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Abstract A fiber of a contingency table is the space of all realizations of the table
under a given set of constraints such asmarginal totals. Understanding the geometry of
this space is a key problem in algebraic statistics, important for conducting exact con-
ditional inference, calculating cell bounds, imputingmissing cell values, and assessing
the risk of disclosure of sensitive information. Motivated by disclosure problems, in
this paper we study the space of all possible tables for a given sample size and set of
observed conditional frequencies.We show that this space can be decomposed accord-
ing to different possible marginals, which, in turn, are encoded by the solution set of
a linear Diophantine equation. Our decomposition has two important consequences:
(1) we derive new cell bounds, some including connections to directed acyclic graphs,
and (2) we describe a structure for the Markov bases for the given space that leads to
a simplified calculation of Markov bases in this particular setting.
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622 A. Slavković et al.

1 Introduction

In Dobra et al. (2008), the authors use tools from algebraic statistics to study two
related problems: maximum likelihood estimation for log-linear models in multi-way
contingency tables, and disclosure limitation strategies to protect against the identi-
fication of individuals associated with small counts in the tables; for an overview of
disclosure limitation literature see Doyle et al. (2001) and Hundepool et al. (2012).
These are linked to the general problem of inference in tables for which only partial
information is available (e.g., see Dobra et al. 2006; Thibaudeau 2003; Marjoram et
al. 2003).

Incomplete data commonly arise in surveys or census data which have been mod-
ified to limit disclosure of sensitive information. Instead of releasing complete data,
summary statistics are often released, even if theymay not be the sufficient statistics for
the probability model. Examples of summary statistics are marginal tables, or tables of
conditional frequencies, e.g., Slavković (2009). Given a set of released statistics, there
are a number of ways to assess the disclosure risk and data utility, including computing
bounds for cell entries, enumerating all table realizations, and sampling from a fiber
to estimate posterior distributions. A fiber is the space of all possible tables consistent
with the observed statistics. Since the fibers form the support of the conditional distri-
butions given a set of summary statistics, their properties are important for conducting
exact conditional inference; e.g., see Diaconis and Sturmfels (1998) for an algebraic
statistics approach to goodness-of-fit testing given the marginal totals, and Dobra and
Fienberg (2010) for calculating bounds on the cell entries. Similar techniques that rely
on understanding fibers’ structure can be used to impute missing data in contingency
tables and to create replacement tables; see Slavković and Lee (2010), with focus on
tables that arise from preserving conditional frequencies.

In this paper, we study the sample space of contingency tables given observed con-
ditional frequencies and their relations to corresponding marginals. More specifically,
we address the following challenge:

Problem 1 (Problem 5.7 in Dobra et al. 2008) Characterize the difference of two
fibers, one for a conditional probability array, and the other for the corresponding
margin, and thus simplify the calculation of Markov bases for the conditionals by
using the knowledge of the moves of the corresponding margins.

Here is a general setup. Consider r categorical random variables, X1, . . . , Xr ,
where each Xi takes values in the finite set of categories [di ] ≡ {1, . . . , di }. Let D =⊗r

i=1[di ], andRD be the vector space of r -dimensional arrays of format d1× . . .×dr ,
with a total of d = ∏

i di entries. The cross-classification of n independent and
identically distributed realizations of (X1, . . . , Xr ) produces a random integer-valued
array n ∈ R

D, called a r -way contingency table, whose coordinate entry nii ,...,ir is the
number of times the label combination, or cell, (i1, . . . , ir ) is observed in the sample
(seeAgresti 2002; Bishop et al. 2007; Lauritzen 1996 for details). It is often convenient
to order the cells in some prespecified way (e.g., lexicographically).

Let A and B be proper subsets of {X1, X2, ..., Xr }, andC = {X1, X2, ..., Xr }\(A∪
B). We can regard A, B and C as three categorical variables with levels A1, ..., AI ,

B1, ...., BJ , and C1, ...,CK . Thus, we can summarize the r -way table n as a 3-way
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Fibers of multi-way contingency tables given conditionals 623

table n∗ := {sijk}, where si jk is the count in the cell (Ai , Bj ,Ck). Finally, let ci j be
the observed conditional frequency P(A = i |B = j), such that

∑
i P(A = i |B =

j) = 1. If C is an empty set, we refer to ci j ’s as full conditionals, otherwise as small
or partial conditionals.

Motivated by Problem 1, we investigate the fiber FT for T = {P(A|B), N }, that
is the space of all possible tables consistent with:

(a) the observed grand total,
∑

i1...ir ni1i2...ir = N , and
(b) a set of observed conditional frequencies, P(A|B).

Note that we do not observe the values of B, and we assume that all of the given
frequencies are exact. Then, the spaceFT is the set of integer solutions to the following
system of linear equations

{
Mn = t
every B marginal > 0

}

, (1)

where n and t are length d column vectors, and M is a (J + 1) × d matrix that,
together with t, describes the information encoded by the grand total and the given
frequencies. When N is clear from the context, we use the shorthand notation FA|B
to denote F{P(A|B),N }. The space of tables given the [AB] marginal counts si j+ is
denoted by FAB . For a concrete example, see Sect. 4.1.

The main contributions of this manuscript come from the structural results for the
fibers defined above. In particular, we solve a generalization of an open problem posed
by Dobra et al. (2008). In Corollary 1 we give conditions for when the two fibersFA|B
and FAB agree. A decomposition of the table space FA|B is given in Corollary 2,
showing that the space of tables given the conditional is a disjoint union of spaces of
tables given distinct marginals. This decomposition of FT leads to three important
applied results: (1) in Sect. 2.3, we derive new results on computing the exact and
approximate cardinality of the given fibers and provide functions to do this in R, (2) in
Sect. 3.1, we derive new cell bounds, some including connections to directed acyclic
graphs in Sect. 3.3, and (3) in Sect. 3.2, we describe a structure for the Markov bases
for the space FT that leads to a simplified calculation of Markov bases in this setting.
In Sect. 4, we demonstrate our theoretical results with a series of simple examples and
conclude with a brief discussion in Sect. 5.

2 The space of tables with given conditional frequencies

Data examples suggest a connection between the solutions to a Diophantine equation
defined below in Eq. (2), and the space of tables FA|B that we are interested in.
Moreover, this connection appears in symbolic computation: points in the fiber are
lattice points in polytopes, and their connection to Diophantine equations has a history
in mathematics Loera et al. (2004). In what follows, we establish this connection more
rigorously from the point of view ofmarginal and conditional tables. Finding solutions
to Diophantine equations is a well-studied classical problem in mathematics, one that
is generally hard to solve and with a number of proposed algorithms; (e.g., see Morito
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624 A. Slavković et al.

and Salkin 1980; Chen and Li 2007; Eisenbeis et al. 1992; Smarandache 2000), and
references therein. But the Eq. (2) here is simple enough that can be analyzed using
classical algebra, and as such affords implementations of simple functions in R needed
for statistical analyses. Throughout, we use the notation established in Sect. 1.

2.1 Table space decomposition

The table of observed conditional frequencies gives rise to a linear Diophantine Eq. (2)
whose solutions correspond to possible marginals B that we condition on in P(A|B).

Once we know the corresponding marginals AB, we can decompose the table space
FA|B accordingly.

The observed conditional frequencies ci j can be used to recover marginal values
s+ j+ in the following way.

Theorem 1 Suppose ci j = gi j
hi j

for nonnegative and relatively prime integers gi j and

hi j . Let m j be the least common multiple of all hi j for fixed j . Then, each positive
integer solution {x j }Jj=1 of

J∑

j=1

m j · x j = N (2)

corresponds to amarginal s+ j+, up to a scalarmultiple. In particular, a table n consis-
tent with the given information {ci j , N } exists if and only if Eq. (2) has a nonnegative
integer solution.

Remark 1 If we allow the solutions to be only integers, then an equation of the form
(2) is called a linear Diophantine equation.

The proof of the above Theorem can be found in Appendix A (Sect. 6). Since each
solution of the Diophantine equation corresponds to a marginal we condition on, we
easily obtain the following consequence:

Corollary 1 The following statements are equivalent:

(a) FA|B coincides with FAB.
(b) Equation (2) has only one positive integer solution.

Note that the tables in these fibers form the support of the conditional distributions
given some summary statistics. In the case of margins, there has been much work
on conditional exact inference given the marginals as sufficient statistics. Also note
that a marginal determines the exact (integer) cell bounds of n: the cell bound for
ni1i2...ir is [0, s+ j+ · ci j ], and a different marginal {s+ j+} leads to a different cell
bound. When Corollary 1 holds, there is only one AB margin. Thus, the support of
conditional distribution given {A|B, N } is the same as the support given AB and the
integer cell bounds are the same, i.e., 0 ≤ si jk ≤ si j+, that is, 0 ≤ ni1,...,ir ≤ nab in
the corresponding r -way table.

Let us single out another very important consequence of Theorem 1, which we will
refer to as the table-space decomposition result:
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Fibers of multi-way contingency tables given conditionals 625

Corollary 2 (Table-spaceFA|B decomposition) Suppose that theDiophantine Eq. (2)
has m solutions. Denote by pi the marginal corresponding to the i th solution, and by
FAB(pi ) the space of tables given that particular marginal table. Then, we have the
following decomposition of the table space, taken as a disjoint union:

FA|B =
m⋃

i=1

FAB(pi ).

To conclude this section, note that the proof of Theorem 1 shows that each solution
(x1, . . . , xJ ) to the Diophantine Eq. (2) corresponds to a marginal in the following
way: s+ j+ = m j x j for 1 ≤ j ≤ J ; thus, si j+ = m j x j ci j . We will use this fact often.

2.2 The space of tables and integer points in polyhedra

An important question arises next: how many marginals can there be for a given con-
ditional table? This question can be answered using a straightforward count of lattice
points in a polyhedron. Counting lattice points in polyhedra and counting the solu-
tions to a Diophantine equation (e.g., Sertoz 1998; Chen and Li 20071) are interesting
mathematical problems with a rich history. In particular, there exist polynomial time
algorithms for counting the number of lattice points in polyhedra; e.g., see Barvinok
(1994) and Lasserre and Zeron (2007). Due to the simpler geometry of our problem,
we do not need to use the general algorithms, and, therefore, we derive simpler solu-
tions. We explain the correspondence between solutions of Eq. (2) and nonnegative
lattice points pi .

Lemma 1 Suppose that the Diophantine Eq. (2) has a solution x0. Then there exist
vectors v1, . . . , vJ−1 ∈ Z

J such that any solution x = (x1, x2, ..., xJ ) of (2) is given
as their integral linear combination:

x = x0 +
J−1∑

i=1

qi · vi .

Note that we require that each qi ∈ Z, and that v1, . . . , vJ−1 can be computed from
the Diophantine coefficients m j .

The proof of this result uses elementary algebra (and some number theory). For
reader’s convenience, it is included in Appendix A.2. For additional details and a
low-dimensional example illustrating this lema, see Appendix B.

That the set of all solutions to Eq. (2) is a (J − 1)-dimensional lattice is a special
case of a classical result that identifies the solution set of any system of linear Dio-
phantine equations with a lattice Lazebnik (1996). As a subset of that lattice, the set
of nonnegative solutions can be expressed as a linear combination of the elements in

1 We note that our Diophantine equation does not necessarily satisfy the main hypothesis of the main result
from Chen and Li (2007).
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some basis of the lattice. In the proof of Lemma 1, we give one such combination.
We use this construction to write a solvequick() function in R (see Appendix B) for
quickly finding a solution to (2), and demonstrate its use in Sect. 4. When there is
more than one solution, we provide a quick way to count the tables via a tablecount ()
function as explained next.

2.3 Size of table space: exact and approximate

First we derive the exact count formula for the total number of integer-valued r -way
tables n given the marginal [AB]. In Corollary 3, this count is combined with the
table-space decomposition results from Corollary 2 to derive the number of r -way
tables in the fiber FA|B .

Consider a r -way table as a 3-way table of counts si jk for A, B, and C taking
I, J, and K states, respectively. Suppose we marginalize C . One can derive a simple
formula for the number of 3-way tables, and, therefore, corresponding r -way tables,
all having the same margin [AB].

Lemma 2 (Exact count of data tables given one marginal) Adopting the above nota-
tion, the number of r-way tables (data tables) given one marginal [AB] equals

|FAB | =
∏

1≤i≤I,1≤ j≤J

(
si j+ + K − 1

K − 1

)

. (3)

We omit the proof of this lemma, as it follows from the definition of the binomial
coefficients. It is simply a count of the number of ways we can write each entry si j+
in the marginal table as a sum of K entries in the data table.

Remark 2 We can find si j+ from the solutions of the Diophantine equation, since
si j+ = x jm j ci j .

With real data in mind, however, we might have to alter the formulas. Specifically,
the above formulas assume that the marginals si j+ are integers, but with real data due
to possible rounding of observed conditional probabilities, the computed si j+’s may
also be rounded. Recall that the Gamma function is defined so that�(n) = (n−1)! for
all integers n. Since the binomial coefficient in (3) can be written in terms of factorials,
if we replace si j+ with a real number instead of an integer, we get:

|FAB | =
∏

1≤i≤I,1≤ j≤J

�(si j+ + K )

K !�(si j+ + 1)
. (4)

For an example, see Sect. 4.
We can use this formula to derive the exact size of the table space given observed

conditionals.
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Corollary 3 (Exact count of data tables given conditionals) The number of possible
r-way tables given observed conditionals [A|B] is

|FA|B | =
m∑

i=1

|FAB(pi )|, (5)

where m is the number of integer solutions to (2), and each |FAB(pi )| can be computed
using Lemma 2.

Proof The claim follows by Lemma 2 and Corollary 2. ��
A tablecount () function in R implements the above results and gives the corre-

sponding counts. In practice, however, it may be computationally difficult to obtain
the number of solutions to the Diophantine equation exactly. One remedy is provided
by approximating the number of those solutions. Then, this approximation can be
extended to give an approximate size for the table space FA|B . By approximation we
mean a Riemann sum approximation of the integral which calculates the volume of a
polytope for fixed N . We deal with the number of marginal tables first, returning to
the notation of Lemma 1:

Proposition 1 (Approximate count of marginal tables given conditionals) Given
observed conditionals [A|B], the number of possible marginal tables [AB] is approx-
imately

|FA|B |AB ≈ N J−1gcd(m1,m2, ...,mJ )

(J − 1)!∏J
i=1 mi

. (6)

This approximation may also be given by a Dirichlet integral

|FA|B |AB ≈ gcd(m1, ...,mJ )

mJ

∫

(x1,...,xJ−1)∈M
1dx1dx2 · · · dxJ−1, (7)

where M is the projection of the marginal polygon onto the x1x2...xJ−1-plane.

A simple algebraic proof of this result can be found in Appendix A.3. Note that
by Theorem 1, the number of possible marginal tables equals the number of positive
integer solutions of Eq. (2). Formula in Eq. (6) uses a geometric approach via volumes
of cells in the lattice; the second formula in (7) realizes the same approximation using
the integral formula for volumes. Section 4 illustrates the use of these approximation
formulas.

Corollary 4 (Approximate count of data tables given conditionals) The number of
possible r-way tables in FA|B is approximately

gcd(m1, ...,mJ )

mJ

∫

(x1,...,xJ−1)∈M

∏

i, j

�(x jm j ci j + |C |)
�(|C |) · �(x jm j ci j + 1)

dx1dx2 · · · dxJ−1,

(8)
where M is the projection of the marginal polygon onto the x1x2...xJ−1-plane.
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Proof The claim follows from Lemma 2 and Proposition 1. Note that the total number
of r -way tables equals the sum over all possible marginals of the number of tables
for a fixed marginal. The approximation comes from using the approximate count in
Eq. (8). ��

3 Implications for cell bounds and Markov bases

3.1 Cell bounds

There has been much discussion on calculation of bounds on cell entries given the
marginals (e.g., see Dobra and Fienberg 2010 and related references), and to a limited
extent the bounds given the observed conditional probabilities; e.g., see Slavković
and Fienberg (2004) and Smucker and Slavković (2008). Such values are useful for
determining the support of underlying probability distributions. In the context of data
privacy, the bounds are useful for assessing disclosure risk; tight bounds imply higher
disclosure risk. We can use the structure of the space of possible tables to obtain sharp
integer bounds for the cell counts. Recall that we assume that observed conditional
probabilities are exact.

There are a number of different ways to get cell bounds: (1) using linear and
integer programming to solve the system of linear equations of (1); (2) using the result
of equivalence of marginal and conditional fibers (c.f., Corollary 1), the bounds are
given by 0 ≤ si jk ≤ si j+; and (3) using our decomposition result (c.f., Corollary 2)
to enumerate all possible marginal tables, and based on those get the cell bounds
minl(si j+)l ≤ si jk ≤ maxl(si j+)l , where l is the number of possible marginal tables
AB given A|B.

Besides the above three methods for computing the exact cell bounds, there is a
fourth method that computes approximate cell bounds by allowing arbitrary rounding
of P(A|B) = ci j . The proof is straightforward: simply recall that

∑
j x jm j = N and

si j+ = m j x j ci j .

Theorem 2 Given T = {P(A|B), N }, an approximate (relaxation) integer cell
bounds are given by

m j · ci j ≤ si j+ ≤
⎛

⎝N −
∑

t 
= j

mt

⎞

⎠ · ci j . (9)

Furthermore, an approximate number of values that xi can take is given by

(
N −∑ j 
=i m j

)
· (m1,m2, ...,mJ )

mi · (m1,...,mi−1,mi+1, ...,mJ )
. (10)

These bounds can be made sharper if we know the rounding scheme of ci j ’s. The
effect of rounding on bounds and on calculating Markov bases given observed condi-
tionals is of special interest, but we defer that work to a future study. Some preliminary
results and discussion are provided in Smucker et al. (2012) and Lee (2009).
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3.2 Markov bases

In this section, we describe a structure for the Markov bases for the table space FT
as defined in (1), resulting from the Corollary 2, which could lead to their simplified
computation.

A set of minimal Markov moves allows us to build a connected Markov chain and
perform a random walk over all the points in any given fiber. Thus, we can either
enumerate or sample from the space of tables via sequential importance sampling
(SIS) or Markov Chain Monte Carlo (MCMC) sampling; e.g., see Dobra et al. (2006)
and Chen et al. (2006). AMarkov basis for a model, or for its design matrix, is a set of
moves that are guaranteed to connect all points with the same sufficient statistic. In a
seminal paper byDiaconis and Sturmfels (1998), these bases were used for performing
exact conditional inference over contingency tables given marginals.

Definition 1 (Diaconis and Sturmfels 1998) Let T be a d × n matrix whose entries
are nonnegative integers. Assume T has no zero columns. In addition, denote by Ft

the fiber for t , that is, the set of all d-tuple preimages of t under the map defined by T :

Ft = { f ∈ N
d : T f = t},

where t is in Nd\{0}.
A Markov basis of T is a set of vectors f1, . . . , fL ∈ Z

n with the following
properties: first, the vectors must be in the kernel of T :

T fi = 0, 1 ≤ i ≤ L .

Secondly, they must connect all vectors in a given fiber: for any t ∈ N
d\{0} and any

f, g ∈ Ft , there exist (ε1, fi1), ..., (εK , fiK ) with εi = ±1, such that

g = f +
K∑

j=1

ε j fi j

and, at any step, we remain in the fiber:

f +
a∑

j=1

ε j fi j ≥ 0 for all a such that 1 ≤ a ≤ K .

Note that the definition of a Markov basis does not depend on the choice of t ; it
must connect each of the fibers.

In our problem, T is thematrixM in Eq. (1). Thus, the fiberFt contains the space of
possible data tables that satisfy the constraints described in (1) for the given vector t .
Theorem 3.1. in Diaconis and Sturmfels (1998) is considered one of the fundamental
theorems in algebraic statistics and stats that a Markov basis of T can be calculated
as a generating set of the toric ideal IT for the design matrix T of the model; for an
introduction to toric varieties of statistical models see Drton et al. (2009).
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There are a number of algebraic software packages for computing generating sets
of toric ideals, and thus the Markov bases, but the most efficient to date is 4ti2 (4ti2
Team 2014). Sometimes, though, the matrix M can be large, and the computation
may take too long. To alleviate some of the computational problems with contingency
tables in practice, we use our table-space decomposition result (c.f. Corollary 2) to
split the Markov basis into two sets. This could allow for parallel computation of the
Markov sub-bases.

Corollary 5 The Markov basis for the space of tables given the conditional can be
split into two sets of moves:

(1) the set of moves that fix the margin, and
(2) the set of moves that change the margin.

Proof By Corollary 2, the fiber FA|B of tables given the conditional is a disjoint
union of the sub-fibers FAB(pi ) given the fixed marginals represented by the points
pi , for i = 1, . . . ,m. By definition, the set of Markov moves consisting of the moves
that change the margin connect the sub-fibers FAB(pi ), for i = 1, . . . ,m. Thus, the
Markov basis connecting all of FA|B consists of the moves connecting each sub-fiber
FAB(pi ) (the first set of moves) and the moves connecting each sub-fiber to another
(the second set of moves). ��

The moves that fix the margins have been studied in the algebraic statistics liter-
ature; for some recent advances in that area, see Aoki and Takemura (2002), Aoki
and Takemura (2008), De Loera and Onn (2006), and references given therein. Most
recently, Dobra (2012) provided an efficient algorithm to dynamically generate the
moves given the margins. Less work has been done on studying Markov bases given
observed (estimated) conditionals, (e.g., see Slavković 2004; Lee 2009). Since we
know, by Theorem 1, that the margins correspond to solutions to the Diophantine
Eq. (2), we can find the latter set of moves by computing the Markov basis for the
coefficient matrix of the Diophantine equation.

The number of Markov basis elements for this matrix seems to be small. More
specifically, computations suggest the number of Markov basis elements that change
the margin is as small as possible:

Conjecture 1 In the case of small conditionals (i.e., C 
= ∅), the coefficient matrix
of the Diophantine Eq. (2) has a Markov basis consisting of J − 1 elements, where
J − 1 is the dimension of the underlying lattice. In other words, the corresponding
toric ideal equals the lattice basis ideal.

Note that the assumption C 
= ∅ is necessary, as the Example in Sect. 4.2.2 shows.
If the con were true, it would imply the following on the size of the entire Markov
basis:

Conjecture 2 A minimal Markov basis of the matrix M in (1) contains |B| − 1 +
(|C | − 1) × |B| × |A| elements.
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Supporting examples for the above conjectures are included in Sect. 4.
On a related note, Peter Malkin has shown (in personal communication) that

under certain assumptions, the number of solutions to the homogeneous linear Dio-
phantine equation is exactly the dimension of the lattice, where by homogeneous
we mean the right-hand side is zero: let D be the minimal size of all det(Li ),
where Li is the projection of the lattice L onto all variables except the i th vari-
able. In general, a (k − 1)-dimensional lattice in k variables has a Markov basis
of size at least (k − 1) and at most (k − 2)D + 1. Note that if D = 1, then the
upper bound is k − 1. The size of the Markov basis for the k − 1-dimensional lat-
tice can be obtained as a consequence of a result in Sturmfels et al. (1994) and
the Project-and-Lift method from Hemmecke and Malkin (2009). Namely, Propo-
sition 4.1. of Sturmfels et al. (1994) states that the maximal size of a Gröbner
and thus a Markov basis for a k-dimensional lattice L in k variables is at most
(k − 1)det(L) + 1. They state without proof that (k − 2)det(L) + k + 1 is also
an upper bound. The Project-and-Lift method is the one implemented in 4ti2 (4ti2
Team 2014).

Even though we cannot show that D = 1 holds, the conjecture above says that
the size of the Markov basis is actually as small as possible. It would be of interest
to obtain bounds tighter than the general one in the case of a Diophantine equation
arising from the study of the table space. For more about the sizes of Markov bases
and computing them, see Malkin (2007).

3.3 Extension of relations to marginals via DAGs

Given the marginals only, Dobra (2003) and Dobra and Fienberg (2000) have
used graphical models in computing Markov bases and for calculating bounds for
disclosure risk assessment. In this section, we provide extensions to those results, to
the bounds in Sect. 3.1 and to Problem 1 by considering combinations of multiple
conditional arrays and their relations to corresponding marginals via directed acyclic
graphs (DAGs); see Sect. 4.2.4 for an example.

A DAG G = {V, E} consists of a set of nodes V = {v1, ..., vr } and a set of
directed edges, (vi , v j ) ∈ E , that link the ordered pairs of distinct nodes vi (the
parent), and v j (the child) in V , and there are no cycles. A DAG satisfies the Wer-
muth condition (Whittaker 1990) or is perfect (Lauritzen 1996) if no subgraph has
colliders, that is, if no child has parents that are not directly connected. A graph
Gu = {V, Eu} is called undirected if the edges are undirected (lines), that is, if
(vi , v j ) ∈ E then (v j , vi ) ∈ E . A moral graph Gm = {V, Em} is the undirected
graph on the same vertex set as G and with the same edge set E including all
edges that would be necessary to eliminate forbidden Wermuth configurations in
G.

If the random variables X1, ..., Xr are nodes of the graph G, then the graph rep-
resents dependencies among these variables. More specifically, G defines the set of
probability distributions over the sample space that obeys the directed Markov prop-
erties and factorizes the joint distribution,
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f (x1, x2, ..., xr ) =
∏

x∈V
f (x |pa(x)) = f (x1) f (x2|x1)... f (xr |xr−1, xn−2, ..., x1).

(11)

There are many cases when the joint distribution over the contingency table has a
graphical representation. In someof these cases, a set of conditionals andmarginalswill
factor the joint according to a DAG representation. Given such a set that also satisfies
the Wermuth condition, there is an equivalent undirected graph representation of the
same set. In that case, the generalized Problem 1 is reduced to one of knowing a set of
marginals, and the bounds are those given by Dobra and Fienberg (2000, 2010). The
following results hold for any r -way table.

Theorem 3 Let T be a set of conditional and marginal distributions inducing bounds
on the cell entries. Let G be a DAG, and Gu the undirected graph associated with
T . When G satisfies the Wermuth condition, the bounds imposed by T reduce to the
bounds imposed by a set of marginals associated with Gu.

Proof This result follows fromwell-known properties of a DAG andmore specifically
from the Markov theorem for directed independence graphs (Whittaker 1990; Lau-
ritzen 1996). The theorem states that the DAG possesses the Markov properties of its
associated moral graph. Therefore, there is an equivalence of the set of edges for Gm

and Gu . The directed edges in the DAG carry independence statement information on
a sequence of marginal distributions, while the undirected graph describes the inde-
pendence statements on a single conditional. Since the edge sets are equivalent, the
DAG then gives the equivalent information on the joint as its associated undirected
graph. ��

Corollary 6 Let Gm be the moral graph associated with G. If Gm = Gu, then the
bounds induced by a set T are equivalent to the bounds induced by the set of marginals
associated with Gu.

An interesting link between bounds on cells in the contingency tables, DAGs, and
Markov bases is indicated by the next result.

Corollary 7 Let T be a set of conditional and marginal distributions. Let G be a
DAG and Gu the undirected graph associated with T . When G satisfies the Wermuth
condition, theMarkov basis describing T under the same ordering is the sameMarkov
basis induced by a set of marginals associated with Gu.

Proof The claim follows from Corollary 5. ��

It is possible that similar results,with discrete randomvariables, could be derived for
the chain graphs and ancestral graphical models (e.g., Richardson and Spirites 2002)
which are generalization of the directed and undirected graphs. This is an interesting
topic for future research.
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4 Examples

In this section we illustrate the results described in the preceding sections through
analysis of a series of simple contingency tables. We show how to use our initial R (R
DevelopmentCoreTeam2005) implementationof the formulas fromSects. 2 and3.We
also perform our analyses using the well-established and free algebraic software LattE
macchiato (LattE 2014) which relies on an implementation of Barvinok’s algorithm
(Barvinok et al. 2010) for counting anddetecting lattice points inside convexpolytopes.
In statistical literature, LattE has been mostly used for counting the number of tables
given the margins.

4.1 A 2 × 2 × 2 Example

Consider a fictitious 2 × 2 × 2 table that cross-classifies a randomly chosen sample
of 50 college students by their Gender , illegal Downloading of MP3 files, and the
dorm Building they live in; see counts in Table 1. We use shorthand G for Gender ,
D for Downloading, and B for Building variable.

The survey administrator has the full information on the [BGD] table, but due to
confidential nature of the data,would like to consider releasing only partial information
to public such as the marginal counts [DG] as in Table 2 or the grand total 50 and the
small conditional P(Download|Gender) as in Table 3. This requires comparison of
the space of tables FDG , which based on Lemma 2 has 16 × 11 × 6 × 21 = 22176
possible [BGD] tables, with the space of tables FD|G .

Table 1 A 2 × 2 × 2 table of counts of illegal MP3 downloading by gender and a residing building

Building Gender Download Total

Yes No

I Male 8 [0, 29.4] [0, 27] [0, 15] 4 [0, 19.6] [0, 18] [0.10] 12
I Female 2 [0, 9.8] [0, 9] [0, 5] 9 [0, 39.2] [0, 36] [0, 20] 11

II Male 7 [0, 29.4] [0, 27] [0, 15] 6 [0, 19.6] [0, 18] [0.10] 13

II Female 3 [0, 9.8] [0, 9] [0, 5] 11 [0, 39.2] [0, 36] [0, 20] 14

Total 20 30 50

The value in the brackets are linear relaxation bounds and sharp integer bounds given released conditional
[D|G] and marginal [DG], respectively

Table 2 [GD] Marginal table
of illegal MP3 downloading, and
integer bounds given released
[D|G] and N = 50

Gender Download Total

Yes No

Male 15 [3, 27] 10 [2, 18] 25
Female 5 [1, 9] 20 [4, 36] 25

Total 20 30 50
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Table 3 [D|G] Table of
conditional probabilities with
reduced fractions and [rounded
probability]

Gender Download

Yes No

Male 15
25 = 3

5 [0.6] 10
25 = 2

5 [0.4]
Female 5

25 = 1
5 [0.2] 20

25 = 4
5 [0.8]

Total 20 30

The reference set FD|G consists of tables that are solutions to the following:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎡

⎣
1 1 1 1 1 1 1 1
2 −3 2 −3

4 −1 4 −1

⎤

⎦ n =
⎡

⎣
50
0
0

⎤

⎦

n1 + n2 + n5 + n6 > 0
n3 + n4 + n7 + n8 > 0
All ni ’s are nonnegative integers

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

.

This is part of a 5-dimensional lattice inside the R2. Then Eq. (2) of Theorem 1
for this example is 5x1 + 5x2 = 50, and it has 9 positive integer solutions: {(x1 =
i, x2 = 10 − i)|1 ≤ i ≤ 9}. Thus, there are 9 different [DG] marginals, which, by
Theorem 1, means that the space of tables given the small conditional [D|G] and
the grand total is different from the space of tables given the corresponding marginal
counts. In fact, the space is larger: |FD|G | > |FDG |. More specifically, Corollary 3
for m = 9 provides the table count: |FD|G | = ∑9

m=1 |FDGm | = 128676. In R, we
invoke function tablecount(M, 2) where M is any one of 9 possible marginal tables
[DG]. Notice that this formulation does not allow any row of [G] to have a total of
zero counts. If such tables were to be allowed, then the total number of possible 3-way
tables would be 128676 + 651 + 451 = 129778 where 651 and 451 are the numbers
of possible 3-way tables given the [DG] when one of the rows of [G] is equal to
zero.

To approximate the number of marginal tables [DG], one can use the formula
from Eq. (7) in Proposition 1 to count the number of corresponding solutions to the
Diophantine equation as 50gcd(5,5)

5×5 = 10. Then, we can use the integral formula from
Corollary 4, which could be evaluated, say, using Maple, to estimate the size of the
total table space given the conditionals as gcd(5,5)

5

∫ 10
0 (3x + 1)(2x + 1)(10 − x + 1)

(40 − 4x + 1) = 129676.7.
Since more than one possible margin is consistent with the given conditional and

grand total, clearly FDG is strictly contained in FD|G . This can also be seen by
computing the cell bounds on the cell entries of [BDG] contingency table. In Table 1,
given FD|G , the linear relaxation cell bounds and the exact integer bounds are given
in the black and blod brackets, respectively. Given FDG , the exact cell bounds are in
italic brackets. The idea is that the wider bounds offer more protection. These bounds
are obtained by direct optimization for each given constraint. However, the results of
Sect. 3 show a computational shortcut to obtaining bounds given [D|G] and N = 50
by using already established results on bounds of cell entries given themarginals. First,
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by Theorem 2 we obtain bounds on the missing margin [DG] (see Table 2). Next, we
combine this with a well-known fact that given one marginal si j+, the bounds on each
cell entry of the 3-way table are 0 ≤ ni jk ≤ si j+. Thus, the bounds for ni jk are between
0 and the upper bound found for the missing marginal table. For example, for the cell
(1, 1, 1), the 3 ≤ s11+ ≤ 27, and 0 ≤ n111 ≤ 27; these are the bounds given in the
bold brackets in Table 1.

It has been observed in the literature already that the above-described bounds have
gaps. That is, not all values within the interval are possible. This observation is partic-
ularly important for assessing disclosure risk with contingency tables. By enumerating
all possible marginal tables, we learn both the number of all possible r -way tables, and
the values in the cell counts of those tables.We can obtain such tables quickly by using
the solvequick() function. For example, solvequick(c(5, 5), 50) gives a vector of all
possible G margins that we conditioned on in [D|G]. To get [DG] margins, compute
m j × b × ci j .

Next, we calculate a Markov basis for fixed [D|G] using 4ti2. If Conjecture 1 is
true, then so is Corollary 2, and there should be 5 = |G|−1+ (|B|−1)×|G|×|D| =
1 + 1 × 2 × 2 Markov moves. Our computation finds exactly 5 moves:

⎛

⎜
⎜
⎜
⎜
⎝

3 2 −1 −4 0 0 0 0
1 0 0 0 −1 0 0 0
0 1 0 0 0 −1 0 0
0 0 1 0 0 0 −1 0
0 0 0 1 0 0 0 −1

⎞

⎟
⎟
⎟
⎟
⎠

.

In accordance with Corollary 5, the last 4 moves correspond to a set of moves that
fix the [DG] margin, while the first move changes the margin [DG], but keeps the
N fixed. From the first element, n31n

2
2 − n15n

4
6, by summing the exponents in each

monomial, we can deduce exactly the amount by which a count in each level of the
margin we condition on changes. In this example, each marginal count of [G] changes
by a count of 5. Thus, with the sample size N = 50, the upper bound for the solution
to equation (2) for the number of possible marginals [G], and thus of [DG], is 10.

A related example, providing more details and implications of when a Diophantine
equation has only one solution is available in the supplementary documents at http://
www.stat.psu.edu/~sesa/cctable.

4.2 A 3 × 2 × 2 table with zero counts

In this section, we apply our derived results to a 3 × 2 × 2 table (see Table 4) with
zero counts, and show the convergence of exact and approximate results.

4.2.1 Small conditional B|A and N

Consider that we do not observe the original table, and the only available information
is T = {Pr(B|A), N = 240}; the sample values are given in Table 5.
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Table 4 A 3 × 2 × 2 Table
C = 1 C = 2 Total

A = 1 B = 1 10 20 30
A = 1 B = 2 10 20 30

A = 2 B = 1 20 0 20

A = 2 B = 2 0 40 40

A = 3 B = 1 0 30 30

A = 3 B = 2 30 60 90

Total 70 170 240

Table 5 Left panel: observed counts of the [AB] marginal table, and notation for when those counts are
missing, right panel: observed conditional probabilities [B|A] based on values in Table 4

B = 1 B = 2 B = 1 B = 2

A = 1 30 [x] 30 [x] A = 1 1/2 1/2
A = 2 20 [y] 40 [2y] A = 2 1/3 2/3

A = 3 30 [z] 90 [3z] A = 3 1/4 3/4

By Theorem 1, the linear Diophantine equation that characterizes all possible miss-
ing [AB] margins is

2x + 3y + 4z = 240. (12)

Using our R code, e.g., solvecount(c(2, 3, 4), 240), we learn that there are 1141
possible A marginals consistent with the provided information. Since the triplets
(x, y, z) are in 1-to-1 correspondence to [AB] margins (see Table 5), there are
1141 missing [AB] marginals consistent with the provided information. Furthermore,
solvequick(c(2, 3, 4), 240) lists all positive integer solutions to Eq. (12), and from
there we easily obtain all corresponding [AB] margins.

We are ultimately interested in finding all possible 3-way tables consistent with
given information, i.e, solutions to the following system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡

⎢
⎢
⎣

1 1 1 1 1 1 1 1 1 1 1 1
1 −1 1 −1

2 −1 2 −1
3 −1 3 −1

⎤

⎥
⎥
⎦ X =

⎡

⎢
⎢
⎣

240
0
0
0

⎤

⎥
⎥
⎦

n1 + n2 + n3 + n4 > 0
n5 + n6 + n7 + n8 > 0
n9 + n10 + n11 + n12 > 0
All ni ’s are nonnegative integers

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

which is part of a 8-dimensional lattice inside the R12. The exact number of pos-
sible 3-way tables can be obtained by Corollary 3, |FB|A| = ∑1141

m=1 |FABm |. In R,
we invoke f ormat (tablecount (M, 2), digi ts = 22), which gives 1187848498271
possible [ABC] contingency tables.

Next, we demonstrate in a littlemore detail and following the proof of Proposition 1,
how to set up the integrals to calculate the approximate number of solutions. Recall that
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amarginal table [AB] corresponds to a triple (x, y, z). Note that z = (240−2x−3y)/4.
Thus, for each marginal table, the number of possible tables that have this margin is

(x + 1)2(y + 1)(2y + 1)

(
240 − 2x − 3y

4
+ 1

)(

3
240 − 2x − 3y

4
+ 1

)

.

After summing over all possible (x, y), we get the count of all possible [ABC] tables:

∑

(x,y)∈M
(x + 1)2(y + 1)(2y + 1)

(
240 − 2x − 3y

4
+ 1

)(

3
240 − 2x − 3y

4
+ 1

)

where M is the projection of all possible triple (x, y, z) onto the xy-plane. As dis-
cussed in the proof of Proposition 1, notice thatM is a part of a lattice whose unit cell
has an area of 4/gcd(2,3,4). Thus, the number of possible solutions is approximately
1.188479935 × 1012 by solving the following

1

4

∫ 80

0

∫ 240−3y
2

0
(x + 1)2(y + 1)(2y + 1)

(
240 − 2x − 3y

4
+ 1

)

(

3 · 240 − 2x − 3y

4
+ 1

)

dxdy.

The ratio of the exact solution to the approximate solution, for either counting the
missing margin or the r -way table, is 1 + O(1/N ). For this example, we compute
exact and approximate number of tables while varying the grand total N . Table 6
summarized the results for the missing marginal [AB], and Table 7 lists the exact
number and approximate number of [ABC] tables for different values of the total
sample size. Numerical experiments show evidence that our approximation is sharper
for equationswith fewer unknowns, and/or when N is much larger than the coefficients
in the equation. For the small number of margins, the approximation does not work
well.

Next, we calculate a Markov basis for fixed [B|A] using 4ti2. According to Corol-
lary 2, there should be 8 elements in this basis. A Markov basis for this example is
given below. In accordance to Corollary 5, the last 6 moves correspond to a set of
moves that fix the [AB] margin, and the first two moves change the margin [AB]
while keeping N fixed. As noted before, the sum of the exponents in the monomial
tells us by how much the margin [A] can change.

Table 6 Exact and approximate
number of missing marginal
tables [AB]

Exact count Approximation

N = 24 7 12
N = 240 1141 1200

N = 2400 119401 120000

N = 24000 11994001 12000000
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Table 7 Exact and approximate number of missing tables [ABC]
Exact count Approximation

N = 24 52937 65150
N = 240 1187848498271 1.188479935 × 1012

N = 2400 96999660430647444101 9.699971869 × 1019

N = 24000 9501190342113804461451781001 9.501190349 × 1027

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−2 −2 0 0 0 0 0 0 1 3 0 0
−3 −3 0 0 2 4 0 0 0 0 0 0
−1 0 1 0 0 0 0 0 0 0 0 0
0 −1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 1 0 0 0 0 0
0 0 0 0 0 −1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 1 0
0 0 0 0 0 0 0 0 0 −1 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

4.2.2 Full conditional A|BC and N

Before considering the release of other partial conditionals, we next demonstrate how
some of our results also hold for the full conditional. First, if the only information
available about the original table are the observed conditional rates, e.g., [A|BC], and
N , as indicated in Sect. 3.2, we only need to solve a linear Diophantine equation to
find the total number of possible 3-way tables, e.g.,

3x1 + 4x2 + 5x3 + 6x4 = 240.

We would typically count the number of possible solutions by setting up the full
constraint matrix in LattE (e.g., see Appendix B), but now we can simply apply
solvequick(c(3, 4, 5, 6), 240) in R. The number of possible tables is 5715, which
corresponds to the number of possible [BC] margins. Second, notice that the [A|BC]
conditional rates have zero values, e.g., cell (2, 2, 1) since the original cell has a zero
count. However, the presence of zeros does not affect our computation since we are
not conditioning on margins with zero counts.

Last, theMarkov basis has the following 4 elements, all of which change the [ABC]
margin:

⎛

⎜
⎜
⎝

−2 0 0 1 −4 0 0 3 0 0 0 2
−3 2 1 0 −6 0 0 0 0 3 3 0
−2 4 −1 0 −4 0 0 0 0 6 −3 0
−1 −2 2 0 −2 0 0 0 0 −3 6 0

⎞

⎟
⎟
⎠ .

Conjecture 1 about the number of elements in the basis, however, does not hold
here because we are using full conditionals, that is, C = ∅. As supported by other
examples, this conjecture seems true for small conditionals only.
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4.2.3 Partial conditional B|C and N

Here we briefly consider a case where the missing marginal has more than two levels.
Let the available information be the sample size and the small conditional [B|C] with
themissing variable [A] that has 3 levels. The followingDiophantine equation captures
the information preserved by the sample size and [B|C]:

7x1 + 17x2 = 240.

In R, the solvequick(c(7, 17), 240) function obtains only two possible non-negative
integer solutions, that is, only two possible marginal tables [BC]. Then, running
tablecount (M, 3), where M is one of the [BC] margins, tells us that there are
total of 6130182419416 [ABC] tables. In this example, it is easy to check via
LattE that Corollary 3 holds. We compute the number of ABC tables given each
BC margin, and see that their sum is equal to the number we obtained via the
tablecount () function. According to this corollary, |FB|C | = ∑2

m=1 |FBCm | =
4179685045536 + 1950497373880 = 6130182419416. It should be noted here that
the function tablecount (M, 3) gives the total number of [ABC] tables regardless of
which compatible [BC] margin we use. The conjectures for the size of Markov bases
hold here as well. We observe that there are 9 elements in a basis: 8 fix the [BC]
margin, and 1 changes the [BC] margin.

4.2.4 Combinations of partial conditionals and N

Let’s assume that we observe T = {P(B|A), P(C |A), P(A), N }, and recall that we
assume that there exists a joint distribution from which we observed these compatible
pieces. Then this collection can be graphically represented by a DAG G that satisfies
the Wermuth condition. This DAG and its corresponding undirected graph Gu are
given in the picture below. By Theorem 3 the bounds on the cell counts are the same
as in the case of given margins [AB] and [AC]. Based on Corollary 7, the Markov
bases will be the same, and so will the fibers Fτ and FAB,AC . Note that these results
capture the following special case: if the model according to DAG is true, that is B
and C are conditionally independent given A, then by the Wermuth condition we can
uniquely specify the joint distribution, P(A, B,C) = P(AB)P(AC) :

G : B A C,

Gu : B A C.

Now assume that marginal [A] is missing or hidden, and we only have partial
information in the form of observed conditional frequencies [B|A] and [C |A], and
sample size N . If there is a unique solution for the margin [A], then there are unique
two-waymargins [AB] and [AC]. ByTheorem3 andCorollary 7 then this is equivalent
to having information on two margins, and we can proceed by calculating the cell
bounds, counting tables, and by sampling given the marginals.
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Consider our running example from Table 4 but with N = 24. Let T =
{P(B|A), P(C |A), N = 24}, where the observed conditional values are the same
as with N = 240; e.g., for P(B|A), see Table 5. By Theorem 1, the equation that
characterizes the missing marginal [A] and thus [AB] for [B|A] is

2x + 3y + 4z = 24. (13)

Based on solvecount(c(2, 3, 4), 24), we learn that there are 7 possible [A] margins.
Furthermore, there are 52937 possible 3-way [ABC] tables. The linear Diophantine
equation that characterizes the missing marginal [A] and thus [AC] based on knowl-
edge of [C |A[ is

3x + 3y + 4z = 24, (14)

and from the running solvecount(c(3, 3, 4), 24), we learn that there are 3 possible A
margins. There are 22440 possible 3-way ABC tables.

We are interested in the intersection of the two solution spaces. Using our function
intersect () in R, we learn that there is only one [A] that satisfies both equations, and
it takes values (6, 6, 12). Since there is only one [A], this implies that there is only one
[AB] and one [AC] margin, and thus the space of 3-way tables [ABC] is the same
as the space given these two margins. More specifically, |Fτ | = |FAB,AC | = 36. Our
analysis shows that the results from Sect. 3.3 hold, and we do get the same bounds
and Markov bases as would if we only consider the marginal information. A Markov
basis for fixed [B|A] and [C |A] has 5 elements: 3 fix the missing [A] margin, and 2
change it:

⎛

⎜
⎜
⎜
⎜
⎝

−4 −2 0 −6 0 0 0 0 3 0 0 9
−2 −1 0 −3 2 0 0 4 0 0 0 0
0 0 0 0 −1 1 1 −1 0 0 0 0
0 0 0 0 0 0 0 0 −1 1 1 −1

−1 1 1 −1 0 0 0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠

.

Since in this example [A] is unique, that would be like adding an additional con-
straint, and the actual minimal basis that describes our system of polynomial equations
reduces to:

⎛

⎝
0 0 0 0 0 0 0 0 −1 1 1 −1

−1 1 1 −1 0 0 0 0 0 0 0 0
0 0 0 0 −1 1 1 −1 0 0 0 0

⎞

⎠ .

We get the same Markov basis if we calculate it based on fixing [AB] and [AC]
margins.

If N = 240, the Markov bases based on fixing [B|A] and [C |A] will be
the same as with N = 24; that is, they will have 5 elements shown above.
However, now there are 361 possible [A] margins consistent with both [B|A]
and [C |A], and the Theorem 3 and Corollary 7 and are not satisfied, and
the Markov basis will not reduce to the Markov basis given the correspond-
ing marginals. Furthermore, the space of tables given the conditional is signifi-
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cantly larger than the space of tables given the corresponding marginals: |Ft | =
3066315 ≥ |FAB,AC | = 13671. Thus, the bounds on the cell entries are dif-
ferent, as is the support for the sampling distribution over the space of tables
[ABC].

Similar analysis can be done for other arbitrary collections of conditionals and
marginals. For example, T = {P(B|A), P(A|C), P(C)} will also satisfy the results
from Sect. 3.3. If margin [C] is missing, but it is unique based on the solution to a
linear Diophantine equation, we would again have a reduction of results; that is, the
space Ft will be equivalent to the space FAB,AC . For additional examples, see http://
www.stat.psu.edu/~sesa/cctable.

5 Conclusions

We have used algebraic statistics to solve an open problem posed by Dobra et al.
(2008). One area of this expanding field is concerned with the study and characteri-
zation of portions of the sample space and, in particular, of all datasets (i.e., tables)
having the same observed margins and/or conditionals. In this paper, we describe the
space of all possible r -way contingency tables for a given sample size and set of
observed (estimated) conditional frequencies. This space of contingency tables can
be decomposed according to different possible marginals, which, in turn, are encoded
by the solution set to a linear Diophantine equation, giving the table space a special
structure. As a consequence, we obtain conditions under which two spaces of tables
coincide: one is the space of tables for a given set of marginals, and the other is our
space—for a given sample size and set of conditionals. This characterization of the
difference between two fibers has thus provided a solution to an open problem in the
literature.

In general, these fibers can be quite large. We provide formulas for comput-
ing the approximate and exact cardinality of the fibers in question, and we imple-
mented those in R. The knowledge of the structure of the space of tables also
enables us to enumerate all the possible data tables. This, in turn, leads to new
cell bounds, some including connections to DAGs with combinations of condition-
als and marginals. In this paper, we assumed that the given sets of conditionals and
marginals are compatible; for problems on compatibility for categorical and con-
tinuous variables, see Arnold et al. (1999); on compatibility of full conditionals
for discrete random variables, see Slavković and Sullivant (2006); and on general-
ization of compatibility of conditional probabilities in discrete cases, see Morton
(2013). Consistent with the literature on the characterizations of joint discrete dis-
tributions, we allow cell entries to be zero as long as we do not condition on an
event of zero probability, and we assumed that the uniqueness theorems as stated
in Arnold et al. (1999) and Slavković and Fienberg (2010) hold. Then we consid-
ered if the given summary statistics are sufficient to uniquely identify the existing
joint distribution, and if not, we proceed with the description of the related sample
space.

Another application of the main observation, the table-space decomposition result,
is that it allows us to describe theMarkov bases given the conditionals.We observe that
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the moves consist of two sets: those that fix the margins, and those that change them.
This result could lead to a simplified calculation of Markov bases in this particular
setting. However, this remains to be studied more carefully. We raised a number of
conjectures, and in particular we hope to prove Conjecture 1.

The properties of fibers, and, therefore, the results of this paper, are important
in determining the support of sampling distributions, for conducting exact condi-
tional inference, calculating cell bounds in contingency tables, and imputing miss-
ing cells in tables. The degree of Markov moves for given conditionals is arbi-
trary in the sense that it depends on the values of observed conditional proba-
bilities, unless we use the observed cell counts directly. In practice, however, the
conditional values are reported as real numbers. Depending on the rounding point,
the bounds, the moves and the fibers will differ from each of its kind. This has
implications for statistical inference; in particular, in assessing “true” disclosure
risk in data privacy problems. The effect of rounding needs more careful inves-
tigation. This problem is related to characterizing when the integral approxima-
tion of the number of tables is correct up to rounding, and when the error is ”too
large.”

6 Proofs

6.1 Proof of Theorem 1

Proof Assumen is a table consistentwith the given conditional {ci j } and grand total N .
We can summarize the table usingn∗ as described in the Introduction. Thus gi j

hi j
= si j+

s+ j+ .
Since gi j and hi j are relatively prime, it follows that s+ j+ is an integer multiple of hi j .
Furthermore, this is true for any i . By definition of m j , s+ j+ is an integer multiple of
m j . In other words, we can write s+ j+ as m j · x j where where x j is a positive integer.
Now Eq. (2) is satisfied since by definition

∑
j s+ j+ = N . Conversely, assume (2)

holds for the positive integers x j ’s. Thenwe constructn by letting si j+ to bem j ·x j ·ci j .
Then let si jk to be nonnegative integers according to the equation si j+ =∑k si jk . Then
construct n according to n∗ in a similar way.

6.2 Proof of Lemma 1

In the following, let (m1, . . . ,ml) denote the greatest common divisor of m1, . . . ,ml

for any arbitrary 1 ≤ l ≤ J . Notice that the standard Euclidean algorithm produces
integers x01 , . . . , x

0
J such that m1x1 + · · · + mlxl = (m1, . . . ,mJ ). Repeatedly using

this process, we get xi ’s such that
∑J− j

i=1 mi x
( j)
i = (m1,m2, ...,mJ− j ) for any j . In

particular, we can set xi = x (0)
i · N

(m1,...,mJ )
to obtain one of the integer solutions of

(2). Note that this algorithm performs at most
∑J

i=1 mi calculations. Similarly, every
solution of the Diophantine equation can be obtained by integers linear combinations,
generalizing the two basic examples.
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Proof Elementary arguments allow us to express the vectors v1, . . . , vJ−1 in terms of
the coefficients m1, . . . , mJ . By the Euclidean algorithm, the gcd’s (m1, . . . ,ml) can
be expressed as a linear combination of the m j ’s:

J− j∑

i=1

mi x
( j)
i = (m1,m2, ...,mk− j )

for j = 1, 2, ..., J . Then we can express all integer solutions of Eq. (2) as:

xl = x (0)
l −

J−l∑

h=1

mJ+1−hx
(h)
l

(m1, ...,mJ+1−h)
· qh+ (m1, ...,ml−1)

(m1, ...,ml)
· qJ−l+1 for l=2, . . . , J,

x1 = x (0)
1 −

J−1∑

h=1

mJ+1−hx
(h)
1

(m1, ...,mJ+1−h)
· qh,

where qi ∈ Z for all i with 1 ≤ i ≤ J−1. Then the vectors vi , for i = 1, . . . , J−1, are
determined from these expressions as follows: the lth coordinate of vi is the coefficient
of qi in the expression for xl .

6.3 Proof of Proposition 1

Proof To approximate the number of nonnegative solutions, define a vector
u:=[m1,m2, ...mk]T, and a matrix A:=[u, v1, v2, ..., vk−1]. Recall that vectors
v1, ..., vk come from Lemma 1. From the expressions above, we see that

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

m1
mkx

(1)
1

(m1,...,mk )

mk−1x
(2)
1

(m1,...,mk−1)
. . . . . .

m2x
(k−1)
1

(m1,m2)

m2
mkx

(1)
2

(m1,...,mk )

mk−1x
(2)
2

(m1,...,mk−1)
. . . . . . −m1

(m1,m2)

m3
mkx

(1)
3

(m1,...,mk )

mk−1x
(2)
3

(m1,...,mk−1)
. . .

−(m1,m2)
(m1,m2,m3)

0

...
...

...
...

...
...

mk−1
mkx

(1)
k−1

(m1,...,mk )
−(m1,...,mk−2)
(m1,...,mk−1)

0 . . . 0

mk
−(m1,...,mk−1)

(m1,···k ) 0 0 . . . 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

One readily checks that u is orthogonal to any column vi . Thus the absolute value
of (det A)/||u|| is the (k − 1)-dimensional volume of the parallelotope spanned by
v1, v2, ..., vk−1. Let’s compute this value:
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det A

||u||
= 1
√
m2

1 + m2
2 + · · · + m2

k

· det A

= 1
√
m2

1 + · · · + m2
k

· det

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

m1
mk x

(1)
1

(m1,...,mk )

mk−1x
(2)
1

(m1,...,mk−1)
. . . . . .

m2x
(k−1)
1

(m1,m2)

m2
mk x

(1)
2

(m1,...,mk )

mk−1x
(2)
2

(m1,...,mk−1)
. . . . . . −m1

(m1,m2)

m3
mk x

(1)
3

(m1,...,mk )

mk−1x
(2)
3

(m1,...,mk−1)
. . .

−(m1,m2)
(m1,m2,m3)

0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

mk−1
mk x

(1)
k−1

(m1,...,mk )
−(m1,...,mk−2)
(m1,...,mk−1)

0 . . . 0

mk
−(m1,...,mk−1)

(m1,...,mk )
0 0 . . . 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 1

m1

√
m2

1 + · · · + m2
k

· det

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑k
i=1 m

2
i 0 0 . . . . . . 0

m2
mk x

(1)
2

(m1,...,mk )

mk−1x
(2)
2

(m1,...,mk−1)
. . . . . . −m1

(m1,m2)

m3
mk x

(1)
3

(m1,...,mk )

mk−1x
(2)
3

(m1,...,mk−1)
. . .

−(m1,m2)
(m1,m2,m3)

0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

mk−1
mk x

(1)
k−1

(m1,...,mk )
−(m1,...,mk−2)
(m1,...,mk−1)

0 . . . 0

mk
−(m1,...,mk−1)

(m1,...,mk )
0 0 . . . 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
(−1)k−1

√
m2

1 + · · · + m2
k

(m1,m2, . . . ,mk)
.

Thus the volume of the parallelotope spanned by v1, v2, ..., vk−1 is

√
m2

1 + m2
2 + · · · + m2

k

(m1,m2, ...,mk)
.

Next, define

G = {(x1, ..., xk)T|m1x1 + m2x2 · · · + mkxk = N , x1 ≥ 0, x2 ≥ 0, ..., xk ≥ 0}.

Lets refer to G as the marginal polytope. The volume of G is easily calculated to be

Nk−1

(k − 1)!(m1 · m2 · · · · · mk)

√
m2

1 + m2
2 + · · · + m2

k .

The approximation to the number of lattice points in G, that is, the number of
positive integer solutions of (2) is obtained by dividing the volume ofG by the volume
of the parallelotope above. This proves the first claim.
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For the second claim, let P be the projection of the set of positive integer solutions
onto the x1 . . . x j−1 -plane. Then there are exactly

∑

x1x2...x j−1∈P
1

positive integer solutions of the Diophantine Eq. (2). Let a be the area of the unit cell
of the lattice spanned by P .

Then
∫

(x1,...,x j−1)∈M
1dx1 . . . dx j ≈ a ·

∑

x1x2...x j−1∈P
1,

where the right hand side is, by definition, the Riemann sum approximation of the
integral. In particular, one easily concludes that the error of this approximation is
given by the difference in the volume of the polytope M and the volume of the
polyhedron which is the union of all the unit cells anchored at the lattice points P .

To complete the proof, we calculate the area of the unit cell a. Let L be the lattice
of all integer solutions to Eq. (2). Since P ⊆ L∪{x j = 0}, we can choose its unit cell
to be the projection of the unit cell of L onto {x j = 0}. This projection, in turn, is a
parallelopiped whose ( j − 1)-dimensional volume is the absolute value of

det

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

m j x
(1)
2

gcd(m1,...,m j )

m j−1x
(2)
2

gcd(m1,...,m j−1)
... ... −m1

gcd(m1,m2)

m j x
(1)
3

gcd(m1,...,m j )

m j−1x
(2)
3

gcd(m1,...,m j−1)
...

−gcd(m1,m2)
gcd(m1,m2,m3)

0

... ... ... ... ...

m j x
(1)
k−1

gcd(m1,...,m j )

−gcd(m1,...,m j−2)

gcd(m1,...,m j−1)
0 ... 0

−gcd(m1,...,m j−1)

gcd(m1,...,m j )
0 0 ... 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

which is m1
gcd(m1,m2,...,m j )

.

7 Code and Examples

Example 1 Let us consider a bivariate (J = 2) Diophantine equation

ax + by = N , (15)

where a :=m1, b :=m2, and N are positive integers. Note that we have renamed the
variables x := x1 and y := x2 for simplicity of notation.

Let L be the line defined by (15) for (x, y) ∈ R
2. We are only interested in the set

of nonnegative integer solutions to (15), that is, nonnegative lattice points L ∩ Z
2≥0

on the line L . Every ideal in Z can be generated by one element; in our case, this
element is the greatest common divisor of a and b, which we will denote by gcd(a, b).
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In particular, it follows that the Eq. (15) has integer solutions if and only if gcd(a, b)
divides N . In addition, the description of all integral solutions readily follows by
elementary algebra. Namely, suppose that (x0, y0) ∈ Z

2 is one integer solution of
ax + by = N . Then all other integer solutions are given by the following equation
where q is an arbitrary integer:

{
x = x0 + b

gcd(a,b) · q
y = y0 − a

gcd(a,b) · q . (16)

In fact, we can also estimate the number of solutions of (15). The geometry of the
line provides that x ∈ [0, N/a]. From (16), it follows that x varies by multiples of
b/gcd(a, b). Therefore, there are at most

N/a

b/gcd(a, b)
= N · gcd(a, b)

ab

points in L ∩ Z
2≥0. Note that this is only an estimate, albeit a good one, since we are

essentially counting only {x : ax + by = N for some y} ∩ Z.

The code used for the analysis in this paper and additional examples are available
at http://www.stat.psu.edu/~sesa/cctable.

The examples suggest that, in general, we are interested in the lattice points of the
polytope obtained by intersecting the hyperplane defined by Eq. (2) and the positive
orthant.

The code includes:

• A collection of functions we wrote in R for enumerating and counting the number
of missing marginal and k-way tables given the partial information described in the
paper. There are functions for (1) finding the greatest common divisor, (2) solving
Diophantine equations, and (3) counting the number of tables.

• A sample R and LattE code for the examples in this paper, and some additional
related examples.

• An additional example in support of Lemma 1.
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Smucker, B., Slavković, A., Zhu, X. (2012). Cell Bounds in multi-way contingency tables based on condi-
tional frequencies. Journal of Official Statistics, 28, 121–140.

Sturmfels, B., Weismantel, R., Ziegler, G. (1994). Gröbner bases of lattices, corner polyhedra, and integer
programming. Berlin: Konrad-Zuse-Zentrum für Informationstechnik.

Thibaudeau, Y. (2003). An algorithm for computing full rank minimal sufficient statistics with applica-
tions to confientiality protection. In Monographs of official statistics, work session on statistical data
confidentiality, Vol. 1. Luxembourg: Eurostat.

Whittaker, J. (1990). Graphical models in applied multivariate statistics. New York: Wiley.

123

http://dx.doi.org/10.1016/j.jsc.2012.02.005
http://www.R-project.org
http://arxiv.org/abs/math/0010134
http://arxiv.org/abs/math/0010134

	Fibers of multi-way contingency tables given conditionals: relation to marginals, cell bounds and Markov bases
	Abstract
	1 Introduction
	2 The space of tables with given conditional frequencies
	2.1 Table space decomposition
	2.2 The space of tables and integer points in polyhedra
	2.3 Size of table space: exact and approximate

	3 Implications for cell bounds and Markov bases
	3.1 Cell bounds
	3.2 Markov bases
	3.3 Extension of relations to marginals via DAGs

	4 Examples
	4.1 A 2times2times2 Example
	4.2 A 3times2times2 table with zero counts
	4.2.1 Small conditional B|A and N
	4.2.2 Full conditional A|BC and N
	4.2.3 Partial conditional B|C and N
	4.2.4 Combinations of partial conditionals and N


	5 Conclusions
	6 Proofs
	6.1 Proof of Theorem 1
	6.2 Proof of Lemma 1
	6.3 Proof of Proposition 1

	7 Code and Examples
	Acknowledgments
	References




