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Abstract One of the popular method for fitting a regression function is regularization:
minimizing an objective function which enforces a roughness penalty in addition
to coherence with the data. This is the case when formulating penalized likelihood
regression for exponential families. Most of the smoothing methods employ quadratic
penalties, leading to linear estimates, and are in general incapable of recovering dis-
continuities or other important attributes in the regression function. In contrast, non-
linear estimates are generally more accurate. In this paper, we focus on non-parametric
penalized likelihood regression methods using splines and a variety of non-quadratic
penalties, pointing out common basic principles. We present an asymptotic analy-
sis of convergence rates that justifies the approach. We report on a simulation study
including comparisons between our method and some existing ones. We illustrate our
approach with an application to Poisson non-parametric regression modeling of fre-
quency counts of reported acquired immune deficiency syndrome (AIDS) cases in the
UK.

A. Antoniadis
Laboratoire Jean Kuntzmann, Department de Statistique, Université Joseph Fourier,
Tour IRMA, B.P. 53, 38041 Grenoble Cedex 9, France

I. Gijbels (B)
Department of Mathematics, Leuven Statistics Research Centre (LStat),
Katholieke Universiteit Leuven, Celestijnenlaan 200B, Box 2400, 3001 Leuven, Belgium
e-mail: irene.gijbels@wis.kuleuven.be

M. Nikolova
Centre de Mathématiques et de Leurs Applications, CNRS-ENS de Cachan,
PRES UniverSud, 61 av. du Président Wilson, 94235 Cachan Cedex, France

123



586 A. Antoniadis et al.

Keywords Denoising · Edge-detection · Generalized linear models · Non-parametric
regression · Non-convex analysis · Non-smooth analysis · Regularized estimation ·
Smoothing · Thresholding

1 Introduction

In many statistical applications, non-parametric modeling can provide insight into the
features of a dataset that are not obtainable by other means. One successful approach
involves the use of (univariate or multivariate) spline spaces. As a class, these meth-
ods have inherited much from classical tools for parametric modeling. Smoothing
splines, in particular, are appealing because they provide computationally efficient
estimation and often do a good job of smoothing noisy data. Two shortcomings of
smoothing splines, however, are the need to choose a global smoothness parameter
and the inability of linear procedures (conditional on the choice of smoothness) to
adapt to spatially heterogeneous functions. This has led to investigations of curve-
fitting using free-knot splines, that is, splines in which the number of knots and their
locations are determined from the data (Eilers and Marx 1996; Denison et al. 1998;
Lindstrom 1999; Zhou and Shen 2001 and DiMatteo et al. 2001, among others). Such
procedures are strongly connected to variable and model selection methods and may
be seen as a particular case of non-quadratic regularization, which is the point of view
adopted in this paper.

Our approach to smoothing and recovering eventual discontinuities or other important
attributes in a regression function is based on methods for non-regular penalization
in the context of generalized regression, which includes logistic regression, probit
regression, and Poisson regression as special cases. For global smoothing, penalized
likelihood regression with responses from exponential family distributions traces back
to O’Sullivan et al. (1986); see also Green and Yandell (1985) and Eilers and Marx
(1996). The asymptotic convergence rates of the penalized likelihood regression esti-
mates have been studied by Cox and O’Sullivan (1990) and Gu and Qiu (1994). Other
related more recent ideas for smoothing of non-normal data are discussed by Biller
(2000), Klinger (2001), DiMatteo et al. (2001), where smoothing is seen as a vari-
able selection problem. However, there has not been much previous work about the
design of appropriate penalty functions that ensure the preservation of eventual dis-
continuities. Exceptions are the papers by Ruppert and Carroll (2000), Antoniadis
and Fan (2001) and Fan and Li (2001), although the issue of inference on eventual
change points is not given much emphasis. In the present paper, we are concerned with
noise reduction or smoothing of functions where there is evidence for smooth regions
from the data and the problem is not to smooth where there is evidence for breaks or
boundaries.

We represent the regression function as a linear combination of a large number
of basis functions which also have the capability of catching some sharp changes in
the regression relationship. Given the large number of basis functions that might be
used, most of the inferential procedures from generalized linear models cannot be
used directly and penalization procedures that are strongly connected to variable and
model selection methods and which may be seen as a particular case of non-quadratic
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regularization are specifically designed. There exists some recent works that are closely
related to the topics discussed in this paper. After reviewing the literature, putting as
such all in a unifying framework, we develop some theoretical results concerning
the bias and variance of our estimators and their asymptotic properties and highlight
some new approaches for the determination of regularization parameters involved in
our estimation procedures.

The structure of the paper is as follows. In the next section we formulate the class
of non-parametric regression problems that we study within the framework of non-
parametric regression for exponential families. Using a spline basis, approximating
the regression by its projection onto a finite dimensional spline space and introducing
an appropriate penalty to the log-likelihood, we are able to perform a discontinuity-
preserving regularization. In Sect. 3, we provide some further details about choices
of bases and penalties, presenting all in a unifying framework. Details of the corre-
sponding optimization problems are provided in Sect. 4. The asymptotic analysis is
conducted in Sect. 5, where the sampling properties of the penalized likelihood esti-
mators are established. Section 6 discusses data-driven choices for the regularization
parameters. Simulation results and numerical comparisons for several test functions
are provided in Sect. 7. As an illustration we analyze some of the Poisson data.

2 Model formulation and basic notations

2.1 Generalized models

We first briefly describe the class of generalized linear regression models. Consider a
pair (X,Y ) of random variables, where Y is real-valued and X is real vector-valued;
here Y is referred to as a response or dependent variable and X as the vector of
covariates or predictor variables. We only consider here the univariate case, but note
that the extension of our methods to multiple predictors can be easily made. A basic
generalized model (GM) analysis starts with a random sample of size n from the dis-
tribution of (X,Y ) where the conditional distribution of Y given X = x is assumed to
be from a one-parameter exponential family distribution with a density of the form

exp

(
yθ(x)− b(θ(x))

φ
+ c(y, φ)

)
,

where b(·) and c(·) are known functions, while the natural parameter function θ(x) is
unknown and specifies how the response depends on the covariate. The parameter φ is
a scale parameter which is assumed to be known. The conditional mean and variance
of the i th response Yi are given by

E(Yi |X = xi ) = ḃ(θ(xi )) = μ(xi ) Var(Yi |X = xi ) = φb̈(θ(xi )).

Here a dot denotes differentiation. In the usual GM framework, the mean is related
to the GM regression surface via the link function transformation g(μ(xi )) = η(xi )

where η(x) is called the predictor function. A wide variety of distributions can be
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modeled using this approach including normal regression with additive normal errors
(identity link), logistic regression (logit link) where the response is a binomial variable
and Poisson regression models (log link) where the observations are from a Poisson
distribution. Many examples are given in McCullagh and Nelder (1989). See also
Fahrmeir and Tutz (1994).

A regression analysis seeks to estimate the dependence η(x) based on the observed
data (xi , yi ), i = 1, . . . , n. A standard parametric model restricts η(x) to a low-
dimensional function space through a certain function form η(x,β), where the func-
tion is known up to a finite-dimensional parameter β. A (generalized) linear model
results when η(x,β) is linear in β. When knowledge is insufficient to justify a para-
metric model, various non-parametric techniques can be used for the estimation of
η(x). Like O’Sullivan et al. (1986) and Gu and Kim (2002), we consider the penalized
log-likelihood estimation of η(x) through the maximization of

Zn(η) = 1

n

n∑
i=1

�(yi , η(xi ))− λJ (η), (1)

where � is the log-likelihood of the model and J (·) is a roughness functional. To esti-
mate the regression function using the penalized maximum likelihood method, one
maximizes the functional (1), for a given λ, in some function space in which J (η) is
defined and finite. For GM models the first term of (1) is concave in η.

The function η(·) can be estimated in a flexible manner by representing it as a linear
combination of known basis functions {hk, k = 1, . . . , p},

η(x) =
p∑

k=1

βkhk(x), (2)

and then to estimate the coefficients β = (β1, . . . , βp)
T , where AT denotes the trans-

posed of a vector or matrix A. Usually the number p of basis functions used in the
representation of η should be large in order to give a fairly flexible way for approx-
imating η (this is similar to the high-dimensional setup of Klinger (2001)). Popular
examples of such basis functions are wavelets and polynomial splines. A crucial prob-
lem with such representations is the choice of the number p of basis functions. A small
p may result in a function space which is not flexible enough to capture the variability
of the data, while a large number of basis functions may lead to serious overfitting.
Traditional ways of “smoothing” are through basis selection see e.g. Friedman and
Silverman (1989); Friedman (1991) and Stone et al. (1997) or regularization. The
key idea in model selection methods is that overfitting is avoided by careful choice
of a model that is both parsimonious and suitable for the data. Regularization takes
a different approach: rather than seeking a parsimonious model, one uses a highly
parametrized model and imposes a penalty on large fluctuations on the fitted curve.

Given observations xi , i = 1, . . . , n, let h(xi ) = (
h1(xi ), h2(xi ), . . . , h p(xi )

)T the
column-vector containing the evaluations of the basis functions in the point xi . Since
η(xi ) = hT (xi )β, (1) becomes
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Zn(β) = 1

n
Ly(β)− λJ (β), (3)

where we denoted, for commodity, Zn(β) for Zn(ηβ) and J (β) for J (ηβ), and with

Ly(β) =
n∑

i=1

�
(

yi ,hT (xi )β
)
. (4)

Minimizing−Zn with respect to β, leads to estimation of the parameters β in

η(xi ) = g(μ(xi )) = hT (xi )β.

In this paper we concentrate on polynomial spline methods, which are easy to interpret
and useful in many applications. We allow p to be large, but use an adequate penalty
J on the coefficients to control the risk of overfitting the data. Hence, our approach
is similar in spirit to the penalized regression spline approach for additive white noise
models by Eilers and Marx (1996) and Ruppert and Carroll (2000), among others.

2.2 Truncated power basis and B-splines

Polynomial regression splines are continuous piecewise polynomial functions where
the definition of the function changes at a collection of knot points, which we write
as t1 < · · · < tK . Using the notation z+ = max(0, z), then, for an integer d ≥ 1,
the truncated power basis for polynomial of degree d regression splines with knots
t1 < · · · < tK is

{
1, x, . . . , xd , (x − t1)

d+, . . . , (x − tK )
d+
}
.

When representing a univariate function f as a linear combination of these basis
functions as

f (x) =
d∑

j=0

β j x j +
K∑

l=1

βd+l(x − tl)
d+,

it follows that each coefficient βd+l is identified as a jump in the dth derivative of f at
the corresponding knot. Therefore, coefficients in the truncated power basis are easy
to interpret especially when tracking change-points or more or less abrupt changes in
the regression curve.

Use of polynomial regression splines, while easy to understand, is sometimes not
desirable because it is computationally less stable (see Dierckx (1993)). Another pos-
sible choice, offering analytical and computational advantages, is a B-splines basis.
Eilers and Marx (1996), in their paper on penalized splines global non-parametric
smoothing, choose the numerically stable B-spline basis, suggesting a moderately
large number of knots (usually between 20 and 40) to ensure enough flexibility, and
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using a quadratic penalty based on differences of adjacent B-Spline coefficients to
guarantee sufficient smoothness of the fitted curves. Details of B-splines and their
properties can be found in de Boor (1978). A normalized B-splines basis of order q
with interior knots 0 < t1 < · · · < tK < 1 is a set of degree q − 1 spline functions
{Bq

K j , j = 1, . . . , q + K }, that is a basis of the space of the qth-order polynomial

splines on [0, 1] with K ordered interior knots. The functions Bq
K j are positive and are

non-zero only on an interval which covers no more than q + 1 knots. Equivalently, at
any point x there are no more than q B-splines that are non-zero. A recursive relation-
ship can be used to describe B-splines, leading to a very stable numerical computation
algorithm.

2.3 Penalized likelihood

By (2), the estimation of η is simplified to the estimation of β. The use of a criterion
function with penalty, as in (1), has a long history which goes back to Whittaker (1923)
and Tikhonov (1963). When the penalty is of the form J (β) = ‖β‖2

2, we talk about
quadratic regularization. When the criterion function is based on the log-likelihood of
the data, the method of regularization is called penalized maximum likelihood method
(PMLE).

The literature on penalized maximum likelihood estimation is abundant, with
several recommending strategies for the choice of J and λ. A synthesis has been
presented in Titterington (1985), Poggio (1985) and Demoment (1989). In statistics,
using a penalty function can also be interpreted as formulating some prior knowl-
edge about the parameters of interest (Good and Gaskins 1971) and leads to the
so-called Bayesian MAP estimation. Under such a Bayesian setting, maximizing
Zn(β) is equivalent to maximize the posterior distribution p(β|y) corresponding to
the prior p(β) ∝ exp (−λJ (β)). Typically, J is of the form

J (β) =
r∑

k=1

γkψ
(

dT
k β

)
, (5)

where γk > 0 are weights and dk are linear operators. Thus the penalty J pushes the
solution β̂ to be such that |dT

k β̂| is small. In particular, if dk are finite difference oper-

ators, neighboring coefficients of β̂ are encouraged to have similar values in which
case β̂ involves homogeneous zones. If dk = ek are the vectors of the canonical basis
of R

p, then J encourages the components β̂k to have small magnitude. The setting
of Bayesian MAP estimation gave rise to a large variety of functions ψ , especially
within the framework of Markov random fields where ψ is interpreted as a potential
function (Geman and McClure 1987; Besag 1989).

The choice of J (β) depends strongly on the basis that is used for representing the
predictor function η(x). If one uses for example a truncated power basis functions of
degree d, the coefficients of the basis functions at the knots involve the jumps of the
dth derivative, and therefore J is generally of the form J (β) = ∑

k γkψ(βk) where
γk > 0. Indeed, there is no reason that neighboring coefficients of β have close values.
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Fig. 1 Behavior of the coefficients of a function in a truncated power basis

This is illustrated in Fig. 1, where large coefficients are associated with singularities
in the function that is decomposed in the truncated power basis. Penalties of this kind,
withψ(·) = |·| have been suggested and studied in detail by several authors, including
Donoho et al. (1992), Alliney and Ruzinsky (1994), Mammen and Van de Geer (1997),
Ruppert and Carroll (1997) and Antoniadis and Fan (2001). Such penalties have the
feature that many of the components of β are shrunk all the way to 0. In effect, these
coefficients are deleted. Therefore, such procedures perform a model selection.

When using B-splines, however, penalties on neighbor B-spline coefficients ensure
that neighboring coefficients do not differ too much from each other when η is smooth.
As illustrated in Fig. 2, it is the absolute values of first-order or second-order differ-
ences that are maximum at singularity points of the decomposed curve and penalties
such as the one given in (5) are therefore more adequate.

To end this section, we will discuss a somewhat general type of penalties that we are
going to use within the generalized model approach. Several penalty functions have
been used in the literature. The L2 or quadratic penalty ψ(β) = |β|2 yields a ridge
type regression, while the L1 penaltyψ(β) = |β| results in LASSO (first proposed by
Donoho and Johnstone 1994) in the wavelet setting and extended by Tibshirani 1996
for general least squares settings). The latter is also the penalty used by Klinger (2001)
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Fig. 2 Behavior of the coefficients of a function in a B-splines basis

for P-spline fitting in generalized linear models. More generally, the Lq (0 ≤ q ≤ 1)
leads to bridge regression (see Frank and Friedman 1993; Ruppert and Carroll 1997;
Fu 1998; Knight and Fu 2000).

A well-known justification of regularization by LASSO type penalties is that it
usually leads to sparse solutions, i.e. a small number of non-zero coefficients in the
basis function expansion, and thus performs model selection. This is generally true for
penalties alike the smoothed clipped absolute deviation (SCAD) penalty (item 16 in
Table 2) introduced by Fan (1997) and studied in detail by Antoniadis and Fan (2001)
and Fan and Li (2001). SCAD penalties present nice oracle properties. For LASSO-
like procedures, recent works by Zhao and Yu (2006), Zou (2006) and Yuan and Lin
(2007) in the multiple linear regression models have looked precisely at the model
consistency of the LASSO, i.e. if we know that the data were generated from a sparse
loading vector, does the LASSO actually recover it when the number of observed data
points grows? In the case of a fixed number of covariates, the LASSO does recover
the sparsity pattern if and only if a certain simple condition on the generating covari-
ance matrices is verified; see Yuan and Lin (2007). In particular, in low correlation
settings, the LASSO is indeed consistent. However, in presence of strong correlations,
the LASSO cannot be consistent, shedding light on the potential problems of such
procedures for variable selection. Adaptive versions where data-dependent weights
are added to the L1-norm then allow to keep the consistency in all situations (see Zou
2006) and our penalization procedures using the weights γk (see 5) are in this spirit.

Several conditions onψ are needed in order for the penalized likelihood approach to
be effective. Usually, the penalty functionψ is chosen to be symmetric and increasing
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Table 1 Examples of convex penalty functions

Convex

Smooth at zero Singular at zero

1. ψ(β) = |β|α, α > 1 6. ψ(β) = |β| ψ ′(0+) = 1

2. ψ(β) =
√
α + β2 7. ψ(β) = α2 − (|β| − α)2 I {|β| < α} ψ ′(0+) = 2α

3. ψ(β) = log(cosh(αβ))

4. ψ(β) = β2 − (|β| − α)2 I {|β| > α}
5. ψ(β) = 1 + |β|/α − log (1 + |β|/α)

Table 2 Examples of non-convex penalty functions

Non-convex

Smooth at zero Singular at zero

8. ψ(β) = αβ2/(1 + αβ2) 12. ψ(β) = |β|α, α ∈ (0, 1) ψ ′(0+) = ∞
9. ψ(β) = min{αβ2, 1} 13. ψ(β) = α|β|/(1 + α|β|) ψ ′(0+) = α

10. ψ(β) = 1 − exp (−αβ2) 14. ψ(0) = 0, ψ(β) = 1,∀β 
= 0 discont.

11. ψ(β) = − log
(

exp(−αβ2)+ 1
)

15. ψ(β) = log(α|β| + 1) ψ ′(0+) = α

16.
∫ β

0 ψ ′(u)du ψ ′(|β|) = α{I {|β| ≤ α} + (aα−|β|)+
(a−1)α {|β| > α}},

a > 2

on [0,+∞). Throughout this paper, we suppose that ψ satisfies these two conditions.
Furthermore, ψ can be convex or non-convex, smooth or non-smooth. In the wavelet
setting, Antoniadis and Fan (2001) provide some insights into how to choose a penalty
function. A good penalty function should result in an estimator that avoids excessive
bias (unbiasedness), that forces sparse solutions to reduce model complexity (sparsity)
and, that is continuous in the data to avoid unnecessary variation (stability). Moreover,
from the computational viewpoint, penalty functions should be chosen in a way that
the resulting optimization problem is easily solvable.

As a first contribution of this paper, we will try to summarize and unify the main
features ofψ that determine essential properties of the maximizer β̂ of Zn . The accent
will be put on adequate choices of penalty functions among the many proposed in
the literature. Essentially, penalties can be convex or non-convex with or without a
singularity at the origin (non-differentiable at 0). Tables 1 and 2 list several examples
of such penalties.

In the following section, we further discuss some necessary conditions on penalty
functions for obtaining unbiasedness, sparsity and stability that have been derived
by Nikolova (2000), Antoniadis and Fan (2001) and Fan and Li (2001). Stability
for non-convex and possibly non-smooth regularization has been studied by Durand
and Nikolova (2006a), Durand and Nikolova (2006b). Concerning edge-detection
and unbiasedness using non-convex regularization (smooth or non-smooth) see for
example Nikolova (2005).
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3 Penalties and regularization

The truncated power basis for polynomial of degree d regression splines with knots
t1 < · · · < tK or the set of order q B-splines with K interior knots may be viewed as a
given family of piecewise polynomial functions {Bq

K j , j = 1, . . . , q + K }. Assuming
the initial location of the knots known, the K + q-dimensional parameter vector, β,
describes the K + q necessary polynomial coefficients that parsimoniously represent
the function η. A critical component of spline smoothing is the choice of knots, espe-
cially for curves with varying shapes and frequencies in their domain. We consider a
two-stage knot selection scheme for adaptively fitting regression splines or B-splines
to our data. As it is usually done in this context, an initial fixed large number of
potential knots will be chosen at fixed quantiles of the independent variable with the
intention to have sufficient points at regions where the curve shows rapid changes.
Basis selection by non-smooth at zero penalties will then eliminate basis functions
when they are non-necessary, retaining mainly basis functions whose support covers
regions with sharp features.

The estimation part of our statistical analysis involves first fixing K and estimat-
ing β by penalized maximum likelihood within the generalized model setup. We first
consider the case where the penalty function ψ is convex and smooth at the origin,
a case that includes more or less traditional regularization methods and we then pro-
ceed to penalized likelihood situations with more complicated and challenging penalty
functions that are more efficient in recovering functions that may have singularities of
various orders.

3.1 Smooth regularization

Regularization with smooth penalties leads to classical smooth estimates. The opti-
mization problems, however, are quite different when using convex or non-convex
penalties, and one needs to distinguish between these two cases.

3.1.1 Convex penalties

The traditional way of smoothing is using maximum likelihood with a roughness
penalty placed on the coefficients that involves a penalty proportional to the square
of a specified derivative, usually the second. One usually refers to this as quadratic
penalization.The original idea traces back to O’Sullivan et al. (1986) and was further
developed by Eilers and Marx (1996) using the B-splines basis.

Typically the penalized maximum likelihood estimator of β is defined using the
penalty

J (β) = βT D(γ )β, (6)

where D is an appropriate positive definite matrix and λ is a global penalty parameter.
For example, in the case of regression P-splines, D(γ ) is a diagonal matrix with its
diagonal elements equal to γk and the rest equal to 0, which yields spatially-adapted
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penalties. In such a case, J (β) = ∑
k γkβ

2
k , i.e. ψ(β) = β2 and dk = ek in (5). Alter-

natively, D(γ ) can be a banded matrix corresponding to a quadratic form of finite
differences in the components of β, as in Eilers and Marx (1996) (these authors con-
sider a constant vector γ , that is their penalty weights on the coefficients are constant).
The specification of an unknown penalty weight γk for every βk or dT

k β coefficient
results in models far too complex to be of any use in an estimation procedure and usu-
ally there is a variety of simplifications of this problem in the literature. We postpone
the discussion to later sections.

As it is usually done in generalized linear models, the optimal estimator of β in
(6) is obtained recursively, for fixed λ and γ by an iterated re-weighted least squares
algorithm that is usually convergent, easy to implement and produces very satisfac-
tory estimates for smooth functions η. The crucial values of the smoothing parameters
(λ and γ ) are usually chosen by generalized cross-validation procedures (GCV). See
Sect. 6 for a discussion on selection procedures. When dealing with additive Gaussian
errors, the negative log-likelihood is quadratic. Then, the estimate β̂, as long as λ and
γ are fixed, is explicitly given as an affine function of the data y. When the function
η is a spline function with a fixed number of knots, Yu and Ruppert (2002) present
several asymptotic results on the strong consistency and asymptotic normality for the
corresponding penalized least-squares estimators. Since similar results are going to
be derived for our GLM setup under more general situations in further sections, we
refer to the paper of Yu and Ruppert (2002) for details on penalized least squares with
quadratic penalties.

While the more or less classical maximum penalized likelihood estimation with a
quadratic regularization functional makes computations much easier and allows the
use of classical asymptotic maximum likelihood theory in the derivation of asymptotic
properties of the estimators, it yields smooth solutions, which may not be acceptable
in many applications when the function to recover is less regular.

A remedy can be found if the functionψ in (6) imposes a strong smoothing on small
coefficients dT

k βk and only a loose smoothing on large coefficients. This can be par-
tially achieved by using non-quadratic convex penalty functions ψ such as penalties
1–5 in Table 1.

Among the main characteristics of these functions (for function 1 in Table 1 take
α < 2) are that ψ ′(t)/t is decreasing on (0,∞) with limt→∞ ψ ′(t)/t = 0, and that
limt↘0 ψ

′(t)/t > 0 (here the symbol ↘ is to say that t converges to zero by positive
values). In other words, ψ has a strict minimum at zero and ψ ′ is almost constant
(but > 0) except on a neighborhood of the origin. Under the additional condition that
either Ly is strictly concave and ψ is convex, or that Ly is concave and ψ is strictly
convex, the penalized log-likelihood Zn is guaranteed to have a unique maximizer.
Let us mention that the hyperbolic potential ψ(t) = √

α + t2 is very frequently used,
often as a smooth approximation to |t | since ψ(t) → |t | as α ↘ 0.

3.1.2 Non-convex penalties

Roughly speaking, smoothing of a coefficient dT
k β is determined by the value of

ψ ′(dT
k β). So a good penalty function should result to an estimator that is unbiased
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when the true parameter is large in order to avoid unnecessary bias. It is easy to see
that when ψ ′(|t |) = 0 for large |t |, the resulting estimator is unbiased for large values
of |t |. We will see when analyzing the asymptotic properties of the resulting estima-
tors that such a condition is necessary and sufficient. This condition implies that the
penalty functionψ(|t |)must be (nearly) constant for large |t | which obviously requires
that ψ is non-convex. Such a condition may be traced back to the paper by Geman
and Geman (1984) where non-convex regularization has been proposed in the context
of Markov random modeling for Bayesian estimation. Popular non-convex smooth
penalty functions are items 8–11 in Table 2. See also Black and Rangarajan (1996)
and Nikolova (2005).

Note, however, that the main difficulty with such penalties is that the penalized
log-likelihood Z is non-concave and may exhibit a large number of local maxima.
In general, there is no way to guarantee the finding of a global maximizer and the
computational cost is generally high.

3.2 Non-smooth regularization

When one wants to estimate less regular functions then it is necessary to use in the
regularization process penalties that are singular at zero. As mentioned before, such
penalties enforce sparsity of the spline coefficients in the representation of the regres-
sion function. A popular penalty is the L1 LASSO penalty

ψ(β) = |β|, (7)

which is non-smooth at zero but convex. In a wavelet denoising context and under
least-squares loss it is known that the optimal solution tends to be sparse and pro-
duces asymptotically optimal minimax estimators. This explains why the hyperbolic
potential, which is a smooth version of the Lasso penalty is often used. Another popular
non-smooth but non-convex penalty sharing similar optimality properties but leading
to less biased estimators is the SCAD penalty (item 16 in Table 2).

In a image processing context, a commonly used non-smooth at the origin and
non-convex penalty function which is ψ(β) = (α|β|)/(1 + α|β|) (see entry 13 in
Table 2). Other non-smooth at the origin potential functions are given in Tables 1
and 2. Although being quite different in shape, these potential functions lead to opti-
mal solutions that are characterized by the fact that dT

k β̂ = 0 for a certain number (or
many) of indexes k. Thus, if dT

k β are first-order differences, minimizers involve con-
stant regions which is known as the stair-casing effect. For arbitrary dT

k see Nikolova
(2000, 2004, 2005). Generally, non-smoothness at the origin encourages sparsity in
the resulting estimators.

However, finding a maximum penalized likelihood estimator with such non-convex
penalties might be a difficult or even impossible task. In the case of convex non-smooth
at the origin penalties, the existence and properties of maximum penalized likelihood
estimators is a feasible task as discussed in Sect. 4.2.
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4 Optimization of the penalized likelihood

It is sometimes challenging to find the maximum penalized likelihood estimator. In
this section, we focus on the existence of maximizers of Zn(β) = Zn(β; y), and when
possible on their uniqueness in several restricted but important cases.

Before proceeding further, let us recall here some useful definitions from optimi-
zation theory (see e.g. Ciarlet 1989 and Rockafellar and Wets 1997).

For U ⊆ R
n , we say that B : U → R

p is a (local) maximizer function for the
family Zn(β; U ) = {Zn(β; y) : y ∈ U } if for every y ∈ U , the function Zn(·; y)
reaches a (local) maximum at B(y). Given y ∈ R

n , we usually write β̂ = B(y).
Also the function β → −Zn(β) is said to be coercive if

lim
‖β‖→+∞

−Zn(β) = +∞.

Since J (β) is non-negative the function β → J (β) is bounded by below. If in addi-
tion β → Ly(β) is bounded by above, then −Zn is coercive if at least one of the two
terms J or −Ly is coercive. It is easy to see that for the Gaussian and the Poisson
non-parametric GLM models, −Zn is coercive. This is not the case for the Bernoulli
model, the addition of a suitable penalty term (for example a quadratic term) to J (β)
makes −Zn coercive. Note that such an approach has also been proposed by Park and
Hastie (2007) to handle the case of separable data in Bernoulli models.

Under the assumption that −Zn is coercive, for every c ∈ R, the set {β : −Zn(β) ≤
c} is bounded. Whenever Zn is continuous the value supβ Zn is finite and the set of
the optimal solutions, namely

{
β̂ ∈ R

p : Zn(β̂) = sup
β∈Rp

Zn

}
(8)

is non-empty and compact (see e.g. Rockafellar and Wets 1997, p. 11). In general,
beyond its global maxima, Zn may exhibit other local maxima. However, if in addi-
tion Zn is concave, then Zn does not have any local minimum which is not global,
and the set of the optimal solutions (8) is convex. If moreover Zn is strictly concave,
then for every y ∈ R

n , the set in (8) is a singleton, hence there is a unique maximizer
function B and its domain of definition is R

n .
Analyzing the maximizers of Zn when the latter is not concave is much more

difficult. In the Gaussian case and J non-convex, the regularity of local and global
maximizers of Zn has been studied by Durand and Nikolova (2006a,b) and Nikolova
(2005).

In our setup of non-parametric GLM models, we consider two situations. First, we
study the optimization problem with penalties belonging to the class of symmetric and
non-negative functions ψ satisfying the following properties:

• ψ is in C2 and convex on [0,+∞[
• t → ψ(

√
t) is concave on [0,+∞[
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• ψ ′(t)/t → M < ∞ as t → ∞
• limt↗0 ψ

′(t)/t exists.

For such a class, referred to as Geman’s class we shown the existence of a unique
solution and discuss a computational algorithm to find it. Penalties belonging to this
class among the ones displayed in Table 1 are 2, 3, 4 and 5.

The second class we consider is made by symmetric and non-negative penalty
functions ψ such that

• ψ is monotone increasing on [0,+∞[.
• ψ is in C1 on R\{0} and continuous in 0.
• limt→0 ψ

′(t)t = 0.

Note that many of the penalties in Tables 1 and 2 belong to this class. Such a class
will be named a δ-class since it essentially consists of penalties that are non-smooth
at the origin but can be approximated by a quadratic function at a δ-neighbor of the
origin. For this class we find an approximate solution to the optimization problem and
provide bias and variance expression for the resulting estimators in Sect. 5.

4.1 Optimization with penalties in Geman’s class

We now study the optimization problem with penalties belonging to Geman’s class.
A typical example of a penalty belonging to this class is the penaltyψ(β) = √

β2 + α

in Table 1. For such penalties the penalized log-likelihood Zn is smooth and concave,
and the penalized maximum likelihood solutions can be obtained using standard opti-
mization numerical algorithms such as relaxation, gradient or conjugated gradient.
Note, however, that even if the penalties ψ are convex, their second derivative is large
near to zero and almost null beyond, so the optimization of the corresponding Zn may
be slow. For this reason, specialized optimization schemes have been conceived.

A very successful approach is half-quadratic optimization, proposed in two dif-
ferent forms (called multiplicative and additive) in Geman and Reynolds (1992) and
Geman and Yang (1995), for Gaussian distributed data. The idea is to associate with
every dT

k β in (5) an auxiliary variable bk ∈ R and to construct an augmented criterion
Ky of the form

Ky(β,b) = Ly(β)− λR(β,b), (9)

with

R(β,b) =
∑

k

γk

(
Q

(
dT

k β, bk

)
+ φ(bk)

)
, (10)

where for every b fixed, the function β → Q(β,b) is quadratic, and φ—the dual
function of ψ—is such that for every β,

inf
b

R(β,b) = J (β). (11)

The last condition ensures that if (β̂, b̂) is a maximizer of Ky, then β̂ is a maximizer
of Zn(β) = Zn(β; y) as defined by (4) and (5). The interest is that for every b fixed,

123



Penalized likelihood regression with non-quadratic penalties 599

using a weighted local quadratic approximation of the log-likelihood as it is usually
done in the iteratively re-weighted least squares (IRLS) approach for GLM’s, for each
iteration in the IRLS algorithm, the function β → Ky(β,b) is quadratic (hence qua-
dratic programming can be used) whereas for every β fixed, each bk can be computed
independently using an explicit formula. At each iteration one realizes an optimization
with respect to β for b fixed and a second with respect to b for β fixed. Geman and
Reynolds (1992) first considered quadratic terms of the multiplicative form,

Q(t, b) = t2b.

Later, Geman and Yang (1995) proposed quadratic terms of the additive form,

Q(t, b) = (t − b)2.

In both cases, the dual function φ which gives rise to (11) is obtained using the theory
of convex conjugate functions (see for example Rockafellar 1970). These ideas have
been pursued and convergence to the sought-after solution under appropriate condi-
tions have been considered by many authors. For example, rate of convergence of the
iterations has been examined by Nikolova and Ng (2005). Half-quadratic regularization
(9) and (10) may also be used with smooth non-convex penalties as well (see Delanay
and Bressler 1998).

4.2 Optimization with penalties in the δ-class

To deal with penalties in the δ-class and especially with the non-differentiabilty at zero
of such penalties, we will use an approximation Zδ(β) of the penalized log-likelihood
Zn(β), replacing the penalty J (β) = ∑

k γkψ(βk) in (3) by Jδ(β) = ∑
k γkψδ(βk),

where ψδ is a function which is equal to ψ away from 0 (at a distance δ > 0) and
is a “smooth quadratic” version of ψ in a δ-neighborhood of zero (see for example
Tishler and Zang 1981). More precisely, it is easy to see that, given the conditions on
ψ , when ψ belongs to the δ-class, the function ψδ may be defined by

ψδ(s) =
{
ψ(s) if s > δ,
ψ̇(δ)

2δ s2 + [ψ(δ)− ψ̇(δ)δ/2] if 0 ≤ s ≤ δ.
(12)

Note also that

ψ̈δ(s) =
⎧⎨
⎩
ψ̈(s) if s > δ,

ψ̇(δ)

δ
if 0 ≤ s ≤ δ,

and, given the conditions on ψ , we have, for all s ≥ 0

lim
δ↓0

ψδ(s) = 0.
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Using the above approximate penalized log-likelihood Zδ(β) the estimating equations
for β can be derived by looking at the score function

uδ(β) = s(y,β)+ λD(γ )gδ(β), (13)

where s(y,β) = (∂Ly(β)/∂β j ) j=1,...,p and gδ(β) denotes the (p × 1) vector with
corresponding j th component gδ(|β j |) defined by

gδ(|β j |) =
{

−ψ̇δ(|β j |) if β j ≥ 0

+ψ̇δ(|β j |) if β j < 0.

Note also that, for any β fixed, by definition of ψδ ,

lim
δ↓0

gδ(β) = g(β),

where g(β) = (g(|β1|), . . . , g(|βp|))T with g(|β j |) = −ψ̇(β j )I {β j 
= 0}. It follows
that uδ(β) converges to u(β) as δ ↓ 0, where

u(β) = s(y,β)+ λD(γ )g(β).

Let β̂(δ) be a root of the approximate penalized score equations above, i.e. such that
uδ(β̂(δ)) = 0. By penalization, and since the penalty function ψδ is strictly convex,
such an estimator exists and is unique even in situations where the maximum likeli-
hood principle diverges. Fast computation of the estimator can be done by a standard
Fisher scoring procedure.

5 Statistical properties of the estimates

Under the set of assumptions concerning the δ-class of penalties, we have shown in the
previous section, that, provided δ vanishes at an appropriate rate, the resulting estima-
tor converges to the penalized likelihood estimator, whenever it exists. The purpose
of the next section is to study the quality of this approximation in statistical terms in
more detail.

5.1 Bias and variance p < n for δ-class penalties

We will first derive some approximations to the variance and bias of our penalized
estimators when p < n, which allow to study their small sample properties. Using the
same notation as in the previous section, suppose that the diagonal matrix D(γ ) of
weights and the penalization parameter λ are fixed and let β∗ be a maximizer of the
expected penalized log-likelihood. In the case of uniqueness, this is equivalent to the
root of the expected penalized score equation, i.e. E(u(β∗)) = 0. Let us then consider
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the estimation error induced by our regularized procedure. A linear Taylor expansion
of uδ(β̂(δ)) gives

0 = uδ(β̂(δ)) ≈ uδ(β
∗)+ (

H(β∗)+ λD(γ )G(β∗; δ)) (β̂(δ)− β∗),

where H(β) = ( ∂2 Ly(β)

∂∂β jβl

)
j,l=1,...,p is the Hessian matrix, and where G(β∗; δ) is the

diagonal matrix with diagonal entries ∂gδ(|β j |)/∂β j = −ψ̈δ(|β j |). Using the proper-
ties of ψδ , from the above Taylor approximation we get

β̂(δ)− β∗ ≈ − (
H(β∗)+ λD(γ )G(β∗; δ))−1

uδ(β
∗) (14)

and therefore

E(β̂(δ)) ≈ β∗ − (
H(β∗)+ λD(γ )G(β∗; δ))−1

E(uδ(β
∗)). (15)

Since β∗ is a root of E(u(β)) it follows from (13) that E(uδ(β
∗)) = λD(γ )gδ(β∗) and

therefore the estimator β̂(δ) has a bias − (
H(β∗)+ λD(γ )G(β∗; δ))−1

E(uδ(β
∗)).

As for the variance, using again the above approximations we obtain

var(β̂(δ)) = (
H(β∗)+ λD(γ )G(β∗; δ))−1 var(s(y,β∗))

(
H(β∗)

+λD(γ )G(β∗; δ))−1

which has the well-known sandwich form of Hubert (1967).
Therefore, the bias and the variance of our estimator depend on the behavior of the

eigenvalues of (H(β∗) + λD(γ )G(β∗; δ))−1 and their limits as δ ↓ 0 with λ > 0
fixed.

In the case where β∗
j > δ for all j , we have G(β∗; δ) = diag(ψ̈(|β∗

j |)). If we

assume that ψ is such that max{γ j |ψ̈(|β∗
j |)|;β∗

j 
= 0} → 0, the asymptotic variance
of the estimator becomes

var(β̂(δ)) = H(β∗)−1var(s(y,β∗))H(β∗)−1.

When β∗
j ≤ δ for some coefficient then G(β∗

j , δ) = −ψ̇(δ)/δ and all depends on

the speed at which ψ̇(δ)/δ goes to zero. If ψ̇(δ)/δ tends to infinity as δ goes to
zero then by increasing the diagonal elements of

(
H(β∗)+ λD(γ )G(β∗; δ)), the

diagonal elements of its inverse decrease, resulting in a reduced variance for β̂(δ).
The penalty parameter λ tunes this variance reduction by controlling the eigenvalues
of (H(β∗) + λD(γ )G(β∗; δ))−1. In this case, and in the limit δ → 0, the diagonal
elements of G(β∗; δ) corresponding to β∗

j = 0, tend to infinity and the limiting covari-
ance becomes singular approximating the components having β∗

j = 0 by 0. For the
remaining components it leads to an approximate variance given by the corresponding
diagonal entries of H(β∗)−1var(s(y,β∗))H(β∗)−1.

While the above approximations are useful, we can now proceed to a general asymp-
totic analysis of our estimators.
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5.2 Asymptotic analysis

In order to get a better insight into the properties of the estimators and to provide a
basis for inference we will consider in this section asymptotic results of estimators
β̂n minimizing −Zn(β) defined in (3). Before stating the results we will first state
some regularity conditions on the log-likelihood that are standard regularity condi-
tions for asymptotic analysis of maximum likelihood estimators (see e.g. Fahrmeir
and Kaufman (1985)). We will first examine the case of a fixed finite-dimensional
approximating basis (p finite) and then proceed to the general case of an increasing
dimension sequence of approximating subspaces. Most of the proofs of the presented
results are inspired by similar proofs made for model selection in regression models
in Fan and Li (2001), Antoniadis and Fan (2001) and Fan and Peng (2004) but are
tailored here to our special setup with minor modifications. We include one proof
below for sake of completeness.

5.2.1 Limit theorems in the parametric case (fixed number of parameters)

We will first state here some regularity conditions for the log-likelihood.

Regularity conditions

(a) The probability density of the observations has a support that does not depend
on β and the model is identifiable. Moreover, we assume that Eβ(s(Y,β)) = 0
and that the Fisher information matrix exists and is such that

I j,k(β) = E(s j (Y,β)sk(Y,β)) = Eβ

(
− ∂2

∂β j∂βk
LY(β)

)
.

(b) The Fisher information matrix I (β) is finite and positive definite at β = β0
where β0 is the true vector of coefficients.

(c) There exists an open set of the parameter set containing the true parameter β0
such that, for almost all (y, x)’s the density exp Ly(β) admits all third derivatives
(with respect to β) for all β ∈  and

∣∣∣∣ ∂3

∂βi∂β j∂βk
LY(β)

∣∣∣∣ ≤ Mi, j,k(Y) ∀β ∈ ,

with Eβ0
(Mi, j,k(Y)) < +∞.

These are standard regularity conditions that usually guarantee asymptotic normality
of ordinary maximum likelihood estimates. Let an = λn max{γ j ψ̇(|β0 j |);β0 j 
= 0}
which is finite. Then, we have

Theorem 1 Let the probability density of our model satisfy the regularity conditions
(a), (b) and (c). Assume also thatλn → 0 as n → ∞. If bn := λn max{γ j |ψ̈(|β0 j |)|;β0 j 
=
0} → 0, then there exists a local minimizer β̂n of the penalized likelihood such that
‖β̂ − β0‖ = OP (n−1/2 + an), where ‖ · ‖ denotes the Euclidian norm of R

p.
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It is now clear that by choosing appropriately λn and the γ j ’s, there exists a root-n
consistent estimator of β0.

Proof First note that the result will follow if for all ε > 0, there exists a large enough
constant Cε such that

P

{
sup

‖u‖=Cε
Zn(β0 + αnu) < Zn(β0)

}
≥ 1 − ε.

In order to prove the above, let

Wn(u) := Zn(β0 + αnu)− Zn(β0).

Using the expression of Zn(β), we have

Wn(u) : = Zn(β0 + αnu)− Zn(β0) = 1

n
Ly(β0 + αnu)− 1

n
Ly(β0)

−λn

p∑
j=1

γ j {ψ(|β0 j + αnu j |)− ψ(|β0 j |)}.

Given our regularity assumptions, a Taylor’s expansion of the likelihood function Ly
and a Taylor’s expansion for ψ give

Wn(β0) = 1

n
αn∇Ly(β0)

T u − 1

2
uT Jn(β0)u

1

n
α2

n + o

(
uT Jn(β0)u

1

n
α2

n

)

−
p∑

j=1

γ j

{
λnαnψ̇(|β0 j |)sgn(β0 j )u j + λnα

2
nψ̈(|β0 j |)u2

j (1 + o(1))
}
,

where Jn(β0) = [∂2Ly(β0)/∂βi∂β j ] denotes the observed information matrix. By
assumption (b) and the Law of large numbers we have that ∇Ly(β0) = OP (

√
n) and

also that Jn(β0) = nI (β0)+ oP (n). It follows that

Wn(β0) = 1

n
αn∇Ly(β0)

T u − 1

2
uT I (β0)uα

2
n{1 + oP (1)}

−
p∑

j=1

γ j

{
λnαnψ̇(|β0 j |)sgn(β0 j )u j + λnα

2
nψ̈(|β0 j |)u2

j (1 + o(1))
}
.

The first term on the right-hand side of the above equality is of the order OP (n−1/2αn)

and the second term of the order OP (α
2
n). By choosing a sufficiently large Cε the

second term dominates the first one, uniformly in u such that ‖u‖ = Cε . Now the
third term is bounded above by

√
p

∥∥∥u
∥∥∥anαn + α2

nbn

∥∥∥ u
∥∥∥2
,
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which is also dominated by the second term of order OP (α
2
n). By choosing therefore

a large enough Cε the theorem follows. ��

5.2.2 Limit theorems when p → ∞

In the previous subsection we have considered the case where the dimension of the
spline bases was fixed and finite. We now consider the case where the dimension may
grow as the sample size increases, as this allows a better control of the approximation
bias when the regression function is irregular. This case has been extensively studied
by Fan and Peng (2004) for some non-concave penalized likelihood function. The
proofs can be adapted to the various penalties that we have considered in this paper
with little effort and some extra regularity conditions and follow closely (with appro-
priate modifications) the proof of the previous subsection. We will not present the
proofs and the interested reader is referred to the above-mentioned paper. We only
would like here to state the extra conditions that allows us to extend the results to the
case of a growing dimension.

We will need the following extra regularity conditions on the penalty and on the
rate of growth of the dimension pn .

Regularity conditions

(a) lim infβ→0+ ψ̇(β) > 0
(b) an = O(n−1/2)

(c) an = o((npn)
−1/2)

(d) bn = max1≤ j≤pn {γ j |ψ̈(|β j |)|;β j 
= 0} → 0

(e) bn = oP (p
−1/2
n )

(f) There exist C and D such that when x1 and x2 > Cλn ,

λn|ψ̈(x1)− ψ̈(x2)| ≤ D|x1 − x2|.
Under such conditions the theorem of the previous section extends to the case with

pn → ∞. Conditions (b) and (c) allow us to control the bias when pn → ∞ and
ensure the existence of the root-n consistent penalized likelihood estimators while
conditions (d) and (e) dump somehow the influence of the penalties on the asymptotic
behavior of the estimators. Condition (f) is a regularity assumption on the penalty
away from 0 that allows an efficient asymptotic analysis.

6 Choosing the penalization parameters

Recall from (3) that the estimation procedure consists of minimizing

−
n∑

i=1

�
(

yi ,hT (xi )β
)

+ nλ
p∑

k=1

γkψ (βk), (16)

with respect to β = (β1, . . . , βp)
T , where γk, k = 1, . . . , p, are positive weights, and

λ > 0 is a general smoothing parameter. Denote by
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ρk = nλ γk, k = 1, . . . , p, (17)

the regularization parameters. Then minimization problem (16) is equivalent to

−
n∑

i=1

�
(

yi ,hT (xi )β
)

+
p∑

k=1

ρkψ (βk) . (18)

For a given log-likelihood function �(·), and a given penalty functionψ(·) one needs to
choose the regularization parameters ρ1, . . . , ρp. The choice of these parameters will
have an influence on the quality of the estimators. To select this vector of parameters
we propose to use an extension of the concept of L-curve. This idea of selecting the
whole vector of regularization weights ρk is similar to the non-linear L-curve regular-
ization method used for determining a proper regularization parameter in penalized
non-linear least-squares problems (see Gullikson and Wedin 1998). In our context,
the L-curve is a very efficient procedure that allows to choose a multidimensional
hyperparameter. Such a choice seems to be computationally impossible to achieve
using standard cross-validation procedures on a multidimensional grid.

We first briefly explain the basics of this L-curve approach for the particular case
of a Gaussian likelihood (a quadratic loss function) and then discuss the extension to
the current context of generalized linear models.

In our discussion of this section we assume that ψ(·) satisfies the assumptions:

• ψ is a continuously differentiable and convex function
• ψ is a non-negative and symmetric function
• ψ is such that ψ ′(t) ≥ 0, ∀t ≥ 0
• limt↗0 ψ

′(t)/t = C , with 0 < C < ∞.

Functions ψ that satisfies these conditions are functions 1, 3 and 4 in Table 1.

6.1 Multiple regularization, L-curves and Gaussian likelihood

In case of a Gaussian likelihood, minimization problem (18) reduces to

min
β

{
‖y − H(x)β‖2

2 +
p∑

k=1

ρkψ (βk)

}
, (19)

where x = (x1, . . . , xn)
T and H(x) is the matrix of dimension n × p built up of the

rows hT (xi ), i = 1, . . . , n. Now denote by βs the solution to the above minimization
problem, i.e.

βs(ρ) = argminβ

{
‖y − H(x)β‖2

2 +
p∑

k=1

ρkψ (βk)

}
, (20)

where ρ = (ρ1, . . . , ρp)
T . Putting

z(ρ) = ‖y − H(x)βs(ρ)‖2
2 and zk(ρ) = ψ

(
βs

k (ρ)
)

k = 1, . . . , p,
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an optimal choice of the regularization parameters (ρ1, . . . , ρp) would consists of
choosing them such that the estimation error

‖y − H(x)βs(ρ)‖2
2 +

p∑
k=1

ρkψ
(
βs

k (ρ)
) = z(ρ)+

p∑
k=1

ρk zk(ρ),

is minimal.
The L-hypersurface is defined as a subset of R

p+1, associated with the map

L(ρ) : R
p → R

p+1

ρT �→ (
t[z1(ρ)], . . . , t[z p(ρ)], t[z(ρ)]) ,

where t (·) is some appropriate scaling function such as

t (u) = log(u) or t (u) = √
u.

The L-hypersurface is a plot of the residual norm term z(ρ) plotted against the
constraint (penalty) terms z1(ρ), . . . , z p(ρ) drawn in an appropriate scale. In the one-
dimensional case, when p = 1, the L-hypersurface reduces to the L-curve, the curve
that plots the perturbation error t[z(ρ)] against the regularization error t[z1(ρ)] for
all possible values of the parameter ρ. The ‘corner’ of the L-curve corresponds to the
point where the perturbation and regularization errors are approximately balanced.
Typically to the left of the corner, the L-curve becomes approximately horizontal and
to the right of the corner the L-curve becomes approximately vertical. Under regularity
conditions on the L-curve, the corner is found as the point of maximal Gaussian
curvature.

Similarly, in the multidimensional case (p > 1) the idea is to search for the point
on the L-hypersurface for which the Gaussian curvature is maximal. Such a point
represents a generalized corner of the surface, i.e. a point around which the surface is
maximally warped. Examples and illustrations of L-curves and L-hypersurfaces, their
Gaussian curvatures and (generalized) corners, can be found in Belge et al. (2002), in
the framework of a regularized least-squares problem.

The Gaussian curvature of L(ρ) can be computed via the first- and second-order
partial derivatives of t[z(ρ)] with respect to t[zk(ρ)], 1 ≤ k ≤ p, and is given by

κ(ρ) = (−1)p

w p+2 det(P), (21)

where

w2 = 1 +
p∑

k=1

(
∂t (z)

∂t (zk)

)2

and Pk,l = ∂2t (z)

∂t (zk) ∂t (zl)
,

with the derivatives calculated at the point (z1(ρ), . . . , z p(ρ), z(ρ)).
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Evaluating the Gaussian curvature in (21) for a large number of regularization
parameters in searching for the point where we get maximal Gaussian curvature, is
computationally expensive. In addition, the use of conventional optimization tech-
niques to locate the maximum Gaussian curvature point might run into difficulties by
the fact that the Gaussian curvature often possesses multiple local extrema.

A way out to these difficulties is to look at an approximate optimization problem
that is easier to solve, and that is such that the solutions from both optimization prob-
lems (the exact and the approximate) are close. As discussed in Belge et al. (2002),
an appropriate surrogate function is to look at the minimum distance function (MDF),
defined as the distance from the origin (a, b1, . . . , bp) of the coordinate system to the
point L(ρ) on the L-hypersurface:

v(ρ) = ‖t[z(ρ)] − a‖2 +
p∑

k=1

‖t[zk(ρ)] − bk‖2. (22)

Intuititively, this distance is minimal for a point close to the ‘corner’ of the L-hyper-
surface. The minimum distance point is then defined as

ρs = argminρv(ρ). (23)

The relationship between this minimum MDF point and the point of maximum
Gaussian curvature has been studied in Belge et al. (2002), showing in particular the
proximity of the two points for the case of the L-curve.

Finding the minimum distance point, defined in (23), can be done via a fixed-point
approach. For the scale function t (u) = log(u) this leads to the following iterative
algorithm to approximate ρs :

ρ
( j+1)
k = z(ρ( j))

zk(ρ( j))

(
log{zk(ρ

( j))} − bk

log{z(ρ( j))} − a

)
, k = 1, . . . , p, (24)

where ρ( j) is the vector of the regularization parameters at step j in the iterative
algorithm. The algorithm is started with an initial regularization parameter ρ(0) =
(ρ
(0)
1 , . . . , ρ

(0)
p )T and is then iterated until convergence (i.e. until the relative change

in the iterates becomes sufficiently small).

6.2 Multiple regularization, L-curves and generalized linear models

Let us now look at the general case of a general log-likelihood function �(·) with
contributions �(yi ,hT (xi )β) in the log-likelihood part. Now suppose that minus the
log-likelihood function is a strict convex function and that we have a convex penalty
function. Then the minimization problem in (16) will have a unique minimum. For
given parameters λ, γk , 1 ≤ k ≤ p, this minimum is found by a kind of Newton–
Raphson algorithm, resulting in the so-called Fisher scoring method. This procedure
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is equivalent with an iteratively re-weighted least-squares procedure. See e.g. Hastie
and Tibshirani (1990).

The procedure of Sect. 6.1 can now be extended to this more general case as fol-
lows. For given parameters λ, γk , 1 ≤ k ≤ p denote by βs the solution retained at
the last (convergent) step of the iteratively re-weighted least-squares procedure. For
this (approximate) solution we then compute the error term (minus the log-likelihood
term) as well as the regularization errors. With these we produce the corresponding
L-hypersurface, and proceed as before.

6.3 Other selection methods

The selection method described in Sects. 6.1 and 6.2 provides a data-driven way for
choosing the regularization parameters ρ1, . . . , ρp as defined in (17).

An alternative approach to choose the parameters λ, γ1, . . . , γp in optimization
problem (16) is as follows. As mentioned by Klinger (2001), the penalized likelihood
estimation procedure is not invariant under linear transformations of the basisfunc-
tions hk(x): an estimate of β̃ j , the coefficient which is associated to the basisfunction
κ[H(x)] j , does not equal β̂ j/κ , where β̂ j is the estimated coefficient associated with
the basisfunction [H(x)] j . In other words, the estimated predictor depends on the
scaling of the basisfunctions.

To overcome this possible drawback, one can standardize the basisfunctions in
advance by considering

h j = 1

n

n∑
i=1

h j (xi ),

and by calculating

s̃2
j = 1

n

n∑
i=1

[
h j (xi )− h j

]2
.

A possibility is then to adjust the threshold parameters γk appropriately by taking
then equal to

γk =
√

s̃2
k .

With this choice, any scaled version κ[H(x)] j would yield the threshold γ̃k = |κ|γk .
A data-driven choice of the parameters λ, γ1, . . . , γp is obtained by choosing γk =√̃

s2
k and by selecting λ by generalized cross validation.
The two data-driven procedures can also be combined, by choosingλ andγ1, . . . , γp

as explained above, and then calculating from this the initial regularization parameter
ρ(0) = (ρ

(0)
1 , . . . , ρ

(0)
p )T as needed in the selection procedure of Sects. 6.1 and 6.2.

These alternative selection procedures are not further explored in this paper.
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7 Simulations and example

7.1 Simulation study

Here, we report some results on two sets of numerical experiments, which are part of
an extensive simulation study that has been conducted to investigate into the properties
of the penalization methods proposed in this paper and to compare them with some
other popular approaches found in the literature. In all the experiments we have cho-
sen some test functions that present either some jumps or some discontinuities in their
derivatives. In each set of experiments, we have two inhomogeneous test functions,
advocated by Donoho and Johnstone (1995) for testing several wavelet-based denois-
ing procedures. The noise for the first set of experiments is assumed to be Gaussian
and therefore the loss function considered for these experiments is quadratic. For the
second set of experiments, we have used a Poisson noise, in order to illustrate the
performances of the various procedure under GLM settings.

7.1.1 Quadratic loss

Data were generated from a regression model with two test functions. Both test func-
tions named heavisine and corner are displayed in the figures below. Each
basic experiment was repeated 100 times for a signal-to-noise (SNR) ratio of level 4.
SNRs are defined as SNR = {√var(f)/σ 2}1/2, with f the target function to be esti-
mated, as in Donoho and Johnstone (1995). For each combination of test functions and
each Monte Carlo simulation we have used the same design points xi , i = 1, . . . , n,
obtained by simulating a uniform distribution on [0, 1]. To save some space we report
here results for only n = 200 and SNR = 4, since results from other SNRs and n
combinations are similar. Figures 3 and 4 respectively, depict a typical simulated data
set with a SNR = 4, together with the corresponding mean function as the solid curve.
Altogether four regularization procedures were compared. The four procedures are
all based on regression splines and are RIDGE (quadratic loss and L2-penalty on the
coefficients), LASSO (quadratic loss and L1 penalty on the coefficients), the spatially
adaptive regression splines (SARS) developed by Zhou and Shen (2001) which is par-
ticularly suited for functions that have jumps by themselves or in their derivatives and
HQ, the half-quadratic regularization procedure (quadratic loss and a penalty within
the δ-class (penalty 2 in Table 1). We recall here that SARS is locally adaptive to
variable smoothness and automatically places more knots in the regions where the
function is not smooth, and has been proved as effective in estimating such functions.

For each simulated data set, the above cited smoothing procedures were applied
to estimate the test functions. The numerical measure used to evaluate the quality of
an estimated curve was the MSE, defined as MSE( f̂ ) = 1

n

∑n
i=1( f̂ (xi ) − f (xi ))

2.
Typical curve estimates for each test function obtained applying the four procedures
on the same noisy data set are plotted in Figs. 3 and 4, where also boxplots of the
MSE( f̂ ) values of each f̂ are also plotted. To compute the SARS estimates we have
used the default values supplied by the code of Zhou and Shen for the hyperparameters
that are required to be pre-selected. For other procedures we have used a maximum
of 40 equispaced knots for the truncated power basis and the smoothing parameters
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Fig. 3 A typical simulated data set with a SNR = 4, together with the corresponding heavisine func-
tion as a solid curve, together with typical fits obtained with the various regularization procedures and the
boxplots of their MSE over 100 simulations
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Fig. 4 A typical simulated data set with a SNR = 4, together with the corresponding corner function as
a solid curve, together with typical fits obtained with the various regularization procedures and the boxplots
of their MSE over 100 simulations

where selected by 10-fold generalized cross-validation. The threshold parameters γk

were adjusted according to the average standard deviation of each basis function as
advocated in Sect. 6. The L-curve criterion gave, in these simulation models, very
similar results (and hence are not reported on here).

In view of our simulations, some empirical conclusions can be drawn. For the
heavisine which presents two jump points, the boxplots in Fig. 3 suggest that
LASSO and HQ have the smallest MSE and that the performance of LASSO depends
heavily on the position of the retained knots. This is not surprising since a large obser-
vation can be easily mistaken as jump points by LASSO. The RIDGE and SARS
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Fig. 5 A typical simulated Poisson regression data set together with the corresponding exp
(heavisine) function as a solid curve

procedures perform roughly the same with an advantage to SARS which chooses the
knots in a somewhat adaptive way. For the corner function all procedure give simi-
lar results with a preference in HQ with respect to MISE. The fact that all other three
procedures are better than RIDGE is not surprising since RIDGE is not designed for
recovering non-smooth functions.

7.1.2 Poisson regression

In the Monte Carlo simulation described here repeated random samples {(xi , yi ),

i = 1, . . . , 200}were generated form the Poisson regression model Yi ∼ Poisson( f (xi )),
with a function f given by the exponential of theheavisine function of the previous
subsection. While the inhomogeneous character of this function is retained by expo-
nentiation, the above intensity is ensured to be strictly positive on the design interval.
For this case too, the basic experiment was repeated 100 times and for each Monte
Carlo simulation we have used the same design points xi , i = 1, . . . , n, obtained by
simulating a uniform distribution on [0, 1]. Figure 5 depicts a typical simulated data
set, together with the true corresponding intensity function as a solid curve. Since
SARS is not designed for treating Poisson distributed data, we have used instead a
B-splines procedure based on an information criterion designed recently by Imoto and
Konishi (2003) for our comparisons.

Three regularization procedures were compared. The RIDGE procedure based on
a P-splines approach by Eilers and Marx (1996), our HQ procedure for the GLM case
and finally the SPIC procedure by Imoto and Konishi (2003). The first two procedures
are again based on regression splines with a maximum of 40 equispaced knots for
the truncated power basis and the smoothing parameters were all selected by 10-fold
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Fig. 6 Typical fits obtained with the various regularization procedures and the boxplots of their MSE over
100 simulations

cross-validation. The SPIC procedure is based on B-splines with 30 knots and the
smoothing parameter for the Imoto and Konishi (2003) method is selected by their
SPIC-criterion.

In view of these simulations and the boxplots in Fig. 6 the HQ procedure has the
smallest MSE (due to a better tracking of the discontinuity and a less biased estimation
of the small bump near to the point 0.64) followed by the RIDGE regression and the
SPIC procedure. The RIDGE and SPIC procedures perform roughly the same, and
seem to over-smooth the peak.

7.2 Analysis of real data

We illustrate our proposed procedure (HQ) through the analysis of the AIDS data
(Stasinopoulos and Rigby 1992). This data set concerns the quarter yearly frequency
count of reported AIDS cases in the UK from January 1983 to September 1990 and is
reproduced in Stasinopoulos and Rigby (1992). As suggested by these authors, after
deseasonalising this time series, one suspects a break in the relationship between the
number of AIDS cases and the time measured in quarter years.

We model the dependent variable Y (deseasonalised frequency of AIDS cases) by a
Poisson distribution with mean a polynomial spline function of x , the time measured
in quarter years and have used the appropriate half quadratic procedure (HQ) with a
spline basis based on 12 knots to fit the data. The deseasonalized data and the resulting
fit, and the derivative of the fit are plotted in Fig. 7. One clearly sees a change in the
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Fig. 7 Half Quadratic penalized fit (solid line) to the deseasonalized AIDS data. The dashed line is the
derivative of the fitted regression curve

derivative at about July 1987. Stasinopoulos and Rigby (1992) suggested that this
change was caused by behavioral changes in high risk groups. See also Jandhyala and
MacNeill (1997) for an analysis of these data.
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