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Abstract In this manuscript, the dual relationship between the probability of num-
ber of runs and patterns and the probability of waiting time of runs and patterns in
a sequence of multistate trials has been studied via double generating functions and
recursive equations. The results, which are established under different assumptions
on patterns, underlying sequences and counting schemes, are extensions of Koutras’s
results (1997, Advances in Combinatorial Methods and Applications to Probabil-
ity and Statistics, Boston: Birkhäuser). As byproducts, the exact distributions of the
longest-run statistics are also derived. Numerical examples are provided for illustrating
the theoretical results.

Keywords Simple and compound patterns · Waiting time · Finite Markov chain
imbedding · Probability generating function · Double generating function

1 Introduction

The importance and usefulness of runs and patterns arise from their widespread
applications in diverse areas of science. Theoretical research on various distributions
associated with runs and patterns in a random sequence of multistate trials has been
extensively conducted in the literature. Among these distributions, two most com-
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monly studied are (i) the distribution of number of runs and patterns (for example,
Eryilmaz 2008a; Fu and Koutras 1994; Hirano and Aki 1993; Hirano et al. 1997;
Shinde and Kotwal 2006); and (ii) the distribution of waiting time (number of trials)
to observe the r th (r ≥ 1) occurrence of runs and patterns (for example, Aki 1992;
Aki and Hirano 1999; Eryilmaz 2008b; Fu and Chang 2002). These two distributions
are closely related (see Feller 1968). In fact, the distributions in (i) and (ii) can be
derived from each other.

Traditionally, a combinatorial approach was adopted in the study of runs and pat-
terns. Fu and Koutras (1994) introduced a general and efficient method, the finite
Markov chain imbedding (FMCI) technique, to study the distributions of several run-
related statistics. The basic idea of this approach is to imbed the random variable
of interest into a Markov chain. Then the exact distribution of that variable can be
expressed in a simple form in terms of the transition probability matrix of its imbedded
Markov chain. Since the FMCI technique has been applied successfully to deal with
many general problems for runs and patterns, it has become an alternative approach
in this field.

In this manuscript, we aim to study the dual relationship between the distribution
of number of runs and patterns and the distribution of waiting time of runs and pat-
terns, based on different assumptions on patterns, underlying sequences and counting
schemes. We first show that the double generating function of number of patterns can
be expressed in terms of the probability generating function (PGF) of waiting time for
the first occurrence of patterns, whose transition matrix of imbedded Markov chain
has a simpler structure. Following Stanley (1997) techniques, we establish recurrence
relations for the exact distributions of number of patterns. As byproducts, the exact
distributions of the longest-run statistics are also derived.

In Sect. 2, we introduce basic definitions for runs and patterns and provide some
results related to waiting time distributions. The general results are presented in Sect. 3.
In Sect. 4, we provide numerical examples to see the performance of our method.
Finally, in Sect. 5, we give some concluding remarks.

2 Notations and preliminaries

Let {Xi } be a sequence of m-state (m ≥ 2) random variables defined on the state space
� = {c1, c2, . . . , cm}. Unless mentioned otherwise, we assume that {Xi } is a sequence
of first-order homogeneous Markov-dependent m-state trials.

Definition 1 We say that� is a simple pattern if� is composed of a specified sequence
of k states (k is fixed); i.e., � = ci1 · · · cik , i j ∈ {1, . . . ,m} for all j = 1, . . . , k.

Definition 2 A proper subpattern of a simple pattern � is defined to be a finite
sequence having the general form ci1 · · · ci j , 1 ≤ j ≤ k − 1.

Let �1 and �2 be two simple patterns with lengths k1 and k2, respectively. Define
a segment to be any (contiguous) subset of a simple pattern. For example, let � =
c1c1c2c2 be a simple pattern; then, the subpatterns c1, c1c1 and c1c1c2 are segments
of�. On the other hand, c2, c1c2, c2c2, and c1c2c2 are segments of�, but not subpat-
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Distribution of number of patterns 57

terns. We say that �1 and �2 are distinct if neither is a segment of the other. Define
the union �1 ∪�2 to be the occurrence of either the pattern �1 or the pattern �2.

Definition 3 We say that � is a compound pattern if � is composed of a union of l
distinct simple patterns; i.e., � = ∪l

i=1�i .

Next, we introduce some random variables associated with simple and compound
patterns. Let Xn(�) denote the number of a pattern � (simple or compound) that
occurred in a sequence of n m-state trials. As stated in Sect. 1, the random variable
Xn(�) is closely related to the waiting time of �. Therefore, it is important for us to
provide the definition of waiting time.

Definition 4 For a given integer r , r = 1, 2, . . ., we define the waiting time W (r,�)
to the r th occurrence of a pattern� (simple or compound) to be the minimum number
of trials required to observe the r th occurrence of �.

For brevity, we denote W (1,�) as W (�). From the definitions of Xn(�) and
W (r,�), we have the following dual relationship (see Feller 1968):

Xn(�) < r if and only if W (r,�) > n.

Hence the probability of the event {Xn(�) = r} can be computed by

P(Xn(�) = r) = P(Xn(�) < r + 1)− P(Xn(�) < r)

= P(W (r + 1,�) > n)− P(W (r,�) > n). (1)

In the study of the distributions of Xn(�) and W (r,�) (r > 1), the ways of counting
patterns should be taken into consideration. In this article, we consider nonoverlapping
and overlapping counting schemes.

Given a compound pattern � = ∪l
i=1�i , it has been shown that the waiting time

W (�) is finite Markov chain imbeddable. Hence, there exists a Markov chain {Yt :
t = 0, 1, . . .} defined on the finite state space

� = {∅} ∪ � ∪
l⋃

i=1

S(�i ) ∪ {�1, . . . , �l},

where ∅ is the initial state and S(�i ) is the collection of all proper subpatterns of
�i , for i = 1, . . . , l. The states in the state space � can be renumbered as � =
{1, . . . , w, α1, . . . , αl}, where α1, . . . , αl denote the absorbing states corresponding
to the patterns �1, . . . , �l , respectively. Hence, the transition probability matrix M
of the imbedded Markov chain {Yt } can be obtained in the form

M =
[

N C
0 I

]
. (2)

The following results were established by Fu and Chang (2002).
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Theorem 1 Let � be a pattern (simple or compound). For a waiting time random
variable W (�), we have

(i) the exact distribution of W (�) is given by

P(W (�) = n) = ξNn−1(I − N)1�, (3)

where ξ = (1, 0, . . . , 0)1×w is the initial distribution with P(Y0 = ∅) ≡ 1 and
1� is the transpose of the row vector 1 = (1, 1, . . . , 1)1×w; and

(ii) the PGF of W (�) is given by

ϕW (�)(s) = 1 +
(

1 − 1

s

)
�W (�)(s), (4)

where �W (�)(s) =
w∑

i=1
φi (s), and (φ1(s), . . . , φw(s)) is the solution of the

following simultaneous equations

φi (s) = sξe�
i + s(φ1(s), . . . , φw(s))N(i), i = 1, . . . , w, (5)

where ei = (0, . . . , 0, 1, 0, . . . , 0), i = 1, . . . , w, are unit vectors, and N(i),
i = 1, . . . , w, are the column vectors of the matrix N.

Chang (2005) has shown that the transition probability matrix associated with the
imbedded Markov chain of W (r,�) (r > 1) has the same form as (2). Thus, the
results in Theorem 1 are also applicable for W (r,�). For example, the generating
function�W (r,�)(s) = ∑∞

n=1 sn P(W (r,�) ≥ n) can be obtained in a similar way as
Theorem 1(ii) and hence it follows from Equation (4) that

�W (r,�)(s) = s

1 − s

[
1 − ϕW (r,�)(s)

]
. (6)

Instead of using Theorem 1, Chang (2005) also suggested an alternative way of
finding the PGF ϕW (r,�)(s). Let W (� j |�1, . . . , �l) be the waiting time to the first
occurrence of � j , and � j occurs first among all the patterns �1, . . . , �l , and let
ψW (� j |�1,...,�l )(s|ξ) denote its generating function that depends on the initial distri-
bution ξ . Under nonoverlapping counting scheme, the PGF ϕW (r,�)(s) can be obtained
from the following general form:

ϕW (r,�)(s) =
∑

i1,...,ir ∈{1,2,...,l}

r∏

j=1

ψW j (�i j |�1,...,�l )

(
s|ξ∅ j


(�i j−1)
)
, (7)

where the initial state ∅ j
 is the last element j
 of�i j−1 , j = 2, . . . , r , ξ∅ j

(�i j−1) =

(1, 0, . . . , 0) is the initial distribution, and ξ∅ j

(�i0) = ξ by convention. He further

indicated that the above formula can be reduced to some well-known cases under
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Distribution of number of patterns 59

different assumptions on patterns, underlying sequences and counting schemes. Write
W (r,�) as

W (r,�) = W1(�)+ · · · + Wr (�),

where Wi (�), i = 1, . . . , r , are interwaiting times. We summarize these results as
follows:

(i) If {Xi } consists of independent and identically distributed (i.i.d.) trials and �
is a compound pattern with respect to nonoverlapping counting scheme, then
ϕW (r,�)(s) is given by

ϕW (r,�)(s) = [
ϕW1(�)(s|ξ)

]r
, (8)

where the initial distribution for the imbedded Markov chain of W1(�)(≡
W (�)) is ξ = (1, 0, . . . , 0) (with usual initial state ∅).

(ii) If {Xi } consists of Markov-dependent trials and � is a simple pattern with
respect to nonoverlapping counting scheme, then ϕW (r,�)(s) is given by

ϕW (r,�)(s) = ϕW1(�)(s|ξ)
[
ϕW2(�)

(
s|ξ∅ j


(�)
)]r−1

, (9)

where the initial state ∅ j
 for the imbedded Markov chain of W2(�) is the
last element j
 of the pattern � and the initial distribution is ξ∅ j


(�) =
(1, 0, . . . , 0). In the same case, if overlapping counting scheme is adopted, then
the initial distribution for the imbedded Markov chain of W2(�) is replaced
by ξ∅ j◦ (�) = (0, . . . , 1, . . . , 0), where the position of 1 corresponds to the
initial state j◦ which is the longest subpattern counting backward from the last
element of �.

To close this section, we point out that Equations (1), (6), (8) and (9) lay the foun-
dation for studying the relationship between the distributions of Xn(�) and W (r,�).

3 Distributions of number of patterns

The goal of this section is to study the distributions of Xn(�). We first show that the
double generating function of Xn(�) can be expressed in terms of the PGF of the
waiting time W (�). Then recurrence relations for the exact distributions of Xn(�)

can be derived by using Stanley (1997) techniques.

3.1 The double generating function of Xn(�)

Let G(s, t) denote the double generating function of Xn(�); i.e.,

G(s, t) =
∞∑

n=0

ϕXn(�)(t)s
n =

∞∑

n=0

( ∞∑

r=0

P(Xn(�) = r)tr

)
sn .
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We establish general results for G(s, t) under different assumptions on patterns, under-
lying sequences and counting schemes discussed in Sect. 2.

Theorem 2 Let� be a pattern (simple or compound) and {Xi } be a sequence of i.i.d.
multistate trials. Suppose nonoverlapping counting scheme is used, then the double
generating function of Xn(�) is given by

G1(s, t) = 1

1 − s

[
1 − ϕW1(�)(s|ξ)
1 − ϕW1(�)(s|ξ)t

]
. (10)

Proof It follows from the definition, Equations (1), (6) and (8) that

G1(s, t) =
∞∑

n=0

ϕXn(�)(t)s
n

=
∞∑

r=0

1

s

∞∑

n=0

[P(W (r + 1,�) ≥ n + 1)− P(W (r,�) ≥ n + 1)] sn+1tr

=
∞∑

r=0

1

s

[
�W (r+1,�)(s)−�W (r,�)(s)

]
tr

= 1

s

∞∑

r=0

s

1 − s

[
ϕW (r,�)(s)− ϕW (r+1,�)(s)

]
tr

= 1

1 − s

∞∑

r=0

ϕW (r,�)(s)t
r − 1

1 − s

∞∑

r=0

ϕW (r+1,�)(s)t
r

= 1

1 − s

∞∑

r=0

[
ϕW1(�)(s|ξ)

]r
tr − 1

1 − s

∞∑

r=0

[
ϕW1(�)(s|ξ)

]r+1
tr

= 1

1 − s

[
1

1 − ϕW1(�)(s|ξ)t
− ϕW1(�)(s|ξ)

1 − ϕW1(�)(s|ξ)t
]

= 1

1 − s

[
1 − ϕW1(�)(s|ξ)
1 − ϕW1(�)(s|ξ)t

]
.

This completes the proof. ��
Theorem 3 Let � be a simple pattern and {Xi } be a sequence of Markov-dependent
multistate trials. Suppose nonoverlapping counting scheme is used, then the double
generating function of Xn(�) is given by

G2(s, t) = 1

1 − s

⎡

⎣1 − ϕW1(�)(s|ξ)(1 − t)

1 − ϕW2(�)

(
s|ξ∅ j


(�)
)

t

⎤

⎦ . (11)

Proof The proof is along the lines of the proof of Theorem 2. It follows from
Equation (9) that
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G2(s, t) = 1

1 − s

∞∑

r=0

ϕW (r,�)(s)t
r − 1

1 − s

∞∑

r=0

ϕW (r+1,�)(s)t
r

= 1

1 − s

{
1 +

∞∑

r=1

ϕW1(�)(s|ξ)
[
ϕW2(�)

(
s|ξ∅ j


(�)
)]r−1

tr − ϕW1(�)(s|ξ)

−ϕW1(�)(s|ξ)ϕW2(�)

(
s|ξ∅ j


(�)
)

t

−
∞∑

r=2

ϕW1(�)(s|ξ)
[
ϕW2(�)

(
s|ξ∅ j


(�)
)]r

tr

}

= 1

1 − s

{
1−ϕW1(�)(s|ξ)−ϕW1(�)(s|ξ)ϕW2(�)

(
s|ξ∅ j


(�)
)

t+
[
ϕW1(�)(s|ξ)t

−ϕW1(�)(s|ξ)
(
ϕW2(�)

(
s|ξ∅ j


(�)
))2

t2
]/(

1−ϕW2(�)

(
s|ξ∅ j


(�)
)

t
)}

= 1

1 − s

⎡

⎣1 − ϕW1(�)(s|ξ)(1 − t)

1 − ϕW2(�)

(
s|ξ∅ j


(�)
)

t

⎤

⎦ .

This completes the proof. ��
When {Xi } is a sequence of multistate trials (i.i.d. or Markov-dependent) and � is

a simple pattern with respect to overlapping counting scheme, the double generating
function of Xn(�) has the same form as Equation (11). The only difference is that the
initial distribution for the imbedded Markov chain of W2(�) is ξ∅ j◦ (�) as discussed
in Sect. 2.

Remark 1 Koutras (1997) also established the same results as Equations (10) and (11).
However, he did not clearly specify the assumptions on patterns, underlying sequences
and counting schemes. Particularly, when {Xi } is a sequence of Markov-dependent
multistate trials and � is a compound pattern, there is no simple form for the double
generating function of Xn(�).

From Theorems 2 and 3, it is clear that we can obtain the PGF ϕXn(�)(t) through
the double generating function of Xn(�). For example, by Theorem 2, we have

ϕXn(�)(t) = 1

n! Dn
s G1(s, t)

∣∣∣∣
s=0

. (12)

However, when the length of the pattern � is large, the analytic form for G1(s, t) (or
G2(s, t)) becomes very complicated. Therefore, differentiating the double generating
function G1(s, t) (or G2(s, t)) n times may be troublesome. In the next section, we
will show how to overcome these difficulties and present some new results.

3.2 The exact distributions of Xn(�)

To derive the exact probability distribution for Xn(�), we start from the case described
in Theorem 2. In view of Equation (10), the double generating function G1(s, t) always
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has a rational form. Stanley (1997) proposed a method for computing the coefficients
of a rational function. Note that G1(s, t) is a rational function of s, i.e.,

G1(s, t) = 1

1 − s

[
1 − ϕW1(�)(s|ξ)
1 − ϕW1(�)(s|ξ)t

]
= R1(s)

Q1(s, t)
=

∞∑

n=0

ϕXn(�)(t)s
n . (13)

For brevity, we denote ϕXn(�)(t) as ϕn(t). Without loss of generality, we assume that
R1(s) = β0 + β1s + · · · + βmsm and Q1(s, t) = 1 + γ1(t)s + · · · + γd(t)sd (pos-
sibly m ≥ d). From Equation (13), we have R1(s) = Q1(s, t)

∑∞
n=0 ϕn(t)sn . Then,

equating the coefficients of sn yields the following recurrence relation:

ϕn(t) = −
d∑

i=1

γi (t)ϕn−i (t)δn−i + βnδm−n, (14)

where

δx =
{

1, if x ≥ 0,
0, if x < 0.

Note that the denominator of G1(s, t) is a linear function of t . This fact implies the
following lemma:

Lemma 1 γi (t) = ai + ci t for all i = 1, . . . , d, where ai and ci , i = 1, . . . , d, are
constants.

Proof Since the PGF of W (�) always has the form

ϕW (�)(s) = H(s)

K (s)
,

where H(s) and K (s) are polynomials in s. Hence the result follows from the fact that
the denominator of G1(s, t) is (1 − s)(1 − ϕW1(�)(s|ξ)t). ��

Now the exact probability distribution of Xn(�) can be obtained from
Equation (14). Before giving the general results, we notice that given n, the max-
imum number of occurrence of a simple pattern � is determined by the length of
�. For example, let � be a simple pattern with length 3. If n = 20, then Xn(�) is
at most

[ 20
3

] = 6 under nonoverlapping counting scheme. For a compound pattern
� = ∪l

i=1�i , we define the minimum length k of� to be k = min[k1, . . . , kl ], where
ki denotes the length of the simple pattern �i . We have the following results:

Theorem 4 Let � be a compound pattern with minimum length k and let {Xi } be
a sequence of i.i.d. multistate trials. Suppose nonoverlapping counting scheme is
adopted. Then for a given integer r = 0, 1, . . . ,

[ n
k

]
, the exact probability distribution

of Xn(�) is given by
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P(Xn(�) = r) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−
d∑

i=1
γi (0)P(Xn−i (�) = 0)δn−i + βnδm−n, if r = 0,

−
d∑

i=1

1∑
j=0

γ
( j)
i (0) P(Xn−i (�) = r − j) δn−i , if r ≥ 1,

(15)

which satisfies the following conditions:

(i) if 0 ≤ n < k, then

P(Xn(�) = r) =
{

1, if r = 0,
0, if r ≥ 1,

(ii) if r < 0 or r >
[ n

k

]
or n < 0, then P(Xn(�) = r) = 0.

Proof The proof follows directly from the definition and Equation (14). For r = 0,
we have

P(Xn(�) = 0) = ϕn(t) |t=0

= −
d∑

i=1

γi (0)ϕn−i (0)δn−i + βnδm−n

= −
d∑

i=1

γi (0)P(Xn−i (�) = 0)δn−i + βnδm−n .

Further, for 1 ≤ r ≤ [ n
k

]
, we have

P(Xn(�) = r) = 1

r !
dr

d tr
ϕn(t)

∣∣∣∣
t=0

= −
d∑

i=1

1

r !
r∑

j=0

(
r

j

)
γ
( j)
i (0) ϕ(r− j)

n−i (0) δn−i

= −
d∑

i=1

r∑

j=0

1

j !γ
( j)
i (0)P(Xn−i (�) = r − j)δn−i ,

where γ ( j)
i (0) = d j

d t j γi (t)
∣∣∣
t=0

and ϕ(r− j)
n−i (0) = d(r− j)

d t (r− j) ϕn−i (t)
∣∣∣
t=0

. Finally, note from

Lemma 1 that γ ( j)
i (t) ≡ 0 for j ≥ 2. Hence

P(Xn(�) = r) = −
d∑

i=1

1∑

j=0

γ
( j)
i (0)P(Xn−i (�) = r − j)δn−i .

This completes the proof. ��
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For the case described in Theorem 3, the exact distribution of Xn(�) can be derived
in a similar fashion. Observe that Equation (11) (i.e. G2(s, t) ) has a similar form as
Equation (10) except that the numerator, denoted by R2(s, t), involves the parameter
t . Thus, G2(s, t) can be written as a rational form like Equation (13); i.e.,

G2(s, t) = 1

1 − s

⎡

⎣1 − ϕW1(�)(s|ξ)(1 − t)

1 − ϕW2(�)

(
s|ξ∅ j


(�)
)

t

⎤

⎦ = R2(s, t)

Q2(s, t)

=
∞∑

n=0

ϕn(t)s
n . (16)

Again, we assume that R2(s, t) = β0(t) + β1(t)s + · · · + βm(t)sm and Q2(s, t) =
1 + γ1(t)s + · · · + γd(t)sd . Then we get

ϕn(t) = −
d∑

i=1

γi (t)ϕn−i (t)δn−i + βn(t)δm−n, (17)

where βn(t) is a linear function of t . We establish the following results:

Theorem 5 Let�be a simple pattern of length k and let {Xi }be a sequence of Markov-
dependent multistate trials. Suppose nonoverlapping counting scheme is used. Then
for a given integer r = 0, 1, . . . ,

[ n
k

]
, the exact probability distribution of Xn(�) is

given by

P(Xn(�)=r)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−
d∑

i=1
γi (0)P(Xn−i (�)=0)δn−i +βn(0)δm−n, if r =0,

−
d∑

i=1

1∑
j=0

γ
( j)
i (0) P(Xn−i (�)=1− j) δn−i + β

′
n(0)δm−n, if r =1,

−
d∑

i=1

1∑
j=0

γ
( j)
i (0) P(Xn−i (�)=r − j) δn−i , if r ≥2,

(18)

which satisfies the following conditions:

(i) if 0 ≤ n < k, then

P(Xn(�) = r) =
{

1, if r = 0,
0, if r ≥ 1,

(ii) if r < 0 or r >
[ n

k

]
or n < 0, then P(Xn(�) = r) = 0.

When � is a simple pattern and {Xi } is a sequence of i.i.d. or Markov-dependent
multistate trials with respect to overlapping counting scheme, the exact distribution of
Xn(�) has the same expression as Equation (18) except that the maximum value of
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r is
[

n−k
k−ko

]
+ 1, where ko is the length of the longest subpattern counting backward

from the last element of �.
The major advantage of the recursive formulas derived in this section is their effi-

ciency in computation. Another interesting feature of these formulas is that they can
be applied to find the exact distributions of the longest-run statistics. We give brief
discussions in the following.

Let {Xi }n
i=1 be a sequence of m-state trials defined on the state space � = {c1, c2,

. . . , cm}. Given a positive integer n and a fixed j , we define Ln(c j ) to be the length
of the longest run of the symbol c j . More precisely,

Ln(c j ) = max
1≤i≤n−k+1

{k : Xi = Xi+1 = · · · = Xi+k−1 = c j }.

Further, we define Ln to be the length of the longest run of one of c j ’s; i.e.,

Ln = max
1≤ j≤m

Ln(c j ).

The statistics defined above are closely related to Xn(�). These relations are stated
mathematically below:

(i) Given j , let � j = c j · · · c j be a c j run of length k. Then

P(Ln(c j ) < k) = P(Xn(� j ) = 0). (19)

(ii) Let � = ∪m
j=1� j be a compound pattern, where � j is a c j run of length k for

j = 1, . . . ,m. Then

P(Ln < k) = P(Xn(�) = 0). (20)

Based on (19), (20) and previous discussions, the exact distributions for Ln(c j ), j =
1, . . . ,m and Ln can be obtained via Equations (15) and (18).

4 Numerical examples

We have developed computer programs for computing the exact probability
P(Xn(�) = r). It is worth noting that given r and n the exact probabilities P(Xi (�) =
x) for all i = 0, 1, . . . , n and x = 0, 1, . . . , r are automatically generated from our
computer programs. Therefore, the exact probability P(r0< Xn(�)<r) can be easily
obtained. We provide two numerical examples to illustrate our results.

Example 1 Let {Xi } be a sequence of i.i.d. four-state trials with possible outcomes
A, C, G, and T, respectively. Assume that P(Xi = A) = P(Xi = C) = P(Xi =
G) = P(Xi = T) = 0.25 for i = 1, . . . , n. Under nonoverlapping counting scheme,
we consider the compound pattern� = ACACGTGT ∪ ATTATAAT ∪ CAACGTTG.
Numerical results for P(Xn(�) = r) and P(r0 < Xn(�) < r) for various values of
r0, r and n are presented in Tables 1 and 2, respectively. The expected value of Xn(�)

can be computed easily; for example, E[Xn(�)] = 4.58 for n = 100000.
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Table 1 The exact probabilities P(Xn(�)= r) for the compound pattern�= ACACGTGT∪ATTATAAT∪
CAACGTTG and selected values of r and n

r n Exact Prob. r n Exact Prob.

3 10000 0.010068725 20 100000 6.769244373e-08

3 20000 0.051126247 20 200000 7.397372678e-04

3 30000 0.109279727 20 300000 2.538079133e-02

3 40000 0.163960234 50 100000 3.106214787e-34

3 50000 0.202654217 50 200000 3.944099931e-21

3 80000 0.210262429 50 300000 2.663936175e-14

3 100000 0.164380665 80 100000 6.610775615e-69

3 200000 0.013505813 80 200000 1.044034900e-46

3 300000 0.000468036 80 300000 1.419900202e-34

Table 2 The exact probabilities P(r0 < Xn(�) < r) for the pattern � = ACACGTGT ∪ ATTATAAT ∪
CAACGTTG and selected values of r0, r and n

r0 r n Exact Prob. r0 r n Exact Prob.

−1 5 10000 0.999887186 9 21 100000 0.018906703

−1 5 30000 0.986825015 9 21 200000 0.432366606

−1 5 50000 0.917677876 9 21 300000 0.836741046

−1 5 100000 0.517526837 14 101 100000 0.000087841

−1 5 200000 0.049923910 14 101 200000 0.046618242

−1 5 300000 0.002193756 14 101 300000 0.401117175

Example 2 Let {Xi } be a sequence of first-order homogeneous Markov chain with
possible outcomes A, C, G, and T and transition probability matrix

A =
A
C
G
T

⎡

⎢⎢⎢⎣

0.1 0.6 0.2 0.1

0.1 0.1 0.1 0.7

0.2 0.3 0.2 0.3

0.7 0.1 0.1 0.1

⎤

⎥⎥⎥⎦ .

Given the initial probabilities P(X1 = A) = 0.6, P(X1 = C) = 0.2, P(X1 = G) =
0.1 and P(X1 = T) = 0.1. Let � = CTACT be a simple pattern. Under overlapping
counting scheme, the longest proper subpattern counting backward from the last ele-
ment of � is “CT” (� = CTACT). Hence, the maximum possible value for Xn(�)

is
[

n−k
k−ko

]
+ 1 =

[
n−5
5−2

]
+ 1. With n = 10000, the exact distributions of Xn(�) with

respect to overlapping and nonoverlapping counting schemes are shown in Fig. 1.
The expected values of Xn(�) are E[Xn(�)] = 563.06 for overlapping counting and
E[Xn(�)] = 435.16 for nonoverlapping counting, respectively.
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Fig. 1 The exact distributions of X10000(�) for � = CTACT with respect to overlapping and
nonoverlapping counting schemes

5 Concluding remarks

In this manuscript, we have derived recursive formulas for the exact probability
P(Xn(�) = r) under different assumptions on the pattern �, underlying sequences
and counting schemes. It can be seen from our numerical experiments that these
formulas perform very well for both large r and n. They are also feasible for sym-
bolic computation for reasonable large pattern and moderate r and n. In addition,
our method could be applied to the case when � is a simple pattern and {Xi } is a
sequence of higher-order homogeneous Markov-dependent multistate trials. The key is
to specify the initial distribution for the imbedded Markov chain of W (�). To find
the PGF of W (�) in higher-order Markov chains, we refer to Fu and Lou (2006) for
further reference.
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