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Abstract An A-optimal minimax design criterion is proposed to construct fractional
factorial designs, which extends the study of the D-optimal minimax design criterion
in Lin and Zhou (Canadian Journal of Statistics 41, 325–340, 2013). The resulting A-
optimal and D-optimal minimax designs minimize, respectively, the maximum trace
and determinant of the mean squared error matrix of the least squares estimator (LSE)
of the effects in the linear model. When there is a misspecification of the effects
in the model, the LSE is biased and the minimax designs have some control over
the bias. Various design properties are investigated for two-level and mixed-level
fractional factorial designs. In addition, the relationships amongA-optimal,D-optimal,
E-optimal, A-optimal minimax and D-optimal minimax designs are explored.

Keywords A-optimal design · D-optimal design · Factorial design ·
Model misspecification · Requirement set · Robust design

1 Introduction

Factorial designs are very useful in industrial experiments to investigate possible influ-
ential factors. A full factorial design allows us to examine all the main effects and
interactions among the factors. However, the total number of runs in a full factorial
design can be huge for a large number of factors, and often there may not be enough
resources to run it. In this situation, a fractional factorial design (FFD) can be applied,
although it does not allow us to estimate all the main effects and interactions. There are
a couple of ways to deal with this. One way is to assume that higher-order interactions
are negligible, and we only estimate lower-order effects. Another way is to specify and
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674 Y. Yin, J. Zhou

analyze a subset of possible significant effects. The subset is referred as a requirement
set that usually contains all the main effects and some interactions. In this paper, we
construct optimal/robust FFDs for given requirement sets.

Suppose N is the run size of a full factorial design, and n is the affordable run size
with n < N . There are

(N
n

)
possible choices to choose a FFD. Which one should we

choose? Various optimal criteria have been explored in the literature. For example, see
Mukerjee and Wu (2006) for regular FFD criteria based on the component hierarchy
principle, and developments for nonregular FFDs are reviewed in Xu et al. (2009).

The commonly used A-, D- and E-optimal design criteria are model based. They
have been investigated extensively in the literature, and optimal designs have been
constructed for various regression models. For example, see Fedorov (1972) and
Pukelsheim (1993). These criteria can also be applied to select optimal FFDs. In
Tang and Zhou (2009, 2013), D-optimal designs for two-level FFDs are studied for
various requirement sets and run sizes.

If the requirement set includes all the significant effects of the factors in the exper-
iment, then the bias of the least squares estimator (LSE) is negligible. However, the
requirement set may not be correctly specified, and in particular it may miss some sig-
nificant effects.When this happens, the bias of the LSE is not negligible and needs to be
considered in the construction of optimal FFDs. This motivated the research inWilmut
and Zhou (2011), where a D-optimal minimax criterion was proposed for two-level
factorial designs. A D-optimal minimax design (DOMD) minimizes the maximum
determinant of the mean squared error (MSE) of the LSE, and the maximum is taken
over small possible departures of the requirement set. Lin and Zhou (2013) extended
this criterion tomixed-level factorial designs and derived several interesting properties
of DOMDs. These designs are robust against misspecification of the requirement set
which is similar to the misspecification in the regression response function. The bias
of the LSE is also the focus in minimum aberration designs, which have been studied
by many authors including Cheng and Tang (2005).

In this paper, the minimax approach is further extended to the A-optimal minimax
criterion, and properties of A-optimal minimax FFDs are explored. In addition, the
relationships among A-optimal, D-optimal, E-optimal, A-optimal minimax and D-
optimal minimax designs are investigated and several theoretical results are obtained.

2 Notation

Consider a full factorial design for k factors, F1, F2, . . . , Fk , witha1, a2, . . . , ak levels,
respectively. The total number of runs is N = a1a2 · · · ak . In this paper, all the main
effects and interactions are coded to be orthogonal when we fit a full linear model to
estimate those effects. There are N − 1 coded variables in the model and denoted by
x1, x2, . . . , xN−1. Let U be the N × N model matrix of the full model, and its first
column is a vector of ones 1N for the grand mean term.

A FFD of n runs is selected from the N rows of U without replacement. The FFD
should allow us to estimate all the effects in a requirement set R. Since the columns
of U can be permuted, without loss of generality, we assume that the first q variables
x1, . . . xq represent all the effects inR. For the i th run in the FFD, those variables take
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Minimax design criterion 675

values as xi1, . . . xiq , which comes from a selected row of U. Then the linear model
forR is, yi = θ0 + θ1xi1 + . . . + θq xiq + εi , i = 1, . . . , n, where yi is the observed
response at the i th run, and the errors εi ’s are assumed to be i.i.d. with mean 0 and
variance σ 2. Let X1 be the model matrix, y = (y1, . . . , yn)�, θ1 = (θ0, θ1, . . . , θq)

�,
and ε = (ε1, . . . , εn)

�. Then the model can be written in a matrix form as

y = X1θ1 + ε. (1)

The LSE of θ1 is θ̂1 = (
X�
1 X1

)−1
X�
1 y, and Cov(θ̂1) = σ 2

(
X�
1 X1

)−1
.

Partition matrix U into U = (U1,U2), where U1 contains the column 1N and the
columns for variables x1, . . . , xq , and U2 contains the others. Since the columns of U
are orthogonal, we have

U�U =
(
U�
1 U1 U�

1 U2

U�
2 U1 U�

2 U2

)

=
(
V1 0
0 V2

)
, (2)

where both V1 = U�
1 U1 and V2 = U�

2 U2 are diagonal matrices.
If R misses some significant effects, then model (1) is misspecified. A possible

model with small departures from (1) is derived in Lin and Zhou (2013), which can
be written as y = X1θ1 + X2θ2 + ε, where X2 is the model matrix for variables
xq+1, . . . , xN−1, and θ2 = (θq+1, . . . , θN−1)

� is an unknown parameter vector sat-
isfying 1

N θ�
2 V2θ2 ≤ α2. Here α ≥ 0 controls the size of departures. When α = 0,

model (1) is assumed to be correct. It is clear that X1 and X2 are submatrices of U1
and U2, respectively.

3 Design criteria

Commonly used A-optimal, D-optimal, and E-optimal criteria are based on mea-
sures of the covariance matrix of the LSE. In particular, the A-optimal design
(AOD), D-optimal design (DOD), and E-optimal design (EOD) minimize the trace,
the determinant and the largest eigenvalue of Cov(θ̂1), respectively. However, if
model (1) is misspecified, then the LSE θ̂1 is biased with bias (θ̂1) = E(θ̂1) − θ1 =(
X�
1 X1

)−1
X�
1 X2θ2. The MSE is

MSE (θ̂1,X1, θ2) =
(
X�
1 X1

)−1
X�
1 X2θ2θ

�
2 X

�
2 X1

(
X�
1 X1

)−1 + σ 2
(
X�
1 X1

)−1
.

(3)

Consider the loss function LDM(X1) = maxθ2∈� det
(
MSE(θ̂1,X1, θ2)

)
, where

� = {
θ2 | 1

N θ�
2 V2θ2 ≤ α2

}
. Then the design minimizing LDM(X1) over all pos-

sible designs X1 is called a DOMD, which has been investigated in Wilmut and Zhou
(2011) and Lin and Zhou (2013).
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Similar to theD-optimalminimaxcriterion,wenowpropose theA-optimalminimax
criterion based on the trace of the MSE as follows. Define a loss function

LAM(X1) = max
θ2∈�

trace
(
MSE(θ̂1,X1, θ2)

)
, (4)

and an A-optimal minimax design (AOMD) minimizes LAM(X1) over X1.
Both AOMDs and DOMDs are robust against misspecification of the requirement

set. It looks like we need to solve minimax problems to find AOMDs and DOMDs.
Since the analytical expressions for LAM(X1) and LDM(X1) can be derived, we only
need to solve minimization problems. Thus, it is not more difficult to find AOMDs
and DOMDs than AODs and DODs. The expression for LDM(X1) is,

LDM(X1) = σ 2(q+1)
1 + Nα2

σ 2

(
1 − λmin

(
V−1/2
1 X�

1 X1V
−1/2
1

))

det
(
X�
1 X1

) , (5)

where λmin() is the smallest eigenvalue of a matrix, from Lin and Zhou (2013). The
analytical expression for LAM(X1) is obtained in the next theorem.

Theorem 1 The loss function in (4) equals to

LAM(X1) = σ 2
{
trace

((
X�
1 X1

)−1
)

+ Nα2

σ 2 λmax

((
X�
1 X1

)−1 − V−1
1

)}
, (6)

where λmax() denotes the largest eigenvalue of a matrix.

The proof of Theorem 1 is in the Appendix. This result is very useful to explore
theoretical properties of AOMDs and find relationships with other optimal designs.
From (5) and (6), it is clear that DOMDs and AOMDs depend on parameter α2 only
through a parameter v = α2/σ 2, which can be viewed as the bias to variance ratio. If
the bias is not important, choose v close to zero. Some optimal designs do not depend
on v, and detailed results and comments are given in Sects. 4 and 5.

Theorem 2 For a given requirement set, the minimum loss for AOMDs,
minX1 LAM(X1), is a nonincreasing function of n.

The proof of Theorem 2 is in the Appendix. Similar results have been proved for
other optimal designs, such as DOMDs in Lin and Zhou (2013).

4 Results for two-level designs

For a two-level factor, “+1” and “−1” are used to code the high and low levels. All
the regression variables x1, . . . , xN−1 take values ±1 and are orthogonal for a full
factorial design. Thus, from (2), matrix V1 = N Iq+1 with N = 2k , and the loss
functions in (5) and (6) become,
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Minimax design criterion 677

LDM(X1) = σ 2(q+1) 1 + v
(
N − λmin

(
X�
1 X1

))

det
(
X�
1 X1

) , (7)

LAM(X1) = σ 2

{

trace

((
X�
1 X1

)−1
)

+ v

(
N

λmin
(
X�
1 X1

) − 1

)}

. (8)

Also AOD, DOD and EOD minimize the following loss functions, respectively,

LA(X1) = σ 2trace

((
X�
1 X1

)−1
)

, LD(X1) = σ 2(q+1)

det
(
X�
1 X1

) ,

LE (X1) = 1

λmin
(
X�
1 X1

) .

If v = 0, then there is no bias and the loss functions in (7) and (8) are the same as those
for D-optimal and A-optimal criteria, respectively. In general, we have the following
relationships,

LDM(X1) = LD(X1)

(
1 + v

(
N − 1

LE (X1)

))
,

LAM(X1) = LA(X1) + α2 (NLE (X1) − 1) .

From these relationships, it is obvious that

(1) If a design is both DOD and EOD, then it is a DOMD for all values of v.
(2) If a design is both AOD and EOD, then it is an AOMD for all values of α2.
(3) If α2 = 0, then a DOMD is a DOD and an AOMD is an AOD.
(4) For large α2 and v, an EOD tends to be a DOMD and AOMD.

For a given requirement set R, a design X1 is said to be orthogonal for R if it
satisfies X�

1 X1 = n Iq+1. This definition of orthogonal design is slightly different
from the one in Tang and Zhou (2009) and other papers, where an orthogonal design
implies that the main effects are orthogonal. Here orthogonal designs for R make all
the effects in R orthogonal, so they are more restricted than the orthogonal designs
for main effects only.

Lemma 1 An orthogonal design forR is an AOD, DOD, EOD, AOMD and DOMD.

It is well anticipated from the results on universal optimality for full rank models
(Sinha andMukerjee 1982). This result shows that optimal designs can be constructed
by finding orthogonal designs for R if they exist. However, for many run sizes of n
and requirement setsR, orthogonal designs forR do not exist. For example, if n is not
a multiple of 4, orthogonal designs do not exist for any R with q ≥ 2. Next theorem
shows another result that orthogonal designs do not exist.

Theorem 3 Orthogonal designs for R do not exist for run size n ∈ [N − q, N − 1],
where q is the number of effects in R.
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The proof of Theorem 3 is in the Appendix. This result indicates that orthogonal
designs forR do not exist if the run size is close to N − 1. Orthogonal designs forR
may not exist even when n is a multiple of 4 and is small. For example, if n is not a
multiple of 8, e.g.,n = 12 or 20, and R includes some two-factor interactions and/or
three-factor interactions, then orthogonal designs for R do not exist from Deng and
Tang (2002, Proposition 1).

If the regressors x1, · · · , xN−1 aremultiplied by constant nonzero numbers b1, · · · ,

bN−1, respectively, do optimal designs stay the same? This is a scale invariant issue.
DODs are known to be scale invariant. Lin and Zhou (2013) also proved that DOMDs
are scale invariant. However, AODs are not scale invariant. Since AODs are AOMDs
when v = 0, AOMDs are not scale invariant either. Nevertheless, this lack of scale
invariance is not amatter of concern becauseAODs andAOMDs are usedwhen interest
lies in the parameters as they stand and not in their multiplies or linear transformations.

Another property is the level-permutation invariance. DODs and DOMDs are level-
permutation invariant (Lin and Zhou 2013) for a special class of permutations. For
two-level designs, there is only one level permutation: switching the two levels (high
level ↔ low level). It turns out that AODs and AOMDs are also level-permutation
invariant, which is a result of the next theorem.

Theorem 4 Let X̃1 = X1Q, where Q is a diagonal matrix with diagonal elements
being ±1. Then we have LAM(X̃1) = LAM(X1), where function LAM is given in (8).

The proof of Theorem 4 is straight forward and is omitted. If a factor’s two levels
are permuted, then the corresponding main effect variable and interaction variables
involving this factor change a sign. Therefore, we have X̃1 = X1Q, where X1 and X̃1
are the model matrices before and after the permutation, and the diagonal elements
of Q are ±1. The result in Theorem 4 implies that AOMDs are level-permutation
invariant. This result can have the following two interpretations:

(1) It does not matter how we label the two levels as high and low levels. It is very
helpful in practice, since the high and low levels are not clear for categorical
factors, such as tool type or material type.

(2) AOMDs are not unique. Switching the levels of one or more factors in an AOMD
yields another AOMD.

The following two examples will show the properties for two-level designs. Since
optimal designs do not depend on the value of σ 2, it is set to be 1 in all the examples.

Example 1 Consider an experiment to investigate 4 factors and a requirement set
R = {F1, F2, F3, F4, F1F2, F3F4}. For this R, we have N = 16 and q = 6. We
construct optimal designs for n = 8, 9, · · · , 15 to illustrate design properties discussed
in this section. For each run size n, a complete search is done to find AODs, DODs,
EODs, AOMDs and DOMDs. The following is the summary of the results.

(1) Orthogonal designs for R do not exist for any n ∈ [8, 15]. For 9 ≤ n ≤ 15, this
result is obvious from Theorem 3 and the comments after Lemma 1. For n = 8,
it is due to the specific structure of the effects inR.

(2) Optimal designs are not unique, which is consistent with the comments after
Theorem 4.
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Minimax design criterion 679

Table 1 Optimal designs and minimum loss functions in Example 1

n Optimal designs LA LAM L1/(q+1)
D L1/(q+1)

DM LE

8 1, 2, 5, 8, 10, 11, 15, 16 1.3750 7.2034 0.1524 0.2236 0.4268

9 1, 2, 3, 5, 8, 10, 12, 15, 16 1.0417 4.0417 0.1281 0.1848 0.2500

10 1, 2, 4, 5, 6, 9, 11, 14, 15, 16 0.9072 3.9072 0.1127 0.1626 0.2500

11 AOD, DOD and DOMD: 1, 2,
3, 5, 6, 8, 9, 11, 12, 14, 15

0.7750 0.0993 0.1429

EOD and AOMD: 1, 2, 3, 5, 6, 8, 9, 11, 12, 13, 16 3.4237 0.2266

12 1, 2, 3, 5, 6, 8, 9, 11, 12, 14, 15, 16 0.6458 1.6458 0.0876 0.1200 0.1250

13 1, 2, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 16 0.5909 1.5909 0.0804 0.1100 0.1250

14 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 16 0.5375 1.5375 0.0738 0.1010 0.1250

15 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 0.4861 1.2639 0.0679 0.0913 0.1111

(3) All the optimal designs are equivalent when n = 9, 12, 13, 14, 15. As a result,
AOMDs and DOMDs do not depend on the value of v. When n = 8 and 10,
there are more EODs than the other optimal designs. AODs, DODs, AOMDs and
DOMDs are equivalent, and they are all EODs. Thus, AOMDs and DOMDs do
not depend on the value of v either. Some EODs are not AODs, DODs, AOMDs
and DOMDs. When n = 11, AODs and DODs are different from EODs, so
AOMDs and DOMDs depend on the value of v. For v = 1, AOMDs and EODs
are equivalent, while DOMDs and DODs are the same.

(4) Table 1 presents the minimum loss functions and optimal designs. For LAM and
LDM, the results are for v = 1. Since optimal designs are not unique, one design
is given for each case. The numbers in the optimal designs are the run numbers
from a full factorial design and generated as follows (Wilmut and Zhou 2011):
the first run is for all the factors at level −1, then factor Fi alters between −1 and
+1 for every 2i−1 runs, i = 1, 2, 3, 4. The results show that the loss functions
decrease as n increases for all the criteria, which is consistent with Theorem 2.

Example 2 Consider a requirement set R = {F1, F2, F3, F4, F5, F1F2, F1F3} with
N = 32 and q = 7. We construct optimal designs for n = 8, 12, 15, 16, 19, 20. Since(N
n

)
can be huge, we apply the simulated annealing algorithm in Wilmut and Zhou

(2011) to search for the optimal designs. A simulated annealing algorithm is known
to be effective finding optimal designs and has been applied by many authors; see
other references and the detailed algorithm inWilmut and Zhou (2011). Table 2 shows
some optimal designs and the minimum loss functions, over a wide class of designs as
covered by the simulated annealing algorithm. Here is the summary of the numerical
results, where AOMDs and DOMDs are computed for v = 1.

(1) Orthogonal designs forR exist for n = 8 and 16. In fact, many regular fractional
factorial designs (25−2 and 25−1) are orthogonal designs for this R.

(2) For n = 8, 12, 16 and 20, all the optimal designs are equivalent.
(3) For n = 15 and 19, the optimal designs are different. For n = 15, some AODs

are DODs, some EODs are AOMDs, and some DOMDs are AODs. For n = 19,
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Minimax design criterion 681

Table 3 Orthogonal codes for a
three-level factor

Factor level xL xQ

0 −1 +1

1 0 −2

2 +1 +1

some EODs are both AOMDs and DOMDs. AOMDs and DOMDs depend on the
value of v.

5 Results for mixed-level designs

In this section, we consider designs with some factors taking more than two levels.
The following two cases are discussed in detail, but the methodology is quite general
and can be applied to other cases.

Case 1: Factors have mixed two levels and three levels.
Case 2: All the factors have three levels.
A two-level factor is coded the same as in Sect. 4. A three-level factor needs two

variables to represent the main effect, and they are called the linear xL and quadratic
xQ components and coded orthogonally as in Table 3.

For two-level designs, we have V1 = NIq+1, so the loss functions of AOMDs
and DOMDs can be simplified and several nice properties about the optimal designs
have been derived in Sect. 4. However, mixed-level designs usually do not have V1 =
NIq+1, which makes it harder to obtain minimax design properties.

Consider a level permutation π , and let X1 and Xπ
1 be the model matrices before

and after the permutation, respectively. The permutation can involve level changes in
one or more factors. Define a class of permutations,

	 = {
π | Xπ

1 = X1Qπ , where Qπ is a diagonal matrix with elements ± 1
}
.

Next theorem shows that AOMDs are invariant under the level permutations in 	.

Theorem 5 Let Xπ
1 = X1Qπ , whereQπ is a diagonal matrix with diagonal elements

being ±1. Then, we have LAM(Xπ
1 ) = LAM(X1), where function LAM is given in (6).

The proof of Theorem 5 is in the Appendix. This result is true for factors with any
levels. This 	 includes the permutation for two-level factors discussed in Sect. 4 and
the permutation for three-level factors by switching levels 0 and 2. Next two examples
present some AOMDs for mixed-level designs and their properties.

Example 3 Suppose there are three factors, F1, F2 and F3, and each has three levels.
A requirement set includes all the main effects and the interaction between F1 and
F2, i.e., R = {F1, F2, F3, F1F2} with N = 27 and q = 10. We construct AOMDs
for n = 21 and 24 using a complete search, and the results are presented in Tables 4
and 5. For n = 21, there is only one AOD, and there are eight AOMDs. The AOD is
different from the AOMDs. All the eight AOMDs can be generated from the AOMD
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682 Y. Yin, J. Zhou

Table 4 Optimal designs for n = 21 in Example 3

Factor Factor levels

AOD: LA = 0.5394

F1 0 1 2 0 2 0 1 2 0 2 1 0 2 0 1 2 0 2 0 1 2

F2 0 0 0 1 1 2 2 2 0 0 1 2 2 0 0 0 1 1 2 2 2

F3 0 0 0 0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 2 2 2

AOMD: LAM = 1.5574

F1 0 2 0 1 2 0 2 1 2 0 1 1 2 0 1 2 0 2 0 1 2

F2 0 0 1 1 1 2 2 0 0 1 1 2 2 0 0 0 1 1 2 2 2

F3 0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 2 2

Table 5 Optimal designs for n = 24 in Example 3

factor factor levels

AOD and AOMD: LA = 0.4595, LAM = 0.9595

F1 0 1 2 0 1 2 0 1 2 0 1 2 1 0 1 2 0 1 2 0 2 0 1 2

F2 0 0 0 1 1 1 2 2 2 0 0 0 1 2 2 2 0 0 0 1 1 2 2 2

F3 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2

in Table 4 by permuting the levels 0 and 2 of F1 and F3 and by switching two factors
F1 and F2. Permuting the levels 0 and 2 of F2 does not generate more designs. The
construction through switching factor levels is from the result in Theorem 5, while
the construction through switching two factors works because of the symmetry of the
requirement setR in F1 and F2. For n = 24, all the AODs and AOMDs are the same.
There are four AODs and AOMDs. Table 5 shows one of them, and the other three
can be generated by permuting the levels 0 and 2 of F3 and by switching two factors
F1 and F2.

Example 4 Consider an experiment with four factors: F1 and F2 with three levels,
and F3 and F4 with two levels. We want to estimate all the main effects, the inter-
action between F1 and F3, and the interaction between F3 and F4, so requirement
set R = {F1, F2, F3, F4, F1F3, F3F4}, N = 36 and q = 9. For each run size
n = 12, 15, 18, 20, 24 and 30, a simulated annealing algorithm is run 10 times and
the design with the smallest loss function is taken as an AOMD. Table 6 presents one
AOMD for n = 15.

6 Discussion

All the results are derived for an orthogonal parameterization in this paper. In practice,
there are situations for a non-orthogonal parameterization, such as in Mukerjee and
Tang (2012), where two-level FFDs are constructed using the minimum aberration
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Table 6 Optimal design for n = 15 in Example 4

Factor Factor levels

AOMD: LAM = 3.8237

F1 0 1 2 0 1 1 2 0 0 1 2 2 0 1 2

F2 1 0 2 2 1 2 0 0 2 1 0 1 0 1 2

F3 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 −1 1 1 1

F4 −1 −1 −1 −1 −1 −1 −1 1 1 1 1 1 1 1 1

criterion. It needs further research to develop minimax design theories and construct
minimax FFDs with non-orthogonal parameterizations. In addition, since both the
minimax design criterion and the minimum aberration criterion concern the bias of
the LSE, it will be interesting to investigate the connection between the two criteria.
This could be a future research topic.

Appendix: Proofs

Proof of Theorem 1 From (2), we have
(
V−1/2
1 ⊕ V−1/2

2

)
U�U

(
V−1/2
1 ⊕ V−1/2

2

)
=

IN , which implies that U
(
V−1
1 ⊕ V−1

2

)
U� = IN . From U = (U1,U2), we get

U1V
−1
1 U�

1 + U2V
−1
2 U�

2 = IN . (9)

Define an N × N diagonal matrixW with diagonal elementswi , i = 1, . . . , N , where
wi = 1 if the i th row of U1 is selected in design X1, and 0 otherwise. Then, it is easy
to verify that

X�
1 X1 = U�

1 WU1, X�
1 X2 = U�

1 WU2, W2 = W. (10)

From (3), the loss function in (4) is,

LAM(X1) = σ 2 trace

((
X�
1 X1

)−1
)

+ max
θ2∈�

trace

((
X�
1 X1

)−1
X�
1 X2θ2θ

�
2 X

�
2 X1

(
X�
1 X1

)−1
)

= σ 2 trace

((
X�
1 X1

)−1
)

+ Nα2 λmax

((
X�
1 X1

)−1
X�
1 X2V

−1
2 X�

2 X1

(
X�
1 X1

)−1
)

.

(11)
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Now using (9) and (10), we get

λmax

((
X�
1 X1

)−1
X�
1 X2V

−1
2 X�

2 X1

(
X�
1 X1

)−1
)

= λmax

((
X�
1 X1

)−1
U�
1 W(I − U1V

−1
1 U�

1 )WU1

(
X�
1 X1

)−1
)

= λmax

((
X�
1 X1

)−1 − V−1
1

)
. (12)

Putting (12) into (11) gives the result in (6). �	
Proof of Theorem 2 For a given requirement set and run size n, define l(n) =
minX1 LAM(X1), and we want to show that l(n + 1) ≤ l(n). Suppose X∗

1(n) min-

imizes LAM(X1) for run size n, and let A(n) = (
X∗
1(n)

)� X∗
1(n). Matrix A(n)

must be positive definite. When the run size is n + 1, let design Xc
1(n + 1)

contain all the n runs in X∗
1(n) and one more run, say u� (a row vector), that

is not in X∗
1(n), i.e., Xc

1(n + 1) =
(
X∗
1(n)

u�
)

. Then we have B(n + 1) :=
(
Xc
1(n + 1)

)� Xc
1(n + 1) = A(n) + uu�. It is easy to see that B(n + 1) − A(n) and

A−1(n) −B−1(n + 1) are positive semidefinite matrices. Thus, trace
(
B−1(n + 1)

) ≤
trace

(
A−1(n)

)
and λmax

(
B−1(n + 1) − V−1

1

)
≤ λmax

(
A−1(n) − V−1

1

)
, which

implies that LAM(Xc
1(n + 1)) ≤ l(n). Since l(n + 1) = minX1 LAM(X1), we have

l(n + 1) ≤ LAM(Xc
1(n + 1)) ≤ l(n). �	

Proof of Theorem 3 LetH1 be the (N − n) × (q + 1) matrix consisting of those rows
of U1 which are not rows of X1. Then, X�

1 X1 + H�
1 H1 = U�

1 U1 = NIq+1. So, if
X�
1 X1 = nIq+1, then H�

1 H1 = (N − n)Iq+1, i.e., H1 has rank q + 1. Since H1 has
N − n rows, this yields N − n ≥ q + 1, which contradicts n ∈ [N − q, N − 1]. �	
Proof of Theorem 5 Since V1 and Qπ are diagonal matrices and Q2

π = I, we have

QπV
−1
1 Qπ =V−1

1 Q2
π =V−1

1 and
(
(Xπ

1 )�Xπ
1

)−1−V−1
1 =Qπ

((
X�
1 X1

)−1 − V−1
1

)
Qπ ,

and the result follows. �	
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