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Abstract Although the parameters in a finite mixture model are unidentifiable, there
is a form of local identifiability guaranteeing the existence of the identifiable para-
meter regions. To verify its existence, practitioners use the Fisher information on the
estimated parameters. However, there exist model/data situations where local identifi-
ability based on Fisher information does not correspond to that based on the likelihood.
In this paper, we propose a method to empirically measure degree of local identifia-
bility on the estimated parameters, empirical identifiability, based on one’s ability to
construct an identifiable likelihood set. From a detailed topological study of the like-
lihood region, we show that for any given data set and mixture model, there typically
exists limited range of confidence levels where the likelihood region has a natural
partition into identifiable subsets. At confidence levels that are too high, there is no
natural way to use the likelihood to resolve the identifiability problem.

Keywords Asymptotic identifiability · Finite mixture model · Local identifiability ·
Likelihood topology · Nonidentifiability

1 Introduction

Parameter identifiability is very important if one wishes to make inferences in a statis-
tical model. In some models, identifiability on the parameters does not exist formally,
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although it might exist in some practical sense. In this paper, wewill show how one can
define identifiability on the estimated parameters and empirically measure it, based
on one’s ability to construct a reasonable likelihood confidence set. By a reasonable
likelihood confidence set we mean a locally identifiable subset of the parameter space
where every parameter in the constructed set generates a unique distribution. The finite
mixture model is a perfect place to illustrate our methodologies.

There is no identifiability of the parameters in a finite mixture model, at least in
a formal sense, due to the two types of nonidentifiability, labeling nonidentifiability
(Redner andWalker 1984) and degenerate nonidentifiability (Crawford 1994; Lindsay
1995, p. 74). Nevertheless, when one bases inferences on the likelihood function,many
statistical analyses have been carried out treating the parameters as identifiable. This
is possible because the point estimators for the parameters can be defined uniquely
by the output of the likelihood maximization. Moreover, there is a form of asymptotic
identifiability which one can appeal to for the inference on identifiable parameters as
the sample size increases (Redner and Walker 1984). Indeed, this theory becomes a
justification for using the Fisher information matrix and the corresponding Wald sets
for further inferences.

Asymptotic identifiability is related to local identifiability (Rothenberg 1971). Local
identifiability means that even though there are more than one parameter values in the
whole parameter space whose probability distributions are the same to the sample,
one can still find an open neighborhood of the parameter such that every parameter
in that neighborhood generates a unique distribution. Thus if we can be relatively
certain that the estimated parameters lie in such a locally identifiable region, we can
appeal to asymptotic identifiability. Since it is computationally difficult to determine
a locally identifiable region in the whole parameter space, we often check if the Fisher
information on the estimated parameters is positive definite to verify the existence of
local identifiability on the estimated parameter (Rothenberg 1971; Goodman 1974;
Huang and Bandeen-Roche 2004).

As we shall see later, however, there are data/model situations where local identifi-
ability based on the positive definiteness of the Fisher information may not correspond
to an identifiable likelihood confidence set for the parameter estimates. Moreover, if
we try to construct likelihood regions for the estimated parameters, we find that there
exists a limited range of confidence levels where one can create a locally identifiable
likelihood set. If one chooses too high confidence level for the given data set, one
can no longer create an identifiable confidence region using the likelihood and thus
asymptotic identifiability does not hold. We interpret the bound on confidence leading
to an identifiable likelihood confidence set as empirical identifiability that empirically
measures degree of local identifiability with respect to the estimated parameters in a
given data set. If the empirical identifiability is high enough, say 95 %, we are rel-
atively confident that the sample contains enough information to confer meaningful
interpretation on the estimated parameters.

The route to construct the likelihood regions that are consistent with asymptotic
identifiability is not elementary but in many situations our methods are easy to imple-
ment. The idea behind our proposal is a topological decomposition of the likelihood
confidence region using an identifiable partition. By identifiable partition we mean
that the likelihood region consists of disjoint subsets, each of which is a connected and
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identifiable subset. Although there aremultiple such subsets, they aremerely relabeled
images of each other, and so any one of them can be chosen for equivalent inference
on the identifiable parameters in them.

There are a few important aspects of the proposed methods in this paper. First,
our constructed regions based on the likelihood topology share the same invariance
property that standard likelihood regions have. That is, a smooth change in the para-
metrization yields an exactly equivalent change in the regions. Second, the empirical
identifiability on the estimated parameters is obtained using the likelihood topology
in the full-dimensional parameter space and so one can transmit information about the
empirical identifiability to any lower dimensional parameters of interest. In Sect. 7 we
will illustrate how to utilize the value of the empirical identifiability generated by the
full dimensional likelihood topology for an important practical problem in using the
likelihood, namely the visualization of the likelihood-based profile sets for the parame-
ters of interest. Third, the proposed method designed to identify a range of confidence
levels that guarantees identifiable partition in the likelihood can be implemented using
the EM algorithm.

The structure of the paper is as follows. Section 2 reviews the nonidentifiabilites
of the parameters in a finite mixture model. In Sect. 3, we formally introduce the
identifiable partition and theunimodal partition, inducedby themixture likelihood.We
then illustrate, using two simulated data sets, the identifiability issues that occur when
one constructs the likelihood regions for themixture parameters. Section 4 studies how
the topology of themixture likelihood determines existence of an identifiable unimodal
partition. We then create data analytic tools to assess whether such a partition exists.
In Sect. 5 we study the relationship between the parameters and the partition. We first
show that the mixing weights can be ignored in creating an identifiable partition in
the likelihood. We then show that when the component parameters are univariate, the
partition yields order restricted confidence regions. We also show that no such simple
rule exists for multivariate component parameters. For this case, we create a numerical
diagnostic for the presence of the partition. In Sect. 6, we carry out a simulation study
to evaluate the performance of our proposed diagnostic for a case of multivariate
component parameter. In Sect. 7, we use four examples to show application of our
proposed methods.

2 Background on nonidentifiabilities in finite mixture models

Suppose that n observations y = (y1, . . . , yn)T are randomly drawn from the K
component mixture density with mixing weights π = (π1, . . . , πK ) (0 ≤ π j ≤ 1 and
∑K

j=1 π j = 1), component parameters ξ = (ξ1, . . . , ξK ) and a structural parameter
ω for the density function f :

p(y | θ) =
K∑

j=1

π j f (y; ξ j , ω), (1)

θ =
[( π1

ξ1
ω

)
, . . . ,

( π j
ξ j
ω

)
, . . . ,

( πK
ξK
ω

)]
. (2)
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Note that θ represents the set of parameters in the parameter space of dimension p,
denoted byΩ , which is the full product space (the simplex of π j , and the cross product
space of ξ j andω). One can associate θ in Eq. (2) with themixing distribution, denoted
by Q<θ>, which is the discrete distribution function with mass π j at ξ j : p(y | θ) =∫

f (y; ξ, ω)dQ<θ>(ξ). The mixing distribution Q<θ> is often identifiable (Teicher
1960, 1963; Yakowitz and Spragins 1968; Lindsay 1995). In this paper, we focus on
the cases where Q<θ> associated with θ in Eq. (1) is identifiable and the component
density f (y; ξ j , ω) indexed by the parameters ξ j and ω is also identifiable, but there
exist serious identifiability problems if one is interested in θ and its interpretation.

Given n independent data generated from Eq. (1), one can construct the mixture
likelihood of a p-dimensional parameter θ ,

L(θ) =
n∏

i=1

p(yi | θ). (3)

We will denote the true parameter by θτ , and the Maximum Likelihood Estimator
(MLE) for the parameter maximizing L(θ) in Eq. (3) by θ̂ . We assume that the mixture
likelihood is bounded.

In such a setting, the likelihood confidence region for θ can be written as

CLR
c = {θ : L(θ) ≥ c}, (4)

where c is a tuning parameter that changes the size of the likelihood confidence set.We
call CLR

c in Eq. (4) as the elevation c likelihood region. For purposes of illustrating the
methods in this paper, we use the limiting distribution of the likelihood ratio statistic,
T1 = 2(log L(θ̂) − log L(θ)), to determine the value of c : c = L(θ̂)e−q1−α/2 where
q1−α is the 1 − α quantile of the chi-squared distribution with p degrees of freedom.
Then c is interpreted via the confidence level of T1 in the p-dimensional parameter
space which we denote by Conf p(c). If one wishes to use elevations that provide more
accurate confidence levels, one can do a parametric bootstrap adjustment (Efron and
Tibshirani 1993; Davison and Hinkley 1997).

In our problem, interpretation of the likelihood confidence region presents some
newchallenges. There are two important nonidentifiabilities in θ , the labeling noniden-
tifiability (Redner and Walker 1984) and the degenerate nonidentifiability (Crawford
1994; Lindsay 1995, p. 74). We describe these concepts next, and then return to their
implications for confidence region estimation.

The degenerate nonidentifiability occurs at those parameters θ0 where Q<θ0> has
fewer than K mass points, so θ0 are non-identifiable in the θ space. We will call such
θ0 a degenerate point. For example, the following three subsets of the boundary of
the parameter space in a two-component mixture model without structural parameter,

θ0 =
[(

π1
ξ0

)
,
(1−π1

ξ0

)]
,
[(0

ξ

)
,
( 1
ξ0

)]
and

[( 1
ξ0

)
,
(0
ξ

)]
, all generate a one-component density

with parameter ξ0 for arbitrary ξ and π1, and thus ξ and π1 are not identifiable. In
this case Q<θ0> has just one support point. In this paper we assume that the number
of components is at most K (i.e., the support of Q<θ> has at most K elements). As
illustrated in Sect. 3.3, we still face the problem that parameter values near this bound-
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ary will create challenges to asymptotic inference methods. Moreover, the parameter
points where ξ1 = ξ2 are in the interior of the cross product space and give the same
distribution when permuted, which is related to the next nonidentifiability.

The labeling nonidentifiability means that for any particular θ in Eq. (2), one can
rearrange its columns in an arbitrary fashion without changing the mixture density in
Eq. (1). In other words, if θσ is a copy of θ with columns permuted according to any
permutation σ of the identity permutation (1, . . . , K ), then the mixture density and
the likelihood are invariant : p(y | θ) = p(y | θσ ) and L(θ) = L(θσ ). For example,

when K = 2 and there is no structural parameter, θ =
[(

π1
ξ1

)
,
(
π2
ξ2

)] =
[(0.4

1

)
,
(0.6
2

)]
has

the same distribution as θσ =
[(0.6

2

)
,
(0.4
1

)]
, and so the model (and data) provide no

information as to which column in θ should be called the first component and which
the second component.

For this reason, we will say that the labels on θ are not identifiable. In particular,
in a K component mixture, there are K ! different true values corresponding to all
possible column permutations of θτ .Moreover, if θ̂ is amode of themixture likelihood,
the likelihood surface has (at least) K ! MLE modes, corresponding to the column
permutations of θ̂ . Since themodes of themixture likelihood come in sets of K ! points,
we will call each such set a modal group. If there is only one group, corresponding
to the MLE mode, we will say that there are no secondary modes. Notice that when
c = L(θ̂) in CLR

c of Eq. (4), CLR
c will contains exactly K ! parameter values, namely

the K ! MLE modes.

3 Challenging issues in constructing the mixture likelihood region

Although there are two types of nonidentifiability in θ of Eq. (1), we can create
identifiable parameters by restricting themodel parameters to come froma subset of the
parameter space that includes neither permuted parameters nor degenerate parameters.

Definition 1 A subset S of the parameter space Ω is said to be an identifiable subset
if, for any parameter θ in S, there exists no parameter θ

′
in S such that p(y | θ) ≡

p(y | θ
′
) where ≡ means that densities equal for almost all y.

One method to create identifiable subsets is to use parameter constraints. For exam-
ple, when the component parameter ξ j is univariate, the order-restricted subset based
on ξ1 < · · · < ξK is a commonly used candidate. In this paper,wewill use the topology
of the likelihood to create an identifiable region that can be used for labeled inference.

3.1 Asymptotic identifiability

Our chosen route to creating identifiable subsets for statistical inference is based on
an asymptotic identifiability theory for the MLE found in Redner and Walker (1984).
Let θτ be any one of the K ! true values. Suppose that it is associated with Fisher
information I. Let θ̂n be an arbitrary element in the modal group of K ! MLE’s for
each n. Then there exists a way to choose a column permutation of θ̂n , σn , such that
θ̂

σn
n is consistent for θτ , and
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√
n(θ̂σn

n − θτ )
D→ N (0, I−1). (5)

The asymptotic result described above seems to imply that for large samples one
can treat labels as identified, and use standard asymptotic distribution theory. However,
the existence of σn does not say how one might determine it. We think it is helpful to
pretend that one does not know σn , and consider the implications for the construction
of confidence regions. To do so, we invert Eq. (5) around every possible permutation
σ of θ̂n . There will then be K ! Wald ellipsoidal regions, one for each permutation σ ,
one surrounding each permuted mode θ̂ σ ,

{θ : (θ̂σ − θτ )
TIσ (θ̂σ − θτ ) ≤ w}

where w is chosen to achieve a desired asymptotic confidence region. We can think
of the K ! ellipsoids as describing the most likely location of the true value θτ as well
as the K !−1 equivalent representations θσ

τ . Note that these K ! Wald ellipsoids are all
just permuted copies of each other. It follows that θτ is in any one of the K ! ellipsoids
if and only if all of the permuted versions of θτ are found in corresponding permuted
ellipsoids.

For sufficiently small w, the ellipsoids are separated from the each other and are
identifiable subsets. This implies that the labels are meaningful within each ellipsoid.
This is a very important point. One can then pick any one ellipsoid and use it for set
estimation. All the other ellipsoidal regions are just permuted copies and so give the
same basic inference about θτ , just with different column labels.

If we do choose one ellipsoid and redefine coverage probability to mean the prob-
ability the chosen ellipsoid covers one of the K ! true values θσ

τ , we know that the
coverage probabilities are asymptotically correct. Our conclusion is that in an asymp-
totic sense we can select any one of the ellipsoids as a descriptor of the full confidence
region, knowing that all other possible regions can be obtained by permutations of
indices, also known as relabeling.

Using this setup, Wald methods can be applied to the mixture problems we are
considering.However, onemight prefer to use likelihood regions becauseWald regions
are based on local quadratic approximations to the logarithm of likelihood ratios and so
they need not capture global behavior of likelihood regions. There is also a substantial
literature that suggests that the Wald sets are inferior to the likelihood sets for finite
samples (Cox and Hinkley 2002; Kalbfleisch and Prentice 1980; Meeker and Escobar
1995; Agresti 2002). We will illustrate several issues one faces in using Wald sets for
the parameters of finite mixture models in Sect. 3.3.

3.2 Partition of mixture likelihood region

Suppose that the mixture likelihood L(θ) in Eq. (3) is bounded and there exists a
modal group of K ! MLE modes maximizing L(θ). To assist in our description of the
mixture likelihood region, we define the modal region determined by the elevation of
interest c in Eq. (4) and the MLE mode θ̂ .
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Definition 2 The modal region for θ̂ at the elevation c, as written as Cc(θ̂), is the set
of all θ that are connected to θ̂ by a continuous path contained in the likelihood region
with the elevation c, CLR

c = {θ : L(θ) ≥ c} of Eq. (4).
Note that this definition implies that the modal region around another mode of

the modal group θ̂ σ , Cc(θ̂
σ ), can be found by permuting all elements of the original

modal region Cc(θ̂) : Cc(θ̂
σ ) = Cσ

c (θ̂) for any permutation σ . The set Cc(θ̂) and its
permutations will play the role of the ellipsoids in theWald analysis. Taylor expansion
of the likelihood shows that the modal regions will be shaped elliptically for elevations
c near L(θ̂), but we will see that shapes deviate sharply from elliptical as the elevation
c is lowered.

The definition of the modal region given above leads to the definition of partition
of the likelihood region:

Definition 3 We say that there exists an identifiable partition in the elevation c like-
lihood region, CLR

c , of Eq. (4) if there exist K ! modal regions Cc(θ̂
σ ), each for one of

K ! MLE modes θ̂ σ , that satisfy the three properties,
(P1) they are disjoint,
(P2) each is an identifiable subset,
(P3) their union is equal to CLR

c .

In addition, we say that CLR
c has a unimodal partition if there exists an identifiable

partition that satisfies the additional property (P4).
(P4) each modal region Cc(θ̂

σ ) is a connected set containing just a single mode, θ̂ σ .

Existence of a unimodal partition is desirable because it is consistent with the
large sample theory of the likelihood-based inference. Moreover, in a practical sense,
the existence of such partition helps practitioners have a simple explanation for the
data. We will focus our analysis on understanding conditions under which a unimodal
partition exists in Sect. 4.

Note that if there exists a unimodal partition, then the labels on the parameters in
each modal region are uniquely determined by its MLEmode and one can use any one
of the K ! modal regions to describe CLR

c with a locally identifiable set of parameters.
Within each such modal region, there is no ambiguity about how to assign labels as
any relabeled version of an element necessarily belongs in a permuted modal region.
If we use the asymptotic distribution theory, any selected one of these regions has right
confidence level provided that we define coverage probability to be the probability of
covering one of the permutations of θτ .

However, if the elevation c is much smaller than L(θ̂), the modal regions contain
parameter values displaying the two types of nonidentifiability and thus the likelihood
region no longer has an identifiable partition. We will illustrate these issues in the next
subsection.

3.3 Two simulated examples

We next provide some data-based examples that will be useful to motivate our
theoretical developments in the following sections. We consider construction of
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the likelihood and Wald regions in a two-component normal mixture model with

equal variances, θτ =
[( π1

ξ1
ω

)
,
( π2

ξ2
ω

)]
. We simulated 500 observations from

θ =
[( 0.4−1

1

)
,
(
0.6
1
1

)]
, and obtained the MLE for θ using the expectation–

maximization(EM) algorithm (Dempster et al. 1977). The estimated MLE had para-

meters θ̂ =
[(

0.588
0.948
0.89

)
,
( 0.411−1.003

0.89

)]
. Due to the labeling nonidentifiability, θσ

τ =
[(

0.6
1
1

)
,
( 0.4−1

1

)]
and θ̂ σ =

[( 0.411−1.003
0.89

)
,
(
0.588
0.948
0.89

)]
have the same density and like-

lihood as θτ and θ̂ , respectively, where θσ is the column permutation of θ .
This means that if one wishes to construct the likelihood region for the mixture

parameter, there should be two subsets, one around each MLE mode. Although the
full parameter space is of dimension p = 4, we can partially view the full likelihood
structure through 2-dimensional profile likelihood sets and Wald sets for (π1, ξ1)

(Meeker and Escobar 1995). This is possible because if one can see the two separated
sets in the profiles at the targeted elevation c, then the full-dimensional likelihood
region is also separated into two sets at the same elevation.

Figure 1a shows the numerical profile likelihood (black) and Wald (gray) contours
for (π1, ξ1)with the elevation c corresponding toConf4(c)= 80%, the 80%confidence
level in the full-dimensional parameter space. Here we can see that both likelihood
and Wald regions corresponding to the MLE and its permutation have appeared in
the profile plot: for the given MLE θ̂ , one mode had

(
π1
ξ1

) = (0.588
0.948

)
and θ̂ σ had

(
π1
ξ1

) = ( 0.411
−1.003

)
.

We observe from Fig. 1a that asymptotic identifiability at n = 500 appears appro-
priate. This is because the likelihood region has a unimodal partition, say C1(upper
region) and C2 (lower region), one for each of the two modes of the likelihood. Thus,
one can use C1 and C2 together to describe the two-mode profile likelihood region for
(π1, ξ1). Or one can pick labels, for example calling C1 the likelihood set for the first
component (π1, ξ1) and C2 the set for the second component (π2, ξ2).

Note that results of the Wald regions are also consistent with those of asymptotic
identifiability, as there were two identifiable and disjoint subsets, one for each of the
two modes. However, the subsets in the Wald regions appear to be much smaller than
those generated by the likelihood, even though their orientation matches up and their
shape seems to be similar to an ellipse.

Instead of using the likelihood region, onemight force identifiability by constraining
the parameter space. In this example, using ξ1 < ξ2 would give the same partition as
the likelihood. On the other hand, using π1 < 0.5 < π2 would not give a partition
into identifiable subsets consistent with those induced by the likelihood. The theory
behind this will be in Sect. 5.

If we reduce our sample size from n = 500 to n = 100 and hold the confidence level
fixed, however, the structure of the likelihood dramatically changes. To illustrate this
issue, we first simulated 100 observations from the same simulation model with the
same true value θτ used above, and obtained the MLE for θ . Note that the estimated

MLE was θ̂ =
[(

0.623
1.094
0.83

)
,
( 0.377−0.879

0.83

)]
. We then constructed the profile likelihood

(black) set for (π1, ξ1) with the elevation c corresponding to Conf4(c) = 80 %. From
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Fig. 1 a–c are numerical profile likelihood (black) and Wald (gray) contours for (π1, ξ1)

Fig. 1b, we can clearly see that there is no sign of two separable subsets: the twomodes
at

(0.623
1.094

)
and

( 0.377
−0.879

)
are both in one connected region. This region also contains

degenerate parameter values (e.g., π1 = 0), so the likelihood does not provide a way
to partition this region into two identifiable subsets, one for each mode. In particular,
using order constraints such as π1 < 0.5 and ξ1 < ξ2 appears to create partitions that
have no relationshipwith the structure of the likelihood.We also observe that the union
of Wald regions (gray) gives misleading information on the structure of the likelihood
region in the sense that the two subsets in the Wald regions are still separated, unlike
the likelihood regions.

Using the same likelihood, one can also create an identifiable partition by decreasing
the confidence level (i.e., increasing the elevation) of interest. Figure 1c shows the
numerical profile likelihood (black) and Wald (gray) contour for (π1, ξ1) with the
elevation c corresponding to Conf4(c) = 39 % when n = 100. We observe that the
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profile, and hence the full likelihood regions, again have separable subsets, one for
each MLE mode.

These two examples lead to several important observations. First, asymptotic identi-
fiability may or may not be relevant in a finite sample. In these examples, we simulated
data where the number of components K was fixed and known, so technically we were
not in a degenerate situation. However, the results based on the likelihood regions often
bore little resemblance to those predicted by asymptotic identifiability. Second, the
structure of the likelihood regions clearly depended on the elevation of interest. An
identifiable unimodal partition might not exist at a chosen confidence level, but it is
almost always possible to find a level small enough that such a partition exists. We
also observed the different roles that the mixing weights and component parameters
seemed to play in determining the identifiable subsets. These observations become the
basis for our theory in Sect. 5.

4 Landmark elevations and topology of likelihood regions

In Sect. 3, we illustrated that the existence of an ideal partition at any particular
elevation/confidence level depends on the topology of the mixture likelihood surface
and on the elevation/confidence level chosen. In this section, we identify the landmark
elevations that are critical in determining the existence of the unimodal partition.

For regularity we will assume that the likelihood for the parameter θ of a K com-
ponent mixture model in Eq. (1) is bounded, twice continuously differentiable and has
no critical points with singular Hessians on the domain {θ : L(θ) > ψdeg} where ψdeg
is the highest elevation in the degenerate class of parameters (i.e., the likelihood of
the MLE for a (K − 1) component mixture model). The degenerate class of parame-
ters introduces some pathologies into the topological structure of the regions, as will
be clear shortly. For this reason, we will restrict attention to the elevations c above
ψdeg. This assumption is important because one can appeal to Morse theory on that
domain (Matsumoto 2002), which relates the topology of a manifold to critical points
of functions. Among other things, this assumption has a few important implications.
First, the mixture likelihood L(θ) on the domain {θ : L(θ) > ψdeg} has only finitely
many critical points and these critical points are isolated. Second, the topology ofCLR

c
does not change except when c passes the elevation of a critical point and thus we
can focus K ! MLE modes, secondary modes and degeneracy in the likelihood to get
information about the topology of the domain {θ : L(θ) > ψdeg}. Last, the topology
of CLR

c is invariant under smooth parameter transformations, and so our method will
yield invariant confidence regions.

4.1 Existence of a unimodal partition

There are a number of topological landmarks whose elevations play an important role
in the theory. LetψMLE be the elevation of theMLEmodes for a K component mixture
model in Eq. (1) and let ψdeg be the elevation of the MLE for a (K − 1) component
mixture model, as we defined above. If there exists a mode next highest to the MLE
between ψMLE and ψdeg, we let its elevation be ψ2nd.
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Suppose that, at elevation c, the intersection of Cc(θ̂) and Cc(θ̂
σ ) is non-empty for

some permutationσ and therefore the two sets are equal. Then there exists a continuous
path that has the following characteristics

1) it lies entirely in the elevation c likelihood region, CLR
c in Eq. (4),

2) it contains the saddle point connecting the two MLE modes, θ̂ and θ̂ σ ,
3) among all paths satisfying 1) and 2), it maximizes the minimal elevation attained

by the likelihood along the path.

We will say such a path ismaximin, and denote its minimal elevation by ψmm. This
is also the elevation of the saddle point connecting the two modal regions.

We can now describe quite precisely the elevations that will give us a unimodal
partition of the likelihood.

Theorem 1 Aunimodal partition exists at elevation c if andonly ifmax{ψmm, ψ2nd} <

c ≤ ψMLE.

Proof See the Appendix. �	
From the proof of Theorem1,we also have three lessons helpful for further analysis.

Corollary 1 An identifiable partition in the likelihood cannot exist for elevations c
below ψdeg.

Corollary 2 The likelihood region CLR
c cannot display a unimodal partition for ele-

vations c ≤ ψfail = max{ψdeg, ψ2nd}.
Corollary 3 The modal regions Cc(θ̂) are identifiable subsets if they are disjoint.

A standardmixture analysis involves a search for the local maxima of the likelihood
when one uses the EMalgorithm for finding theMLE and soψ2nd in Theorem1 is often
available (Lindsay 1995; McLachlan and Peel 2000). Note that ψdeg in Corollary 1
and 2 can also be easily computed via the EM algorithm because it corresponds to the
likelihood of the MLE for (K − 1) component mixture model.

However, it is not standard to search for ψmm and so Theorem 1 is not directly
useful in a mixture likelihood analysis. Since it would be a major undertaking to add
such a step to a conventional mixture analysis, we will develop a substitute method
that is not as precise, but does guarantee the existence of a unimodal partition.

Our first lesson is that every hyperplane that separates θ̂ from θ̂ σ can be used to gain
information about ψmm in the maximin path. Consider a hyperplane that separates the
two MLE modes, θ̂ and θ̂ σ ,

Hr,a = {θ ∈ Ω : rTθ = a} (6)

where r ∈ R
p is a nonzero vector and a ∈ R. Let ψhyp be the largest likelihood value

attained in the hyperplane of Eq. (6).

Theorem 2 For any separating hyperplane in Eq. (6), ψhyp ≥ ψmm.

Proof See the Appendix. �	
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Fig. 2 Landmark elevations for
unimodal partition in a K
component mixture model:
ψMLE is the elevation of the
MLE modes for a K component
mixture model, ψ2nd is the
elevation of the secondary mode
next highest to the MLE modes,
ψhyp is the highest elevation in
the hyperplane of Eq. (6), ψmm
is the minimum elevation of the
maximin path, and ψdeg is the
elevation of the MLE for a
(K − 1) component mixture
model

We now can describe how one can use the value of ψhyp in a data analysis to create a
safe elevation for the construction of a unimodal partition.

Corollary 4 A unimodal partition is sure to exist if ψsafe = max{ψhyp, ψ2nd} < c ≤
ψMLE.

In Sect. 4.2 we will discuss determination of r and a in the hyperplane of Eq. (6)
for using Corollary 2 and 4 in an optimal fashion.

Figure 2 shows the landmark elevations that we have proposed in identifying a
unimodal partition in a data analysis. If one determines the three landmark elevations,
ψMLE, ψsafe in Corollary 4 and ψfail in Corollary 2, one can gain considerable knowl-
edge about whether or not one can create a unimodal partition of the likelihood region.
One can also transform the computed ψfail and ψsafe into confidence levels in the full-
dimensional parameter space, Conf p(ψfail) and Conf p(ψsafe), and thus employ the
confidence bound on unimodal inference as the empirical identifiability in a given
data set which measures degree of local identifiability at the MLE modes, θ̂ . We will
learn more about this in the following results. Note that all these landmark elevations
can be easily computed using the EM algorithm.

Remark 1 We think that using the likelihood with identifiable confidence sets is quite
defensible based on the asymptotic theory, but only when the likelihood displays a
unimodal partition. Suppose one wished to construct labeled regions at the elevations
c where unimodal partition does not hold. If there exists a secondary modal group
with ψ2nd above ψdeg, there will be a range of elevations where there exist more than
K ! regions. If there was one secondary modal group, there would be 2K ! unimodal
regions. One could match regions into K ! identifiable pairs, but clearly this would be
a manmade construction, not one dictated by the likelihood. Clearly the asymptotic
theory is not working perfectly in this case.

For a case of the elevation c below ψdeg, one can imagine trying to create artificial
partitions of the likelihood region into identifiable and unimodal subsets. However,
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if the likelihood region contains any points displaying the either of the two noniden-
tifiabilities, the range of the parameters in this set is extremely wide. We conclude
that creation of a partition of the likelihood region under these circumstances is quite
artificial and misleading.

Remark 2 It should be noted that the difference in log likelihood between ψMLE and
ψdeg corresponds to the likelihood ratio statistic for testing the null hypothesis of K−1
components versus the alternative of K components (Titterington et al. 1985; Lindsay
1995). We have shown here that under the simplest likelihood topology where there
is no secondary mode above ψdeg, this difference will also determine whether or not
we can construct labeled confidence regions at a specific confidence level. That is, if
there is an “insignificant difference from degeneracy” then it is likely that one cannot
produce labeled confidence regions with high confidence level. There is one subtlety
in this relationship. The distribution of the hypothesis test statistic would be done
under the null hypothesis (and is rather complicated; see Chen and Chen (2001); Liu
and Shao (2003)). We are using the distribution of this statistic under the alternative
hypothesis of K components, either asymptotic or simulated, to make judgments on
confidence sets (One could not make inference under the null hypothesis because the
parameters would be non-identifiable).

4.2 The default hyperplane

In Sect. 4.1, we obtained the two elevations for existence of a unimodal partition, the
“sure-to-exist elevation”, ψsafe = max{ψhyp, ψ2nd} in Corollary 4, and “sure-to-fail
elevation”, ψfail = max{ψdeg, ψ2nd} in Corollary 2. Since ψhyp gives an upper bound
onψmm, we would like to choose our hyperplane(s) so as to make the constantψhyp as
small as possible.We know in advance that the ideal value forψhyp isψdeg as thenψfail
andψsafe are equal (see Fig. 2), and there remains no ambiguity about the elevations for
a unimodal partition. Our strategy is therefore to focus on using separating hyperplanes
of Eq. (6) that contain one or more maximal degenerate parameter values. In such a
hyperplane, the degenerate parameter values are local maxima. If they are global
maxima, then we have the tight relationship, ψfail = ψsafe.

For simplicity consider a two-component (K = 2) mixture,

θ = (π, ξ1, ξ2, ω)T (7)

whereπ is amixingweight for the component 1, ξ1 and ξ2 are them-dimensional com-
ponent parameter vectors for the component 1 and 2, respectively, and ω is a structural
parameter vector. Note that the permuted version of θ is θσ = (1 − π, ξ2, ξ1, ω)T.

We then construct the following separating hyperplane, Hr,a = {θ : rTθ = a} with

r = (0, ξ̂1 − ξ̂2,−ξ̂1 + ξ̂2, 0)
T and a = 0. (8)

This hyperplane, equivalent to {θ : (ξ̂1 − ξ̂2)
T(ξ1 − ξ2) = 0}, will be called the default

hyperplane. It has the two interesting properties. First, the default hyperplane separates
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θ̂ from θ̂ σ . That is, the MLE θ̂ and the permuted MLE θ̂ σ are on opposite sides of the
hyperplane, as (ξ̂1 − ξ̂2)

T(ξ1 − ξ2) is positive for the former and negative for the latter.
Secondly, the default hyperplane allows π and ω to take on arbitrary values. In other
words, π does not play a role in separating modes, which we will prove in Sect. 5.1,
and we suspect ω will not, and so we leave them unconstrained in this hyperplane.

Therefore, the largest likelihood value attained in the default hyperplane of Eq. (8)
is the value of ψhyp in the safe elevation ψsafe of Corollary 4. We will describe how to
determine ψhyp by modifying the EM algorithm in Sect. 5.4.

When the number of components are more than two, let us say three, there are six
MLE modes and corresponding modal regions. There exist at least one path through
a pair of the MLE modes whose lowest elevation is maximal among all paths. To
determine this elevation one can apply the proposed hyperplane method to each pair of
the MLE modes and use the highest elevation among all possible estimated elevations
in the default hyperplanes as an estimate of ψhyp.

5 Relationship between order restrictions and likelihood partitions

We next use our study of landmark elevations developed in Sect. 4 to create greater
understanding of the role of the mixture parameters in the identifiable partition. We
start with the mixing weight parameters.

5.1 Ignorable parameters

In the two simulated examples of Sect. 3.3where there existed an identifiable unimodal
partition, it seemed that the mixing weights were poorly related to the partitions. In
fact, this is a theoretical feature of the weight parameters, as they are ignorable in the
following sense.

Definition 4 Suppose that the parameters θ in Eq. (1) partition into (γ, φ), and there
exists a unique maximum over φ for each fixed γ in the likelihood, say φ̂(γ ), such
that φ̂(γ ) is continuous in γ . We will then say that φ is ignorable for partitioning.

Theorem 3 Assume that φ is ignorable for partitioning. If two modal regions in the
mixture likelihood are connected in the γ profile space at elevation c, they are con-
nected in the full likelihood space at elevation c. It follows that modal regions form
disconnected sets in the full parameter space if and only if they do so in the γ profile
space.

Proof See the Appendix. �	
If we let φ be the mixing weights π = (π1, . . . , πK ) in the above theorem, then

under identifiability conditions on Q<θ> (the mixing distribution associated with θ in
Eq. (1)), the negative Hessian matrix is positive definite for every fixed value of the
other parameters, ξ = (ξ1, . . . , ξK ) and ω. It follows that the mixture likelihood is
strictly log-concave inπ and so has a uniquemaximum.Under regularity conditions on
ξ andω, themaximizing π̂ (ξ, ω)will be continuous in its arguments.We can conclude,
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by Theorem 3, that the identifiable confidence sets are determined by the component
parameters ξ and the structural parameters ω, not the weights π . This result does not
depend on the component models that are used in the inference and so we have:

Corollary 5 Under regularity of themodel, existence of an identifiable partition in the
full-dimensional likelihood regions implies existence of an identifiable partition in the
profiles of the component parameters ξ and the structural parameters ω, regardless
of parameter dimension and the number of component.

Remark 3 If one wanted to apply Corollary 5 to a posterior density, one would have
to show that the posterior density is log concave in π for a given prior distribution on
θ . For example, Corollary 5 would hold for a flat Dirichlet prior.

5.2 Unimodal partition in a case of univariate component parameter

We observed from the two simulated examples of Sect. 3.3 that when the component
parameter ξ j was univariate and a unimodal partition existed, the two identifiable
modal regions induced by the likelihood were identical to those determined by the
order restriction on ξ = (ξ1, ξ2). In this subsection, we consider the simplifications
of the likelihood topology that are possible when the component parameter ξ j is
univariate.

For any specific model/data situation where there are no modes between ψdeg and
ψMLE in the univariate case, we have very neat necessary and sufficient conditions for
a unimodal partition.

Theorem 4 Suppose the component parameter ξ j is univariate in the K component
mixture model. Then

1) ψhyp = ψdeg in the default hyperplane of Eq. (8) and every continuous maximin
path connecting two MLE modes must pass through the degenerate set,

2) when no secondary modes exist, we have a unimodal partition for all elevations
c > ψdeg,

3) the labels on the parameters can be determined by order restriction on ξ when a
unimodal partition exists at elevation c.

Proof The proof is based on the default hyperplane. See the Appendix. �	
Note Theorem 4 shows that if ξ j is univariate, both ω and π are ignorable when

determining if there exists a unimodal partition, and the unimodal partition is sure to
exist if and only if ψsafe = ψfail = max{ψdeg, ψ2nd} < c ≤ ψMLE (see Fig. 2).

Referring back to the two simulated examples in Sect. 3.3, the component parameter
was univariate.Whenwe used theEMalgorithm for finding theMLE in both examples,
multiple starting values were employed and there was no secondary mode. Therefore,
by Theorem 4, ψdeg is the safe elevation for existence of a unimodal partition in both
examples. Note that ψdeg here is the maximum of the likelihood among the degener-
ate parameters which here correspond to having a single component. In other words,
Conf4(ψsafe) = Conf4(ψdeg) = 98.6% at n = 500 andConf4(ψsafe)=Conf4(ψdeg) =
50.5 % at n = 100 represent the exact upper bound on the confidence levels one can
use when constructing an identifiable unimodal confidence set.
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5.3 Unimodal partition in a case of multivariate component parameter

In this subsection we show by an example that when ξ j is multivariate, one cannot
use Theorem 4 to determine the proper elevation of a unimodal partition. While this
example is simple and artificial, it nevertheless provides us with some insights into
more complicated problems as well.

When ξ j ismultivariate, it is technically feasible that there exist continuousmaximin
paths that connect MLE modal regions while staying at higher elevations than the
degenerate parameter set, so that ψdeg < ψmm. In the univariate examples, ψhyp was
ψdeg, and so there was not really a new landmark quantity to calculate. It now becomes
a crucial diagnostic.

We illustrate this point with the following example. The data set will be
99 data points equally spaced around the circle of radius 2 around the origin,
{2 cos(2kπ/99), 2 sin(2kπ/99) : k = 1, . . . , 99}. We then fit them with a two-
component bivariate normal mixture model with a fixed weight π = .5 and a fixed
common covariance matrix 0.5J where J is an identity matrix. This model has cer-
tain equivariance properties that make the analysis simpler. In particular, a rotation
about the origin of a random variable generated from this model gives a new random
variable that is also from the two-component mixture model, but now with new mean
parameters that have also been rotated by the same angle about the origin. Since the
99 points in the data set stay unchanged when they are simultaneously rotated through
angles of 2kπ/99, it follows that the critical points of the likelihood will come in sets
of 99, corresponding to the same rotations of the means of any one MLE solution ele-
ment about the origin. Moreover, all these critical points will have the same elevation.
That is, unless the degenerate point (0, 0) is the MLE, there are at least 99 elements
of the MLE modal group.

Intuitively, for any one mode, theMLEmeans ξ̂1 and ξ̂2 will be diametrically oppo-
site to each other due to the symmetry of the problem. We numerically verified this,
finding that when one component of the MLE set was ξ̂1 = (−1.25, 0.07), the second
was ξ̂2 = (1.25,−0.07). We also constructed a numerical profile confidence set for ξ1
with the elevation c corresponding to Conf2(c) = 0.1 %, the black circle, and 99 %,
the region between the blue circles (see Fig. 3). From the 0.1 % profile set we can
see that the 99 MLE solutions in ξ1 are on a circular ridge of high likelihood. We also
observe that the 99 % profile confidence set excludes the degenerate solution, which
has mass 1 at ξ1 = (0, 0). This means that the lowest elevation, ψmm, of the continu-
ous, four-dimensional maximin path that rotates the pair (ξ1, ξ2) around the circle is
substantially greater thanψdeg, so that theMLEs do not generate identifiable subsets at
any elevation below ψmm. Thus, Theorem 4 cannot hold in this multivariate example.

Remark 4 The preceding example could be viewed as artificial. One of our reviewers
raised the question ofwhether the third part of Theorem4would hold under someweak
assumptions, such as having a likelihood function with just K ! MLE’s. That is, “can
the labels on the parameters be determined by an appropriate order on the coordinates
in ξ when there are just K ! MLE’s and a unimodal partition exists at elevation c?”.
This is a delicate geometric question. In essence we need to find a function of the
parameters that is certain to separate the different modal regions. Our example shows
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Fig. 3 Numerical profile set for ξ1 = (ξ11, ξ21) with 0.1 % (black circle) and 99 % (the region between
two blue circles) : red dots represent one element in the MLE set

the dangers of assuming that the separation only depends on the regions of degenerate
solutions. Since there is, as yet, no theory guaranteeing separation based on some set
of order restrictions, we would advise the use of diagnostic plots such as found in
Yao and Lindsay (2009). They devised linear and quadratic discriminant functions to
identify separation of posterior modes in a Bayesian MCMC plot. If one could find
a discriminant function that always works perfectly then one would, in effect, have
identified the “parameter restrictions” that give separation. However, the development
of these tools in our likelihood context is beyond the scope of this paper.

5.4 Determining ψhyp

In Sect. 5.3, we showed by example that if the component parameter is multivariate,
then the two modal regions could be connected with each other at the elevation c
above ψdeg (so that ψmm > ψdeg), even when there exists no secondary mode of the
likelihood.

To do mixture inference based on unimodal partition in a case of multivariate com-
ponent parameter, thus, one needs to calculateψhyp of the safe elevation in Corollary 4,
ψsafe = max{ψhyp, ψ2nd}. We propose to do this using the restricted EM algorithm
(Kim and Taylor 1995). This is because estimation of ψhyp is equivalent to the max-
imization of the mixture likelihood under the linear restriction on θ in the default
hyperplane of Eq. (8), rTθ = a with r = (0, ξ̂1 − ξ̂2,−ξ̂1 + ξ̂2, 0)T and a = 0.

One needs to employ a strategy of multiple starting values for the restricted EM
that starts well away from the degenerate set. Starting values near the degenerate
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set will simply create paths back to the maximum degenerate point. To speed up the
calculation ofψhyp, we propose using the predicted final likelihood using an theAitken
acceleration (Böhning et al. 1994; Lindsay 1995). With this device one can produce a
reasonable estimator of the final log likelihood of a EM sequence based on a smaller
set of iterations. Note that we are not interested in the parameter estimates, just the
maximal elevation attained. To ensure accuracy in the Aitken predictions, we will
employ an Aitken acceleration-based stopping rule in the algorithm.

6 Simulation study

In this section, we now examine by simulation our landmark elevations proposed
in Sect. 4 for constructing a unimodal partitions when the component parameter is
multivariate. As a simulation model we consider a two component m-variate normal
mixture model with equal covariance:

p(y | θ) = πNm(x; ξ1, ) + (1 − π)Nm(x; ξ2, )

where ξ1 = (ξ11, . . . , ξm1) and ξ2 = (ξ12, . . . , ξm2).
In equal covariance case one can standardize the data vectors by −1/2 and turn to

a case of an identity matrix, J . So, we here set  = J . In the simulation study, we
consider four factors, dimension of data, sample size, mixing weight and separation
of the components. Regarding the dimension of the data, two values are considered:
m = 2 and 5. For the sample size we use the two levels of n: (100, 200) when m = 2,
and (200, 400) when m = 5. We also consider two levels of mixing weight, π = 0.5
and 0.2.

As to separation of the components, we use invariance properties of the likelihood.
That is, when the covariances are fixed to be identity matrices and the mixing weights
are fixed, all matters is the Mahalanobis distance between the two-component mean
vectors. For example, when m = 2 and (ξ1, ξ2) = (ξ11, ξ21, ξ12, ξ22), (ξ1, ξ2) =
(0,0,0,0) and (1,1,1,1) will provide the same properties as (ξ1, ξ2) = (0,0,0,0) and
(4,0,0,0). Thus, we use the first coordinate in the second component for component
separation, for example, (ξ1, ξ2) = (0,0,d,0) when m = 2. Regarding the value of d
we use (2, 3, 4) for π = 0.5, and (2.5, 3.75, 5) for π = 0.2. Note that they are obtained
by setting the standard deviation of the mixing distribution with mass π and 1− π at
two support points, ξ1 and ξ2, respectively,

√
π(1 − π)d2 to be 1, 1.5 and 2 for π .

We simulate R = 500 replicate samples of size n from the simulation model at
each combination of (m, π , d), and then estimate theMLE for θ via the EM algorithm.
Note that 50 starting values are used for computing the MLE for θ at each simulated
data set.

To identify a range of confidence level that displays unimodal likelihood regions,
we first compute the lower and upper bound for the elevation of unimodal partition,
ψfail in Corollary 2 and ψsafe in Corollary 4. Then we obtain the confidence bound
on unimodal inference by transforming the computed ψfail and ψsafe into confidence
levels in the full dimensional parameter space, Conf p(ψfail) and Conf p(ψsafe).
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Table 1 Percentage of categorization with respect to 95 % unimodal partition: m=2 and R = 500

n Mode Category π = 0.5 π = 0.2

d = 2 d = 3 d = 4 d = 2.5 d = 3.75 d = 5

100 Unimode GOOD 0.6 12.6 38.4 5.0 38.2 43.6

BETWEEN 0.4 1.6 0.2 1.6 0.4 0.0

BAD 14.2 13.8 0.4 15.6 1.0 0.0

Multimodes GOOD 1.0 19.0 59.0 6.6 51.4 56.4

BETWEEN 0.0 1.0 0.0 0.2 0.0 0.0

BAD 83.8 52.0 2.0 71.0 9.0 0.0

GAP>10 % 6.2 5.2 0.0 6.2 0.6 0.0

200 Unimode GOOD 1.4 31.6 42.6 18.0 44.4 52.6

BETWEEN 0.4 1.4 0.0 1.6 0.0 0.0

BAD 13.8 1.6 0.0 8.0 0.0 0.0

Multimodes GOOD 2.2 52.8 57.4 26.6 55.6 47.4

BETWEEN 0.4 1.2 0.0 1.6 0.0 0.0

BAD 81.8 11.4 0.0 44.2 0.0 0.0

GAP>10 % 10.2 0.8 0.0 3.2 0.0 0.0

Given the calculated confidence bounds over 500 simulated data sets, we clas-
sify them into three categories, “GOOD”, “BAD” and “BETWEEN”, depending on
whether or not one can do 95 % identifiable unimodal inference. Note that we use
95 % because it is the most commonly used confidence level.

GOOD: Conf p(ψsafe) ≥ 95 % so that unimodal partition exists in the 95 %
likelihood region.

BAD: 95 % likelihood region does not have a unimodal partition. That is,
Conf p(ψfail) < 95 %.

BETWEEN: it is not clear whether or not 95 % labeled modal inference is possible,
as Conf p(ψsafe) ≤ 95 % < Conf p(ψfail).

Note that our goal in creating ψhyp in ψsafe was to create greater certainty about
the existence of a unimodal partition. That is, we wanted the “BETWEEN” category
to be small. As another measure of our success, we calculated the difference between
Conf p(ψfail) and Conf p(ψsafe). The percentage of cases where this difference was
bigger than 10 % is reported as “GAP>10 %”. The success of our default hyperplane
method rides on this fraction being small.

Table 1 shows the percentage of categorization for the confidence bound regarding
95 % unimodal partition in the mixture likelihood when the dimension of data is two
(i.e., m=2). We observe that overall the cases, at most 3.2 % of the time there was an
unresolved decision as to whether existence of a unimodal partition was possible at
95 % (i.e., “BETWEEN”). At all of the parameter settings the probability of a 10 %
or worse gap in Conf p(ψfail) and Conf p(ψsafe) was less than 0.102.
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Table 2 Percentage of categorization with respect to 95 % unimodal partition: m=5 and R = 500

n Modes Diagnostics π = 0.5 π = 0.2

d = 2 d = 3 d = 4 d = 2.5 d = 3.75 d = 5

200 Unimode GOOD 0.0 0.2 3.2 0.0 2.2 3.4

BETWEEN 0.0 0.4 0.2 0.0 0.2 0.0

BAD 0.0 0.4 0.0 0.0 0.0 0.0

Multimodes GOOD 0.0 2.2 90.2 0.4 79.8 96.6

BETWEEN 0.0 0.4 0.8 0.2 1.6 0.0

BAD 100 96.4 5.6 99.4 16.2 0.0

GAP>10 % 0.0 8.0 0.8 2.4 0.0 0.0

400 Unimode GOOD 0.0 2.0 7.8 0.0 4.6 7.2

BETWEEN 0.0 0.8 0.0 0.8 0.0 0.0

BAD 0.6 0.0 0.0 0.6 0.0 0.0

Multimodes GOOD 0.0 58.4 92.2 6.6 95.4 92.8

BETWEEN 0.0 3.2 0.0 2.6 0.0 0.0

BAD 99.4 35.6 0.0 89.4 0.0 0.0

GAP>10 % 1.6 4.6 0.0 7.6 0.0 0.0

Our table also shows that secondary modes in the mixture likelihood exist at
least 50 % of the time, regardless of parameter setting. As we expected, multiple
modal groups occurred more frequently as component separation and sample size
decreased. If we compare the settings where the standard deviation of the mixing
distribution was the same, then a unimodal partition was more likely to occur for
the case where the weights were unequal. For example, when n = 100, the percent-
age of cases where 95 % unimodal partition existed at (π, d) = (0.2,3.75) was 2.8
times higher than at (π, d) = (0.5,3). Note that when the smallest mixing weight gets
smaller, the locations of the components are pushed apart. This forced the compo-
nents to be more obviously different, and thus it was easier to construct identifiable
partition.

Table 2 shows the percentage of categorization for the confidence bound regarding
95% unimodal partition in the mixture likelihood when the dimension wasm = 5.We
see thatConf p(ψsafe)proved to be a highly useful lower boundbecause theBETWEEN
cases were at most 4 %. Note that the frequency of the cases where “GAP>10 %” was
never larger than 8 %.

Wealso observe that thereweremore than onemodal group in themixture likelihood
at least 92 % of the time. In the most extreme case, when the sample size was small
relative to component separation, all simulated data sets had more than one modal
group. If we compare with m = 2 in Table 1, we can see that, for a given sample size
and standard deviation of the mixing distribution, the chances of a unimodal partition
were smaller for m = 5 than for m = 2. One needs both larger component separation
and unequal weights under the same standard deviation of a mixing distribution to
guarantee a 95 % unimodal partition.
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7 Data analysis

In this section wewill present a few examples to show the use of the proposedmethods
designed to detect the confidence level for a unimodal partition (i.e., the empirical
identifiability) at finite samples.Note that in each data setwe used a strategy ofmultiple
starting values in the EM algorithm to search solutions to the mixture likelihood
equations. We will also illustrate how to use the value of the empirical identifiability
to visualize the likelihood-based profile sets for the parameters of interest by using
the modal simulation developed in Kim and Lindsay (2011a, b).

7.1 Empirical identifiability using landmark elevations

Example 1 The first example is a case where there is a significant secondary mode in
the likelihood. That is, its elevation is lower than that of the MLE mode, but higher
than ψdeg. We generated 75 observations from a three-component normal mixtures,
0.33 N(−3,1) + 0.34 N(0,1) + 0.33 N(3,1). Then we fitted a three-component nor-
mal mixture with equal component variance. Note that we fixed the component vari-
ance to be .25, which was smaller than the true value 1 to create more than one
mode in the likelihood. The two modes were θ̂MLE = [( 0.257

−3.166

)
,
( 0.350
−0.782

)
,
(0.392
2.430

)] with
�(θ̂MLE) = −211.7 and θ̂2nd = [( 0.367

−2.711

)
,
(0.351
0.106

)
,
(0.282
2.917

)] with �(θ̂2nd) = −213.54.
The maximum log likelihood in the degenerate class was −298.11. Based on that
information alone, the maximum possible confidence for an identifiable partition was
Conf5(ψdeg) = 100 %. However, in this example, ψsafe = ψ2nd because the compo-
nent parameter is univariate and ψhyp = ψdeg. Thus, a unimodal partition exists only
at the levels below Conf5(ψsafe) = Conf5(ψ2nd) = 40 %.

Example 2 (SLC data) The second example concerns red blood cell sodium–lithium
countertransport (SLC) activity data collected from 190 individuals (Dudley et al.
1991). The SLC is measured as the difference in lithium efflux rate from lithium-
loaded cells into sodium chloride and sodium-free media. Geneticists are interested in
the SLCbecause itmay be an important cause of essential hypertension. Roeder (1994)
fitted a three-component normal mixture model with equal variances to this data. We

used the same mixture model and obtained the MLE for θ =
[( π1

ξ1
ω

)
,
( π2

ξ2
ω

)
,
( π3

ξ3
ω

)]
,

θ̂ =
[(

0.78
0.22
0.003

)
,
(

0.20
0.38
0.003

)
,
(

0.02
0.58
0.003

)]
. Note that there was only the MLE modal group.

Since the component parameter is univariate, the safe elevation for a unimodal partition
in the likelihood is equal to ψsafe = ψdeg, the elevation of the MLE for a class of
degenerate parameters (a two-component normal mixture with equal variances). We
calculated the confidence level corresponding to ψdeg, which was Conf6(ψdeg) =
86 %. Therefore, we have a unimodal partition at any confidence level below 86 % in
the full-dimensional likelihood.

Example 3 (Morbidity data) The third example concerns a cohort study in northeast
Thailand (Schelp et al. 1990) where the health status of n = 602 preschool children
checked every two weeks from June 1982 until September 1985. For each child it

123



766 D. Kim, B. G. Lindsay

was recorded whether the child showed one of the symptoms fever or cough, or both
together. The data were the frequencies of these illness spells during the study period,
which can be found in Böhning et al. (1992).

Böhning et al. (1992) and Schlattmann (2005) fitted four-component Pois-

son mixture model to this data : g(y; θ) = ∑4
j=1 π j

(
e−ξ j ξ

y
j /x !

)
where θ =

[(π1
ξ1

)
,
(
π2
ξ2

)
,
(
π3
ξ3

)
,
(
π4
ξ4

)]. We computed the maximum likelihood estimator for θ , θ̂ =
[(0.197

0.14

)
,
(0.48
2.82

)
,
(0.27
8.16

)
,
( 0.05
16.16

)]
. The log likelihood of the MLE for the class of degen-

erate parameters (i.e., a three-component Poisson mixture model) was -1568.28 and
then Conf7(ψdeg) was larger than 99 %. Since ξ j was univariate and there was no
secondary mode, ψsafe = ψfail = ψdeg and Conf7(ψdeg) was the exact upper bound
on the confidence levels for a unimodal partition at this data. In other words, there are
4! disjoint unimodal regions, each identifiable subset for one of 4! MLE modes.

Example 4 (Blue crab data) The fourth example, analyzed in Campbell and Mahon
(1974) andMcLachlan andPeel (2000), containsfivevariablesmeasured fromn = 100
blue crabs: the measurements (in mm) were on the width of the frontal lip, the rear
width, the length along the midline and the maximum width of the carapace, and the
body depth. In this data, there are 50males and 50 females.We here fit the observations
of the second and third variable with a two-component bivariate normal mixturemodel
with equal covariances, ignoring the known classification.

In this data set, we found four modes with the following elevations and correspond-
ing confidence levels, ψMLE=−457.515 with Conf8(ψMLE)=0 %, ψ2nd = −467.883
with Conf8(ψ2nd) = 99.2 %, ψ3rd = −475.467 with Conf8(ψ3rd) = 100 % and
ψ4th = −477.003 with Conf8(ψ4th) = 100 %. We also computed the elevation of the
MLE for the degenerate class of parameters, ψdeg = −477.006 with Conf8(ψdeg) =
100 %. The maximum elevation of the default hyperplane in Eq. (8) estimated from
the restricted EM algorithm of Sect. 5.4 was ψhyp = −469.116 with Conf8(ψhyp) =
99.6%.Therefore, one can construct a unimodal partition for theMLE in the likelihood
region at any confidence level below Conf8(ψsafe) = Conf8(ψ2nd) = 99.2 %.

7.2 Visual assessment using the modal simulation

An important practical problem in using the likelihood is to create a way to use the
identifiability generated by the full-dimensional likelihood topology when construct-
ing profile sets for various functions of parameters of interest at the targeted confidence
level (elevation). A conventional numerical approach to find the boundaries of the tar-
geted profile set that are locally identifiable can be computationally demanding.

To cope with this computational difficulty, Kim and Lindsay (2011a, b) developed
a stochastic parameter sampling method, modal simulation, as a means to facilitate a
visual analysis of (joint/profile) confidence sets generated by a likelihood. The basic
idea is that, given the observed data and aMLEmode for the parameters in the assumed
model, one creates a sampling distribution for the parameter values at the boundaries of
the targeted likelihood regions in the full dimensional parameter space. That is, given
a targeted elevation c, one generates a random direction from a multivariate standard
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Fig. 4 Example 3: a a histogram of the frequencies of illness spells and overlaid mixture density estimate;
b a 45.93% (dark gray) and 94.54% (light gray) profile sampling plot for (π , ξ). Note that the black circles
represents the MLEs for π and ξ

normal distribution and heads in that random direction from theMLEmode of interest
until one hits the boundaries of the targeted region. Then this point becomes the
sampled value of the parameters. Those authors showed by simulations and real data
applications that modal simulation can successfully visualize numerically computed
profile likelihood boundaries even when there exist multiple modes.

There are two important features of the modal simulation method. First, based
on the sampled parameter values, every function of the parameters of interest can be
computed and thenmapped to create lower dimensional confidence regions of interest,
all without further numerical optimization. Second, the simulated parameter values
automatically have the same labels as that of theMLEmodewhen a unimodal partition
exists in the likelihood.

In this subsection, we use the two examples (Example 3 and Example 4) analyzed in
Sect. 7.1 to illustrate how to utilize the value of empirical identifiability via the modal
simulationmethod for visually assessing a locally identifiable likelihood region around
the major MLE mode.

Figure 4a shows a histogram of Morbidity data in Example 3 overlaid by a four-
component Poisson mixture density estimate. The exact upper bound of empirical
identifiability for a unimodal partition was Conf7(ψdeg), which is larger than 99 %.
Figure 4b is a profile sampling plot for (π, ξ) of each component with Conf7(c) =
45.93% (dark gray) and 94.54% (light gray). From Fig. 4b, we see four connected sets
of the MLEmodes, one for each component, that are separated by ordered component
parameters, not ordered mixing weights.

Figure 5a represents a contour plot of an estimated two-component bivariate normal
mixture model with equal covariances, overlaid with scatter plot of real width (first
coordinate) and length along the midline (second coordinate) in Example 4 (Blue crab
data). Note that the estimated mean vectors for two components, ξ1 = (ξ11, ξ21) and
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Fig. 5 Example 4: a Contour plot of bivariate density estimate overlaid with scatter plot of bluecrab data
(circles and squares represent male crabs and female crabs, respectively); b a 12.89% (dark gray) and 95%
(light gray) profile sampling plot for two-component mean vectors, ξ1 = (ξ11, ξ21) and ξ2 = (ξ12, ξ22).
Note that the black triangles represent the MLEs for the mean parameters

ξ2 = (ξ12, ξ22), are ξ̂1 = (12.95, 36.58) and ξ̂2 = (11.47, 27.11), and the computed
empirical identifiability is 99.2 %. Figure 5b shows a profile sampling plot for two-
component mean vectors, ξ1 and ξ2, with Conf8(c) = 12.89 % (dark gray) and 95 %
(light gray).Due to labeling nonidentifiability, this confidence region is symmetricwith
respect to 180 degree rotations. We observe from Fig. 5b that when the confidence
level is small, the two modal regions around two MLE modes for both coordinates
are separated from each other. But, the two modal regions with a large confidence
level are disjoint only for the second coordinate. This result indicates that the second
coordinate in the data contains information that generates an identifiable unimodal
partition with a large confidence level in the full parameter space (and guarantees a
high value of empirical identifiability on the model parameters).

8 Discussion

In this paper, we have shown that for any given data set and model, there will typically
exist limited range of confidence levels at which one can define unimodal identifiable
partition in the mixture likelihood. We have interpreted the bound on such confidence
as the empirical identifiability that quantifies degree of local identifiability on the
estimated parameters in a given data set. If the components are not well separated
relative to the sample size, we can expect that this range of confidence levels will be
small, and possibly unsatisfactory. Further, as indicated in Remark 2, one’s ability to
make identifiable confidence sets at a given level is closely related to the evidence in
the data for the existence of K components.

We have proposed in Sect. 4 a few landmark elevations designed to determine the
existence of an identifiable unimodal partition. For calculating them in simulation
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studies and data analysis, we used the EM algorithm, one of the widely used local
optimization technique, required to run from multiple starting points. If one is con-
cerned with number of starting values and confidence in the numerical results as the
dimension of the parameters increases, we suggest computing probability of finding a
new local maximum (Finch et al. 1989). If the estimated probability is small enough,
one can stop re-running the algorithm with new initial values.

We should point out that in this paper we have considered regular likelihoods for
which the likelihood is bounded. For irregular likelihoods the proposedmethodswould
apply after some suitable regularization. That is, our approaches can be applied to any
similar inference function, such as a penalized likelihood or a posterior density, though
some of our theoretical results might need additional conditions.

From an applied viewpoint, there are significances of the empirical identifiability
and its measuring method proposed in this paper. First, for better understanding the
relationships between the parameters in the assumed mixture model, it is often useful
to construct the profile likelihood for the parameters or functions of the parameters of
interest. A practical difficulty lies in the presentation of locally identifiable profile like-
lihood regions that can retain information on the empirical identifiability generated by
the full-dimensional likelihood topology. The proposed method enables transmission
of information about the empirical identifiability in the full-dimensional parameter
space to any lower dimensional parameters of interest. Second, the empirical identifi-
ability computed using our proposed method can be used to assess the need to specify
priors on the parameters in Bayesian mixture modeling. The empirical identifiability
defined in this paper represents the maximum size of the locally identifiable likelihood
region around an estimatedMLEmode in terms of the confidence level. The practition-
ers can compare the empirical identifiability computed using the proposed approach
with a desired target confidence level predetermined by them. When one cannot make
identifiable likelihood confidence sets at a target level, this may indicate that the data
are not sufficient for precise identification of a given model. One possible solution to
the problem is to assign a prior putting sufficient mass away from the parameters that
are causing pathologies in the topology of the likelihood regions, in particular, the
degenerate class of parameters. Third, the empirical identifiability computed from the
proposed method can help understand the effect of the non-constant/non-flat priors on
the Bayesian mixture inference. The likelihood confidence set around the MLE mode
corresponds to the Highest Posterior Density (HPD) region around the maximum-a-
posteriori estimate under flat and constant priors. Thus, one can compare the empirical
identifiability computed in the likelihood with the counterpart in the posterior (with
non-flat priors), for example, the HPD region-based labeling credibility proposed by
Yao and Lindsay (2009).

9 Appendix: Proofs

Proof of Theorem 1. Suppose that one starts at the highest elevation in the mixture
likelihood, ψMLE. Then the likelihood region at ψMLE is equal to the set of K ! modes.
If the elevation c is just below ψMLE, the likelihood region consists of K ! disjoint
modal regions Cc(θ̂

σ ).
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However, if the elevation c goes too low, some properties in Definition 3 could fail
so that a unimodal partition cannot exist. Two different problems could arise. The first
case is where there exists a secondary mode in the likelihood, with the elevation ψ2nd.
In this case, for the elevation c at or just belowψ2nd, a secondary set ofmodal regions is
formed containing the K ! secondary modes. Since these points are not path-connected
to the MLE modes, the property (P3) would be violated. If the primary and secondary
modal regions become reconnected at a lower level of c, then, even if identifiable,
each element contains two modes, thereby violating property (P4).

A second case where a unimodal partition could fail is when c ≤ ψmm, the minimal
elevation of the maximin path connecting Cc(θ̂) to a permuted region Cc(θ̂

σ ). This
causes a violation of property (P1).

As long as the elevation c is larger than max{ψmm, ψ2nd}, however, then there are
no secondary modal regions possible, and there cannot exist connections between the
modal regions of the MLE group, as there exist no saddle points. Therefore the K !
modal regions Cc(θ̂

σ ) are disjoint and their union is the elevation c likelihood region
CLR
c , so that we have verified properties (P1) and (P3).
We claim that the second property (P2) holds because the K !modal regionsCc(θ̂

σ )

are disjoint by (P1) and each is connected (by definition). The argument for identifia-
bility goes as follows: first, given any θ in Cc(θ̂), its permutation θσ cannot also be in
the same modal region Cc(θ̂), as we know it lies in a disjoint Cc(θ̂

σ ). Secondly, we
suppose, for purposes of contradiction, that Cc(θ̂) contains a degenerate point θ0, but
is not path-connected to any Cc(θ̂

σ ), for any permutation σ . Then the permuted θ0,
θσ
0 , is contained in only Cc(θ̂

σ ). Since the region of θ values that generate the same
degenerate mixing distribution and hence the same likelihood as θ0 is a connected
set, θσ

0 should be in the same connected set. Thus, at the elevation c ≤ ψdeg, Cc(θ̂)

and Cc(θ̂
σ ) are connected to each other by a path. But this is contradicted with the

property (P1) that the K ! modal regions Cc(θ̂
σ ) are disjoint. �	

Proof of Theorem 2. Suppose the twomodal regions,Cc(θ̂) andCc(θ̂
σ ), are connected

to each other at the elevation c. Then a maximin path connecting them has ψmm ≥ c.
Any path connecting the modes necessarily intersects the hyperplane of Eq (6) in one
or more points. Let c� be the minimal value of the likelihood on the intersection set.
Then c� ≥ ψmm by the definition of ψmm. However, we also have c� ≤ ψhyp by the
definition of the latter. We therefore have ψmm ≤ ψhyp. �	
Proof of Theorem 3. Suppose there exists a continuous path of γ (t) parameter values
that connects the profile modes γ (θA) and γ (θB) such that the profile likelihood along
the path stays above the elevation c. Then the path (γ (t), φ̂(γ (t))) is a continuous path
in the full parameter space that connects the two modes and whose likelihood stays
above c. �	
Proof of Theorem 4. Suppose K = 2. Then the default hyperplane generated by
Eq.(8) consists of all mixtures with ξ1 = ξ2, and so ψhyp = ψdeg = ψmm. Thus,
if c > ψdeg, Cc(θ̂) and Cc(θ̂

σ ) cannot have a connecting path. If this is the case, the
labels in a selected modal region must satisfy ξ1 > ξ2 or ξ1 < ξ2, as the modal set
cannot contain points satisfying ξ1 = ξ2. That is, the points in each modal region
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must have order restriction labels. The argument for a two-component case extends to
K (> 2) components. Given a set of ordered ξ ’s, there is no way to move continuously
to a permuted set without one pair becoming equal along the way. �	
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