following SDEs:

dXt = μXt dt + √
σdWt , X0 = x, (1)

where W is a Wiener process, ϑ = (μ, σ ) is a parameter which values as μ ∈ int (�)

and σ ∈ int (�), where � and � are compact convex subsets of R and (0,∞), respec-
tively. We denote by � = � × �. The properties of OU processes have been well
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194 Y. Shimizu

studied by many authors, and it is well known that X is positive recurrent (ergodic) if
μ ∈ (−∞, 0); null-recurrent if μ = 0; non-recurrent if μ ∈ (0,∞).

When we observe X at discrete time points {ti }n
i=0 with ti = i� for some � > 0,

estimation of ϑ from observations {Xi := Xti }n
i=0 is one of the most fundamental

problems in statistical inference for SDEs. Actually, there exist many works on infer-
ence for ergodic diffusion processes from discrete samples. However, for non-ergodic
diffusions, there are only a few works for discretely observed cases; see Kasonga
(1990), Jacod (2006) and Shimizu (2009a), except for continuously observed cases;
see e.g., a monograph by Prakasa Rao (1999a,b) and Kutoyants (2004). The aim of
this paper is to construct an optimal estimator of ϑ from {Xi }n

i=0 under the following
assumption (H): a high-frequent sampling in a long term.

Assumption (H) � ⊂ (0,∞); � → 0 and n� → ∞ as n → ∞.

In the OU-case, the transition probability from Xi−1 to Xi is explicitly known:
under Pϑ ,

Xi = eμ� Xi−1 + √
σε�

i (μ) (i = 1, 2, . . . , n),

where ε�
i (s) := eti μ

∫ ti

ti−1

e−μs dWs ∼ N

(
0,

1

2μ
(e2�μ − 1)

)
.

When � > 0 is fixed, the sequence {Xi }n
i=0 is regarded as an AR(1)-time series:

Xi = αXi−1 + ui , where α := eμ�

and ui ’s are I.I.D. normal innovations. A little different point in OU series from the
context of usual time series is that ui also depends on α. Unless ui depends on α: the
usual AR(1), the rigorous MLE of α is given by

α̂n := arg min
α∈R

n∑
i=1

∣∣Xti − αXi−1
∣∣2 =

∑n
i=1 Xi Xi−1∑n

i=1 X2
i−1

. (2)

Parameter α determines the stability of {Xi }. The non-recurrent OU cases correspond
to the cases where α > 1: non-stationary AR(1). In this case, Anderson (1959) studied
the rate of convergence of α̂n , which is αn-order. On the other hand, when � → 0 as
n → ∞: α → 1, the situation is similar to an AR(1) model with a root near unity,
discussed by Phillips (1987). He considered the situation such as α = eμ/n . Therefore
his argument corresponds to the case where � = 1/n: n� is fixed in our notation.

He showed that n(α̂n − α)
D−→ β(μ) as n → ∞ for some β(μ), and considered the

asymptotic behavior of β(μ) as |μ| → ∞ in order. However we are interested in the
case where � → 0 and n� → ∞, which corresponds to the case where n → ∞ and,
at the same time, μ → ∞ in terms of Phillips (1987) setting.

Suppose that the process X is observed time-continuously on [0, T ], where only μ

is the target of estimation since σ is estimated consistently by computing the quadratic
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LAMN for sampled non-recurrent OU process 195

variation of X in a local time interval. The MLE of μ is given by

μ̂MLE
T :=

∫ T
0 Xs dXs∫ T
0 X2

s ds
= X2

T − x2 − T

2
∫ T

0 X2
s ds

,

which is the maximizer of the log-likelihood function − 1
2

∫ T
0 μ2 X2

s ds+∫ T
0 μXs dXs .

As is well known, if μ > 0, this estimator is asymptotically mixed normal with expo-
nential rate of convergence; see Feigin (1976), or Dietz and Kutoyants (2003): as
T → ∞,

eμT (μ̂ − μ)
D−→ v−1/2

μ Z with vμ := 1

2μσ

(
x + √

σξμ

)2
, (3)

where ξμ = ∫∞
0 e−μs dWs and Z is a standard normal random variable independent

of ξμ. On the other hand, we have only discrete samples {Xi }n
i=1, and the following

approximated MLEs are often used:

μ̂AMLE
n :=

∑n
i=1 Xi (Xi − Xi−1)

�
∑n

i=1 X2
i−1

, or
X2

n − x2 − n�

2�
∑n

i=1 X2
i−1

.

These are discrete versions of μ̂MLE
T replaced dXs with (Xi − Xi−1), and

∫ T
0 X2

s ds
with �

∑n
i=1 X2

i−1. The former estimator is also obtained via the least squares method
or a contrast function due to a discretization of the continuous time likelihood function;
see, e.g., Le Breton (1975); Kasonga (1988) and Prakasa Rao (1999b). If X is ergodic,
it is known that, under the asymptotics such as � → 0, n� → ∞ and n�3 → 0, both
of μ̂AMLE

n ’s are asymptotically efficient in the sense of the minimal asymptotic vari-
ance with

√
n�-rate of convergence; see Shimizu (2009b). See also Kessler (1997) and

Gobet (2002) for more general results for diffusion processes. If X is non-recurrent,
one may also expect that either estimator attains eμn�-rate of convergence. However
the answer is negative: eμn�(μ̂AMLE

n − μ) → ∞ although
√

n�(μ̂AMLE
n − μ) is

tight. This is due to the rough approximations of dXs and
∫ T

0 X2
s ds, and it indicates

that the often used contrast functions based on the local Gauss approximation of the
likelihoods is inadequate in non-ergodic cases: see Shimizu (2009b).

Note that the likelihood function of (X1, . . . , Xn) is written explicitly:

exp

(
−

n∑
i=1

μ
(
Xi − eμ� Xi−1

)2

σ(e2μ� − 1)
−

n∑
i=1

1

2
log

(
e2μ� − 1

2μ
σ

))
.

However, the rigorous MLE of μ cannot be written explicitly. In view of (2), it may
be better to use the following estimator:

μ̂n := arg min
ν∈�

n∑
i=1

∣∣Xi − eν� Xi−1
∣∣2 , (4)
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196 Y. Shimizu

which is well-defined since the parameter space � is compact. In particular, if μ̂n is
a local minimum in �, the explicit form is as follows:

μ̂n = 1

�
log

(∑n
i=1 Xi Xi−1∑n

i=1 X2
i−1

)
. (5)

This estimator is not new but a trajectory-fitting estimator (TFE) proposed by Kasonga
(1988), and the weak consistency has already been shown. We further show that it
attains eμn�-rate of convergence with the same asymptotic distribution as in (3) with-
out any restriction except for (H).

In the discretely observed cases, the diffusion coefficient σ is also the target of
statistical estimation, unlike the continuously observed cases. In OU cases, we can
directly compute the maximum likelihood estimator for σ . We shall show the rate of
convergence is

√
n which is the same as in the ergodic cases. The rate would be natural

since the diffusion coefficient is due to a local characteristic of the quadratics of X
which is nothing to do with the ergodicity which is a global property. We also show
that our estimators of μ and σ are optimal in some class of estimators in the sense of
the maximum concentration at all ϑ ∈ � in probability by showing that the likelihood
ratio of {Xi }n

i=0 is locally asymptotically mixed normal (LAMN).
Of course, we also remark that the proposed estimator is also asymptotically effi-

cient if X is ergodic: see (11) and Corollary 1 below. Therefore, one should use our
estimator even if X is ergodic or non-ergodic under the discrete sampling.

In the next section, we describe the main results. All the proofs are presented in
Sect. 3.

2 Main results

2.1 Notation

Let us prepare further notation:

1. Pϑ : the induced measure of P by X with ϑ = (μ, σ ); Eϑ : the expectation w.r.t
Pϑ ;

2. ∇ := (∂μ, ∂σ )
, where ∂x := ∂/∂x , and 
 is the transpose;
3. For matrices An and Bn , An ∼ Bn means that B−1

n An tends to the identity
matrix;

4. For a matrix A = (ai j )
d
i, j=1, diag(A) stands for diag(a11, a22, . . . , add);

5. E�
s := e2s� − 1; D�

i (s) := Xi − es� Xi−1. Note that D�
i (μ) = √

σε�
i (μ)

under Pϑ :

σ−1/2 D�
i (μ) = ε�

i (μ) ∼ N
(
0, E�

μ /2μ
) ;
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LAMN for sampled non-recurrent OU process 197

6. �n(ϑ) is the exact log-likelihood function of {Xi }n
i=1, which is written as

�n(ϑ) := −
n∑

i=1

[
μ|D�

i (μ)|2
σ E�

μ

+ 1

2
log

(
σ E�

μ

2μ

)]
;

7. ϑ̂n := (
μ̂n, σ̂n

)
, where μ̂n is given in (4), and

σ̂n := σ̂n(μ̂n) with σ̂n(s) := 2s

nE�
s

n∑
i=1

|D�
i (s)|2.

σ̂n(μ) is the MLE given the true μ: σ̂n(μ) = arg maxσ∈� �n(μ, σ ).
8. Sn(ϑ) := ∇ϑ�n(ϑ): score vectors; Bn(ϑ) := −∇ϑ∇


ϑ �n(ϑ): observed infor-
mation matrices; In(ϑ) := Eϑ

[
diag(Bn(ϑ))

]
: diagonalize expected informa-

tion matrices;
9. Ln(ϑ) := I −1/2

n (ϑ)Sn(ϑ) and Gn(ϑ) := I −1/2
n (ϑ)Bn(ϑ)I −1/2

n (ϑ): the nor-
malized versions of scores and observed information, respectively;

10. Let ϑ∗
n (h) := ϑ + I −1/2

n (ϑ)h for h ∈ R
2, and denote by

�ϑ
n (h) := �n(ϑ∗

n (h)) − �n(ϑ);
rn(h, ϑ) := �ϑ

n (h) −
{

h
Ln(ϑ) − 1

2
h
Gn(ϑ)h

}

�ϑ
n := (�ϑ

n (h))h∈R2 is the log-likelihood ratio random field, and r(h, ϑ) is the
remainder of a quadratic approximation of �ϑ

n .

The following LAMN property for the likelihood ratio process is important in non-
ergodic statistics; see Basawa and Scott (1983), Jeganathan (1982) and Luschgy (1992)
for details. The definition of uniformity of the LAMN below is due to Basawa and
Scott (1983).

Definition 1 The random field �ϑ
n is locally asymptotically mixed normal (LAMN)

at ϑ ∈ � if the following two conditions are satisfied: as n → ∞,

(A.1) there exists an almost-surely positive definite random matrix G(ϑ) such that

(Ln(ϑ), Gn(ϑ))
D−→ (G1/2(ϑ)Z , G(ϑ)) under Pϑ ,

where Z is a standard normal vector independent of G(ϑ);

(A.2) rn(h, ϑ)
P−→ 0 under Pϑ for any h ∈ R

2.

If (A.2) holds for any bounded sequence (hn) ⊂ R
2: rn(hn, ϑ)

P−→ 0, then we say
that the random field �ϑ

n is “uniformly” LAMN (ULAMN).

If the matrix G(ϑ) is deterministic, then �ϑ
n is called locally asymptotically normal

(LAN). For details on the LAN theory, see, e.g., Ibragimov and Has’minskii (1981).
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198 Y. Shimizu

Definition 2 A sequence of estimators {Tn} is “regular at ϑ” if there exists a random
variable T (ϑ) such that, for every h ∈ R

2,

(
I 1/2
n (ϑ)(Tn − ϑ∗

n (h)), Gn(ϑ)
) D−→ (T (ϑ), G(ϑ)) under Pϑ∗

n (h) (6)

as n → ∞.

2.2 Main theorems

Theorem 1 Under Assumption (H), the random field �ϑ
n is ULAMN at all ϑ ∈ �

with G(ϑ) := diag
(

g−1
x,ϑvμ, 1/2

)
, where vμ is given in (3), and

gx,ϑ := x2

2μσ
+ 1

4μ2 .

The LAMN condition for all ϑ ∈ � can yield the upper bound of the concentration
probability for estimators: if {Tn} is a regular sequence of estimators, then

lim
n→∞ Pϑ {I 1/2

n (ϑ)(Tn − ϑ) ∈ C} ≤ Pϑ {G−1/2(ϑ)Z ∈ C} (7)

for any convex symmetric set C ⊂ R
2 and every ϑ ∈ �; see Basawa and Scott (1983),

Theorem 2.2.1. Hence an estimator T ∗
n is asymptotically optimal in the regular class

of estimators in the sense of asymptotic maximum concentration probability at ϑ if

lim
n→∞ Pϑ {I 1/2

n (ϑ)(T ∗
n − ϑ) ∈ C} = Pϑ {G−1/2(ϑ)Z ∈ C} (8)

for every ϑ ∈ �. The optimality is sometimes called asymptotic efficiency in Wolfowitz
sense; see Weiss and Wolfowitz (1974).

Theorem 2 Under Assumption (H),

(
eμn�(μ̂n −μ),

√
n(σ̂n −σ), Gn(ϑ)

) D−→
(
v−1/2
μ Z1,

√
2σ Z2, G(ϑ)

)
under Pϑ

(9)

for all ϑ ∈ �, where (Z1, Z2) is a standard normal vector independent of vμ.

Remark 1 In the proof of Theorem 1, we will show that

I 1/2
n (ϑ) ∼ diag

(
g1/2

x,ϑeμn�, σ−1√n
)

; (10)

see (24) below. Thus, by (9) and (10), we have

(
I 1/2
n (ϑ)(ϑ̂n − ϑ), Gn(ϑ)

) D−→
(

G−1/2(ϑ)Z , G(ϑ)
)

under Pϑ
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LAMN for sampled non-recurrent OU process 199

for every ϑ ∈ �. Moreover, it is easy to see the regularity of {ϑ̂n} from the above
convergence with LAMN condition for every ϑ ∈ �:

(
I 1/2
n (ϑ)(ϑ̂n − ϑ∗

n (h)), Gn(ϑ)
) D−→

(
G−1/2(ϑ)Z , G(ϑ)

)
under Pϑ∗

n (h)

for every h ∈ R
2. For the proof, use e.g., Basawa and Scott (1983), Lemma 1.3.2, (b),

and check the convergence of the corresponding characteristic functions. Therefore,
our estimator ϑ̂n is asymptotically efficient in Wolfowitz sense.

Remark 2 Without showing the regularity of ϑ̂n , we see that μ̂n itself is asymptotically
efficient since μ̂n has the same asymptotic distribution as for the continuous version
MLE: μ̂MLE

T , which is also asymptotically efficient in Wolfowitz sense; see Basawa
and Scott (1983) and Luschgy (1992).

Appropriate norming matrices for ϑ̂n to yield the asymptotically normal limit with-
out a random mixture are G1/2

n (ϑ)I 1/2
n (ϑ), and we can show that

G1/2
n (ϑ)I 1/2

n (ϑ) ∼ �
1/2
n (ϑ) := diag

(
�

σ

n∑
i=1

X2
i−1,

n

2σ 2

)1/2

;

see (24) and (25) in the proof of Theorem 1. If X is ergodic: � ⊂ (−∞, 0), then it is
easy to see by the law of large numbers; see, e.g. Lemma 8 by Kessler (1997), that

diag
(
(n�)−1, n−1

)
�(ϑ)

P−→ diag
(
−(2μ)−1, (2σ 2)−1

)
.

Hence we obtain the following well known result:

(√
n�(μ̂n − μ),

√
n(σ̂n − σ)

) D−→
(√−2μZ1,

√
2σ Z2

)
, (11)

which is asymptotically efficient in the sense of minimal asymptotic variance in the
regular class of estimators; see Kessler (1997). See Sect. 3.4 for the proof of (11).
Consequently, we have the following result.

Corollary 1 Suppose that μ 
= 0. Then, as � → 0 and n� → ∞,

�
1/2
n (ϑ̂n)(ϑ̂n − ϑ)

D−→ Z ,

where Z is a standard bivariate normal vector.

Remark 3 If μ = 0, then the likelihood ratio would not possess the LAMN property.
In this case, μ̂n would not be asymptotically mixed normal, but have a singular asymp-
totic distribution. The fact is well known in continuously observed case; see Feigin
(1979).
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200 Y. Shimizu

3 Proofs

3.1 Preliminaries for proofs of main theorems

In what follows, we use the following notation:

Vn :=
n∑

i=1

X2
i−1; Un(s) := 1√

σ

n∑
i=1

Xi−1 D�
i (s);

Wn(s) :=
n∑

i=1

⎛
⎝
∣∣∣∣∣

D�
i (s)√
σ�

∣∣∣∣∣
2

− E�
s

2s�

⎞
⎠ .

In particular, it follows under Pϑ that

Un := Un(μ) =
n∑

i=1

ε�
i (μ)Xi−1; Wn := Wn(μ) =

⎛
⎝
∣∣∣∣∣
ε�

i (μ)√
�

∣∣∣∣∣
2

− E�
μ

2μ�

⎞
⎠ .

Moreover we denote by

Ũn :=
n∑

i=1

e−μ(n−i)�ε�
i (μ),

and by X̃t := e−μt Xt ; X̃i := e−μti Xi ; X̃∗ := supt≥0 X̃t .
The following lemma is a version of Toeplitz lemma for triangular arrays. The proof

is similar to the usual version’s, so we omit it.

Lemma 1 Let {an
i }n

i=1 be a positive bounded sequence, and put bn := ∑n
i=1 an

i .
Suppose that a sequence {xn

i }n
i=1 satisfies the following conditions:

sup
n∈N

|xn
i | < ∞ for each fixed i; (12)

lim
k→∞ sup

j,n: k≤ j≤n
|xn

j − x | = 0 for some x ∈ R; (13)

Then, for any sequence An with An ∼ b−1
n , An

∑n
i=1 an

i xn
i → x as n → ∞.

The next lemma is a corollary of Lemma 1 in the paper by Dietz and Kutoyants
(2003).

Lemma 2 X̃∗ is bounded in L p(Pϑ) for any p > 0. Moreover, as n → ∞,

X̃n → x + √
σ

∫ ∞

0
e−μt dWt (= √

2μσvμ) (14)

almost surely. It also holds in the L p-sense for any p > 0.
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LAMN for sampled non-recurrent OU process 201

Proof Since

X̃t = x + √
σ

∫ t

0
e−μt dWt ∼ N

(
x,

σ

2μ
(1 − e−2μt )

)

is a Gaussian martingale, we can deduce the almost sure convergence for (14) by the
martingale convergence theorem; see also Feigin (1976). Moreover it follows from
Doob’s inequality that, for any T ≥ 0,

Eϑ

[
sup
t≤T

|X̃t |2p

]
≤ cp Eϑ |X̃T |2p ≤ C p

(
1 − e−2μT

2μ

)p

,

where cp and C p are constants depending on p. Hence Eϑ |X̃∗|2p < ∞. Therefore we
can also deduce the L p-convergence for (14) by the uniform integrability of X̃n . ��

Lemma 3 Under Assumption (H),

�e−2μn�Vn
P−→ σvμ under Pϑ . (15)

Proof Let r� := e2μ�. Noticing that Vn = ∑n
i=1 X̃2

i−1r i−1
� , we have

�e−2μn�
n Vn = �

r� − 1

(
X̃2

n−1 −
n∑

i=2

(X̃2
i−1 − X̃2

ti−2
)r−n+i−1

� − X̃2
0r−n

�

)
.

Since r� − 1 = 2μ� + O(�2) and eμn� X̃2
0r−n

� → 0 as n → ∞, it follows that

�e−2μn�Vn − �

r� − 1
X̃2

n−1 =
(

− 1

2μ
+ O(�)

)
Rn + o(1),

where Rn := ∑n
i=2(X̃2

i−1− X̃2
i−2)r

−n+i−1
� . Therefore, we shall show that Rn = op(1).

Eϑ |Rn| ≤
n−1∑
i=1

∥∥∥X̃i + X̃i−1

∥∥∥
L2(Pϑ )

‖ε�
i (μ)‖L2(Pϑ )r

−n+ i
2

�

≤ 2‖X̃∗‖L2(Pϑ )

√
1

2μ
(e2μ� − 1)

n−1∑
i=1

e−μ�(2n−i)

≤ 2‖X̃∗‖L2(Pϑ )e
−μn�

√
1

2μ

e2μ� − 1

(eμ� − 1)2
P−→ 0,

thanks to Lemma 2. Thus we have
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202 Y. Shimizu

�e−2μn�Vn = �

r� − 1
X̃2

n−1 + op(1). (16)

Therefore we obtain (15) from (14) and (16). ��

Lemma 4 Under Assumption (H),

(
X̃n, Ũn, Wn/

√
n
) D−→

(√
2μσvμ, Z1/

√
2μ,

√
2Z2

)
under Pϑ ,

where (Z1, Z2) is a standard bivariate normal variable independent of vμ.

Proof We note the following expressions:

X̃n − x =
n∑

i=1

x̃n
i , where x̃n

i := √
σe−μi�ε�

i (μ);

Ũn :=
n∑

i=1

ũn
i , where ũn

i := e−μ(n−i)�ε�
i (μ);

Wn/
√

n =:
n∑

i=1

wn
i , where wn

i := 1√
n

⎛
⎝
∣∣∣∣∣
ε�

i (μ)√
�

∣∣∣∣∣
2

− E�
μ

2μ�

⎞
⎠ ,

which are martingale arrays. Therefore it suffices to show from the CLT for martingale
arrays; see, e.g., Hall and Heyde (1980), Chapter 3, and the Markovian property of X
that

n∑
i=1

Eϑ [(x̃n
i )2|Xi−1] P−→ σ

2μ
;

n∑
i=1

Eϑ [(x̃n
i )4|Xi−1] P−→ 0;

n∑
i=1

Eϑ [(ũn
i )2|Xi−1] P−→ 1

2μ
;

n∑
i=1

Eϑ [(ũn
i )4|Xi−1] P−→ 0;

n∑
i=1

Eϑ [(wn
i )2|Xi−1] P−→ 2;

n∑
i=1

Eϑ [(wn
i )4|Xi−1] P−→ 0;

n∑
i=1

Eϑ [ũn
i x̃n

i |Xi−1] P−→ 0;
n∑

i=1

Eϑ [ũn
i wn

i |Xi−1] P−→ 0;
n∑

i=1

Eϑ [x̃n
i wn

i |Xi−1] P−→ 0

under Pϑ : the last three convergences are clear since ε�
i (μ) is normal variable with

mean zero and variance (2μ)−1(e2�μ −1), which tends to zero as n → ∞. Moreover,
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LAMN for sampled non-recurrent OU process 203

n∑
i=1

Eϑ [(x̃n
i )2|Xi−1] = σ

2μ
(e2μ� − 1)

n∑
i=1

e−2μi� → σ

2μ
;

n∑
i=1

Eϑ [(x̃n
i )4|Xi−1] = 3σ 2

(
E�

μ

2μ

)2 n∑
i=1

e−4μi� → 0;
n∑

i=1

Eϑ [(ũn
i )2|Xi−1] = E�

μ

2μ

1 − e−2μn�

1 − e−2μ�
→ 1

2μ
;

n∑
i=1

Eϑ [(ũn
i )4|Xi−1] = 3

(
E�

μ

2μ

)2
1 − e−4μn�

1 − e−4μ�
= O(�);

n∑
i=1

Eϑ [(wn
i )2|Xi−1] = 3

(
E�

μ

2μ�

)2

−
(

E�
μ

2μ�

)2

→ 2;
n∑

i=1

Eϑ [(wn
i )4|Xi−1] = O(n−1) → 0.

The last equality is due to the boundedness of Eϑ [|ε�
i (μ)/

√
�|8|Xi−1]. ��

Corollary 2 Under Assumption (H),

(
�e−2μn�Vn, e−μn�Un, Wn/

√
n
) D−→

(
σvμ,

√
σvμZ1,

√
2Z2

)
under Pϑ ,

where (Z1, Z2) is a standard bivariate normal variable independent of vμ.

Proof We shall show that

e−μn�Un − e−μ� X̃nŨn
P−→ 0. (17)

Then, it follows from (16) that
(
�e−2μn�Vn, e−μn�Un, Wn/

√
n
)

is asymptotically

equivalent to
(

X̃2
n/(2μ), e−μ� X̃nŨn, Wn/

√
n
)

. Hence Lemma 4 yields the conse-
quence.

Let us show (17). By Schwarz’s inequality,

E
∣∣∣e−μn�Un − e−μ� X̃nŨn

∣∣∣ ≤
n∑

i=1

∥∥∥e−μ(n−i+1)�ε�
i (μ)

∥∥∥
L2(Pϑ )

∥∥∥X̃i−1 − X̃n

∥∥∥
L2(Pϑ )

= E�
μ

2μ

n∑
i=1

e−μ(n−i+1)�
∥∥∥X̃i−1 − X̃n

∥∥∥
L2(Pϑ )

,

which tends to zero by Lemma 1 with an
i = e−μ(n−i+1)�, An = E�

μ /(2μ), and

xn
i = ‖X̃i−1 − X̃n‖L2(Pϑ ). The conditions in Lemma 1 are easily checked using

Lemma 2. This ends the proof. ��
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The next lemma is useful to simplify the computation below.

Lemma 5 There exists a deterministic C3-function γ �
1 satisfying that

sup
μ∈�

∣∣∣∂k
μγ �

1 (μ)

∣∣∣ = O(�) (k = 0, 1, 2, 3) (18)

as � → 0 such that 2μ�/E�
μ = 1 + γ �

1 (μ).

Proof Define a function f as f (x) = x(ex − 1)−1 if x 
= 0, and f (x) = 0 if x = 0.
Then it is easy to check by the direct computation that f ∈ C4. By Taylor’s formula,

2μ�/E�
μ − 1 = f (2μ�) − 1 = 2μ�

∫ 1

0
f ′(2μ�u) du =: γ �

1 (μ).

Then, for k = 0, 1, 2, 3,

∂k
μγ �

1 (μ) = 2�

∫ 1

0
∂k
μ

(
μ f ′(2μ�u)

)
du.

Since f ∈ C4 and � is compact, the last integral is bounded as � → 0 for any k,
which implies (18). ��
Lemma 6 Under Assumption (H),

�e−2μn�

(
sup
s∈�

|Un(s)| + sup
s∈�

|∂k
s Wn(s)|

)
P−→ 0 (k = 0, 1);

e−2μn� sup
s∈�

|∂sUn(s)| P−→ 0

under Pϑ .

Proof First, we show the case with k = 0. Note that, for each s ∈ �,

Un(s) = Un + σ−1/2(eμ� − es�)Vn; (19)

Wn(s) = Wn + 2√
σ�

(eμ� − es�)Un

+ 1

σ�
(eμ� − es�)2Vn + n

(
E�

μ

2μ�
− E�

s

2s�

)
, (20)

which implies that, �e−2μn�(Un(s), Wn(s))
P−→ 0; the convergence of finite dimen-

sional distribution of process (Un, Wn) on C(�). Therefore the tightness of
{�e−2μn�(Un, Wn)} in C(�) yields the consequence. We shall check the simple
tightness criterion:

sup
n∈N

�e−2μn�Eϑ

[
sup
s∈�

|∂sUn(s)| + sup
s∈�

|∂s Wn(s)|
]

< ∞. (21)
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From the expressions (19) and (20), we have

∂sUn(s) = −σ−1/2�es�Vn; (22)

∂s Wn(s) = − 2√
σ

es�Un − 2es�

σ
(eμ� − es�)Vn − n∂s

(
1

1 + γ �
1 (s)

)
. (23)

Hence (21) can be easily checked since � is bounded. This completes the case with
k = 0. Moreover (22), (23), and the case with k = 1 easily yield the case with k = 1.

��

3.2 Proof of Theorem 1

Note that

∂s D�
i (s) = −�es� Xi−1, D�

i (μ) = √
σε�

i (μ).

Using Lemma 5, we obtain that

�n(ϑ)=− 1

2σ�

n∑
i=1

|D�
i (μ)|2(1+γ �

1 (μ))− n

2
log(1+γ �

1 (μ))− n

2
log(σ�);

∂μ�n(ϑ) = 1

σ
(1 + γ �

1 (μ))

n∑
i=1

eμ� D�
i (μ)Xi−1 − ∂μγ �

1 (μ)

σ�

n∑
i=1

|D�
i (μ)|2

− n

2(1 + γ �
1 (μ))

;

∂σ �n(ϑ) = 1

2σ 2�

n∑
i=1

|D�
i (μ)|2(1 + γ �

1 (μ)) − n

2σ
= μ�

σ E�
μ

Wn;

∂2
μ�n(ϑ) = ∂μγ �

1 (μ)eμ�

√
σ

Un + �eμ�

σ
(1 + γ �

1 (μ))
(√

σUn − eμ�Vn
)

−∂2
μγ �

1 (μ)

�

n∑
i=1

|ε�
i (μ)|2 + 2eμ�∂μγ �

1 (μ)√
σ

Un + ∂μγ �
1 (μ)n

2(1 + γ �
1 (μ))2

;

∂2
σ �n(ϑ) = − 1

σ 3�

n∑
i=1

|D�
i (μ)|2(1 + γ �

1 (μ)) + n

2σ 2 ;

∂μ∂σ �n(ϑ) = − eμ�

σ
√

σ
(1 + γ �

1 (μ))Un + ∂μγ �
1 (μ)

2σ 2�

n∑
i=1

|D�
i (μ)|2.

Step.1: Computation of In := −Eϑ

[
diag

(∇ϑ∇

ϑ �n(ϑ)

)]
.

Note that

Eϑ [Un] = 0; Eϑ [|D�
i (μ)|2] = E�

μ

2μ
σ ; Eϑ [X2

i ] = e2μi�x2 + σ

2μ
(e2μi� − 1),
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and

Eϑ [Vn] = e2μ�

E�
μ

(e2μn� − 1)

(
x2 + σ

2μ

)
− nσ

2μ
.

Thus we have

−Eϑ [∂2
μ�n(ϑ)] = �e2μ�

σ
(1 + γ �

1 (μ))E[Vn] + ∂2
μγ �

1 (μ)E�
μ

2μ�σ
n − ∂μγ �

1 (μ)n

2(1 + γ �
1 (μ))2

;

= e2μn�

2μ

(
x2

σ
+ 1

2μ

)
+ O(n�);

−Eϑ [∂2
σ �n(ϑ)] = E�

μ

2μσ 2�
n(1 + γ �

1 (μ)) + 1

2σ 2

= n

σ 2 (1 + O(�)) + 1

2σ 2 .

Hence we have

In(ϑ) ∼ diag

((
x2

2μσ
+ 1

4μ2

)
e2μn�, nσ−2

)
= diag(gx,ϑe2μn�, nσ−2). (24)

Step.2: Checking Condition (A.1).
We see that

−e−2μn�∂2
μ�n(ϑ) = σ−1�e−2μn�Vn + Op(�e−μn�)

P−→ vμ;

−n−1∂2
σ �n(ϑ) = 1

nσ 2 Wn − E�
μ

2σ 2μ�
− 1

2σ 2
P−→ 1

2σ 2 ;

−n−1/2e−μn�∂μ∂σ �n(ϑ) = 1

σ
√

σn
e−μn�Un + Op(�)

P−→ 0.

Therefore it follows from (24) that, for Gn(ϑ) := I −1/2
n (ϑ)Bn(ϑ)I −1/2

n (ϑ),

Gn(ϑ)
P−→ diag

(
g−1

x,ϑvμ,
1

2

)
= G(ϑ). (25)

Moreover it also follows from (24) and Corollary 2 that

Ln(ϑ) ∼ diag
(

g−1/2
x,ϑ e−μn�, σ/

√
n
)⎛⎝ eμ�√

σ
Un + Op(n�);

μ�

σ E�
μ

Wn

⎞
⎠

D−→ diag

(√
g−1

x,ϑvμ,
1√
2

)(
Z1
Z2

)
= G1/2(ϑ)Z under Pϑ .
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Since (Ln, Gn) are written by (Vn, Un, Wn), we have (Ln(ϑ), Gn(ϑ))
D−→(G1/2(ϑ)Z ,

G(ϑ)).

Step.3: Checking Condition (A.2) for any bounded (hn).
By Taylor’s formula, it follows for any bounded sequence hn ∈ R

2 with hn 
= 0
and for n large enough that

2|hn|−2|rn(hn, ϑ)| ≤
∣∣∣I −1/2

n (ϑ)
(
Bn(ϑ

∗
n (hn)) − Bn(ϑ)

)
I −1/2
n (ϑ)

∣∣∣
≤

[
e−3μn� sup

ϑ∈�

|∂3
μ�n(ϑ)| + n−1/2e−2μn� sup

ϑ∈�

|∂2
μ∂σ �n(ϑ)|

+n−1e−μn� sup
ϑ∈�

|∂μ∂2
σ �n(ϑ)| + n−1|∂2

σ �n(ϑ∗
n (hn))

− ∂2
σ �n(ϑ)|

]
Op(1).

Noticing that ∂sUn(s) = −�es�Vn , and that

n∑
i=1

|D�
i (s)|2 = σ�Wn(s); ∂s

(
n∑

i=1

|D�
i (s)|2

)
= −2�es�Un(s), (26)

we have

sup
s∈�

|∂3
μ�n(ϑ)| =

(
Vn + sup

s∈�

|Un(s)|
)

O(�2) + sup
s∈�

|Wn(s)|O(�) + O(n�);

sup
ϑ∈�

|∂2
μ∂σ �n(ϑ)| =

(
Vn + sup

s∈�

|Un(s)| + sup
s∈�

|Wn(s)|
)

O(�);

sup
ϑ∈�

|∂μ∂2
σ �n(ϑ)| = sup

s∈�

|Un(s)|O(1) + sup
s∈�

|Wn(s)|O(�).

Thus Lemma 6 yields that

e−3μn� sup
ϑ∈�

|∂3
μ�n(ϑ)| + n−1/2e−2μn� sup

ϑ∈�

|∂2
μ∂σ �n(ϑ)|

+n−1e−μn� sup
ϑ∈�

|∂μ∂2
σ �n(ϑ)| P−→ 0.

Moreover
∣∣∣∂2

σ �n(ϑ∗
n (hn)) − ∂2

σ �n(ϑ)

∣∣∣ = ∣∣Wn(μ + e−μn�hn) − Wn
∣∣ O(1) + O(1).

Thanks to the expression of (20) in the proof of Lemma 6 and Corollary 2, we see that

Wn(μ + e−μn�hn) − Wn = O

(
1

�
+ n�

)
,
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which implies that

n−1
∣∣∣∂2

σ �n(ϑ∗
n (hn)) − ∂2

σ �n(ϑ)

∣∣∣ P−→ 0.

This completes the proof. ��

3.3 Proof of Theorem 2

We shall show the following three convergences under Pϑ for any ϑ ∈ �:

(
eμn�

(
μ̂n −μ

)
,
√

n
(
σ̂n(μ)−σ

)
, Gn(ϑ)

) D−→
(
v−1/2
μ Z1,

√
2σ Z2, G(ϑ)

)
; (27)

√
n
(
σ̂n(μ̂n) − σ̂n(μ)

) P−→ 0, (28)

which implies the joint convergence of them, and yield the consequence.
Let �n(ν) := ∑n

i=1

∣∣Xi − eν� Xi−1
∣∣2: the contrast function given in (4). Using the

equality Xti = eμ� Xi−1 + ε�
i (μ), we have

�n(ν) = (eμ� − eν�)2Vn + 2
√

σ(eμ� − eν�)Un .

Then, it follows from Corollary 2 that

sup
ν∈�

|�e−2μn��n(ν) − L(ν)| P−→ 0,

where L(ν) := (eμ� − eν�)2vμ. The limit L(ν) satisfies that infν:|ν−μ|>ε L(ν) >

L(μ) a.s. for any ε > 0. Thanks to the standard argument for consistency of M-esti-

mator, we can conclude that μ̂n
P−→ μ, which implies that Pϑ

{
μ̂n ∈ int (�)

} → 1
since μ ∈ int (�). Therefore, by a classical routine, we can assume that μ̂n is a local
minimum in � for n large enough: Pϑ

{
∂μ�n(μ̂n) = 0

} → 1, which implies that the
explicit form (5) is well-defined with probability tending to one. Using this expression,
we have

eμn�(μ̂n − μ) = eμn�

�
log

(
1 +

∑n
i=1 Xi−1

√
σε�

i (μ)

eμ�
∑n

i=1 X2
ti−1

)

= eμn�

�
log

(
1 + �e−μ(n+1)� e−μn�

√
σUn

�e−2μn�Vn

)

= e−μn�
√

σUn

�e−2μn�Vn
+ op(1). (29)
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Next, by the definition of σ̂n , we have

√
n(σ̂n(μ) − σ) =

n∑
i=1

2μσ√
nE�

μ

(
|ε�

i (μ)|2 − E�
μ

2μ

)
= 2μ�σ√

nE�
μ

Wn . (30)

Therefore, from (25), (29) and (30), the tensor

(
eμn�

(
μ̂n − μ

)
,
√

n
(
σ̂n(μ) − σ

)
, Gn(ϑ)

)

is written by
(
�e−2μn�Vn, e−μn�Un, Wn/

√
n
)

via a continuous function, plus op(1).
Then Corollary 2 yields (27).

It remains to show (28). Thanks to Taylor’s formula, we have

∣∣√n
(
σ̂n(μ̂n) − σ̂n(μ)

)∣∣ ≤ √
ne−μn�

∣∣∂μσ̂n(μ̃u
n)
∣∣ {eμn�

(
μ̂n − μ

)}
(31)

where μ̃u
n := μ + u(μ̂n − μ) for some random u ∈ (0, 1). It follows from Lemma 5

and (26) that

∂s σ̂n(s) = ∂s

(
(1 + γ �

1 (s))
1

n�

n∑
i=1

|D�
i (s)|2

)

= ∂sγ
�
1 (s)

n
σ Wn(s) − 2es�

n
Un(s).

By Taylor’s formula, we have

|∂s σ̂n(μ̃u
n)| ≤

[
∂sγ

�
1 (μ̃u

n)

n
σ sup

s∈�

|∂s Wn(s)| + 2eμ̃u
n�

n
sup
s∈�

|∂sUn(s)|(1 + γ �
1 (μ̃u

n))

]

×(μ̂n − μ).

Therefore, applying Lemma 6, we see that

√
ne−μn�∂μσ̂n(μ̃u

n) = Op(n
−1/2).

This completes the proof. ��

3.4 Proof of (11)

The route of the proof is the same as one of Theorem 2. Hence we shall show only

√
n�(μ̂n − μ)

D−→ √−2μZ1. (32)
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If X is ergodic: � ⊂ (−∞, 0), then it is easy to see that, as � → 0 and n� → ∞,

n−1Vn
P−→ − σ

2μ
under Pϑ . (33)

For the proof, note Lemma 8 by Kessler (1997), and that the stationary distribution of
Xt is N

(
0,−σ(2μ)−1

)
. Moreover we can show by the same argument as in the proof

of Lemma 4 with (33) that

(
(n�)−1/2Un, Wn/

√
n
) D−→

(√−σ/2μZ1,
√

2Z2

)
under Pϑ . (34)

Here we use again the expression (5) by assuming that μ̂n is a local minimum in �:

√
n�(μ̂n − μ) =

√
n�

�
log

(
1 +

∑n
i=1 Xi−1

√
σε�

i (μ)

eμ�
∑n

i=1 X2
ti−1

)

=
√

n�

�
log

(
1 +

√
σe−μ�

√
n�

(n�)−1/2Un

n−1Vn

)

= (n�)−1/2√σUn

n−1Vn
+ op(1).

This yields (32). ��
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