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Abstract Conditional autoregressive (CAR) models have been extensively used for
the analysis of spatial data in diverse areas, such as demography, economy, epidemiol-
ogy and geography, as models for both latent and observed variables. In the latter case,
the most common inferential method has been maximum likelihood, and the Bayesian
approach has not been used much. This work proposes default (automatic) Bayesian
analyses of CAR models. Two versions of Jeffreys prior, the independence Jeffreys
and Jeffreys-rule priors, are derived for the parameters of CAR models and properties
of the priors and resulting posterior distributions are obtained. The two priors and
their respective posteriors are compared based on simulated data. Also, frequentist
properties of inferences based on maximum likelihood are compared with those based
on the Jeffreys priors and the uniform prior. Finally, the proposed Bayesian analysis
is illustrated by fitting a CAR model to a phosphate dataset from an archaeological
region.

Keywords CAR model · Eigenvalues and eigenvectors · Frequentist properties ·
Integrated likelihood · Maximum likelihood · Spatial data · Weight matrix

1 Introduction

Conditional autoregressive (CAR) models are often used to describe the spatial varia-
tion of quantities of interest in the form of summaries or aggregates over subregions.
These models have been used to analyze data in diverse areas, such as demography,
economy, epidemiology and geography. The general goal of these spatial models is to
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unveil and quantify spatial relations present among the data, in particular, to quantify
how quantities of interest vary with explanatory variables and to detect clusters of ‘hot
spots’. General accounts of CAR models, a class of Gaussian Markov random fields,
appear in Cressie (1993), Banerjee et al. (2004) and Rue and Held (2005).

CAR models have been extensively used in spatial statistics to model observed
data (Cressie and Chan 1989; Richardson et al. 1992; Bell and Broemeling 2000;
Militino et al. 2004; Cressie et al. 2005), as well as (unobserved) latent variables
and spatially varying random effects (Clayton and Kaldor 1987; Sun et al. 1999;
Pettitt et al. 2002; see Banerjee et al. 2004 for further references). In this work,
I consider the former use of CAR models, but note that the analysis proposed
here may serve (or be the base) for a default Bayesian analysis of hierarchical
models.

The most commonly used method to fit CAR models has been maximum likelihood
(Cressie and Chan 1989; Richardson et al. 1992; Cressie et al. 2005). Most results up
to date on the behavior of inferences based on maximum likelihood are asymptotic and
little is known about their behavior in small samples. The Bayesian approach, on the
other hand, allows ‘exact’ inference without the need for asymptotic approximations.
Although Bayesian analyses of CAR models have been extensively used to estimate
latent variables and spatially varying random effects in the context of hierarchical
models, not much has been done on Bayesian analysis of CAR models to describe the
observed data (with only rare exceptions, e.g., Bell and Broemeling 2000). This may
be due to lack of knowledge about adequate priors for these models and frequentist
properties of the resulting Bayesian procedures.

The main goal of this work is to propose default (automatic) Bayesian analyses
for CAR models and study some of their properties. Two versions of Jeffreys prior,
called independence Jeffreys and Jeffreys-rule priors, are derived for the parameters
of CAR models and results on propriety of the resulting posterior distributions and
existence of posterior moments for the model parameters are established. It is found
that some properties of the posterior distributions based on the proposed Jeffreys priors
depend on a certain relation between the column space of the regression design matrix
and the extreme eigenspaces of the spatial design matrix. Simple Monte Carlo algo-
rithms are described to sample from the appropriate posterior distributions. Examples
are presented based on simulated data to compare the two Jeffreys priors and their
corresponding posterior distributions.

A simulation experiment is performed to compare frequentist properties of infer-
ences about the covariance parameters based on maximum likelihood (ML) with those
based on the proposed Jeffreys priors and a uniform prior. It is found that frequentist
properties of the above Bayesian procedures are better than those of ML. In addition,
frequentist properties of the above Bayesian procedures are adequate and similar to
each other in most situations, except when the mean of the observations is not con-
stant or the spatial association is strong. In these cases, inference about the ‘spatial
parameter’ based on the independence Jeffreys prior has better frequentist properties
than the procedures based on the other priors. Finally, it is found that the independence
Jeffreys prior is not very sensitive to some aspects of the design, such as sample size
and regression design matrix, while the Jeffreys-prior displays strong sensitivity to the
regression design matrix.
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Bayesian analysis of conditional autoregressive models 109

The organization of the paper is as follows. Section 2 describes the CAR model and
the behavior of an integrated likelihood. Section 3 derives two versions of Jeffreys prior
and provides properties of these priors and their corresponding posterior distributions
in terms of propriety and existence of posterior moments of the model parameters.
Section 4 describes a simple Monte Carlo algorithm to sample from the posterior dis-
tribution, and provides some comparisons based on simulated data between the two
versions of Jeffreys priors. Section 5 presents a simulation experiment to compare
frequentist properties of inferences based on ML with those based on the two versions
of Jeffreys priors and the uniform prior, and explores sensitivity of Jeffreys priors to
some aspects of the design. The proposed Bayesian methodology is illustrated in Sec-
tion 6 using a phosphate dataset from an archaeological region in Greece. Conclusions
are given in Section 7.

2 CAR models

2.1 Description

Consider a geographic region that is partitioned into subregions indexed by integers
1, 2, . . . , n. This collection of subregions (or sites as they are also called) is assumed
to be endowed with a neighborhood system, {Ni : i = 1, . . . , n}, where Ni denotes
the collection of subregions that, in a well defined sense, are neighbors of subregion
i . This neighborhood system, which is key in determining the dependence structure
of the CAR model, must satisfy that for any i, j = 1, . . . , n, j ∈ Ni if and only if
i ∈ N j and i /∈ Ni . An emblematic example commonly used in applications is the
neighborhood system defined in terms of geographic adjacency

Ni = { j : subregions i and j share a boundary}, i = 1, . . . , n.

Other examples include neighborhood systems defined based on distance from the
centroids of subregions or similarity of an auxiliary variable; see Cressie (1993, p.
554) and Case et al. (1993) for examples.

For each subregion it is observed the variable of interest, Yi , and a set of p <

n explanatory variables, xi = (xi1, . . . , xip)
′. The CAR model for the responses,

Y = (Y1, . . . , Yn)′, is formulated by specifying the set of full conditional distributions
satisfying a form of autoregression given by

(Yi |Y(i)) ∼ N

⎛
⎝x′

iβ +
n∑

j=1

ci j (Y j − x′
jβ), σ 2

i

⎞
⎠ , i = 1, . . . , n, (1)

where Y(i) = {Y j : j �= i}, β = (β1, . . . , βp)
′ ∈ R

p are unknown regression
parameters, and σ 2

i > 0 and ci j ≥ 0 are covariance parameters, with cii = 0 for
all i . For the set of full conditional distributions (1) to determine a well defined joint
distribution for Y, the matrices M = diag(σ 2

1 , . . . , σ 2
n ) and C = (ci j ) must satisfy

the conditions:

123



110 V. De Oliveira

(a) M−1C is symmetric, which is equivalent to ci j σ
2
j = c jiσ

2
i for all i, j = 1, . . . , n;

(b) M−1(In − C) is positive definite;

see Cressie (1993) or Rue and Held (2005) for examples and further details. When (a)
and (b) hold we would have that

Y ∼ Nn(Xβ, (In − C)−1 M),

where X is the n × p matrix with i th row x′
i , assumed to have full rank. This work

considers models in which (possibly after appropriate transformations) the matrices
M and C satisfy:

(i) M = σ 2 In , with σ 2 > 0 unknown;
(ii) C = φW , with φ an unknown ‘spatial parameter’ and W = (wi j ) a known

“weight” (“neighborhood”) matrix that is nonnegative (wi j ≥ 0), symmetric
and satisfies that wi j > 0 if and only if sites i and j are neighbors (so wi i = 0).

To guarantee that In − φW is positive definite φ is required to belong to (λ−1
n , λ−1

1 ),
where λ1 ≥ λ2 ≥ · · · ≥ λn are the ordered eigenvalues of W , with λn < 0 < λ1
since tr(W ) = 0. It immediately follows that (i) and (ii) imply that (a) and (b) hold.
If η = (β ′, σ 2, φ) denote the model parameters, then the parameter space of this
model, � = R

p × (0,∞) × (λ−1
n , λ−1

1 ), has the distinctive feature that depends on
some aspects of the design (as it depends on W ). Finally, the parameter value φ = 0

corresponds to the case when Yi − x′
iβ

iid∼ N (0, σ 2).
Other CAR models that have been considered in the literature can be reduced to

a model where (i) and (ii) hold by the use of an appropriate scaling of the data and
covariates (Cressie et al. 2005). Suppose Ỹ follows a CAR model with mean vector
X̃β, with X̃ of full rank, and covariance matrix (In − C)−1 M , where M = σ 2G, G
diagonal with known positive diagonal elements, and C = φW̃ with W̃ as in (ii) except

that it is not necessarily symmetric. If M and C satisfy (a) and (b), then Y = G− 1
2 Ỹ

satisfies

Y ∼ Nn(Xβ, σ 2(In − φW )−1),

where X = G− 1
2 X̃ has full rank and W = G− 1

2 W̃ G
1
2 is nonnegative, symmetric and

wi j > 0 if and only if sites i and j are neighbors; the symmetry of W follows from
condition (a) above. Hence Y follows the CAR model satisfying (i) and (ii).

2.2 Integrated likelihood

The likelihood function of η based on the observed data y is

L(η; y) ∝ (σ 2)−
n
2 |�−1

φ | 1
2 exp

{
− 1

2σ 2 (y − Xβ)′�−1
φ (y − Xβ)

}
, (2)

where �−1
φ = In − φW . Similarly to what is often done for Bayesian analysis of

ordinary linear models, a sensible class of prior distributions for η is given by the
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family

π(η) ∝ π(φ)

(σ 2)a
, η ∈ �, (3)

where a ∈ R is a hyperparameter and π(φ) is the ‘marginal’ prior of φ with support
(λ−1

n , λ−1
1 ). The relevance of this class of priors will be apparent when it is shown that

the Jeffreys priors derived here belong to this class. An obvious choice, used by Bell
and Broemeling (2000), is to set a = 1 and π(φ) = πU (φ) ∝ 1

(λ−1
n ,λ−1

1 )
(φ), which I

call the uniform prior (1A(φ) denotes the indicator function of the set A). Besides its
lack of invariance, the uniform prior may not (arguably) be quite appropriate in some
cases. For many datasets found in practice there is strong spatial correlation between
observations measured at nearest neighbors, and such strong correlation is reproduced
in CAR models only when the spatial parameter φ is quite close to one of the bound-
aries, λ−1

1 or λ−1
n (Besag and Kooperberg 1995). The spatial information contained in

the uniform prior is somewhat in conflict with the aforementioned historical informa-
tion since it assigns too little mass to models with substantial spatial correlation and
too much mass to models with weak or no spatial correlation. In contrast, the Jeffreys
priors derived here do not have this unappealing feature since, as would be seen, they
are unbounded around λ−1

1 and λ−1
n , so they automatically assign substantial mass to

spatial parameters near these boundaries. Although using such priors may potentially
yield improper posteriors, it would be shown that the propriety of posterior distribu-
tions based on these Jeffreys priors depend on a certain relation between the column
space of X and the extreme eigenspaces of W (eigenspaces associated with the largest
and smallest eigenvalues) which is most likely satisfied in practice. Another alter-
native, suggested by Banerjee et al. (2004, p. 164) is to use a beta-type prior for φ

that places substantial prior probability on large values of |φ|, but this would require
specifying two hyperparameters.

From Bayes theorem follows that the posterior distribution of η is proper if and
only if 0 <

∫
�

L(η; y)π(η)dη < ∞. A standard calculation with the above likelihood
and prior shows that

∫
Rp×(0,∞)

L(η; y)π(η)dβdσ 2 = L I (φ; y)π(φ),

with

L I (φ; y) ∝ |�−1
φ | 1

2 |X ′�−1
φ X |− 1

2 (S2
φ)

−
(

n−p
2 +a−1

)
, (4)

where

S2
φ = (y − X β̂φ)′�−1

φ (y − X β̂φ) and β̂φ = (X ′�−1
φ X)−1 X ′�−1

φ y;
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L I (φ; y) is called the integrated likelihood of φ. Then the posterior distribution of η

is proper if and only if

0 <

∫ λ−1
1

λ−1
n

L I (φ; y)π(φ)dφ < ∞, (5)

so to determine propriety of posterior distributions based on priors (3) it is necessary to
determine the behavior of both the integrated likelihood L I (φ; y) and marginal prior
π(φ) in the interval (λ−1

n , λ−1
1 ).

Some notation is now introduced. Let C(X) denote the subspace of R
n spanned by

the columns of X , and u1, . . . , un be the normalized eigenvectors of W corresponding,
respectively, to the eigenvalues λ1, . . . , λn , and recall that λn < 0 < λ1. Throughout
this and the next section φ → λ−1

1 (φ → λ−1
n ) is used to denote that φ approaches

λ−1
1 (λ−1

n ) from the left (right). Also, it is assumed throughout that {λi }n
i=1 are not all

equal.

Lemma 1 Consider the CAR model (2) with n ≥ p + 2, and suppose λ1 and λn are
simple eigenvalues. Then as φ → λ−1

1 we have

|X ′�−1
φ X | =

{
O(1 − φλ1) if u1 ∈ C(X)

O(1) if u1 /∈ C(X)
, (6)

and for every η ∈ �

S2
φ = O(1) with probability 1. (7)

The same results hold as φ → λ−1
n when λ1 and u1 are replaced by, respectively, λn

and un.

Proof See “Appendix”. 
�
Proposition 1 Consider the CAR model (2) and the prior distribution (3) with n ≥
p + 2, and suppose λ1 and λn are simple eigenvalues. Then for every η ∈ � the
integrated likelihood L I (φ; y) in (4) is with probability 1 a continuous function on
(λ−1

n , λ−1
1 ) satisfying that as φ → λ−1

1

L I (φ; y) =
{

O(1) if u1 ∈ C(X)

O((1 − φλ1)
1
2 ) if u1 /∈ C(X)

.

The same result holds as φ → λ−1
n when λ1 and u1 are replaced by, respectively, λn

and un.

Proof The continuity of L I (φ; y) on (λ−1
n , λ−1

1 ) follows from the definitions of
�−1

φ , S2
φ and the continuity of the determinant function. For any φ ∈ (0, λ−1

1 ) the
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eigenvalues of �−1
φ are 1 − φλ1 < 1 − φλ2 ≤ · · · ≤ 1 − φλn−1 < 1 − φλn , so

|�−1
φ | = (1 − φλ1)

n∏
i=2

(1 − φλi ),

and hence |�−1
φ | 1

2 = O((1 − φλ1)
1
2 ) as φ → λ−1

1 . Then the result follows from (6)
and (7).
The proof on the behavior of L I (φ; y) as φ → λ−1

n follows along the same lines. 
�

Remark 1 Note that the limiting behaviors of L I (φ; y) as φ → λ−1
i , i = 1, 2, do not

depend on the hyperparameter a.

Remark 2 The neighborhood systems used for modeling most datasets are such that
there is a ‘path’ between any pair of sites. In this case, the matrix W is irreducible, so
λ1 is guaranteed to be simple by the Perron–Frobenius theorem (Bapat and Raghavan
1997, p. 17). For all the simulated and real datasets I have looked at λn was also simple,
but this is not guaranteed to be so. For the case when each subregion is a neighbor of
any other subregion, with wi j = 1 for all i �= j , it holds that λn = −1 has multiplicity
n − 1. But this kind of neighborhood system is rarely considered in practice.

3 Jeffreys priors

Default or automatic priors are useful in situations where it is difficult to elicit a prior,
either subjectively or from previous data. The most commonly used of such priors

is the Jeffreys-rule prior which is given by π(η) ∝ (det[I (η)]) 1
2 , where I (η) is the

Fisher information matrix with (i, j) entry

[I (η)]i j = Eη

{(
∂

∂ηi
log(L(η; Y))

)(
∂

∂η j
log(L(η; Y))

)∣∣∣η
}

.

The Jeffreys-rule prior has several attractive features, such as invariance to one-to-one
reparametrizations and restrictions of the parameter space, but it also has some not so
attractive features. One of these is the poor frequentist properties that have been noticed
for some multiparameter models. This section derives two versions of Jeffreys prior,
the Jeffreys-rule prior and the independence Jeffreys prior, where the latter (intended
to ameliorate the aforementioned unattractive feature) is obtained by assuming that
β and (σ 2, φ) are ‘independent’ a priori and computing each marginal prior using
Jeffreys-rule when the other parameter is assumed known. Since these Jeffreys priors
are improper (as is usually the case) the propriety of the resulting posteriors would
need to be checked.

Theorem 1 Consider the CAR model (2). Then the independence Jeffreys prior and
the Jeffreys-rule prior of η, to be denoted by π J1(η) and π J2(η), are of the form (3)
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with, respectively,

a = 1 and π J1(φ) ∝
⎧⎨
⎩

n∑
i=1

(
λi

1 − φλi

)2

− 1

n

[
n∑

i=1

λi

1 − φλi

]2
⎫⎬
⎭

1
2

, (8)

and

a = 1 + p

2
and π J2(φ) ∝

⎛
⎝

p∏
j=1

(1 − φν j )

⎞
⎠

1
2

π J1(φ),

where ν1 ≥ · · · ≥ νp are the ordered eigenvalues of X ′
oW Xo, and Xo is the matrix

defined by (17) in “Appendix”.

Proof From Theorem 5 in Berger et al. (2001) follows that for the spatial model
Y ∼ Nn(Xβ, σ 2�φ), the independence Jeffreys prior and Jeffreys-rule prior are both
of the form (3) with, respectively,

a = 1 and π J1(φ) ∝
{

tr[U 2
φ ] − 1

n
(tr[Uφ])2

} 1
2

,

and

a = 1 + p

2
and π J2(φ) ∝ |X ′�−1

φ X | 1
2 π J1(φ),

where Uφ =
(

∂
∂φ

�φ

)
�−1

φ , and ∂
∂φ

�φ denotes the matrix obtained by differentiating

�φ element by element. For the CAR model �−1
φ = In − φW , so

Uφ = −�φ

(
∂

∂φ
�−1

φ

)
= (In − φW )−1W.

Noting now that
{

λi
1−φλi

}n

i=1
are the eigenvalues of Uφ , it follows that

tr[U 2
φ ] − 1

n

(
tr[Uφ])2 =

n∑
i=1

(
λi

1 − φλi

)2

− 1

n

[
n∑

i=1

λi

1 − φλi

]2

,

so the first result follows. The second result follows from the first and identity (18) in
“Appendix”. 
�
Lemma 2 Suppose λ1 and λn are simple eigenvalues. Then as φ → λ−1

1 it holds that

π J1(φ) = O((1 − φλ1)
−1),
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and

π J2(φ) =
{

O((1 − φλ1)
− 1

2 ) if u1 ∈ C(X)

O((1 − φλ1)
−1) if u1 /∈ C(X)

.

The same results hold as φ → λ−1
n when λ1 and u1 are replaced by, respectively, λn

and un.

Proof From (8) and after some algebraic manipulation follow that

(
π J1(φ)

)2 ∝
(

λ1

1 − φλ1

)2

+
n∑

i=2

(
λi

1 − φλi

)2

− 1

n

[
λ1

1 − φλ1
+

n∑
i=2

λi

1 − φλi

]2

=
(

λ1

1 − φλ1

)2
⎛
⎝1 − 1

n
− 2(1 − φλ1)

nλ1

n∑
i=2

λi

1 − φλi

+
(

1 − φλ1

λ1

)2
⎛
⎝

n∑
i=2

(
λi

1 − φλi

)2

− 1

n

[
n∑

i=2

λi

1 − φλi

]2
⎞
⎠
⎞
⎠

= O((1 − φλ1)
−2) as φ → λ−1

1 ,

since λ1 > λi for i = 2, . . . , n. The behavior as φ → λ−1
n is established in the same

way, and the second result follows from the first and (6). 
�
Corollary 1 Consider the CAR model (2) and let k ∈ N. Then

(i) The marginal independence Jeffreys prior π J1(φ) is unbounded and not inte-
grable.

(ii) The joint independence Jeffreys posterior π J1(η|y) is proper when neither u1
nor un are in C(X), while it is improper when either u1 or un are in C(X).

(iii) The marginal independence Jeffreys posterior π J1(φ|y) (when exists) has
moments of any order k.

(iv) The marginal independence Jeffreys posterior π J1(σ 2|y) (when exists) has a
finite moment of order k if n ≥ p + 2k + 1.

(v) For j = 1, . . . , p, the marginal independence Jeffreys posterior π J1(β j |y)

(when exists) has a finite moment of order k if n ≥ p + k + 1.

Proof See “Appendix”. 
�
Corollary 2 Consider the CAR model (2) and let k ∈ N. Then

(i) The marginal Jeffreys-rule prior π J2(φ) is unbounded. Also, it is integrable
when both u1 and un are in C(X), while it is not integrable when either u1 or
un is not in C(X).

(ii) The joint Jeffreys-rule posterior π J2(η|y) is always proper.
(iii) The marginal Jeffreys-rule posterior π J2(φ|y) has always moments of any

order k.
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(iv) The marginal Jeffreys posterior π J2(σ 2|y) has a finite moment of order k if
n ≥ p + 2k + 1.

(v) For j = 1, . . . , p, the marginal Jeffreys-rule posterior π J2(β j |y) has a finite
moment of order k if n ≥ p + k + 1.

Proof These results are proved similarly as their counterparts in Corollary 1. 
�
Establishing some of the properties of posterior distributions based on the Jeffreys

priors requires numerical computation of u1 and un , and determining whether or not
these eigenvectors belong to C(X). The latter can be done by computing the rank of

matrices Ai = (X
... ui ), since ui /∈ C(X) if and only if rank(Ai ) = p + 1, i = 1, n

(recall X has full rank). This rank can be computed from the QR decomposition of Ai

(Schott 2005)

Ai = Qi

(
Ri

0

)
,

where Qi is an n × n orthogonal matrix, Q′
i Qi = Qi Q′

i = In , and Ri is a (p + 1) ×
(p + 1) upper triangular matrix with non-negative diagonal elements. Then

rank(Ai ) = rank(Ri ) = number of non-zero diagonal elements in Ri .

Remark 3 The independence Jeffreys prior yields a proper posterior when neither u1
nor un are in C(X). For all the simulated and real datasets I have looked at, neither u1
nor un were in C(X), and it seems unlikely to encounter in practice a situation where
either u1 or un are in C(X). Nevertheless, posterior impropriety is a potential problem
when the independence Jeffreys prior is used. On the other hand, the Jeffreys-rule
prior always yields a proper posterior but, as will be seen later, frequentist properties
of Bayesian inferences based on Jeffreys-rule priors are somewhat inferior to those
based on independence Jeffreys priors.

Remark 4 Another commonly used default prior is the reference prior proposed by
Bernardo (1979) and Berger and Bernardo (1992). It can be shown from a result in
Berger et al. (2001) that a reference prior for the parameters of model (2) is also of
the form (3), with

a = 1 and π R(φ) ∝
⎧⎨
⎩

n−p∑
i=1

υ2
i (φ) − 1

n − p

[n−p∑
i=1

υi (φ)

]2
⎫⎬
⎭

1
2

,

where υ1(φ), . . . , υn−p(φ) are the nonzero eigenvalues of the matrix Vφ =
(

∂
∂φ

�φ

)

�−1
φ PW

φ , with PW
φ = In − X (X ′�−1

φ X)−1 X ′�−1
φ . It was shown in Berger et al.

(2001) that for some geostatistical models inferences based on this prior have similar
or better properties than those based on the Jeffreys-rule prior. Unfortunately, I have
not been able to find an explicit expression for the above eigenvalues, and properties
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Bayesian analysis of conditional autoregressive models 117

of Bayesian inferences based on this prior remain unknown. In addition, it was found
for the data analysis in Sect. 6 that inferences about (β, σ 2, φ) based on proper diffuse
normal-inverse gamma-uniform priors were similar as those based on prior (3) with
a = 1 and πU (φ), so these will not be considered further.

4 Inference and comparison

4.1 Inference

Posterior inference about the unknown quantities would be based on a sample from
their posterior distribution. When the observed data are complete, a sample from the
posterior distribution of the model parameters is simulated using a noniterative Monte
Carlo algorithm based on the factorization

π(β, σ 2, φ|y) = π(β|σ 2, φ, y)π(σ 2|φ, y)π(φ|y),

where from (2) and (3)

π(β|σ 2, φ, y) = Np

(
β̂φ, σ 2(X ′�−1

φ X)−1
)

, (9)

π(σ 2|φ, y) = IG

(
n − p

2
+ a − 1,

1

2
S2
φ

)
, (10)

π(φ|y) ∝
(
|�φ ||X ′�−1

φ X |
)− 1

2
(

S2
φ

)−
(

n−p
2 +a−1

)
π(φ). (11)

Simulation from (9) and (10) is straightforward, while simulation from (11) would be
accomplished using the adaptive rejection Metropolis sampling (ARMS) algorithm
proposed by Gilks et al. (1995). The ARMS algorithm requires no tuning and works
very well for this model. It was found that produces well mixed chains with very low
autocorrelations, so long runs are not required for precise inference; see Sect. 6.

4.2 Comparison

This section presents comparisons between the two versions of Jeffreys prior and
the uniform prior, as well as their corresponding posteriors distributions. For this, I
consider models defined on a 20 × 20 regular lattice with a first order (or ‘rook’)
neighborhood system (the neighbors of a site are the sites adjacent to the north, south,
east and west), with wi j = 1 if sites i and j are neighbors, and wi j = 0 otherwise; the
resulting W matrix is often called the adjacency matrix. In this case, φ must belong
to the interval (−0.252823, 0.252823).

Figure 1 displays the independence Jeffreys, Jeffreys-rule and uniform priors of φ

for models where E{Yi } is (a) constant and (b) a degree one polynomial in the site
coordinates. For both models, neither u1 nor un are in C(X). The graphs of π J1(φ)

and π J2(φ) are both ‘bathtub-shaped’, in great contrast with the graph of πU (φ). In
particular, π J1(φ) assigns substantial mass to values of φ close to the boundaries,
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Fig. 1 Marginal independence Jeffreys, Jeffreys-rule and uniform priors of φ for models over a 20 × 20
regular lattice with a first order (or ‘rook’) neighborhood system when the mean is a constant and b a degree
one polynomial in the site coordinates

while π J2(φ) does the same for values of φ close to the left boundary but not so much
for values of φ close to the right boundary, specially when the mean is not constant.
The reason for this asymmetry is unclear, but it makes the Jeffreys-rule prior somewhat
unappealing since most fits of the CAR model to datasets reported in the literature
have yielded large positive estimates for φ.

Figure 2 displays the independence Jeffreys (solid), Jeffreys-rule (dashed) and uni-
form (dotted) posteriors of φ based on simulated data. The mean of the observations is
either 10 (top panels) or 10 + si1 + si2 (bottom panels), with (si1, si2) the coordinates
of site i , σ 2 = 2 and φ is 0.1 (left panels), 0.2 (middle panels) or 0.24 (right panels).
The three default posteriors are usually close to each other when the mean is constant.
When the mean is not constant the three default posteriors of φ differ somewhat, with
π J1(φ|y) being shifted to the right and less disperse when compared to π J2(φ|y), and
πU (φ|y) located and shaped somewhere ‘between’ the other two. Also, as φ gets large
the posterior distributions become more concentrated around the true value, which is
consistent with the asymptotic result in (12). The same patterns were observed for
several other simulated datasets (not shown).

5 Further properties

5.1 Frequentist properties

This section presents results of a simulation experiment to study some of the frequ-
entist properties of Bayesian inferences based on the independence Jeffreys, Jeffreys-
rule and uniform priors, as well as those based on maximum likelihood (ML). These
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Fig. 2 Marginal independence Jeffreys (solid), Jeffreys-rule (dashed) and uniform (dotted) posteriors of φ

based on simulated data for models over a 20 × 20 regular lattice with a first order neighborhood system.
E{Yi } is either 10 (top panels) or 10 + si1 + si2 (bottom panels), σ 2 = 2 and φ is 0.1 (left panels), 0.2
(middle panels) or 0.24 (right panels)

properties are often proposed as a way to evaluate and compare default priors. The
focus of interest is on the covariance parameters, and the frequentist properties to be
considered are frequentist coverage of credible and confidence intervals, and mean
squared error of estimators. For the Bayesian procedures, I use the 95% equal-tailed
credible intervals for σ 2 and φ, and the posterior means as their estimators. For the
ML procedure, I use the large sample (approximate) 95% confidence intervals given
by σ̂ 2 ±1.96( ˆavar(σ̂ 2))1/2 and φ̂±1.96( ˆavar(φ̂))1/2, where σ̂ 2 and φ̂ are the ML esti-
mators of σ 2 and φ, avar(·) denotes asymptotic variance and ˆavar(·) denotes avar(·)
evaluated at the ML estimators. Using the result on the asymptotic distribution of ML
estimators in Mardia and Marshall (1984) and after some algebra, it follows that the
above asymptotic variances are given by

avar(σ̂ 2) = 2σ 4

n(g(φ))2

n∑
i=1

(
λi

1 − φλi

)2

and avar(φ̂) = 2

(g(φ))2 , (12)

where g(φ) is given by the right-hand side of (8).
I consider models defined on a 10 × 10 regular lattice with first order neigh-

borhood system and W the adjacency matrix. Then φ must belong to the interval
(−0.260554, 0.260554). The factors to be varied in the experiment are E{Yi }, σ 2 and
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Table 1 Frequentist coverage of Bayesian equal-tailed 95% credible intervals and large sample 95% con-
fidence interval for σ 2

p = 1 p = 6

φ = 0.05 φ = 0.12 φ = 0.25 φ = 0.05 φ = 0.12 φ = 0.25

σ 2 = 0.1

Ind. Jeffreys 0.946 0.950 0.948 0.945 0.941 0.949

Jeffreys-rule 0.945 0.947 0.946 0.901 0.915 0.945

Uniform 0.947 0.948 0.943 0.948 0.945 0.946

ML 0.914 0.923 0.927 0.840 0.868 0.928

σ 2 = 2.0

Ind. Jeffreys 0.936 0.939 0.952 0.942 0.944 0.949

Jeffreys-rule 0.933 0.940 0.954 0.895 0.916 0.944

Uniform 0.934 0.939 0.952 0.946 0.944 0.946

ML 0.913 0.923 0.943 0.846 0.870 0.942

φ. I consider E{Yi } equal to 10 (p = 1) or 10 + si1 + si2 + si1si2 + s2
i1 + s2

i2 (p = 6),
σ 2 equal to 0.1 or 2, and φ equal to 0.05, 0.12 or 0.25 (negative estimates of the
spatial parameter are rare in practice, if they appear at all, so only positive values of
φ are considered). For all these scenarios, neither u1 nor un belong to C(X), so the
posterior based on any of the default priors is proper. This setup provides a range of
different scenarios in terms of trend, variability and spatial association. For each of the
12 (2 × 2 × 3) possible scenarios, 1,500 datasets were simulated and for each dataset
a posterior sample of the model parameters of size m = 3,000 was generated by the
algorithm described in Sect. 4.

Table 1 shows (empirical) frequentist coverage of Bayesian equal-tailed 95% cred-
ible intervals for σ 2 corresponding to three default priors, and large sample 95%
confidence intervals for σ 2. The coverage of the ML confidence intervals are below
nominal, while the coverage of the credible intervals based on the independence Jeff-
reys and uniform priors are similar to each other and reasonably close to the nom-
inal 0.95. On the other hand, the coverage of the credible intervals based on the
Jeffreys-rule prior are below nominal when the mean of the observations is not con-
stant.

Table 2 shows (empirical) frequentist coverage of Bayesian equal-tailed 95% cred-
ible intervals for φ corresponding to the three default priors, and large sample 95%
confidence intervals for φ. The coverage of the ML confidence intervals are below
nominal and the same hold (substantially so) for the credible intervals based on the
Jeffreys-rule prior when the mean of the observations is not constant. On the other
hand, the coverage of the credible intervals based on the independence Jeffreys and
uniform priors are similar to each other and reasonably close to the nominal 0.95 under
most scenarios, except when φ is large. In this case the coverage of credible intervals
based on the uniform prior are well below nominal.

Table 3 shows (empirical) mean squared error (MSE) of the posterior mean of σ 2

corresponding to the three default priors and the MSE of the ML estimator of σ 2.
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Table 2 Frequentist coverage of Bayesian equal-tailed 95% credible intervals and large sample 95% con-
fidence interval for φ

p = 1 p = 6

φ = 0.05 φ = 0.12 φ = 0.25 φ = 0.05 φ = 0.12 φ = 0.25

σ 2 = 0.1

Ind. Jeffreys 0.954 0.954 0.972 0.940 0.938 0.978

Jeffreys-rule 0.948 0.946 0.949 0.897 0.853 0.794

Uniform 0.962 0.964 0.883 0.967 0.968 0.885

ML 0.930 0.932 0.904 0.858 0.844 0.827

σ 2 = 2.0

Ind. Jeffreys 0.952 0.950 0.966 0.944 0.938 0.982

Jeffreys-rule 0.948 0.946 0.951 0.891 0.860 0.791

Uniform 0.962 0.956 0.883 0.963 0.965 0.865

ML 0.929 0.931 0.926 0.838 0.849 0.828

Table 3 Mean squared error × 102 of the posterior means and ML estimate of σ 2

p = 1 p = 6

φ = 0.05 φ = 0.12 φ = 0.25 φ = 0.05 φ = 0.12 φ = 0.25

σ 2 = 0.1

Ind. Jeffreys 0.0213 0.0213 0.0239 0.0221 0.0222 0.0245

Jeffreys-rule 0.0208 0.0209 0.0240 0.0233 0.0221 0.0232

Uniform 0.0212 0.0213 0.0282 0.0221 0.0223 0.0295

ML 0.0207 0.0205 0.0226 0.0250 0.0233 0.0225

σ 2 = 2.0

Ind. Jeffreys 8.734 9.362 9.262 9.124 8.719 9.916

Jeffreys-rule 8.560 9.991 9.298 9.330 8.771 9.391

Uniform 8.738 9.378 10.925 9.105 8.693 11.650

ML 8.482 8.907 8.785 9.970 9.285 9.112

The MSEs of the Bayesian estimators based on the three default priors and the ML
estimator are close to each other under all scenarios.

Table 4 shows (empirical) MSE of the posterior mean of φ corresponding to the
three default priors and the ML estimator of φ. For small or moderate values of φ the
MSEs of the three Bayesian estimators and the ML estimator are close to each other,
with the MSE of the Bayesian estimator based on the uniform prior being slightly
smaller than the other three. On the other hand, for large values of φ the MSE of the
Bayesian estimator based on the independence Jeffreys prior is substantially smaller
than the MSEs of the other three estimators. Also, when the mean of the observations
is not constant the MSE of the estimator based on the independence Jeffreys prior is
smaller than the MSE of the estimator based on the Jeffreys-rule prior.
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Table 4 Mean squared error × 102 of the posterior means and ML estimate of φ

p = 1 p = 6

φ = 0.05 φ = 0.12 φ = 0.25 φ = 0.05 φ = 0.12 φ = 0.25

σ 2 = 0.1

Ind. Jeffreys 0.472 0.421 0.084 0.608 0.528 0.135

Jeffreys-rule 0.471 0.457 0.122 0.794 0.984 0.671

Uniform 0.377 0.380 0.167 0.422 0.418 0.329

ML 0.476 0.453 0.125 0.807 0.992 0.691

σ 2 = 2.0

Ind. Jeffreys 0.487 0.397 0.096 0.621 0.549 0.150

Jeffreys-rule 0.486 0.428 0.135 0.845 0.967 0.690

Uniform 0.390 0.356 0.182 0.439 0.426 0.343

ML 0.492 0.425 0.139 0.859 0.975 0.708

Table 5 Frequentist coverage
of Bayesian equal-tailed 95%
credible intervals and large
sample 95% confidence interval
for φ (top), and mean squared
error × 102 of the posterior
means and ML estimate of φ

(bottom) (both based on a
20 × 20 regular lattice)

p = 1 p = 6

φ = 0.12 φ = 0.24 φ = 0.12 φ = 0.24

Frequentist coverage

Ind. Jeffreys 0.957 0.941 0.943 0.943

Jeffreys-rule 0.950 0.940 0.925 0.843

Uniform 0.953 0.932 0.949 0.940

ML 0.957 0.931 0.933 0.899

Mean squared error

Ind. Jeffreys 0.0950 0.0117 0.0963 0.0147

Jeffreys-rule 0.0980 0.0140 0.1328 0.0378

Uniform 0.0950 0.0158 0.0947 0.0218

ML 0.0979 0.0139 0.1311 0.0376

To gain some insight on the behavior of Bayesian and ML inferences for larger
sample sizes, a more limited simulation was run for models defined on a 20 × 20
regular lattice with first order neighborhood system and W the adjacency matrix. For
this case E{Yi } is the same as in the previous simulation, σ 2 = 2 and φ is either 0.12
or 0.24. Table 5 shows (empirical) frequentist coverage of Bayesian equal-tailed 95%
credible intervals for φ and large sample 95% confidence intervals for φ (top), as well
as (empirical) MSE of the posterior mean of φ and the ML estimator of φ (bottom).
The frequentist coverage of credible intervals based on the three default priors and
ML are similar under most scenarios, except when the mean is not constant or φ is
large. In these cases coverage of intervals based on the Jeffreys-rule prior and ML are
below nominal, although to a lesser extent than for the 10 × 10 regular lattice. The
MSEs of all estimators are similar under most scenarios, except when the mean is not
constant in which case estimators based on the Jeffreys-rule prior and ML have larger
MSE.
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Fig. 3 a Marginal independence Jeffreys priors of φ defined for models over 10 ×10, 20 ×20 and 50 ×50
regular lattices with first order neighborhood system. b Marginal Jeffreys-rule priors of φ for models defined
over a 20×20 regular lattices with the same neighborhood system as in a, and with mean constant, a degree
one polynomial and a degree two polynomial in the site coordinates

In summary, frequentist properties of ML estimators are inferior than those of
Bayesian inferences based on any of the three default priors. More notably, Bayesian
inferences based on the three default priors are reasonably good and similar to each
other under most scenarios, except when the mean of the observations is not constant
or the spatial parameter φ is large. In these cases, frequentist properties of Bayesian
inferences based on the independence Jeffreys prior are similar or better than those
based on any of the other two default priors, specially in regard to inference about φ.

5.2 Sensitivity to design

The proposed Jeffreys priors depend on several features of the selected design, such
as sample size and regression matrix. This section explores how sensitive the default
priors are to these features.

Sample size. Consider models defined over 10 × 10, 20 × 20 and 50 × 50 regular
lattices with first order neighborhood system and W the adjacency matrix. Figure 3a
displays the marginal independence Jeffreys priors π J1(φ) corresponding to the three
sample sizes, showing that they are very close to each other. It should be noted that the
domains of π J1(φ) for the above three models are not exactly the same, but are quite
close. The priors were plotted over the interval (−0.25, 0.25), the limit of (λ−1

n , λ−1
1 )

as n → ∞. The same lack of sensitivity to sample size was displayed by π J2(φ),
provided the models have the same mean structure (not shown).

Regression matrix. Consider models defined over a 20 × 20 regular lattices with
the same neighborhood system as in the previous comparison, and mean a constant
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(p = 1), a degree one polynomial in the site coordinates (p = 3), and a degree two
polynomial in the site coordinates (p = 6). By construction the marginal prior π J1(φ)

does not depend on the mean structure of the model. Figure 3b displays the marginal
Jeffreys-rule priors π J2(φ) corresponding to the three models, showing that these do
depend substantially on the mean structure.

It could also be considered studying the sensitivity of the proposed default priors
to other features of the design, such as neighborhood system or type of lattice, but
these may not be sensible for CAR models since the parameter space depends sub-
stantially on these features. For a 20 × 20 regular lattice a valid CAR model requires
that φ belongs to (−0.252823, 0.252823) when the lattice is endowed with a first
order neighborhood system, while φ must belong to (−0.255679, 0.127121) when
the lattice is endowed with a ‘queen’ neighborhood system (first order neighbors plus
their adjacent sites to the northeast, northwest, southeast and southwest). Similarly,
for a 10 × 10 regular lattice with first order neighborhood system φ must belong to
(−0.260554, 0.260554), while for the irregular lattice formed by the 100 counties of
the state of North Carolina in the United States with neighborhood system defined in
terms of geographic adjacency φ must belong to (−0.327373, 0.189774).

6 Example

To illustrate the Bayesian analysis of CAR models I use a spatial dataset initially ana-
lyzed by Buck et al. (1988), and more recently reanalyzed by Cressie and Kapat (2008)
(from now on referred to as CK). The dataset consists of raw phosphate concentration
readings (in mg P/100 g of soil) collected over several years in an archaeological region
of Laconia across the Evrotas river in Greece. The original observations were collected
10 m apart over a 16×16 regular lattice; they are denoted by {Di : i = 1, . . . , 256} and
displayed in Fig. 4. A particular feature of this dataset is that there are missing obser-
vations at nine sites (marked with ‘×’ in Fig. 4). In their analysis, CK did not mention
how these missing observations were dealt with when fitting the model, although pre-
sumably they were imputed with summaries of observed values at neighboring sites.
Initially, I follow this imputation approach, but an alternative (fully) Bayesian analysis
is also provided that accounts for the uncertainty of the missing values.

CK built a model for this dataset based on exploratory data analysis and graphical
diagnostics developed in their paper. I mostly use the model selected by them, except
for one difference indicated below. The original phosphate concentration readings

were transformed as Ỹi = D
1
4
i , i = 1, . . . , 256, to obtain a response with distribu-

tion close to Gaussian. CK assumed that E{Ỹi } = β1 + β2si1 + β3si2, with (si1, si2)

the coordinates of site i , but I find no basis for this choice. There seems to be no
apparent (linear) relation between the phosphate concentration readings and the sites
coordinates, as seen from Fig. 5, so I assume E{Ỹ} = β11 (1 is the vector of ones).

CK modeled these (transformed) data using a second order neighborhood
system, meaning that the neighbors of site i are its first order neighbors and their
first order neighbors (except for site i). Let ai j = 1 if sites i and j are neigh-
bors, and ai j = 0 otherwise. For the spatial association structure, it is assumed that
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Fig. 4 Phosphate concentration readings (in mg P/100 g of soil) measured over a 16 × 16 regular lattice.
Locations where values are missing are indicated with x symbol
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Fig. 5 Plots of phosphate concentration readings versus sites coordinates

var{Ỹ} = σ 2(I256 − φW̃ )−1G, with

G = diag(|N1|−1, . . . , |N256|−1) and W̃i j = ai j
(|N j |/|Ni |

) 1
2 ,

where |Ni | is the number of neighbors of site i , varying between 5 and 12 in this
lattice. This model is called by CK the autocorrelation (homogeneous) CAR model.
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Fig. 6 Sample autocorrelations of the simulated values of β1, σ 2 and φ using the algorithm described
in Sect. 4.1 based on completed data yC and the independence Jeffreys prior (top panels), and using the
algorithm described in Sect. 6.1 based on the observed data yJ and the independence Jeffreys prior (bottom
panels). The values κ are inefficiency factors

Finally, following the discussion at the end of Sect. 2.1, I work with the scaled data

Y = G− 1
2 Ỹ so the model to be fit is

Y ∼ N256(β1z, σ 2(I256 − φW )−1), (13)

where z = G− 1
2 1, W = G− 1

2 W̃ G
1
2 and the unknown parameters are β1 ∈ R, σ 2 > 0

and φ ∈ (−0.243062, 0.086614). It holds that neither u1 nor u256 belongs to C(z).
Let y = (yJ , yI ) denote the ‘complete data’, where J and I are the sites that cor-

respond, respectively, to the observed and missing values, and yJ = {yj : j ∈ J } are
the observed values. Based on the independence Jeffreys, Jeffreys-rule and uniform
priors, model (13) was fit to the ‘completed data’ yC = (yJ , ŷI ), where the compo-
nents of ŷI are the medians of the respective neighboring observed values. The Monte
Carlo algorithm described in Sect. 4.1 was run to obtain a sample of size 10,000 from
the posterior π(β1, σ

2, φ|yC ). Figure 6 (top panels) displays sample autocorrelations,
ρ̂(h), h = 0, 1, . . . , 30, of the simulated values of β1, σ 2 and φ based on the indepen-
dence Jeffreys prior, as well as the inefficiency factor κ = 1 + 2

∑30
h=1

(
1 − h

30

)
ρ̂(h).

The cross-correlations are all small, with the largest being that between σ 2 and φ
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Table 6 Summaries of the marginal posterior distributions (2.5% quantile, mean, 97.5% quantile) using
the three default priors, based on the completed phosphate data (top part) and the observed phosphate
data (bottom part)

Independence Jeffreys Jeffreys-rule Uniform

2.5% Mean 97.5% 2.5% Mean 97.5% 2.5% Mean 97.5%

From completed data yC
β1 2.6933 2.8136 2.9335 2.6962 2.8139 2.9312 2.7150 2.8162 2.9171
σ 2 0.4757 0.5654 0.6735 0.4766 0.5669 0.6766 0.4781 0.5716 0.6792
φ 0.0783 0.0848 0.0866 0.0767 0.0843 0.0866 0.0741 0.0824 0.0863

From observed data yJ
β1 2.6742 2.7973 2.9160 2.6788 2.7985 2.9128 2.7007 2.8049 2.9047
σ 2 0.4779 0.5701 0.6825 0.4757 0.5702 0.6830 0.4756 0.5782 0.6830
φ 0.0785 0.0849 0.0866 0.0765 0.0843 0.0866 0.0737 0.0823 0.0862
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Fig. 7 Posterior distribution of the model parameters based on the observed phosphate data and the
independence Jeffreys prior

(= 0.18). These summaries show the Markov chain mixes well and converges fast to
the posterior distribution.

After discarding the initial burn-in section of the first 1,000 iterates, summaries of
the marginal posterior distributions (2.5% quantile, mean, 97.5% quantile) are given in
Table 6 (top part), where it is seen that the three analyses produce essentially the same
results. Figure 7 displays the marginal posterior densities of the model parameters. As
is typical when fitting CAR models, the posterior of φ is highly concentrated around
the right boundary of the parameter space.

6.1 An alternative analysis

I now describe results from a Bayesian analysis that accounts for the uncertainty in
yI . The algorithm in Sect. 4.1 can not be modified to handle the case of missing data,
so sampling from the posterior of model parameters and missing values is done using
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a Gibbs sampling algorithm. As before the full conditional distribution of β is given
by (9), while the full conditionals of the other components of (yI ,β, σ 2, φ) are given
by

π(yi |β, σ 2, φ, y(i)) = N

⎛
⎝x′

iβ + φ

n∑
j=1

wi j (y j − x′
jβ), σ 2

⎞
⎠ , i ∈ I, (14)

π(σ 2|β, φ, y) = IG

(
n

2
+ a − 1,

1

2
(y − Xβ)′�−1

φ (y − Xβ)

)
, (15)

π(φ|β, σ 2, y) ∝ |�−1
φ | 1

2 exp

{
− 1

2σ 2 (y−Xβ)′�−1
φ (y−Xβ)

}
π(φ). (16)

Simulation from (14) and (15) is straightforward, while simulation from (16) would
be accomplished using the ARMS algorithm. This Gibbs sampling algorithm also
works very well for this model, as it was found that produces well mixed chains with
low autocorrelations. Finally, based on initial estimates of the parameters and missing
values, successive sampling is done from (9), (14), (15) and (16).

Using this Gibbs sampling algorithm model (13) was fit to the observed data yJ

based on the independence Jeffreys, Jeffreys-rule and uniform priors. The algorithm
was run to obtain a sample of size 10,000 from the posterior π(β1, σ

2, φ, yI |yJ ),
and the first 1,000 iterates were discarded. Figure 6 (bottom panels) displays sample
autocorrelations of the simulated values of β1, σ 2 and φ based on the independence
Jeffreys prior and the inefficiency factors, showing that this Markov chain also mixes
well. Summaries of the marginal posterior distributions are given in Table 6 (bottom
part). The three analyses produce again essentially the same results. For this dataset
the analyses based on the completed and observed data also produce essentially the
same results due to the small fraction of missing values (9 out of 256).

Remark 5 A caveat in the above analysis is in order. If model (13) is assumed for Y,
then the form of the joint distribution of YJ (the observed values) is unknown, and in
particular it does not follow a CAR model. As a result, Proposition 1 and Corollary 1
do not apply in this case and, strictly speaking, propriety of the posterior of the model
parameters is not guaranteed. Nevertheless, the Monte Carlo outputs of the above anal-
yses based on the three default priors were very close to that based on a vague proper
prior (normal-inverse gamma-uniform), so the possibility of an improper posterior in
the above analysis seems remote.

7 Conclusions

This work derives two versions of Jeffreys priors for CAR models which provide
default (automatic) Bayesian analyses for these models, and obtains properties of
Bayesian inferences based on them. It was found that inferences based on the Jeffreys
priors and the uniform prior have similar frequentist properties under most scenarios,
except when the mean of the observations is not constant or strong spatial association
is present. In this case, the independence Jeffreys prior displays superior performance.
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So this prior is the one I recommend, but note that the uniform prior is almost as good
and may be preferred by some due to its simplicity. It was also found that inferences
based on ML have inferior frequentist properties than inferences based on any of the
three default priors.

Modeling of non-Gaussian (e.g., count) spatial data is often based on hierarchi-
cal models where CAR models are used to describe (unobserved) latent processes
or spatially varying random effects. In this case, choice of prior for the CAR model
parameters has been done more or less ad hoc. A tentative possibility to deal with this
issue is to use one of the default priors proposed here, having in mind that this is not a
Jeffreys prior in the hierarchical model context but a reasonably proxy at best. For this
to be feasible, further research is needed to establish propriety of the relevant posterior
distribution in the hierarchical model context and to determine inferential properties
of procedures based on such default prior.

Appendix

Proof of Lemma 1 Let X ′ X = V T V ′ be the spectral decomposition of X ′ X , with V
orthogonal, V ′V = V V ′ = Ip, and T diagonal with positive diagonal elements (since
X ′ X is positive definite). Then

T − 1
2 V ′(X ′�−1

φ X)V T − 1
2 = X ′

o�
−1
φ Xo = Ip − φX ′

oW Xo,

where

Xo = X V T − 1
2 . (17)

Then it holds that X ′
o Xo = Ip,

|X ′
o�

−1
φ Xo| = |V T − 1

2 |2|X ′�−1
φ X |, (18)

and rank(X ′
o�

−1
φ Xo) = rank(X ′�−1

φ X) since |V T − 1
2 | �= 0. The cases when u1 ∈

C(X) and when u1 /∈ C(X) are now considered separately.
Suppose u1 ∈ C(X). In this case, u1 = Xoa for some a �= 0 (since C(X) = C(Xo)),

and then

(X ′
o�

−1
φ Xo)a = X ′

o(In − φW )u1 = (1 − φλ1)X ′
ou1 = (1 − φλ1)a,

so (1 − φλ1) is an eigenvalue of X ′
o�

−1
φ Xo. Now, for any c ∈ R

p, with ||c|| = 1, and

φ ∈ (0, λ−1
1 )

c′ X ′
o�

−1
φ Xoc = 1 − φc′

oW co ≥ 1 − φλ1, with co = Xoc,
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where the inequality holds by the extremal property of Rayleigh quotient (Schott 2005,
p. 105)

λ1 = max||c||=1
c′W c = u′

1W u1.

Hence 1 − φλ1 is the smallest eigenvalue of X ′
o�

−1
φ Xo. In addition, 1 − φλ1 must be

simple. Otherwise there would exist at least two orthonormal eigenvectors associated
with 1 − φλ1, say c1 and c2, satisfying

1 − φλ1 = c′
i (X ′

o�
−1
φ Xo)ci = 1 − φc′

oi W coi , with coi = Xoci , i = 1, 2,

which implies that λ1 = c′
oi W coi , so co1 and co2 are two orthonormal eigenvectors of

W associated with λ1; but this contradicts the assumption that λ1 is a simple eigen-
value of W . Finally, if r1(φ) ≥ · · · ≥ rp−1(φ) > 1 − φλ1 > 0 are the eigenvalues of
X ′

o�
−1
φ Xo, it follows from (18) that for all φ ∈ (0, λ−1

1 )

|X ′�−1
φ X | ∝ |X ′

o�
−1
φ Xo|

= (1 − φλ1)

p−1∏
i=1

vi (φ)

= O(1 − φλ1) as φ → λ−1
1 . (19)

Suppose now u1 /∈ C(X). In this case it must holds that X ′
o�

−1
λ−1

1
Xo is nonsingu-

lar. Otherwise, if X ′
o�

−1
λ−1

1
Xo were singular, there is b �= 0 with ||b|| = 1 for which

X ′
oW Xob = λ1b, so λ1 is an eigenvalue of X ′

oW Xo with b as its associated eigen-
vector. Then

λ1 = b′ X ′
oW Xob = b′

oW bo, with bo = Xob.

By the extremal property of Rayleigh quotient bo is also an eigenvector of W associ-
ated with the eigenvalue λ1. Since λ1 is simple, there is t �= 0 for which u1 = tbo =
X (tV T − 1

2 b), with tV T − 1
2 b �= 0, implying that u1 ∈ C(X); but this is a contradiction.

From (18) it follows that X ′�−1
λ−1

1
X is non-singular and since |X ′�−1

φ X | is a continuous

function of φ, |X ′�−1
φ X |− 1

2 = O(1) as φ → λ−1
1 . This and (19) prove (6).

It is now shown that for every η ∈ �, S2
λ−1

1
> 0 with probability 1. Let C(X, u1)

denote the subspace of R
n spanned by the columns of X and u1. If y ∈ C(X, u1), then

y = Xa + tu1 for some a ∈ R
p and t ∈ R, and hence X ′�−1

λ−1
1

Xa = X ′�−1
λ−1

1
y. This

means that a is a solution to the (generalized) normal equations, so Xa = X β̂
λ−1

1
and

y − X β̂
λ−1

1
= tu1, which implies that S2

λ−1
1

= 0.
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Suppose now that S2
λ−1

1
= 0. Since 0 is the smallest eigenvalue of �−1

λ−1
1

, and is

simple with u1 as its associated eigenvector, it follows by the extremal property of
the Rayleigh quotient that y − X β̂

λ−1
1

= tu1 for some t ∈ R, which implies that

y ∈ C(X, u1). Since n ≥ p + 2, C(X, u1) is a proper subspace of R
n and because Y

has an absolutely continuous distribution

P(S2
λ−1

1
> 0 | η) = P(Y /∈ C(X, u1) | η) = 1 for every η ∈ �.

Since S2
φ is a continuous function of φ, it holds with probability 1 that S2

φ = O(1) as

φ → λ−1
1 .

The proofs of the results as φ → λ−1
n follow along the same lines. 
�

Proof of Corollary 1 (i) From Lemma 2 follows that, for i = 1 or n, lim
φ→λ−1

i

π J1(φ) = ∞. Also

∫ λ−1
1

0
π J1(φ)dφ ∝

∫ λ−1
1

0
(1 − φλ1)

−1h(φ)dφ = λ−1
1

∫ 1

0
t−1h̃(t)dt,

where the last identity is obtained by the change of variable t = 1 − φλ1, h(φ) is an
(unspecified) function that is continuous on (0, λ−1

1 ) and O(1) as φ → λ−1
1 , and h̃(t)

is an (unspecified) function that is continuous on (0, 1) and O(1) as t → 0; a similar
identity holds for

∫ 0
λ−1

n
π J1(φ)dφ. The result now follows since t−1 is not integrable

around 0.
(ii) From Proposition 1 and Lemma 2, and noting that π J1(φ|y) ∝ L I (φ; y)π J1(φ)

∫ λ−1
1

0
π J1(φ | y)dφ ∝

⎧⎨
⎩
∫ λ−1

1
0 (1 − φλ1)

−1h(φ)dφ if u1 ∈ C(X)∫ λ−1
1

0 (1 − φλ1)
− 1

2 h(φ)dφ if u1 /∈ C(X)

=
{

λ−1
1

∫ 1
0 t−1h̃(t)dt if u1 ∈ C(X)

λ−1
1

∫ 1
0 t− 1

2 h̃(t)dt if u1 /∈ C(X)
, (20)

where h(φ) and h̃(t) are as in (i); a similar identity holds for
∫ 0
λ−1

n
π J1(φ | y)dφ with

λ1 and u1 replaced by, respectively, λn and un . The result then follows by the same
argument as in (i).
(iii) By a similar calculation as in (i) and (ii) and using the binomial expansion of
(1 − t)k

∫ λ−1
1

0
φkπ J1(φ | y)dφ ∝

⎧⎨
⎩

λ
−(k+1)
1

∫ 1
0

(
t−1 +∑k−1

j=1(−1)k− j
(k

j

)
tk−1− j

)
h̃(t)dt if u1 ∈ C(X)

λ
−(k+1)
1

∫ 1
0

(
t− 1

2 +∑k−1
j=1(−1)k− j

(k
j

)
tk− 1

2 − j
)

h̃(t)dt if u1 /∈ C(X)
,

123



132 V. De Oliveira

where h̃(t) is as in (i); a similar identity holds for
∫ 0
λ−1

n
φkπ J1(φ | y)dφ with λ1 and

u1 replaced by, respectively, λn and un . The result follows since t−1 is not integrable

on (0, 1), while t− 1
2 , tk−1+ j and tk− 1

2 + j are, j = 0, 1, . . . , k − 1.
(iv) Note that E{(σ 2)k |y} exists if E{(σ 2)k |φ, y} exists and is integrable with respect
to π J1(φ|y). A standard calculation shows that for any prior in (3) with a = 1,

π J1(σ 2|φ, y) = IG
(

n−p
2 , 1

2 S2
φ

)
, where IG(a, b) denotes the inverse gamma distribu-

tion with mean b/(a−1). Again by direct calculation, E{(σ 2)k | φ, y} = c(S2
φ)k < ∞,

provided n ≥ p + 2k + 1, where c > 0 does not depend on (φ, y). The result then
follows from (7), (20) and the relation analogous to (20) for

∫ 0
λ−1

n
π J1(φ | y)dφ.

(v) The posterior moment E{βk
j | y} exists if E{βk

j | φ, y} exists and is integrable with
respect to π(φ | y). A standard calculation shows that for any prior in (3) with a = 1

(β|φ, y) ∼ tp

(
β̂φ,

S2
φ

n − p
(X ′�−1

φ X)−1, n − p

)
,

a p-variate t distribution with location vector β̂φ , scale matrix
S2
φ

n−p (X ′�−1
φ X)−1 and

n − p degrees of freedom. So for any j = 1, . . . , p it holds that

(
β j − (β̂φ) j |φ, y

)
d=
(

S2
φ

n − p
(X ′�−1

φ X)−1
j j

)1/2

T,

where (β̂φ) j is the j th component of β̂φ , (X ′�−1
φ X)−1

j j is the j th diagonal entry of

(X ′�−1
φ X)−1 and T ∼ t1(0, 1, n − p). (a standard t distribution with n − p degrees

of freedom.) Now E{βk
j | φ, y} exists if and only if E{(β j − (β̂φ) j )

k | φ, y} exists, in
which case

E{(β j − (β̂φ) j )
k |φ, y} =

(
S2
φ

n − p
(X ′�−1

φ X)−1
j j

)k/2

E{T k}.

Also E{T k} exists if and only if n − p ≥ k + 1, in which case

E{T k} =
{

0 if k is odd
ck if k is even

, with ck =
�
( k+1

2

)
�
(

n−p−k
2

)

�
( 1

2

)
�
( n−p

2

) (n − p)k/2.

Hence for k odd it is clear that E{(β j − (β̂φ) j )
k |y} exists and equals zero. For k

even only the case when u1 /∈ C(X) needs to be considered since it is in this case
that the posterior of the model parameters is proper. It was shown in the proof of
Lemma 1 that in this case X ′

o�
−1
λ1

Xo is nonsingular, and so is X ′�−1
λ1

X [see (18)]. Then

(X ′�−1
φ X)−1 = O(1) as φ → λ−1

1 . From this, (7), Proposition 1 and Lemma 2 follows

that E{(β j −(β̂φ) j )
k | φ, y}π(φ | y) is continuous on (0, λ−1

1 ) and O
(
(1 − φλ1)

−1/2
)

as φ → λ−1
1 , and so integrable on (0, λ−1

1 ). The integrability on (λ−1
n , 0) follows along

the same lines. 
�
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