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Abstract The wavelet variance provides a scale-based decomposition of the process
variance for a time series or a random field and has been used to analyze various multi-
scale processes. Examples of such processes include atmospheric pressure, deviations
in time as kept by atomic clocks, soil properties in agricultural plots, snow fields in the
polar regions and brightness temperature maps of South Pacific clouds. In practice,
data collected in the form of a time series or a random field often suffer from contam-
ination that is unrelated to the process of interest. This paper introduces a scale-based
contamination model and describes robust estimation of the wavelet variance that can
guard against such contamination. A new M-estimation procedure that works for both
time series and random fields is proposed, and its large sample theory is deduced. As
an example, the robust procedure is applied to cloud data obtained from a satellite.

Keywords Hermite expansion · Multiscale processes · Pockets of open cells ·
Robust estimation · Time series analysis

1 Introduction

Wavelets decompose a stochastic process (e.g., a time series or a random field) into
sub-processes, each one of which is associated with a particular scale. A wavelet
variance is the variance of a sub-process at a given scale and quantifies the amount of
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28 D. Mondal, D. B. Percival

variation present at that particular scale. Wavelet variances at different scales enable
us to perform an analysis of variance (see Percival and Walden 2000 and the references
therein). This variance is of interest in numerous geophysical and related applications,
where the overall observed process is an ensemble of sub-processes that operate at
different scales. In addition, the wavelet variance serves as an exploratory tool to
study power law processes (Stoev and Taqqu 2003), detect inhomogeneity (Whitcher
et al. 2002), estimate spectral densities indirectly (Tsakiroglou and Walden 2002),
and handle processes that are locally stationary with time- and space-varying spectra
(Nason et al. 2000). Applications include the analysis of textures (Unser 1995), elec-
troencephalographic sleep state patterns of infants (Chiann and Morettin 1998), the
El Niño-southern oscillation (Torrence and Compo 1998), soil variations (Lark and
Webster 2001), solar coronal activity (Rybák and Dorotovič 2002), the relationship
between rainfall and runoff (Labat et al. 2001), ocean surface waves (Massel 2001),
surface albedo and temperature in desert grassland (Pelgrum et al. 2000), heart rate
variability (Pichot et al. 1999) and the stability of the time kept by atomic clocks
(Greenhall et al. 1999).

In practice, however, data collected in the form of a time series or random field
often suffer from contamination, which can occur in various ways. For example, the
satellite cloud data we consider in Sect. 8 can be contaminated in at least three ways:
at the satellite itself, during transmission of the signal through the atmosphere, and
due to the presence of aberrant cloud types in a region where a single cloud type is
dominant. A moderate amount of contamination often has a very adverse effect on
conventional estimates of the wavelet variance. In classical statistics, it is common to
handle contamination via removing questionable data points and then applying con-
ventional methods; however, locating contamination in a time series or in a random
field is often complicated because of dependence in the data. A better approach is
to consider a contamination model, and then derive a robust procedure that protects
against that model. In such situations, one hopes to measure robustness via influence
functions and to form estimates that reduce the effect of bias in an optimum way.
Several contamination models have been suggested in the time series literature. These
include pure replacement models, additive outliers, level shift models and innova-
tion outliers that hide themselves in the original time series. Chapter 8 of Maronna
et al. (2006) provides an excellent account of the theory and methods of robust time
series statistics based on these types of contamination models. However, robust non-
parametric estimates of second-order statistics based on these contaminated models
still present difficult problems. For example, Robinson (1986) observes that, under
both pure replacement and additive outlier models, autocovariances of the unobserved
uncontaminated process are not distinguishable from those of the observed contami-
nated process. Robinson’s critique extends to wavelet variances, making the estima-
tion and the inference of wavelet variances for contaminated data a difficult problem.
Moreover contamination can be quite complex when a time series or random field
is multiscale in nature. Different contamination processes can act on different scales
independently, but contamination from one scale can leak into another and be hard to
detect. A practical approach is to use the median of the squared wavelet coefficients
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M-estimation of wavelet variance 29

rather than their mean to estimate the wavelet variance. Stoev et al. (2006) touch on the
usefulness of median-type estimators to guard against contamination. In this paper, we
develop a full M-estimation theory for the wavelet variance and derive its large sam-
ple theory when the underlying process is Gaussian. Our approach treats the wavelet
variance as a scale parameter and offers protection mostly against scale-based multi-
plicative contamination (i.e., additive on the log of squared wavelet coefficients) that
acts independently at different scales. We will return to the discussion on robustness
in Sect. 9.

To illustrate our proposed methodology, let us consider the following example moti-
vated by vertical shear measurements in the ocean (see Sect. 7 for details). Such series
are subject to bursts of turbulence isolated in a select number of scales, but burst-
free segments are well modeled by a stationary process. Figure 1a shows a simulated
Gaussian series of length 4,096 from this stationary process. We compute its wavelet
coefficients for scales τ j = 2 j−1, j = 1, . . . , 9, and, following Percival (1995), form
95% confidence intervals (CIs) for the wavelet variance based upon averaging squared
coefficients for a given scale (left-most lines in Fig. 2 in the set of 4 lines jittered about
each of the 9 scales). We form an alternative estimator by taking the median of the
squared coefficients and correcting for bias as dictated by our theory (see Eq. (15)).
The second-from-left lines in each group of four show the 95% CIs based upon the
robust median-based estimates. We see good agreement with the mean-type estimates
at all scales. Next we contaminate the time series by introducing scale-based multipli-
cative noise, which is intended to simulate bursts of turbulence focused around scale τ3
(Fig. 1b). The second-from-right lines in Fig. 2 show the CIs for the wavelet variance
based upon this contaminated data and the usual mean-type estimator. Outliers sig-
nificantly change the wavelet variance estimates at small scales. Any inferences that
we might want to draw about the turbulent-free vertical shear process at small scales
would be materially influenced by the contamination. Finally the right-most lines in
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Fig. 1 Simulated ocean shear data. The top plot a is of the original simulated series, while the bottom plot
b shows the series after contamination
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Fig. 2 Confidence intervals (CIs) for the wavelet variance based upon mean- and median-type estimators
of the wavelet variance using simulated ocean shear data (Fig. 1a) and a contaminated version thereof
(Fig. 1b). CIs for nine scales τ j = 2 j−1, j = 1, . . . , 9, are displayed. For each scale there are four lines
jittered about the level j . From left to right, these show 95% CIs based upon the mean-type estimator with
uncontaminated data; median-type with uncontaminated; mean-type with contaminated; and median-type
with contaminated

Fig. 2 show CIs based upon our robust median-based estimator and the contaminated
series. The CIs are close to those for the uncontaminated series, making it possible
to draw inferences about the turbulent-free vertical shear process from the contami-
nated data. Our robust procedure thus works well when observed data are subjected
to scale-based multiplicative contamination of an underlying Gaussian process.

The remainder of the paper is organized as follows. Section 2 gives some back-
ground on the theoretical wavelet variance and its estimation for both time series and
random fields. Section 3 presents our theory for M-estimation of the wavelet variance,
with proof of the main result (Theorem 1) deferred to the Appendix. Due to use of a
logarithmic transform, our raw M-estimators are biased, so Sect. 4 discusses how to
correct for this bias. Section 5 considers how to construct CIs for the wavelet variance
based upon our M-estimators. Sections 6 and 7 discuss computer experiments that
investigate the efficacy of our proposed methodology, and Sect. 8 considers a substan-
tive application to two-dimensional cloud data. Section 9 concludes the paper with
some discussion.

2 Wavelet analysis of variance

2.1 Daubechies wavelet filter

Let {h1,0, . . . , h1,L−1} be a unit level Daubechies wavelet filter (Daubechies 1992,
Sect. 6.2) of width L = L1, which by definition satisfies three conditions:

∑
h2

1,l = 1
2 ,

∑
h1,l h1,l+2n = 0,
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M-estimation of wavelet variance 31

for all non-zero integers n, where h1,l = 0 for l < 0 and l ≥ L; and
∑

i l h1,l = 0
for i = 1, . . . , L/2. Let H1( f ) denote the transfer function (Fourier transform) of the
filter {h1,l}. The j th level wavelet filter {h j,l} is defined as the inverse discrete Fourier
transform (DFT) of

Hj ( f ) = H1(2
j−1 f )

j−2∏

l=0

ei2π2l f (L−1)H1(
1
2 − 2l f ). (1)

The width of this filter is given by L j = (2 j − 1)(L − 1)+ 1.

2.2 Wavelet variance for time series

Let {Xt , t ∈ Z} be an intrinsically stationary process of order d, where d is a non-nega-
tive integer; i.e., its dth order increments (1−B)d Xt are stationary, whereBXt = Xt−1.
Let SX denote the spectral density function (SDF) of the process. The j th level wavelet
coefficient process is then given by

W j,t =
L j −1∑

l=0

h j,l Xt−l ,

which corresponds to the changes on scale τ j = 2 j−1. The j th level wavelet variance
is defined as

ν2
j = var {W j,t }.

When L = 2, we have the Haar wavelet variance, for which the wavelet coefficients
at level j are proportional to the difference of simple averages of 2 j−1 consecutive
observations. For L > 2, the wavelet coefficients are contrasts between localized
weighted averages. When Xt is a stationary process with SDF SX , Percival (1995)
obtained the wavelet variance decomposition

var {Xt } =
∞∑

j=1

ν2
j (2)

as an alternative to the classical decomposition

var {Xt } =
∫ 1/2

−1/2
SX ( f ) d f.

The decomposition of var {Xt } offered by the wavelet variance complements that of the
SDF by focusing directly on scale-based variations, which are often more interpretable
and of more interest in the geosciences than frequency-based variations.
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32 D. Mondal, D. B. Percival

Given an observed time series that can be regarded as a realization of X0, . . . , X N−1
and assuming the sufficient condition L > 2d to ensure that {W j,t } has zero mean,
the usual unbiased estimator of ν2

j is given by

ν̂2
j = 1

M j

N−1∑

t=L j −1

W 2
j,t , (3)

where M j = N − L j + 1 > 0. See Percival (1995) and Percival and Walden (2000)
for large sample properties of this estimator and construction of CIs.

2.3 Wavelet variance for random fields

Let Xu,v , u, v = 0,±1,±2, . . . be a stationary Gaussian random field on the two-
dimensional integer lattice Z2 with SDF SX ( f, f ′). Its wavelet transform is defined by
filtering the random field using the four possible combinations of wavelet and scaling
filters along its rows and columns, yielding four types of coefficients, of which the
so-called wavelet–wavelet coefficients are of primary interest to us:

W j, j ′,u,v =
L j −1∑

l=0

L j ′−1∑

l ′=0

h j,l h j ′,l ′ Xu−l,v−l ′ .

The wavelet variance is defined in terms the variance of these coefficients:

ν2
j, j ′ = var {W j, j ′,u,v}.

If Xu,v is intrinsically stationary of order d, then SX ( f, f ′) has a pole of order d at
the origin and ν2

j, j ′ is well defined if L ≥ d. The wavelet variance decomposes the
process variance since

var {Xu,v} =
∞∑

j=1

∞∑

j ′=1

ν2
j, j ′ . (4)

This generalizes the result for time series stated in (2) and provides a scale-based analy-
sis of variance for random fields. When we have a realization of an intrinsically station-
ary random field Xu,v on a finite array {(u, v) : u = 0, . . . , N −1, v = 0, . . . ,M−1},
we can then estimate the wavelet variance by the unbiased estimator

ν̂2
j, j ′ = 1

N j M j ′

N−1∑

u=L j −1

M−1∑

v=L j ′−1

W 2
j, j ′,u,v, (5)

where N j = N − L j + 1 and M j ′ = M − L j ′ + 1. See Mondal and Percival (2009)
for statistical inference based on this type of estimator.
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3 M-estimation of wavelet variance

Let {Yi }, i ∈ L, be a zero-mean Gaussian process, and suppose we are interested in
estimating var {Yi } = E Y 2

i = ν2. Here the index i represents either time t or spatial
location (u, v), and hence L is an integer lattice, either Z or Z2. Typically {Yi } is either
the wavelet coefficient process {W j,t } or the wavelet–wavelet coefficients {W j, j ′,u,v}
for any fixed scale (or scale pair). In practice the simple mean-type estimators (3)
and (5) are vulnerable to data contamination, so we are interested in developing robust
estimators that guard against such contamination, yet still work well when Gaussianity
holds. Under our assumptions, ν2 is a scale parameter. A logarithmic transformation
converts it to a location parameter and allows use of M-estimation theory to formulate
a robust estimator. Accordingly, let

Qi = log Y 2
i .

Then {Qi } is a stationary process and, using Bartlett and Kendall (1946), we obtain

E Qi = log ν2 + ψ( 1
2 )+ log 2, var {Qi } = ψ ′( 1

2 ) = π2

2
,

where ψ and ψ ′ are the di- and tri-gamma functions. Let μ = log ν2 +ψ( 1
2 )+ log 2.

Then Qi can be written as

Qi = μ+ εi ,

where Eεi = 0 and var {εi } = π2/2.

Assumption 1 Let ϕ(x), x ∈ R, be a non-decreasing real-valued function of bounded
variation with ϕ(−∞) < 0 and ϕ(∞) > 0 such that

λ(x) = Eϕ(Qi − x)

is well defined, strictly decreasing on R and has a solution point μ0 such that

λ(μ0) = 0.

Moreover we assume ϕ is such that λ(x) is differentiable and λ′(x) is continuous
around μ0.

The relationship between the solution point μ0 and the location parameter μ is dis-
cussed in Sect. 4.

Because of the Gaussian assumption on {Yi }, the marginal distribution FQ of Qi

is that of the logarithm of a squared Gaussian random variable and hence is infinitely
differentiable. Integration by parts allows us to write

λ(x) = −
∫ ∞

−∞
FQ(x + y) dϕ(y),
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34 D. Mondal, D. B. Percival

and the first derivative of λ satisfies the relation

λ′(x) = −
∫

fQ(y + x) dϕ(y).

Given the form of FQ and the fact that ϕ is of bounded variation, it follows that λ′(x)
is bounded as well.

The corresponding M-estimator TN of the solution point μ0 based on observations
{Qi , i ∈ I} is defined by

TN = argmin

{∣∣∣∣∣
∑

i∈I
ϕ(Qi − x)

∣∣∣∣∣ : x ∈ R
}
.

The index set I is equal to {0, . . . , N − 1} for time series and is {(u, v) : u, v =
0, . . . , N − 1} for a random field (thus, when Yi represents W j,t , N stands for M j ).
In what follows, let B be the size of I.

Assumption 1 holds for various choices of ϕ, including

ϕI (x)= sign (x), ϕII(x)=2Pr(εi ≤ x)− 1, ϕIII(x) = p sign (x)1|x |>p + x1|x |≤p

for p > 0 and

ϕIV(x) =

⎧
⎪⎨

⎪⎩

a′ if x ≤ a,

ex − 1 if a < x ≤ b and

b′ if x > b

(see Eq. (3.9) of Thall 1979, for another choice). To better understand M-estimation,
consider an independent and identically distributed (IID) sample. Then TN correspond-
ing to ϕI is the same as the maximum likelihood estimator (MLE) for the location
parameter when the observations arise from a double exponential distribution. The
function ϕII corresponds to an MLE under logistic errors, whereas ϕIII corresponds
to an MLE under a distribution whose central part behaves like a Gaussian but whose
tail is like a double exponential. Similarly, for ϕIV, the estimator is an MLE under a
distribution whose central part behaves like the log of a chi-square distribution. The
choice ϕI gives rise to median-type estimators, which, when compared to mean-type
estimators, are less sensitive to data contamination. The choice ϕIII yields Huber’s ϕ
function for a location parameter, which maps extreme values of log Y 2

i to either ±p.
Similarly ϕIV is a Huberized mean of Y 2

i , which replaces extreme values of Y 2
i with

either a′ or b′. The median-type estimator ϕI is invariant to monotone transformation
of the data and can be regarded as limiting cases of the Huber-type estimators ϕIII and
ϕIV.

M-estimation under a non-IID set up has been considered by a large number of
authors (see, for example, Beran 1991; Koul and Surgailis 1997). Here we follow
the work of Koul and Surgailis (1997), which allows a very general class of weight
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M-estimation of wavelet variance 35

functions ϕ. The following central limit theorem (proven in the Appendix) provides
the basis for inference on the solution point μ0 using the estimator TN .

Theorem 1 Assume ϕ and λ satisfy Assumption 1, and {Yi } has a square integrable
SDF. Then B

1
2 (TN −μ0) is asymptotically normal with mean zero and variance given

by Aϕ/[λ′
(μ0)]2, where

Aϕ =
∑

i∈L
cov{ϕ(Qi − μ0), ϕ(Q0 − μ0)}.

Theorem 1 is linked with influence functions and von Mises expansions. When ϕ is
smooth (twice continuously differentiable), for example, ϕ = ϕII, then

∑
i∈I ϕ(Qi −

TN ) = 0. We can then use a Taylor series expansion to deduce that

B
1
2 (TN − μ0) = B− 1

2
∑
ϕ(Qi − μ0)

B−1
∑
ϕ

′
(Qi − μ0)+ (TN − μ0)B−1

∑
ϕ

′′
(Qi − T ∗)

,

where T ∗ takes values between μ0 and TN . Consequently the central limit theorem
follows from that of B− 1

2
∑
ϕ(Qi −μ0) and by proving the consistency of TN . How-

ever, when ϕ is no longer smooth, e.g., ϕ = ϕI , we cannot make use of a Taylor series
expansion, so the general proof of Theorem 1 in the Appendix takes a substantially
different approach.

4 Correction of bias

The statistics TN is consistent for the solution point μ0, which is not necessarily the
same as the location parameter μ. We can obtain a robust estimator μ̂ of μ by adding
bias = μ− μ0 to the estimator TN , yielding

μ̂ = TN + bias .

This bias depends on the choice of the weight function ϕ and on the distribution func-
tion FQ . We can compute it analytically in some cases. To do so, we first determine
the function λ(x). Let Z , φ and 
 denote the standard Gaussian random variable and
its density and distribution functions. Then

λ(x) = Eϕ(Qi − x) = Eϕ(log Z2 + log ν2 − x).

Thus the choice of ϕ = ϕI yields

λI (x) = 3 − 4

(

e
x
2 −log ν

)
. (6)

Therefore, λI (μ0) = 0 implies

μ0 = 2 log ν + 2 log
[

−1( 3

4 )
]
. (7)
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and hence

biasI = μ− μ0 = ψ( 1
2 )+ log 2 − 2 log

[

−1( 3

4 )
]
. (8)

Next consider ϕ = ϕII. First we simplify ϕII as:

ϕII(x) = 4

(

e
x
2 + 1

2ψ(
1
2 )+ 1

2 log 2
)

− 3.

Therefore we obtain

λII(x) = 4Ca

(
elog ν− x

2 + 1
2ψ(

1
2 )+ 1

2 log 2
)

− 3, (9)

where Ca is the distribution function of a standard Cauchy random variable. Now
λII(μ0) = 0 implies

μ0 = 2 log ν + ψ( 1
2 )+ log 2 − 2 log

[
C−1

a ( 3
4 )

]
. (10)

and hence

biasII = μ− μ0 = 2 log
[
C−1

a ( 3
4 )

]
.

For ϕIII and ϕIV, there are no easy closed forms for λ(x); however, we can numer-
ically evaluate the bias correction in these cases.

5 Construction of confidence intervals

Given a consistent estimator of Aϕ and knowledge of λ′(μ0), we can use Theorem 1 to
construct an asymptotically correct CI forμ0 and hence forμ and ν2. Since Aϕ is equal
to the SDF of the stationary process {ϕ(Qi −μ0)} at zero frequency, we use a multita-
per spectral approach to estimate it (Serroukh et al. 2000). Let {γc,t , t = 0, . . . , N −1}
for c = 0, . . . ,C − 1 be the first C orthogonal Slepian tapers of length N and design
bandwidth parameter W = 4/N , where C is an odd integer. When dealing with a time
series, let K be the index set {0, . . . ,C − 1}; otherwise, for a random field, let it be
{(c, c′) : c, c′ = 0, . . . ,C − 1}. For k ∈ K, we define

Jk =
∑

i

βk,iϕ(Qi − TN ), (11)

where either βk,i = γc,t with i = t for a time series or βk,i = γc,uγc′,v with i = (u, v)
if we have a random field. Define

μ̃ =
∑

k Jkβk,.∑
k β

2
k,.

, where βk,. =
∑

i

βk,i .
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M-estimation of wavelet variance 37

We then estimate Aϕ by

Âϕ = 1

K

∑

k

(Jk − μ̃βk,.)
2, (12)

where K is the size of the index set K. Since μ0 is unknown, we use the consistent
estimator TN in its stead in Eq. (11). Thus the resulting multitaper estimate Âϕ is con-
sistent for Aϕ if the SDF of the process {ϕ(Qi − x)} at zero frequency is continuous
at x = μ0. The latter holds for a wide range of Gaussian processes {Yi } and for many
choices of ϕ. In particular, a sufficient condition is that the process {Yi } is ergodic, for
which TN is also strongly consistent. Following the recommendation of Serroukh et al.
(2000), we choose C = 5 so that the bandwidth of the resulting multitaper estimator
is approximately 7/N .

What remains is to compute λ′(μ0). For ϕ = ϕI , we use Eqs. (6) and (7) to obtain

λ
′
I (μ0) = −2φ

(
e
μ0
2 −log ν

)
e
μ0
2 −log ν = −2φ

(

−1( 3

4 )
)

−1( 3

4 ). (13)

Similarly for ϕ = ϕII, use of Eq. (9) gives

λ
′
II(μ0) = −2 ca

(
elog ν−μ0

2 + 1
2ψ(

1
2 )+ log 2

2

)
elog ν−μ0

2 + 1
2ψ(

1
2 )+ log 2

2 ,

where ca is the density function of Ca . By using Eq. (10), we can simplify the above
to

λ
′
II(μ0) = −2 ca

(
C−1

a ( 3
4 )

)
C−1

a ( 3
4 ). (14)

This has the same form as that of Eq. (13) with the Gaussian density function being
replaced by the Cauchy. For other choices of ϕ, namely, ϕ = ϕIII and ϕIV, there is no
convenient analytic form (although one might surmise that it will have a form similar
to Eqs. (13) and (14)), but we can evaluate λ

′
(μ0) numerically.

6 Efficiency study

Robust estimators guard against data contamination but are less efficient than estima-
tors designed to be efficient when underlying assumptions are correct. If a time series
or random field is truly Gaussian, a robust estimator can perform poorly compared
to the mean-type estimator. It is therefore of interest to study the asymptotic relative
efficiency (ARE) of the two estimators for a range of Gaussian processes. Theorem 1
yields, approximately,

eTN ∼ Log-normal

(
μ0,

σ 2

B

)
, where σ 2 = Aϕ

[λ′(μ0)]2 .
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38 D. Mondal, D. B. Percival

Since E exp(TN ) ≈ exp(μ0 + σ 2/(2B)), an approximately unbiased and robust esti-
mator of ν2 is given by

ν̃2 = exp

(
TN + bias −ψ( 1

2 )− log 2 − σ̂ 2

2B

)
, where σ̂ 2 = Âϕ

[λ′(μ0)]2 . (15)

Assuming that Âϕ is a consistent estimator of Aϕ , the ARE is equal to

ARE = lim
B→∞

var {ν̂2}
var {ν̃2} = A[λ′(μ0)]2

ν4 Aϕ
, (16)

where ν̂2 = B−1 ∑
i Y 2

i is the usual mean-type estimator, which is asymptotically
normal with mean ν2 and variance

A

B
= 2

B

∞∑

i=−∞
(cov{Y0,Yi })2

(Percival 1995). Using a Hermite expansion, we could write Aϕ in terms of the auto-
covariance sequence of {Yi }, but this expansion is not useful in practice for computing
exact AREs. We therefore resort to some simulation studies, specializing to the case
ϕ = ϕI , i.e., the median-type estimator.

In the first example, we simulate 10,000 AR(1) time series of length 1,024 for vari-
ous values of the unit lag correlation φ (Kay 1981). For each series we take Yt = W2,t ,
the level j = 2 Haar wavelet coefficients. We compute exact values of ν2, μ0 and
λ′(μ0), so we only need A/Aϕ to determine the ARE via (16). This ratio can be
approximated by var {∑ Y 2

t }/var {∑ϕI (log Y 2
t −μ0)}. Hence for each time series we

compute
∑

Yt and
∑
ϕI (log Y 2

t −μ0) and then compute their corresponding sample
variances using all 10,000 replications. Figure 3a plots the estimated ARE against
φ ∈ (−1, 1). The ARE is about 50% for all φ, is smallest when φ is close to −1 and
attains its peak value at about φ = 0.75, above which it then declines slightly. As
an additional check of our theory, we note that we obtain similar results if we just
compute the ratio of the Monte Carlo variances for ν̂2 and ν̃2 as suggested by Eq. (16).

For the second example, we consider a stationary fractionally differenced (FD)
process with long memory parameter δ ∈ (0, 1

2 ) (δ = 0 corresponding to white noise,
and the process becomes more highly correlated as δ approaches 1/2). For selected δ
we simulate 10,000 FD time series of length 1,024 (Craigmile 2003) and estimate the
ARE for median-type versus mean-type estimators as in the AR(1) example. Figure 3b
plots the ARE versus δ. We see that the ARE is close to 50% for all δ.

A simulation experiment with fractional Brownian surfaces (see, e.g., Zhu and Stein
2002) gives about 60–65% efficiency (details are omitted).
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Fig. 3 Approximate asymptotic relative efficiency of the median-type estimator with respect to the mean-
type estimator for a AR(1) processes with parameter φ and b FD processes with parameter δ

7 Simulation study

Here we report the results of a simulation study that demonstrates the efficacy of
our theory and that expands upon the example considered in Figs. 1 and 2. We con-
sider a Gaussian stationary process that models a burst-free portion of an actual ocean
shear series previously considered in Percival (1995) and Percival and Walden (2000).
The SDF for this model is piecewise power law (Percival and Walden 2000, p. 331).
We generate realizations of length N = 4,096 using the Gaussian spectral synthesis
method (Percival and Walden 2000, Sect. 7.8; the parameter M described there is set to
4N ). We compute the usual (mean-type) unbiased estimator ν̂2

j of the wavelet variance

for scales τ j = 2 j−1, j = 1, . . . , 9, using Eq. (3) with {h j,l} based upon the D(6)
wavelet filter, i.e., the Daubechies extremal phase filter of width L = 6 (Daubechies
1992, Table 6.1). We then compute an approximately unbiased median-type robust
estimator ν̃2

j using ϕ = ϕI . To do so, we let TN be the log of the median of the same

squared coefficients used to form ν̂2
j and then use it in Eq. (15), along with the bias

term given by Eq. (8), Âϕ by (12) and λ′(μ0) by (13). We next corrupt the simulated
time series by taking its orthonormal D(6) discrete wavelet transform (DWT) and mul-
tiplying selected level j = 3 coefficients by log Gaussian white noise exp(εt ) with
Eεt = 0 and var {εt } = 1.5. There are 512 DWT coefficients at level j = 3, of which
we select 51 at random for alteration. Additionally, we alter randomly chosen patches
of coefficients, where the patchiness is dictated by a realization of a stationary Markov
chain ηt with

Pr(ηt = 1|ηt−1 = 0) = 0.09, Pr(ηt = 0|ηt−1 = 1) = 0.01

and Pr(ηt = 0) = 0.1. Any level j = 3 coefficient with a corresponding ηt of
zero is multiplied by log Gaussian white noise with the same statistical properties as
before. The total number of altered coefficients on the average is approximately 97
allowing some coefficients to be altered twice. We take the inverse DWT to create
a contaminated version of the original simulated time series [note that, although we
have altered just the level j = 3 DWT coefficients, the wavelet coefficients that are
used to estimate the wavelet variance are based on the over-complete maximal overlap
DWT (Percival and Walden 2000), for which we can expect the contamination to leak
out into scales adjacent to τ3]. We then compute the mean- and median-type wavelet
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variance estimators. Finally we repeat this entire process over again for 1,000 different
realizations.

Tables 1 and 2 summarize the results of our simulation study. Table 1 concerns
just the uncontaminated series. The second column shows the average of the 1,000
estimates of ν̂2

j . The third column shows the ratio of the average of the median-type

estimates ν̃2
j to the average of the mean-type estimates ν̂2

j . With the exception of the
largest scale τ9, these ratios are very close to unity, which indicates that the mean- and
median-type estimates match up quite well. The poorer agreement at scale τ9 can be
attributed to a downward bias in the estimator Âϕ due to a sparsity of relevant data at
that scale (if we were to replace Âϕ in (15) with its actual value, the modified version
of ν̃2

9 would agree well with ν̂2
9 ). The fourth and fifth columns give the sample standard

deviations (SDs) for the 1,000 estimates of, respectively, ν̂2
j and ν̃2

j . The final column
gives the estimated relative efficiency of the median-type estimator to the mean-type
estimator. It is interesting that the efficiency is markedly smaller for scale τ1 than for
scales τ2 to τ8. The small efficiency for scale τ9 can again be attributed to lack of

Table 1 Summary of wavelet variance estimates of uncontaminated simulated ocean shear data

j Mean {ν̂2
j } ν̃2

j /ν̂
2
j SD {ν̂2

j } SD {ν̃2
j } Relative efficiency

(%)

1 0.000585 1.00 0.000015 0.000022 48.1

2 0.000904 1.00 0.000031 0.000041 57.7

3 0.001743 1.00 0.000080 0.000102 60.7

4 0.007150 1.00 0.000550 0.000693 63.0

5 0.040047 1.00 0.004489 0.005638 63.4

6 0.214502 1.01 0.034153 0.042587 64.3

7 0.858346 1.01 0.216022 0.269830 64.1

8 1.197886 1.03 0.422244 0.547121 59.6

9 0.641284 1.27 0.367127 0.567690 41.8

Table 2 Summary of wavelet variance estimates of contaminated ocean shear data

j ν̂2
C, j /ν̂

2
j ν̃2

C, j /ν̂
2
j SD {ν̂2

C, j } SD {ν̃2
C, j } RMSE {ν̂2

C, j } RMSE {ν̃2
C, j }

1 12.35 1.05 0.160084 0.000028 0.160142 0.000042

2 62.68 1.12 1.366784 0.000065 1.367238 0.000130

3 72.02 1.13 3.046282 0.000157 3.047273 0.000278

4 4.98 1.07 0.693477 0.000743 0.693714 0.000885

5 1.04 1.01 0.035961 0.005404 0.035981 0.005413

6 1.01 1.00 0.033752 0.043243 0.033762 0.043225

7 1.00 1.01 0.220646 0.274201 0.220536 0.274209

8 0.97 0.99 0.385875 0.504024 0.387926 0.503808

9 1.02 1.32 0.391146 0.668527 0.391120 0.698292
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sufficient data relevant to this scale (if we increase the sample size to N = 4 × 4,096,
the efficiency increases back up to above 60%).

Table 2 shows results involving the contaminated series, where ν̂2
C, j and ν̃2

C, j denote

ν̂2
j and ν̃2

j when applied to the contaminated series. The second column shows the ratio

of the average of the mean-type estimates ν̂2
C, j for the contaminated series to a similar

average for the uncontaminated series, while the third column shows a similar ratio,
but now involving the average of the median-type estimates ν̃2

C, j for the contaminated
series. Contamination has a very adverse effect on the mean-type wavelet variance
estimates at small scales (τ1–τ4), whereas the median-type estimates are far more
resistance to contamination. Using the latter, we can draw inferences close to those
we made from the uncontaminated data. Note that the contamination has little effect
on the mean- or median-type estimates at scales τ5 and above (the relatively poor per-
formance of ν̃2

C,9 can again be attributed to bias in the estimator Âϕ). The remaining
columns in the table show the sample SDs and root mean-square errors (RMSEs) for
the 1,000 estimates of ν̂2

C, j and ν̃2
C, j . The RMSEs suggest that the robust estimator

performs better up to scale τ4, beyond which it is better to switch over to the mean-type
estimator.

The time series that we selected from amongst the 1,000 series to show in Fig. 1 is
typical in the sense that its level j = 3 actual RMSE for the contaminated mean-type
estimate is closest to the sample RMSE for the 1,000 such estimates. The CIs based
upon this series which are displayed in Fig. 2 are thus also typical of what we can
expect to get. Note that the CIs for ν2

9 based upon the median-type estimates are mark-
edly smaller than those based upon the mean-type estimates, which is not the case for
scales τ1–τ8. This anomaly can again be attributed to bias in the estimator Âϕ due to
lack of sufficient data at that scale.

8 Application to cloud data

Figure 4 shows the pre-processed brightness temperature image of a cloud field over
the southeast Pacific Ocean obtained on 17 October 2001 as part of the East Pacific
Investigation of Climate (EPIC) field experiment (Bretherton et al. 2004). Stratocu-
mulus cloud fields in that part of the world tend to be homogenous except for pockets
of seemingly cloud-free air. These pockets of open cells (POCs) are distinct from
broken clouds, are coupled to the development of marine rainfall and are character-
ized by low-aerosol air mass (Stevens et al. 2005). The four squares in Fig. 4 indicate
regions with four different types of clouds. Region (a) contains POCs; (b) consists
of uniform stratus clouds and thus has different characteristics than the POC region;
(c) has broken clouds; and (d) has clouds that are forming a POC.

Satellite cloud data are often marked by contamination from various sources, but
the one of interest to us here is the presence of aberrant cloud types in a region where a
single cloud type is dominant. The four regions of focus in Fig. 4 all have a dominant
cloud type, but they are homogeneous to varying degrees, with regions (a) and (b)
being visually more so than (c) and (d). It is thus natural to resort to median-type esti-
mators that are robust and effective in extracting the characteristics of the dominant
cloud type.
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Fig. 5 Log of wavelet variances at diagonal scales indexed by j = 1, 2, 3 and 4 for four cloud regions. The
gray and black squares show, respectively, the mean-type and robust median-type estimates. The vertical
lines bisecting the squares depict 95% CIs. a For the POC region, b for uniform clouds, c for broken clouds
and d for a forming POC region

Figure 5 shows conventional mean-type (gray squares) and robust median-type
(black) wavelet variance estimates and their 95% CIs (lines intersecting squares ver-
tically) for four diagonal scales (i.e., j ′ = j) indexed by j = 1, 2, 3 and 4. Plot (a)
is for the POC region. At the three smallest scales (τ1–τ3) the median-type estimates
take somewhat lower values than those for the mean-type estimates, with the largest
discrepancy occurring at scale τ1. While this pattern is consistent with this region
being contaminated to some degree by cloud types other than POCs, the fact that the
mean- and median-type estimates are comparable to within the sampling variability
indicated by the associated overlapping CIs suggests that the POC region is largely
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unaffected by other cloud types. Plot (b) is for the uniform stratus clouds. Again the
mean- and median-type wavelet variance estimates and the associated CIs suggest
that this region is largely homogenous; however, unlike the POC region, the CI based
upon median-type estimate at scale τ1 is markedly wider than the one based upon the
mean-type estimate, which leads to the speculation that the noise characteristics of
the two regions are different. Plots (c) and (d) show the results for the regions with
broken clouds and POC formation. At scales τ1 and τ2, the robust estimates of wave-
let variances for the broken clouds are almost an order of magnitude lower than the
conventional estimates, but also have much larger CIs. Broken clouds are mixtures of
various clouds, so the median-type estimates should pick out the characteristics from
the dominant cloud type; however, a larger fraction of other cloud types produces
bigger CIs. The robust estimates of wavelet variance for the region of POC forma-
tion are again much smaller than for the conventional estimates, evidently because of
the presence of other cloud types; however, unlike the broken clouds region, the CIs
based upon the robust procedure are smaller in this region, indicating that the fraction
of other clouds present here is smaller than the fraction in the broken clouds region.

One potential use for the wavelet variance in this application is to define features
that can be used to classify cloud regions on other images. The wavelet variance curve
for a POC region is uniquely identified by a monotonic decrease across scales τ1–τ4,
while an overall low level is indicative of uniform clouds. In both cases, the mean- and
median-type estimates are comparable. In contrast, these two estimates are markedly
different for the broken clouds region and the region of POC formation, with large
uncertainty in the median-based estimate being a potential identifier for the broken
clouds region. More research is needed to determine if these patterns persist enough
across other images to serve as usual features for classification.

9 Discussion

The subject of robustness in statistics has been around for more than a quarter of a
century, but the usefulness of robust estimators in practice has been the subject of
some controversy; e.g., Stigler (1977) questions the usefulness of the median as an
estimator of the location parameter for real data. We have seen in Sect. 8 that mean-
and median-type estimates of the wavelet variance provide different answers at cer-
tain scales for inhomogeneous cloud regions. The robust estimates arguably allow us
to pick out the characteristics of the dominant cloud type better, thus providing an
argument for the usefulness of median-type estimates.

While a number of different contamination models has been entertained for time
series data in the literature, we have introduced a new model based upon the idea
of scale-based multiplicative contamination. This model is based on the supposition
that contamination can occur and affect data at certain scales. Our computer experi-
ments indicate that, even if contamination is present at some small scales, the larger
scales will not be influenced much and should have wavelet coefficients that are close
to Gaussian. Table 2 shows that the mean-type estimators at larger scales produce
smaller mean square error in comparison to robust median-type estimators. A step
forward would be to identify the contaminated scales and devise a hybrid scheme
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whereby we use the robust estimator for scales at which data are affected by contami-
nation, and then switch over to the mean-type estimator at other scales. This strategy is
used in certain wavelet shrinkage problems involving non-Gaussian data (Gao 1997).
A question for future research is how to identify the scales at which to switch over in
practice.

The wavelet variance provides a simple and useful estimator of the integral of
the SDF over octave bands. In particular, the Blackman and Tukey (1958, Sect. 18)
pilot spectra coincide with Haar wavelet variances. Recently Tsakiroglou and Walden
(2002) extended the pilot spectra of Blackman and Tukey by utilizing the (maximum
overlap) discrete wavelet packet transform. The result is an SDF estimator that is com-
petitive with existing estimators. In the same vein, our proposed methodology can be
extended to handle wavelet packet transforms, thus providing a robust SDF estimator
in the style of Tsakiroglou and Walden (2002).

In practical applications, the Huber function φ = φIV is of considerable interest
because exp(TN ) gives rise to the median-type estimator when −a = b = 0 with
−a′ = b′ = 1 and to the mean-type estimator when −a = b = ∞. With a′ and b′
set appropriately, other values of −a = b = h can the thought of as a compromise
between the robust and the conventional estimation procedures. It is thus of interest
to set h so that the Huberized estimator has a certain ARE as given in (16). Following
Koul and Surgailis (1997), we could obtain an expression for the ARE via the Hermite
expansion and then try to find an h that achieves the required efficiency. This would,
however, require knowledge of the autocovariance sequence of the underlying pro-
cess. A better strategy is to estimate the ARE in (16) by a non-parametric (multitaper)
estimator for any given h and then solve an optimization problem on a finite grid for
a range of values of h.

Although not considered in the present paper, wavelet-based analysis of variance
can be applied to multivariate processes; for example, Whitcher et al. (2000) dis-
cuss wavelet covariance analysis of two time series. Wavelet variances and covar-
iances from multiple time series can be used to form a wavelet dispersion matrix,
which is useful for studying scale-based correlations and can lead to scale-based ver-
sions of clustering, classification and principle component analysis. A robust estimator
of this dispersion matrix becomes of interest when multivariate data (time series or
random fields) are subject to contamination. Following the discussion of Maronna
et al. (2006, p. 205), the methodology we have described can be adapted to form
robust pairwise estimators of wavelet variances and covariances. As is true in the
univariate case, these robust estimators are asymptotically normal, which provides a
basis for drawing inferences; however, for finite sample sizes, these estimators might
not yield a dispersion matrix that is non-negative definite (even though asymptotically
they will). There are several alternative approaches to devising robust estimators of
the wavelet dispersion matrix, including M-estimators, S-estimators, Stahel–Donoho
estimators, minimum covariance determinant estimators, and orthogonalized Gnand-
esikan–Kettenring estimators (for details, see Maronna 1976; Tyler 1987; Croux and
Haesbroeck 2000; chapter 6 of Maronna et al. 2006 and the references therein). A
study of the strengths and weaknesses of all these estimators is a subject for future
research.
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Appendix: Proof of Theorem 1

We denote by {Pn, n = 0, 1, . . .} the sequence of Hermite polynomials. Let φ be the
density function for a standard Gaussian random variable Z . For a function P with∫ ∞
−∞ P(x)φ(x) dx < ∞, we write the Hermite expansion as

P(x) =
∞∑

n=0

cn Pn(x), where cn =
∫ ∞

−∞
P(x)Pn(x)φ(x) dx . (17)

The function P(x) is said to have Hermite rank � if in the expansion (17) we have

c0 = c1 = · · · = c�−1 = 0, c� �= 0.

Prior to proving the theorem, we need to prove the following six lemmas.

Lemma 1 The following functions have Hermite rank 2.

(i) P(x) = x2 − 1
(ii) P(x) = log(x2)− ∫

log(x2)φ(x) dx
(iii) P(x) = 1(log x2≤y) − ∫

1(log x2≤y)φ(x) dx, y ∈ R
(iv) P(x) = ϕ(log x2 − y)− ∫

ϕ(log x2 − y)φ(x) dx, y ∈ R.

Proof of Lemma 1. Recalling that P0(x) = 1, P1(x) = x and P2(x) = x2 − 1,
note that each P(x) is an even function such that

∫
P(x)φ(x) dx = 0, implying that

c0 = c1 = 0, whereas
∫

P(x)(x2 − 1)φ(x) dx �= 0. �
Lemma 2 If P is any of the functions in Lemma 1 and if {Yi } has a square integrable
spectral density, then the autocovariances sP,k of the random process {P(Yi )} satisfy

σ 2
P =

∑

k

sP,k > 0. (18)

Proof of Lemma 2. Since P is even, we can use the Hermite expansion to write

P(Yi ) =
∑

c2m P2m(Yi ).

The SDF of {P(Yi )} is given by

SP ( f ) =
∑

c2
2m(2m)!S(∗2m)

Y ( f )

(see Hannan 1970, p. 83), where S(∗2m)
Y is 2m-fold convolution of SY . Since S(∗2m)

Y
is strictly positive at the origin and there exists one m such that c2m �= 0, we see that
σ 2

P = SP (0) is strictly positive, and hence the result follows. �
Lemma 3 If P is any of the functions in Lemma 1 and if {Yi } has a square integrable
SDF, then, as N → ∞, B−1 ∑

i∈I P(Yi ) converges in distribution to σP Z, where σ 2
P

is as in Eq. (18).
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Proof of Lemma 3. This follows directly from Lemmas 1, 2 and Theorem 2 of Breuer
and Major (1983). �

Lemma 4 Let�N (x) = B−1 ∑
ϕ(Qi − x) and TN be defined as earlier. Then TN −

μ0 = oP (1) and �N (TN ) = OP (B−1).

Proof of Lemma 4. Let FQ,N be the empirical distribution function of {Qi , i ∈ I}.
As Qi �= Q j , i �= j a.s. (almost surely), the jumps of the empirical distribution
FQ,N are such that �FQ,N (x) = FQ,N (x) − FQ,N (x−) ≤ B−1 a.s., and therefore
��N (x) = O(B−1) a.s.; indeed, a.s.

|��N (x)| ≤
∫

|�FQ,N (y + x)||dϕ(y)| ≤ |ϕ|/B,

where |ϕ| is the variation of ϕ. Now since ϕ(−∞) < 0 and ϕ(∞) > 0, we have that
�N (−∞) > 0 and �N (∞) < 0. Since �N (x) is non-increasing, the graph of �N

crosses the x-axis in a neighborhood of 0 at some point TN with �N (TN +) ≤ 0 and
�N (TN −) ≥ 0 and hence |�N (TN +)| + |�N (TN −)| = |�N (TN −)−�N (TN +)| ≤
|ϕ|/B. Hence, for all N , we have

|�N (TN )| ≤ |ϕ|/B a.s. (19)

We now prove consistency of TN . Let ε > 0. Since �N (x) is non-increasing, we note
that

Pr(TN < μ0 + ε) > Pr(�N (TN ) > �N (μ0 + ε)).

By Eq. (19), it then follows that

Pr(�N (TN ) > �N (μ0 + ε)) > Pr(|ϕ|/B > �N (μ0 + ε)).

However, by Lemma 3, �N (μ0 + ε) converges in probability to λ(μ0 + ε), which is
strictly less than zero. Thus Pr(|ϕ|/B > �N (μ0 + ε)) converges to one. Hence

Pr(TN < μ0 + ε) → 1.

A similar argument implies that Pr(TN > μ0 − ε) converges to one, from which the
consistency of TN follows. �

Lemma 5 For y ≥ 0 we have

BE

[∫
{ϕ(x − y)− ϕ(x)} d{FQ,N (x)− FQ(x)}

]2

≤ constant y.
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Proof of Lemma 5. Consider the Hermite expansion of P(Yi ) = 1log Y 2
i ≤x − FQ(x),

namely,

1log Y 2
i ≤x − FQ(x) =

∑

m

a2m(x)P2m(Yi ).

Lemma 1 says that P has Hermite rank 2. For x ≤ y we define FQ(x, y) = FQ(y)−
FQ(x), a2m(x, y) = a2m(y)− a2m(x) and FQ,N (x, y) = FQ,N (y)− FQ,N (y). Then
we can write

1x≤log Y 2
i ≤y − FQ(x, y) =

∑

m

a2m(x, y)P2m(Yi ).

It then follows from the orthogonality of the Hermite polynomials that

∑
a2

2m(2m)!s2m
Y,0 = E {1x≤log Y 2

i ≤y − FQ(x, y)}2 ≤ FQ(x, y). (20)

Now

E

[
∑

i∈I
{1x≤log Y 2

i ≤y − FQ(x, y)}
]2

= var

{
∑

m

a2m(x, y)
∑

i

P2m(Yi )

}2

=
∑

m

∑

m′
a2m(x, y)a2m′(x, y)

∑

i

∑

i ′
cov(P2m(Yi ), P2m′(Yi ′)).

However, it follows from Hannan (1970, p. 117) that cov(P2m(Yi ), P2m′(Yi ′)) = 0 for
m �= m′ and cov(P2m(Yi ), P2m(Yi ′)) = s2m

Y,i−i ′ . Therefore,

E

[
∑

i∈I
{1x≤log Y 2

i ≤y − FQ(x, y)}
]2

=
∑

m

a2
2m(x, y)(2m)!

∑

i

∑

i ′
s2m

Y,i−i ′ .

Let {rY,k = sY,k/sY,0, k ∈ L} be the autocorrelation sequence of {Yi }. Then, by
Eq. (20), we obtain

∑
a2

2m(x, y)(2m)!
∑ ∑

s2m
Y,i−i ′ ≤ FQ(x, y)

∑

i

∑

i ′
r2

Y,i−i ′ .

Hence

BE
{

FQ,N (x, x + y)−FQ(x, x + y)
}2 = B−1E

[
∑

i∈I
{1x≤log Y 2

i ≤y − FQ(x, y)}
]2

≤ FQ(x, y)B−1
∑

i

∑

i ′
r2

Y,i−i ′ ≤ constant FQ(x, y). (21)
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The last inequality follows since the SDF of {Yi } is square integrable. Next we note
that

∫
{ϕ(x − y)− ϕ(x)} d{FQ,N (x)− FQ(x)}

=
∫ {

FQ,N (x + y)− FQ,N (x)− FQ(x + y)+ FQ(x)
}

dϕ(x)

=
∫

{FQ,N (x, x + y)− FQ(x, x + y)} dϕ(x),

so that

[∫
{ϕ(x − y)− ϕ(x)} d{FQ,N (x)− FQ(x)}

]2

≤
∫ {

FQ,N (x, x + y)− FQ(x, x + y)
}2 dϕ(x).

Taking expectation we obtain

E

[∫
{ϕ(x − y)− ϕ(x)} d{FQ,N (x)− FQ(x)}

]2

≤
∫

E
{

FQ,N (x, x + y)− FQ(x, x + y)
}2 dϕ(x).

So Eq. (21) yields

BE

[∫
{ϕ(x − y)− ϕ(x)} d{FQ,N (x)− FQ(x)}

]2

≤
∫

BE
{

FQ,N (x, x + y)− FQ(x, x + y)
}2 dϕ(x)

≤ constant
∫

FQ(x, x + y) dϕ(x)

≤ constant
∫

y sup fQ(z) dϕ(x) ≤ constant y,

where the last inequality follow since the density function fQ(x) of FQ(x) is bounded.
This completes the proof. �

Lemma 6

hN = B
1
2

∫
{ϕ(x − TN )− ϕ(x − μ0)} d{FQ,N (x)− FQ(x)} = oP (1).

123



M-estimation of wavelet variance 49

Proof of Lemma 6. Assume WLOG μ0 = 0. Then we note that

Pr(|hN | > δ) ≤ Pr

[
sup

|y|<B−γ
B

1
2 |

∫
{ϕ(x − y)− ϕ(x)} d{FQ,N (x)− FQ(x)}| > δ

]

+ Pr(|TN | > B−γ ).

The second term is oP (1) by Lemma 4. The first term follows by mimicking the chain-
ing argument in Lemma 2.2 of Koul and Surgailis (1997). As in Koul and Surgailis
(1997), we prove the result for 0 ≤ y ≤ B−γ andϕ non-decreasing. We put yB = B−γ
and let

K = �log2(ByB)�.

We consider a sequence of partitions

{xi,k = yBi2−k, 0 ≤ i ≤ 2k}, k = 0, 1, . . . , K

of intervals [0, yB]. For a y in [0, yB] and a k in {0, 1, . . . , K }, we define i(k, y) by

xi(k,y),k ≤ y < xi(k,y)+1,k .

We then obtain a chain by linking 0 to a given point y ∈ [0, yB] as

0 = xi(0,y),0 ≤ xi(1,y),1 ≤ · · · ≤ xi(K ,y),K ≤ y < xi(K ,y)+1,K .

Let

RN (y) = B
1
2

∫
{ϕ(x − y)} d{FQ,N (x)− FQ(x)}

= B
1
2

∫
{FQ,N (x + y)− FQ(x + y)} dϕ(x),

and RN (y, z) = RN (z)− RN (y). We can then use the above chain to write

RN (0, y) = RN (xi(0,y),0, xi(1,y),1)+ RN (xi(1,y),1, xi(2,y),2)

+ · · · + RN (xi(K−1,y),K−1, xi(K ,y),K )+ RN (xi(K ,y),K , y).

Hence

sup
y∈[0,yB ]

R2
N (0, y)

≤ 2

(
K−1∑

k=0

sup
y∈[0,yB ]

|RN (xi(k−1,y),k−1, xi(k,y),k)|
)2

+ 2 sup
y∈[0,yB ]

R2
N (xi(K ,y),K , y).
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We now apply Cauchy–Schwartz inequality to obtain

E sup
y∈[0,yB ]

R2
N (0, y) ≤ 2K

K−1∑

k=0

E sup
y∈[0,yB ]

R2
N (xi(k−1,y),k−1, xi(k,y),k)

+ 2E sup
y∈[0,yB ]

R2
N (xi(K ,y),K , y).

We now give a bound to the last term. We use the monotonicity of FQ,N , boundedness
of ϕ, and the fact that FQ is the distribution of log of a chi-square random variable.
We obtain

|RN (xi(K ,y),K , y)| = B
1
2

∣∣∣
∫

FQ,N (z + xi(K ,y),K , z + y) dϕ(z)

−
∫

FQ(z + xi(K ,y),K , z + y) dϕ(z)
∣∣∣,

which is less than or equal to

B
1
2

∫
FQ,N (z + xi(K ,y),K , z + xi(K ,y)+1,K ) dϕ(z)+ constant B

1
2 yB2−K .

The above is also less than or equal to

|RN (xi(K ,y),K , xi(K ,y)+1,K )| + constant B
1
2 yB2−K

for a different choice of constant.
Next we observe that for k = 0, 1, . . . , K − 1

sup
y∈[0,yB ]

|RN (xi(k,y),k, xi(k,y)+1,k+1)|
= max

0≤i≤2k+1−1
sup

y∈[x j,k+1,x j+1,k+1]
|RN (xi(k,y),k, xi(k,y)+1,k+1)|

≤ max
0≤i≤2k+1−1

|RN (xi,k+1, xi+1,k+1)|

Hence in view of Lemma 5, we get

E sup
y∈[0,yB ]

R2
N (xi(k,y),k, xi(k,y)+1,k+1)

≤
2k+1−1∑

i=0

E R2
N (xi,k+1, xi+1,k+1) ≤ constant yB,
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and similarly

E R2
N (xi(K ,y),K , xi(K ,y)+1,K ) ≤

2K −1∑

i=0

E R2
N (xi,K , xi+1,K ) ≤ constant yB .

Consequently,

E sup
y∈[0,yB ]

R2
N (0, y) ≤ constant yB K 2 + constant By2

B2−2K .

Now from the definition of K , we obtain 2−2K = B−2(1−γ ), and thus

ByB2−2K = O(B1−2γ−2+2γ ) = O(B−1), K 2 yB = O(B−γ log2
2 B).

This completes the proof. �

Proof of Theorem 1. By virtue of Lemma 4, we can write

OP (B
−1) = �N (TN ) = B−1

∑

i∈I
ϕ(Qi − TN )−

∫
ϕ(x − μ0) dFQ(x)

=
∫
ϕ(x − TN ) dFQ,N (x)−

∫
ϕ(x − μ0) dFQ(x)

=
∫
ϕ(x − TN ) d{FQ,N (x)− FQ(x)}

+
∫

{ϕ(x − TN )− ϕ(x − μ0)} dFQ(x)

= ρN + λ(TN )− λ(μ0),

where ρN = ∫
ϕ(x − TN ) d{FQ,N (x)− FQ(x)}. This implies

λ(TN )− λ(μ0) = oP (B
− 1

2 )− ρN .

We observe that B
1
2 ρN converges to A1/2

ϕ Z because Lemma 3 implies that B
1
2
∫
ϕ(x −

μ0) d{FQ,N (x)− FQ(x)} is asymptotically normal with mean zero and variance Aϕ ,
whereas Lemma 6 implies that

B
1
2 ρN = B

1
2

∫
ϕ(x − μ0) d{FQ,N (x)− FQ(x)} + oP (1).

We use a Taylor series expansion to write

λ(TN )− λ(μ0) = λ′(μ0)(TN − μ0)+ oP (|(TN − μ0|).
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Hence

λ′(μ0)(TN − μ0)+ oP (|TN − μ0|)
= B−1

∫
ϕ(x − μ0) d{FQ,N (x)− FQ(x)} + oP (B

− 1
2 ).

Taking the absolute value on both sides and using the definition of �N (μ0) and the
fact that λ(μ0) = 0, we obtain

|TN − μ0||λ′(μ0)+ oP (1)| ≤ |B−1�N (μ0)+ oP (B
− 1

2 )|.

The right hand side is OP (B
− 1

2 ), and hence (TN − μ0) = OP (B
− 1

2 ). Finally

B
1
2 (TN − μ0) = [

λ′(μ0)
]−1

B
1
2�N (μ0)+ oP (1),

completing the proof of Theorem 1. �
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