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Abstract In this paper we show that elementary properties of joint probability den-
sity functions naturally induce a universal algebraic structure suitable for studying
probabilistic conditional independence (PCI) relations. We call this algebraic system
the cain. In the cain algebra, PCI relations are represented in equational forms. In
particular, we show that the cain satisfies the axioms of the graphoid of Pearl and Paz
(Advances in artificial intelligence. North-Holland, Amsterdam, 1987) and the sepa-
roid of Dawid (Ann. Math. Artif. Intell. 32:335-372, 2001), these axiomatic systems
being useful for general probabilistic reasoning.

Keywords Cain - Conditional independence - Graphical model - Graphoid -
Probability density function - Separoid

1 Introduction

The concept of conditional independence (CI), both probabilistic and non-
probabilistic, has found its use in many fields including statistics and artificial intel-
ligence. Various formal theories exist for exploring the nature of CI. These include,
but are not limited to, the probabilistic approach of Dawid (1979a) and Spohn (1980),
Dempster—Shafer’s theory of evidence [see Shafer (1976) and Shenoy (1994). See
also Schoken and Hummel (1993) and Teixeira de Silva and Milidiu (1993) for appli-
cations], theories in relational databases (Sagiv and Walecka 1982), Spohn’s kappa
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748 J. Wang

calculus (Spohn 1988), Shenoy’s theory of valuation-based system (Shenoy 1994),
which unifies Dempster—Shafer’s theory of evidence and Zadeh’s possibility theory
approach (Zadeh 1978). Studeny (1993, 2005) gave a comparison for some of these
theories. Studeny (2005) also proposes the use of structural imsets for describing CI
structures for discrete random variables.

The importance of the concept of probabilistic conditional independence (PCI) in
areas such as probabilistic theory of causation was recognized as early as Reichenbach
(1956, Sect. 23), while Dawid (1979a) is generally regarded as the first attempt of an
axiomatic treatment of PCI. Dawid’s (1979a) work has been further developed in sta-
tistics by Dawid (1979b, 1980a,b, 1985); Lauritzen et al. (1990); Dawid and Lauritzen
(1993); Dawid and Mortera (1996); Dawid and Evett (1997); Dawid and Studeny
(1999), among others. For an overview, see Dawid (1988). In epistemology, Spohn
(1980) gave an essentially the same but more explicit axiomatic formation of PCI; see
also Spohn (1994). In artificial intelligence, Pearl and Paz (1987) proposed a closely
related axiomatic system termed the graphoid with a strong emphasis on graphical
applications. For further developments of their work, see Paz and Pearl (1994), Paz
etal. (1996), Galles and Pearl (1997), and Pearl (1988, 2000). Recently, Dawid (2001)
introduced an axiomatic system termed the separoid, which unifies a couple of differ-
ent notions of ‘irrelevance’ including the orthogonoid and the graphoid.

The motivation of this paper is to develop a theory of PCI in a purely universal
algebraic fashion so that PCI relations are all represented in equational forms. One
potential advantage of this approach is that one may derive PCI relations from other
PCI relations automatically using computer algorithms. Thus, our theory is different
from other existing axiomatic systems for PCI, such as the graphoid of Pearl and Paz
(1987) and the separoid of Dawid (2001), in that the latter systems are built on some
principal properties of PCI useful for general probabilistic reasoning.

Our idea is to (a) formalize a set of key properties to probability density functions
and (b) to use these properties in a purely axiomatic fashion to derive PCI relations.
In particular, we show that the cain satisfies the axioms of both the graphoid and the
separoid. We will begin our theory by introducing a mathematical object termed the
coin (deriving from conditional independence). A coin is an algebraic abstraction of
a joint probability density function. Coins can be multiplied to produce another coin,
just as density functions are multiplied for independent random variables to produce
joint density functions. The coin product obeys the rules of an Abelian group, with a
further requirement parallel to the definition of a conditional density function. The set
of all coins equipped with this product defines a universal algebra called a cainoid. A
cainoid is not enough for studying PCI relations. We further allow a coin to be mar-
ginalized to give rise to another coin, just as a joint probability density function can
be integrated to produce a marginal density function. Again, all rules concerning the
marginalization will be stated in equational forms. A cainoid with this marginalization
operator is called a cain (deriving from causal inference). In a cain, PCI relations are
defined through coin equations.

The rest of the paper is organized as follows. In Sect. 2 we introduce the concept
of a coin, which is an algebraic abstraction of a joint density function. Elementary
properties intrinsic to density functions then naturally lead to an algebraic system
called the cainoid. In order to study PCI relations, it is necessary to give a careful
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A universal algebraic approach for conditional independence 749

treatment of the relations between marginal and joint probability density functions,
and this is the topic of Sect.3. The cain is defined in Sect. 3 as a cainoid equipped
with a further operator called marginalization. Section 4 studies CI relations using the
axioms of a cain. In particular, we show that the cain-algebraic PCI relations satisfy
the requirements of a (strong) graphoid of Dawid (2001), which includes the graphoid
of Pearl and Paz (1987) as a special case. Finally, Sect. 5 gives a short discussion and
the Appendix contains proofs of some major results.

2 The Cainoid
2.1 Definition and basic properties

Let (L, <) be a lattice, where L is a nonempty (possibly countably infinite) set, and <
is a partial order in IL.. We denote by x V y the join (least upper bound) and x A y the
meet (greatest lower bound) for any x, y € L. Throughout the paper we shall suppose
that (IL, <) is bounded below, i.e., there exists a bottom ) with # < x for any x € L.
By definition, @ is unique. An element x € L is said to be nontrivial if x > (. A set
of elements are said to be mutually exclusive if their pairwise meets are trivial.

Example 1 (The finitary case) When investigating the cause and effect relations among
a set of finite number of random variables, we, for convenience, can represent the set of
variablesby D = {1, 2, ..., d}. Each element of D corresponds to a random variable.
In this case, the underlying lattice (L, <) = (2D , ©) is the Boolean algebra, where
2D is the power set of D and C is the usual set inclusion. Note that if ¢ denotes the
empty set, then x > # holds for any x C D. The bottom ¢ plays the role of represent-
ing the state of ‘ignorance’. Note also that all nonempty subsets (random vectors) are
nontrivial.

The above example represents any finite Boolean lattice IL by the Stone’s represen-
tation theorem (Halmos 1974), which says that any Boolean lattice is isomorphic to a
power set.

To introduce more algebraic structures in L for studying PCI relations among the
elements in I, consider the direct product L ® . = {(x, y) | x, y € L}. Note that
(x,¥) # (v, x) if x # y. To emphasize this asymmetry, we replace (x, y) by using a
new symbol Tﬁ (reads as coin-x-over-y). The following conventions

T =TT, =T, Th=1

will be adopted throughout the paper. We call T the raising coin with context x,
T, the lowering coin with context y, and W):, the mixed coin with raising context x
and lowering context y. All these coins are called atom coins. Justification for these
terminologies will be made later.

We define a coin to be a string or a concatenation 1T = W)yci e W;Z of n atom coins,
with some atom coins (adjacent or not) being possibly identical. Denote by

e={ml Tyl yieLi=1,....nneN] (1)
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the set of all coins. Since n can be any natural number, € is an infinite set even if IL
is finite. Now we introduce a binary dot operator, - : € x € — €, so that for any
T= W)y‘i W;Z and T’ = Tyt -+ " we have

T = (T3 W) - (T ). @
Definition 1 (Cainoid) Let (IL, <) be a lattice with bottom (J. An algebraic structure
(€, -), where € is the set of coins (1), and - is defined by (2), is called a cainoid, if for
any T, T, T” € € and any x, y € L, the following hold:

Cl.. T-T=1T.T

c2: (T-T) - T'=T.-(T.T")
C3:1-T=T

C4: T T, =1

Cs5: Ty = Y. T, (where x > @).

C1 and C2 state that the dot product is commutative and associative. It follows that

acoin Ty - - T} is the unique product of 7 atom coins Ty, ..., T". C3 says that

Wg = 1 is the unit element. C4 says that a lowering coin is an inverse of the corre-
sponding raising coin with the same context and vice versa. C5 says that, a mixed coin
W;, with nontrivial raising context x, is the product of the raising coin T+ and the
lowering coin T Note that by C3, CS5 also holds for x = y = . So C5 holds for all x
and y except when x = ), y > (. Among these axioms, C5 is the most important one,
which defines a mixed coin in terms of a raising coin and a lowering coin. In the rest
of the paper we sometimes omit the dot symbol in coin products for easy readability.

Remark I In Definition 1, T, T, and T, may be regarded as algebraic abstractions
of the joint probability density function (p.d.f.) f(x), the reciprocal 1/f (x), and the
conditional p.d.f. f(x|y), respectively. So a coin Tﬁ} e W;;’ may then be regarded as
an abstraction of the product f(x|y1)--- f(x,|y,) of n conditional p.d.f.’s. Axiom
CS5 corresponds to the definition of conditional density functions.

Lemma 1 (i) For any x, T, = 1; (ii) If x >y, then W; = Wny; and (iii) If x > @
and w < x V' y, then Tj = W)ycvw.

Proof For (i), TY = TV T, = T*T, = 1, the first equality being due to C5, the
second one due to the absorption law of Vv, and the third one due to C4.

For (ii), Wf, =T Ty = T*T,, the first equality being due to C5, the second
oneduetox =xVy<&x>y.

For (iii), W); =T Ty = TvIve T, = TeVwvy T, = W)y‘vw, the first equal-
ity being due to C5, the second one duetox Vy = (x Vy)Vw < x Vy > w, the
third one due to associative law of Vv, the fourth one due to C5 again. O

The following result represents the lattice order using a coin identity:
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Proposition 1 Ifx > @, thenx <y & T} = 1.
Proof By C5, we have W;:vayWyzl & T=T" e xvy=ysex<y. O
Proposition 2 (Bayes’ theorem) If x > (, y > (0, then W)yc =TT .

Proof By C1-CS5, the r.h.s. of the equation can be computed as follows:

T, = (T (TT,)
= T (T, T) Ty
=TT,
=T

the first equality being due to C2 and C3, the second one to C2, the third one to C3—-C4,
and the last one to C5 again. O

Proposition 3 A cainoid (€, -) is an Abelian group.

Proof Since the other properties of a group are obviously satisfied by (<, -), we only
need to check that for every coin T € € there exists T' € € so that T T = 1. First
consider atom coins. If T = T, then T, T™=1LIKT= W’; and x > J, then

T (Tavy T7) = (TT) (Tavy T7) - (by C5)
= (T Tyvy) (T, ) (by C1 & C2)
=1 (by C3 & C4).

Nowlet T =[T];_, Tf: be an arbitrary coin, and (W)ycj ) be an inverse of W)yci . Then,
by C1-C3, TH?ZI(W;)/ = Hf:l(ij(Tﬁ)/) = 1, showing that Hle(W;)/ is an
inverse of 1. O

Note that since a cainoid (&, -) is a group, both the unit element and the inverse
element are unique. By the uniqueness of an inverse element, we shall use the symbol
(TH~" or simply T to denote the inverse of T. Due to the fact that T = T, =
™V~ !, we have

Proposition 4 Any cainoid € is generated by raising coins.
For instance, consider the finitary case with D = {1, 2}. Let (Y = 1; we can then

write € = {(TH" (T2 (T3 0y, ny, ny = 0, £1, £2, ...

2.2 Coin identities
We have defined the cainoid using only equational axioms C1-C5. In so doing we

are able to present relations among coins in terms of coin identities. The Bayes’
Theorem, Proposition 2, for instance, is expressed in a form of coin identity. As
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a second example, suppose that xi, ..., x;, are nontrivial elements in I (a condi-
tion slightly stronger than necessary); then using C3-C5 we obtain the identity,
T = TR - Ty, » Which corresponds to a well-known for-
mula for density decomposmon.

Given any identity, there are infinitely many identities which are equivalent to it. For
instance, suppose that x, y, z are all nontrivial and T = T} T holds. Multiplying
both sides by T~ and using CS, we get "% = TS T°*, which when multiplied on
both sides by T, and using C3—C5, then leads to W;VZ = W;. Thus, if one of these
identities is interpreted as representing the situation that ‘x is irrelevant to y given
Z’, then all the other equivalent identities give sufficient and necessary conditions for
this ‘conditional independence’. Using C1-C5, one can easily derive other equivalent
forms.

More formally, we call an equation T = T a coin identity, where T and T are two
coins in ¢, if and only if T(T")~! = 1. We shall denote the set of all coin identities
by I[, and the elements of 1L by 91, 5, etc. Now consider the group action of € on
L. Foreach T € €and Q = {T" = T"} € I, we define

TQ) ={TT =TT"}. (3)
Definition 2 For each coin identity Q € IL, the set
= {W(Q)IT € Q}

is called the orbit of 9, where T (£Q) is defined by (3). Two coin identities £ and Q»
are said conjugate or equivalent to one another, written 3| = £, if and only if they
belong to the same orbit € for some Q € IL.

2.3 The R-law and the L-law

The following two rules are useful for transforming coin identities:

Lemma 2 (raising-up law) For any x > 0, y, z € I, we have

=TT (x> 0) 4)
T =T, T & T =TT (x> 0). )

Multiplying W); by T raises the context y, giving T*"” on the Lh.s. of (4). Sim-
1lar1y, . on the Lh.s. of (5) is obtained by detaching the context y from y V z of
W) 2 and raising y using T”. To ensure the validity of the detachment, we need the

‘independence condition’, TV = TV T, Note that (5) reduces to (4) when z = @.
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Proof We only need to prove (5). First note that T*"* = T2 = T T
holds by C2, C4, and C5. So we have
T = T (1)

= (T2 T T,

A\

(T3 T) T
Ty, (TP (TY2T,)
() (17T

implying that
T =T, T e T T, T, =1
= TV =TT
O

In the sequel, we shall refer to (4) and (5) as the raising-up law, or the R-law for
short.

Lemma 3 (lowering-down law) For any x > (), y, z € L, we have

T =TT, (x>0 (6)
T, =TT, & T =TT (x> 0). (7

(6) is nothing but C5. The coin Wx on the Lh.s. of (6) is obtained by lowering the
yvz O the L.h.s. of (7) is obtained

by lowering y in T " using Ty, and joining y with z when T>"* = T” T~ holds. If
z = (@ then (7) reduces to (6). We omit the proof, which is similar to that of Lemma 2.
We shall refer to (6) and (7) as the lowering-down law, or the L-law for short. Note
that the L-law is a direct consequence of the R-Law and C4. The following result is
also sometimes useful:

context y of T*" usmg . S1m11arly, the coin T

Lemmad4 IfxVz,xVw,yVz vV ware nontrivial, then Wzvz = W;tvwW holds
for some T € € if and only ifW;vZ = W;va holds true.

The second identity in Lemma 4 is obtained from the first one by interchanging the
roles of x and y.

Proof Acting T* on T)Y*=T2Y"T, and using the R-Law, we get T*"*"*

YY1, which, when acted upon by Ty and by the L-Law, transforms to W;VZ =
XVw

Wy . O
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2.4 Canonical expressions

Let T # 1 be an arbitrary coin. A coin identity of the form T = W’;i e W’:" is called

an expression of T with length r, where W)yci, . W);: are atom coins other than the
unity. There are, however, infinitely many expressions which are equivalent to one
another. For instance, T = T {(WX)” (Wx)”} holds for any x € L and any n € N.
Less trivially, suppose z = x1Vx2 = y1 V2V y3. Then we can write T° in many equiv-
alent ways such as T° = T T = T = THTRTR, = T2TITE, .
The first two expressions have length 2, and the last two expressions have length 3. It
will be useful to decompose a coin in a way similar to the prime decomposition of a
natural number.

We say that two raising coins T and T, with x > @ and y > @, are mutually
distinct, if x # y. The following theorem says that a coin can be expressed using

mutually distinct coins (see the Appendix for a proof).

Theorem 1 Foran arbitrary coin T # 1, there exist nonzero integers n; and mutually
distinctcoins T i =1, ..., r sothat T can be expressedas T = ()" ... (T )nr,

Definition 3 (prime coin) A raising coin T" is said to be prime if there does not exist
an expression " = ()" ... (T*)" so that x; < x foreachi =1,...,r.

Theorem 1 implies that for any x, there exist nonzero integers n; and mutually
distinct coins T, i = 1,...,r so that T = ()" ... (") If T is prime,
then we must have r = 1,17 = 1 and x; = x. A coin T is not prime, for instance, if
T =T"T°, wherex =y Vv zand y,z > #.

A cainoid € is said to be free if T is prime for any x € L. In a free cainoid ¢,
there are no extra relations among coins of € other than those derived from the axioms
CI1-Cs.

From now on we shall impose the following descending chain condition (DCC)
on the underlying lattice IL. A lattice L, as an ordered set, is said to satisfy DCC if
L contains no infinite descending chain x; > x2 > x3 > --- . DCC is equivalent
to the condition that every nonempty subset S C L contains an element minimal in
S. DCC is an important condition because ordered sets satisfying DCC are those for
which the principle of induction holds (Nation, p.4). This condition also allows the
join decomposition of an arbitrary element of a lattice. To state this latter fact more
accurately, recall that an element x € L is said to be join irreducible if F is a finite set
and x = VF then we must have x € F. It can be shown that if L satisfies DCC then
each element of L is a join of finitely many join irreducible elements (Blyth 2005, p.
59). For a more systematic introduction to the theory of lattice see Blyth (2005) and
Davey and Priestley (2002). Birkhoff (1967) gives more advanced treatment. See also
Stanley and Sankappanavar (1981) and Jipsen and Rose (1992).

Theorem 2 Suppose that L satisfies DCC. There exist nonzero integers ny, ..., n, so
that every coin T has the following expression, unique up to reordering of terms:

T = (T (T ®)

where (i) T, ..., T is prime; and (ii) T*', ..., T is mutually distinct.
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See the appendix for a proof.

Definition 4 (canonical expression) The unique expression given by (8) is called the
canonical expression of T. And we call (i) r the order of T, written as || = r; and
(i) x = Vi_,x; the context of T, written as J(T) = x.

The context J thus defines a function from the set of coins € to the lattice . with
the following properties.

Theorem 3 Let T, T be any coins. Then the following hold: (i) 3(T) = 3(T");
(ii) (sub-additivity) J(TT") < 3(T) v J(T).

Proof (i) Suppose that T has canonical expression T = (")t ... (T )" ; then
we have T~ ! = (Thymi ... ()" where m; = —n; # 0. This expression
for T~ is canonical because T are prime and T and T/ are mutually prime
fori # j=1,...,r.Hence 3(T™") = V/_ x; = 3(TN).

(i) Let T = (T ... (T and T’ = (T*y™1 ... ()™ be the canonical
expressions of T and T, respectively. Let z1, . . ., z; be defined by

{Zlv--'yzl}:{x17~'-7xrayls~-~ayS}' (9)

Note that z; equals either x; or yx. Let k; = n; if z; = x5 ki = my if z; = yi;
and k; = nj +my if z; = x; = yi. It follows then T can be expressed as
T = (THk ... (T | where z; # zjfori # j =1,...,t. Suppose that
ki, ..., ky(w < t)are none-zero and the remaining numbers are zero. Since &
equals either T/ or T, so T is prime. Thus T T has the following canonical
expression T’ = (T*H)¥1 ... (T*)kw_From (9) we then conclude that

B(Wﬁ)zzl\/---Vzw

@IV VZu)V(@wr1 V-V Zp)
=@V V) VIV Vys)
= J(T) v 3(T)

IA

which was what required to prove. This completes the proof. O

Example 2 Suppose that € is free. Suppose all the elements in the following are
nontrivial. (i) Let x = x; V xp V x3 and consider the following expression 1T =
T 2T, Applying the R-law sequentially, we get an equivalent expression
T = T". Since € is free, T = T is canonical, implying that | T'| = 1 and J(T) = x.

(ii) Similarly, if T = W)”Tﬁ, then T = T*""*? is canonical. So |TT| = 1 and
J(M) = x1 V x2.

(iii) The mixed coin T = T}, by C5, can be expressed as T = T2 T, =
Y2 (T*2) =1 where T*'"*? and T are prime and mutually distinct. So |T| = 2
and J(T) = x| V x2. In general, raising and lowering coins have order 1, while mixed
coins have order 2.

(iv)Let T = T2 T T,,. That T = T, by the Bayes’ theorem, implying | T| = 2.

X2
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2.5 Marginal cainoids

Let x € L be nontrivial. Recall that if L satisfies DCC then there exist join irreducible
X1, ..., X, € L so that x can be written as

X=X1VXxoV--Vx,. (10)

However, (10) is by no means unique even if L is finite. (10) is called a canonical join
representation of x if (i) (10) is irredundant, that is, x cannot be the join of a proper

subset of {x1,...,x,}, and (ii)) if A C L, then x = VA implies {x1,...,x,} < A,
that is, for all x; we have x; < a for some a € A. In this sense, a canonical join
representation is the finest join decomposition. We shall write 2A(x) = {x1, ..., x,}

if (10) is canonical, which is necessarily unique (Freese et al. (1995, p. 36)). J6nsson
and Kiefer (1962) show that if IL is a finite lattice, then every element x € LL has a
canonical join representation if and only if LL is join-semidistributive: thatis, x V y =
x Vv z implies x Vy = x V (y A z) for any x, y,z € L. Note that finite Bool-
ean lattices are join-semidistributive, where each element x is canonically written as
x={x1,...,xpt={x1} v Vvix,}

Back to the general case, suppose that x has a canonical join representation so that
A(x) = {x1, ..., x,}. Recall that a sublattice S is a nonempty set of a lattice IL so that
for every pair of elements a, b € S, both a A b and a V b are in S. Expanding 2(x)
by including all joins and meets of subsets of 2(x) we get a subset L,, which is a
sublattice of IL with respect to the partial order of .. We call L, the sublattice of L
generated by x. The sub-lattice L, also induces a cainoid, which we denote by €, .

Definition S (marginal cainoid) Let x be an element of lattice L so that it has a

(unique) canonical join representation. The cainoid (€, -) induced by the sublattice

L, is called the marginal cainoid (of x). An element of €, is called a marginal coin

(of x).

Notation 1 We use T [x] to denote an arbitrary marginal coin of x.

Proposition 5 &, is a subgroup of €.

Proof We only need to show, for any T, T € &, that (i) TT' € €, and (ii) T e

¢,. For (i), if T, T e ¢,, then we have marginal expressions, T = Hle W)yci and

T = [T T, where T and T/ are atom coins in €. It follows that T =

I, Wfi H'jzl WLU’J/ is also a product of a finite sequence of atom coins in &€,. So

T e &,.For(ii), let T be expressed marginally as in (i). Since (T;‘i)’l =T Tyvy

is also a marginal coin of x, it follows that T~ ' = I, (ij)_1 =[To, T My, €

(O O
The marginal cainoid €, as a subgroup of &, introduces a natural equivalence

relation among coins in €.

Definition 6 (equivalent coins) Two coins T, T € ¢ are said equivalent with respect

~ ~—1 ~ ~
to x, written T ~ T, if and only if TT € €,. Thatis, T~ T & T = T[x]T
holds for some marginal coin TT[x] of x.
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The set of all coins equivalent to T with respect to x forms a coset of T. This coset
is given by T¢€, = {M[x]T | M[x] € €,}. The coset TE&, is also referred to as the
orbit of T caused by the subgroup €.

3 The Cain

Now we are in a position to introduce further structure into a cainoid. We achieve this
goal by considering an operation analogous to the integration of ordinary functions.

3.1 x-Integrability

Notation 2 We have already introduced the symbols T and T[x] € €. Now we
denote by T {x} an arbitrary coin in € with context 3(T{x}) = x. Note that J(T") =
J(M{x}) = x, while I(Tx]) < x.

Example 3 Consider a Boolean lattice generated by D = {1, 2, 3}. Let x = {1, 2}.
Then we have (i) T" = le; (ii) € is an infinite set consisting of all marginal coins
TMx]suchas1, Tl, (Tl)z, Ty, W%, le, etc.; (iii) Coins ! Wz, WéW%, le, Wqu,
! W? Ti23 T'2 are examples of T{x}; they all have context x.

Definition 7 (x-integrability) Let x € IL. A coin T is said to bex-integrable if T has
context no less than x, that is, T = T{y} with y > x.

T is x-integrable for any x. If the top T exists, then T-integrable coins are those
with the largest context T. On the other hand, all coins are (J-integrable, where J is the
bottom. Since J(T) = J(Tfl) by Theorem 3, T is x-integrable if and only if T lis
x-integrable.

Note that, when both T and T are x-integrable, it does not follow that T T is x-inte-
grable. For instance, let x = x1 V x; irredundantly. Let T = T T2, T' = T, T
then TT = (T7?)2 is not x-integrable because J(TT') = x, < x. So the set of
x-integrable coins is not closed under dot product.

Lemma 5 [f a lattice 1L has bottom @, then for any a, b, x € L, conditions a v b >
x,b <ximplya Nx > 0.

Proof Ifa Ax = @ holds, then (a Vb)Ax = (aAx)V (bAx) =0Vvb=b.However,
a Vv b > x implies (a vV b) A x = x > b. The contradiction shows a A x # (. Hence
anx>o. O

Lemma 6 If T is x-integrable and y A x = (), then T[y]T is also x-integrable.

Proof Let T = T{z}. Since T is x-integrable, z > x. Let T[y] = T{w}, where
w < y. Note that w < y implies (w A x) A (y A xX) = w A x, or equivalently,
wAx < yAx.Since y Ax = @ sowAx = . Now write TT{z} and TT{w} canonically
as

W{Z} — (WZI)ml .. (WZr)m,’ W{w} — (le)nl .. (WU)s)ns
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where w = Vi_,w; and z = Vi_,z;. If no w; is equal to any z; withm; = —n;, then
J(M{z} T{w}) = z V w > x, implying that T[y]T is x-integrable.

Now suppose, without loss of generality, w; = z;, m; = —n;,i = 1,...,t. Then
the context (say u) of T{z}T{w} equals u = (Vi_, ;zi) V (Vi_,, wi). We show

Vi_,41Z = x, which implies u > x. If Vi_, ;z; < x holds, then by Lemma 5,
(Visjzd)Ax>@.Butw; =z (i =1,...,1),s0 (Vi_jw;) A x > @. It follows then
wAx=(DAxX)V (W Ax) > @, where 0 = Vi_ w;, w = Vi_,  w;, contradicting
the fact w A x = . This completes the proof. O

3.2 The cain

A bounded lattice L, with a top T and a bottom #, is called a complemented lattice
or ortholattice, if for each x € L there exists a complement, denoted by x, so that
xVx=T,x Ax =@ If Lis also distributive, then x is also unique. From now on
we shall assume that L is a complemented distributive lattice, i.e., a Boolean algebra.
For details on Boolean algebra, see for instance, Salii (1988, Sect. 3).

Definition 8 (coin marginalization) For an arbitrary x € L, let ©(x) be the set of all
x-integrable coins. The x-marginalization is a function, denoted by fx, from ® (x) into
¢, fx : D(x) —> €, sothat forany T{y} € ®(x), there is aunique coin T{yAx} € €
such that

/W{y} = {y A x}. (1)

Further, the function || . satisfies the following three axiomatic properties:

(i) If T is x-integrable then
/Wy=WW. (12)
X

(i) Letx = x1 V xp with x| A xo = @ (that is, x| and x are relative complements
w.rt. x). Let T = T{y;}T{y,} be x-integrable, where T{y;} is x;-integrable
and T{y,} is xo-integrable. Further assume that x; A yo = xp A y; = @. Then
it holds

/ Tiyn) Ty} = / Tiv) / Ty, (13)

(iii) Forany T € €, it holds

/W:W. (14)
[4]

Remark 2 [T is defined for any x < J(T).
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Notation 3 7o mimic the conventional notation of integration, we shall write fx T by
f T dx. With this notation, axioms (12)—(14) can be rewritten as

/W’ dx = T (15)
/ (T Tha)) e v ) = / T} dx / T{y2) drs (16)
/Wd@ =T. (17)

(15) is analogous to the definition of marginal probability density functions. Note
that if x = ), then ¥ = T, s0 y A X = y. Thus (15) implies [T'd = T”, a
special case of (17). (16) is an analog of the following property for conventional inte-
gration [ f(x,2)g(y,z)dxdy = [ f(x,z)dx [ g(y, z) dy. The ordinary integration
also satisfies [ ¢f(x,y)dx = ¢ [ f(x, y)dx, where ¢ is a constant independent of
both x and y. (17) is an abstraction of this property.

Definition 9 (cain) A cain is a cainoid further satisfying (15)—(17).

3.3 Properties of the cain

Now we give some basic properties on the coin marginalization. Using (16)—(17), we
have

Theorem 4 If T is x-integrable and x A'y =, then [ T[y]T dx = T[y] [ T dx.
Proof By Lemma 6, T[y]T is x-integrable. So
/W[y]de =/W[y]Wd(x &%)
= / Tyl dVJ/ Tdx (by(16))
= Ty] /de (by (17)).

Theorem 5 Forany x,y,z € L, W); = W’; = T; =T

ynz:

Proof If x > @, by the R-Law, then T; = W;C = T = T;Wy, Lety; = YAXAZ;
then

T(XV}’)/\)_’I :/WXVy dy, :/W;CWy dy; = Wﬁﬂ'}’/\)_’l

the first and third equality being due to (15) and Theorem 4, respectively. Since (x V

Y)IAY = xV(YyAZ),s0 TN W;‘ A Symmetrical arguments for z will lead
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to TVON) = T T where z; = z A % A 3. These two equations jointly imply
T = T which in turn implies y A 51 = z2AZ1 = (W AVI) A(ZAZ]) = Y AZ.
So we conclude that T*V0"9) = T "%, which by the L-Law, gives the required
result.

The case for x = ( is obvious because W)y‘ = W’; reduced to T, = T, which

implies y = z. O
Lemma 7 IfLL is complemented and distributive, thenx ANy =0 <& y < X.

Proof Sufficiency. If y < x,theny =X Ay,soyAx =(x AYy) Ax =0
Necessity: If x Ay = @, thenx Ay = x vy = T, where T is the top of L. It
followstheny =T Ay =(XVYy) Ay =X Ay, implying y < x. O

Theorem 6 Ifx >z, y Az = @thean’;dz = W;Az.

Proof If x = {J, then z = ) and x A Z = x, so the equation holds by (17).

If x > @, then W; = v T, which is z-integrable. By Theorem 4 and (15),
[Tydz = [T Tydz = T, T By Lemma 7, y Az = # = y < Z. It
follows then (x A Z) V y = (x V y) A Z, which implies W;f“ =T, TOVINL, m]

The following theorem is an analog of the fact that (conditional) probability density
functions are normalized functions.

Theorem 7 (i) If x € L, then fodx =1, (ii))If x,y € L and x > 0, then
ST dxAy) =1.

Proof For (i), using (15), we have [ T" dx = TN 7 = 1.
For (ii),letz = x A y,thenx Vy = zV yand z Ay = #. Since x > @, by C5,
W’y‘ =T Ty = vy Ty, which is z-integrable. So

/W; dz =/W”ywy dz

=T, / T*¥¥dz (by Theorem4)

= T, TEY by (15)
=T,T (by Lemma?7)
=1

The following formulae are useful for transforming coin equations:

Corollary 1 If x, y, z, w are mutually exclusive, then (i) [ T[x]T” dy = T[x]; (ii)
[T dz = Ty (i) [T v w] TV dz = Tix v w] T and (iv)
[T dy = T, where x > .
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Proof For (i), since x A y = @ so T[x]T” is y-integrable. By Theorems 4 and 7 we
then have

/W[X]Wy dy = W[x]/ Tdy = T[x].
For (ii), using Theorem 4 and Lemma 7, we have
/ T T dz = Tx] / T dz = T T2 = T T
Similarly, (iii) follows from
/ Tlx v w] T dz = Tx v w] / T dz = Tl v w] T,

Finally, (iv) follows from

Z

/ T dy = / T, Ty = T, / ™Yo dy = T, T = T,

3.4 The N-law and the M-law

Now we discuss two important rules concerning certain types of coin equations. These
rules will play important roles in transforming coin equations. Since conditional inde-
pendence will be defined in terms of coin identities, these rules are thus of primary
importance for manipulating conditional independence relations.

Theorem 8 (law of normalization) Let X, y be the complements of x and y, respec-
tively. Then

T, =Tl = Ty, = T (> 90) (18)
T2 = THITE] = THVE = TOINTOVINT s (19)

We use the name normalization because (18)—(19) depend essentially on (17).
See the Appendix for a proof. In particular, when x, y, z are nontrivial and mutually
exclusive we have

ﬂrx

yvz

=Tzl = Wf‘

y

=T, (x>0 (20)
T = THITE] = T2 = T 1)
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As special cases of (18)—(19), we also have, for any x, y, that

T =T =T, =T x>0 (22)
T = THITEFE = T = TV T (23)

In particular, when x, y are nontrivial and mutually exclusive, we have
T =T =T, =T and T =TFITE] = T =TT". (24

The law of normalization, or the N-law for short, is a powerful rule that enables
one to coerce an ‘ambiguous’ coin equation into an ‘exact’ form. This is useful, for
instance, in situations when many atom coins enter into a coin equation but we are
only interested in relations on a small portion of them. Those ‘nuisance’ coins can be
treated as ‘proportionality’ constant.

On the other hand, a ‘large’ coin identity can give rise to many ‘small’ identities
using the following law of marginalization, or the M-law; see the Appendix for a
proof.

Theorem 9 (law of marginalization) If x A'y = @, then for any a,b € L with
xANa >0,y ANb >0, the following holds true:

XVy _ Xy (xAa)V(yAb) _ xAa-yAb
T =TT=T =T (25)

In particular, if z = ¥ then T = T T = TEADVOAD) _ renaqrynb,
The following rule is also useful in marginalizing a coin equation:

Theorem 10 If x, y, z are mutually exclusive then V" = T[] TV = T =
T,

Proof Integrating T*Y"* with respect to z, we have
Ty — / rVvyve dz
:/W[Z]Wyvzdz

- W[z]/WyVZdz
= T[z]T.

We leave to the reader to justify each step in the above. O
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4 Conditional independence
4.1 Definition and basic properties

Let L be a Boolean algebra. That is, L is a complemented distributive lattice with
bottom ¢ and top T > (. Let € be a cain defined on L. Recall that for random vari-
ables, x is said to be independent of y given z if f(x|y,z) = f(x|z), where f(-|)
denotes a conditional density function (Dawid 1979a). Similarly, we give the following
definition:

Definition 10 (conditional independence) x is said to be independent of y conditional

on z, written x 1L y|z, if and only if T;vz = T;.

If x Il y|9 we say that x is independent of y, written x Il y.

The R-, and L-laws immediately lead to the following sufficient and necessary
conditions:

Theorem 11 If x,y.z > ¥, then x|l y|z holds if and only if %" = T T or
Trveve WyVZW; holds true.

Note that the conditions (A) T, = T3, (B) T = T3 and (C) T"* =

yVvz
e Wj are not equivalent to each other if the assumption x, y, z > ¢ is dropped out.
(1) First, (A) implies (B) in all cases except when y = @, z > (J; and (B) implies (A)
unless y > x = ¢. (ii) Next, while (B) implies (C) at all cases, (C) implies (B) unless
z > y = (. (iii) Finally, (C) implies (A) except when y > z = x = J; and (A) implies
(C) unless z > x = @.

Remark 3 x 1L y|z is symmetric for x and y, unless § = y < x £ z.

Theorem 12 If x, y > ¥, then x L y if and only if T = T* 7.

Notice that (D) T = T" implies (E) T = T at all cases, (E) does not
imply (D) when y > x = ). The following properties follow immediately from the
definition of conditional independence:

Proposition 6 For any x, y, it holds that x I x|y < x < y.

When x = @, we have y > x, For x > ¢, this is true because x Il x|y < T;C =

T =TT, « T, = 14 x <y by Proposition 1. This property says that an

inequality in I can be represented by a CI relation in €.

Proposition 7 (i) Forany x, v, z, if y < z, then x Il y|z; (ii) If x > 0, then x < 7z =
x AL ylz.

For instance, x 1. @]z, x1L y|T and x 1L y|y hold for any x, y. If x > @, then
xAL ylx.
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Proposition 8 When x, v, z are nontrivial and mutually exclusive, x 1. y|z holds if

. XVy y’YJZ X XVy xiz y
and only if T 2, or T, 7.

Proof “=”.x 1L ylz = T2 = TITY € The,y, = T2V X0,

Z

e, va) 0o ™= Txv} W Ty v z] for some Ty V z] € €, which

Z

implies T} "> = T T by the N-Law (21). So x 1L y|z. O

By the above proposition the mixed coin WZ‘W is arepresentative element belonging
to the quotient groups €/, and €/, ;.

The N-law leads to the following seemingly weaker but equivalent condition for
conditional independence:

Theorem 13 (factorization) If x, y, z are nontrivial and mutually exclusive, then

xllylz & T = TRIT(5]
where T[x] and T[y] are coins of the marginal cains €z and C; respectively.

Proof 1f x Il y|z, then Y% = T*Y*TY = T[X]T[7], the first equality being due
to Theorem 11 and the second equality due to Lemma 7.

Conversely, by (21), we have T = T, = T T, So x IL y|z by
Theorem 11. O

In the factorization Theorem if we let z = @, then we see that x 1L y holds if and
only if T} = Tx] or T} = T[y], where x, y are nontrivial and mutually exclusive.

Example 4 Let D = {1,2,3} and L = 2°. Any one of the following coin equations,

Ty = T3, T2 = TP, 1'% = T2, Ty = T3, T3 = T3, gives

necessary and sufficient condition for 111 2/3.

4.2 The graphoid

Now we discuss a set of properties on conditional independence as defined in the
previous section. The analogs of these properties for the classical PCI relations play

important roles in statistical graphical models (Lauritzen 1996). The following prop-
erty follows immediately from the M-law (25):

Theorem 14 (decomposition) If x Ay = @, then x Il y|z = all b|z holds for any
a<x,b<y.

Theorem 15 (weak union) If x, y, z, w are nontrivial and mutually exclusive, then
xlL yv)lw=xlylzVvw).
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Proof First, x AL (y Vv z)|w implies T*">Y*Y* = T V=" By the M-law, we then

have T, = T, These equations jointly imply T = T T 50
x AL yl(z V w). O

The following result is sometimes referred to as the contraction property of PCI
(Pearl 2000, p.11).

Theorem 16 (contraction) If x, y, z, w are nontrivial and mutually exclusive, then
x1L y|(z v w) and x 1L z|w hold if and only if x L (y V 2)|w.

Proof “sufficiency.” First, x Il (yVvz)|w implies, by the M-law, x 1L z|w, which in turn

. . XVyVvzvw X yVZVw X VzvVw XVyVvVzvw X yVZVw
implies ™" =T, =TT .So T =T, T ,

showing x Il y|(z V w).

“necessity”. x L y|(z vV w) and x Il zJw imply T = T and

e — vawau. So TEVIVEVW — v e, which by M-law implies

ZvVw?

Tovevw — WwaUWsz, or equivalently, Wyva = WIZUTT}‘VVVw. So TrVIVEVw
TYYTYYE showing x AL (y v 2)|w. o

Corollary 2 Ifx, y, z are nontrivial and mutually exclusive, then x Il y|z and x 1L 7
hold if and only if x 1L (y V z).

Theorem 17 (intersection) If x, y, z, w are nontrivial and mutually exclusive, then
xAL y|(z v w) and x 1L z|(y v w) hold if and only if x 1L (y v 2)|w.

Proof “necessity”. The facts x 1 y|(z v w) = TV = 7 TV and
xllz|(y v w) = THYYVEVY = W);VwWyva,jointly imply 7, = W);vw- Since
W;Vw is of the form T[Z], so by the N-law, we have T7,, = T, which in turn

implies that T = T TV or x UL (y v 2)|w.

“sufficiency”. By the M-law, x 1L (y Vv z)|w implies x 1L y|w and x 1L z|w, or in
rvw = T, respectively. But, x I (y Vv 2)|w &
va}vsz — Wz}WyVZVw’ implying WxVvaVw — W;i\/w WvaVw and Wx\/vaVw —

Tr T orx Al z|(y v w) and x L y|(z v w). .

vVw

. . X X X
coin equations, Ty, = T, and T

Corollary 3 Ifx, v, z are nontrivial and mutually exclusive, then x 1. y|z and x 1L 7|y
hold if and only if x 1L (y Vv z).

Definition 11 A ternary relation - LI -|- defined on a Boolean algebra L is called a
graphoid, if for all nontrivial and mutually exclusive elements we have

Gl:xUylz=yUx|z (Symmetry)
G2:xU(yvwlz=xUy|z (Decomposition)
G3:xU(yVvalw=xLUyl(zVw) (Weak union)
G4:xUylzvw),xUzlw=xU(yVvzlw (Contraction)

GS5:xUylzvw),xUz|(yVvw)=xU(yVz)|w (Intersection).
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In the finitary case, properties G1-G5 were discussed by Dawid (1979a) and Spohn
(1980). The name of graphoid was due to Pearl and Paz (1987), who used G1-GS5 as
axioms to characterize the relation between graphs and informational relevance; see
also Pearl (2000). Theorems 14—17 prove that

Theorem 18 We say that a ternary relation x 1L y|z holds for nontrivial elements
x, v,z in L if the coin identity W;Ny = WZ Wg holds in €. If L is a Boolean algebra,
then - 1L - |- is a graphoid.

4.3 The separoid

In this section we show that the cain algebra satisfies the axioms of a strong separoid of
Dawid (2001). The separoid includes as special cases several axiomatic systems, such
as the orthogonoid and the graphoid, relevant for formal reasoning using the concept
of irrelevance of information.

Definition 12 (separoid) Let (S, <) be a join-semilattice. Let - L -|- be a ternary
relation on S. Then (S, <, 1) is a separoid if the following hold:

Pl:x L y|x

P2:x 1 ylz =vylxlz

Pl xLlylz&w<y =x 1wz
Pd:x Lylz&w <y =x Lylzvw)

P5:x Lylz&x Lw|(yvz) =x L (yVvw)z.

A separoid (S, <, 1) is said to be strong if (S, <) is a lattice and the following
additional property holds

P6: Ifz <y & w <y then
x 1Lylz&x L ylw = x L y|l(z Aw).

Now we show that P1-P6 are satisfied by a cain conditional independence relation
(see the Appendix for a proof).

Theorem 19 Let € be a cain of a Boolean algebra (L, <). We say that a ternary rela-
tionx Il y|z holds for nontrivial elements x, y, z inlL ifthe coin identity vay = ch Wz

holds in €. Then (L, <, 1) is a strong separoid.

5 Discussions

Inspired by the work of Dawid (2001) we have developed the theory of cain based on
a possibly infinite lattice, although for usual statistical applications a finite Boolean
lattice suffices. Although we did not explore graphical implications in this paper,
Andersson and Perlman (1993) does give a useful definition of PCI, the lattice condi-
tional independence, based on finite distributive lattices. Andersson et al. (1997) show
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that the lattice conditional independence models coincide with DAG models induced
by transitive acyclic directed graphs. For further developments of Andersson and Perl-
man’s lattice conditional independence, see Andersson et al. (1995), Andersson and
Madsen (1998), Andersson and Perlman (1995a), Andersson and Perlman (1995b),
and Massam and Neher (1998).

The algebraic framework proposed in this paper gives a new look at statistical
models which reply on PCI relations. The algebraic approach opens possibilities for
‘automatic’ derivation and discovery of PCI relations using tools similar to the Grob-
ner basis theories (Cox et al. 1997). A coin is an algebraic analog of the classic joint
probability density function (PDF). The relevant operations for PCI are products of
the PDFs and integrations of the PDF (to get marginal density functions). This is the
major motivation for only considering coin product in the cainoid. However, there
is a natural homomorphism between the cain and certain polynomial domain, called
the cain polynomial domain. In the cain polynomial domain, we consider summation
of two cain polynomials, which corresponds to the product of two coins. Division of
two cain polynomials are also defined, which corresponds to coin marginalization.
Problems for deriving a PCI relation from a set of other PCI relations can then be
solved through computation of the cain polynomials. We will publish the material on
cain polynomials elsewhere.

One potential advantage of the cain over the existing axiomatic systems is that PCI
relations can be derived ‘automatically’ by transforming the coin equations using the
(equational) cain axioms. Although not explored in this paper, interesting properties
on probability density functions other than PCI relations may also be studied in the
cain algebra. For instance, as a referee pointed out, properties such as “no three-factor
interaction” in a graphical model can be expressed by density factorization. Thus, the
cain algebra may be suited for studying these kinds of properties.

Appendix

Proof of Theorem 1. Let T = T\ .- T be an arbitray expression of T with ¢; v

s

d; > ¥(e., WZ # 1).If ¢; > B, then by C5 we have Wfii- — iV Ty = eV (rdiy-1,
If ¢; = ¢ then Wili = (Wdi)_l. So by rearranging the terms, 1T can be alternatively

expressed as
T= {Wel (Wdl)—l L. Wem (de)—l} {(Tdm_H)_I . (Wd,r)—l} (26)

where ¢; = ¢; Vd; and m > 0. Let

{flﬂ""ft}:{elvdls"'7eM7dn‘Lvdm+lv"'1dS}

where f; # fj,i # j =1,...,t. In other words, f1, ..., f; represent the distinct
elements of ey, ..., ey and dy, ..., dy. Let u; be the number of e; appearing in (26),
and v; the number of d; appearing in (26), so thate; = d; = f;,fori =1,...,¢.
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That is

ui=Hej=filj=1....m}, vi=t{dj=filj=1,....sh
By associativity we can then rearrange (26) to get
W — (Wfl)ul (Wfl)—ln . (Wft)uf(Wft)—vt

— (ﬂ'fl)ul—vl . (Wft)ur—v:
— (le)nl . (er)nr

where 0 # n; = u; — v;,i = 1, ..., r. That there exists at least one n; # 0 follows
from the assumption T # 1. This completes the proof. O
Proof of Theorem 2. By Theorem 1, there exist nonzero integers my, ..., mg and
mutually distinct coins T*', ..., T so that

T = (WYI)ml . (W)‘x)ms. (27)
If 7" is not a prime coin, then there exist yi1, . .., y1;, so that

ﬂ'}’l — (WJ/II)m“ . (Wyn] )mlf]

where my1, ..., my, are non-zero integers, and T°"", ... T’ are mutually distinct.
If any one of these raising coins is not prime, then we can repeat the above decompo-
sition one more time. Since L satisfies the DCC, this process will have to stop after a
finite number of steps. Finally, we will arrive at the following expression:

WYI — (Wle)pll L (ﬂ'lel )lel
where (a) each pi; is a non-zero integer, (b) each T°"/ is prime, and (¢) T°" and T*"
are mutually distinct for i # j.

Repeating the above arguments for each T of (27) and putting these expressions
into (27), we conclude that T can be written as

T = (T ... (T (28)
where (a) each n; is a non-zero integer, (b) each T is prime, and (c) T"" and T/ are
mutually distinct for i # j. This proves the existence of the expression (8).

Now we show that the expression (8) is unique. Suppose that we have another
expression

T = (T (T (29)

where (a) each k; is a non-zero integer, (b) each T/ is prime, and (c) T/ and T/ are
mutually distinct for i # j. Comparing (28) and (29) we have

(T = (T2)72 o (T = (T (T, (30)
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Since T™! is prime, we conclude that there must exist one f;, say fi, so that x; =
fi.n1 = ki. Then by (30) we have 1 = (T"2)=72... ()= (T2 )k ... (TTayke,
which leads to (T°2)"2 = (™)~ ... ()= (T/2)k ... (T/o)k . Since T2 is
prime so we have x, = f> and ny = k». Repeating this process we finally conclude
that g = r, n; = ki, x;, = f; (i = 1,...,r), proving the uniqueness of (8). This
completes the proof. O

Proof of Theorem 8 (Law of Normalization) For (18), since x > ¢, we have
TEYDAZ / T**Y2dz  (Theorem 6)
- / T Tdz (R-law)
= / TZIT"Y¥dz  (Assumption)

= Tz] / T**dz (Theorem 4)

= T[z]m"* (Theorem 6)
implying T[z] = TWY?"E Tynz = ’;ﬁg due to Lemma 1, proving (18).

For (19), let a = J(T[x]) < %, b = J(TM[¥]) < ¥. Then T** = T[F]T[x]
implies x V y V z < a Vv b by the sub-additivity of contexts. Soy <aVvb.Butb <y,
so y < a, showing that T[x] is y-integrable. Similarly, T[y] is x-integrable. Thus

TeVaIAY / T*YYY¥dy  (Theorem6)
= / Ty Tx]1dy (Assumption)
= T3] / T[x]dy (Theorem4)
=THITIEAF]  (Bq.(11)

A1

implying T[3] = TY9YT '[% A 1. Similar arguments for x will give T[] =
, s~—1 _ _ , v X - - = -

TOVINT 1 A 5], So THYVE = TEVINTOVIME A 5], where T[x A 7] =

A —

1 ~—1
T [£A¥T [£A7] Thus
W(va)/\y =/Wx\/sz dy

— / W(xvz)/\ﬁﬂr(y\/z)A)EW[)z A 51dy
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= TCYINTE A 5] / TOVOM gy

— W(XVZ)ASIW[)E A )—)]W(va)AXAy

_ W(sz)AyW[)—C A )_)]WZA)E/\y
implying T[x A y] = T xza5, proving (19). This completes the proof. O

Proof of Theorem 9 (Law of Marginalization) It suffices to show W)ch(y ")
T WzAb. Since x A y = ¥, so we have

/ T dy AbAz) = Tngy)/\y/\l;AZ (Theorem 6)

_ @V)AGVbVZ)

=T,

_ Tngy)/\(yvb) (Lemma 1)
_ ﬂ,zcv(y/\b) (Lemma?7)

where the third equality isdue to (x Vy)A(YVDbVZ) = (x VYIA( VD)) V((XVY)AZ),

(xVy)Az < z,and Lemma 1. The fourth equality is duetox = x A(yvb) by Lemma 7

and (x Vy)A(YVD) = (xAGVD)V(YAGVD)) = xV((yAY)V(yAb)) = xV(yAD).
Similarly, since (x V z) A (y A b A Z) = () we have

/Wﬁ;d(yABAZ)=W§/W§d(yAEAZ) (Theorem 4)

= T; Tg A YNBAZ (Theorem 6)
YA(bVZ)
= Ao
=TT} . (Lemma )
The two parts jointly prove (25). O

Proof of Theorem 19. “P1”. The corresponding coin equation of P1, x I y|x, is
T =TT

which holds because T = 1 and T) = T’ by Lemma 1.
“P2”. The coin algebraic counterpart of P2, x Il y|z = y 1l x|z, is

\ ) \Y )
mY=TT=T"T"="TT.,
which holds due to the commutativity of both the coin product and the join operation.
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“P3”. Since (IL, <) is a lattice, P3 is equivalent to, for any w € L, the following
form:

xlylz=x1 (wAy)z
or in terms of coins,
XVYy Xy XV(WAY) X TwAY
mw7>=mT0 =T, =TT, (31

which holds due to the fact w A y < y and the M-Law (Theorem 9).
“P4”. This axiom is equivalent to, for any w € L,

xlylz=xllylz v @wAay)
the corresponding coin form being

xXVY Xy xXVYy X y
mwr=mTn=T Tovaway T

z ZV(WAY) = ZV(WAY)”

First, by (31), T2 = T T implies T2/O"" = X T which, when multi-
plied by T°T v (way), gives va(w Ay) = T2 On the other hand, multiplying T} VY =
W; WZ by WZ W(y/\w)\/z giVeS vayvz W()v/\w)vZ = W; W}’\/Z W(y/\w)vZ. Sincex\/y \4 2
(yAw)VvzandyVz>(y Aw)Vz by Lemma I, we have

xXVyvz X yVz X yVz
1 =T, = Tyawyve T,

(yAw)vz (yAw)vz (yAw)vz?
Wh.iCh implies the required result by noting that W)(CyvAy J)Zv .= )(Cyv Ay wyv, and W{yvf wvz =
T, v due to Lemma 1 again.

“P5”. This is identical with the contraction property of the graphoid. For complete-
ness we include a slightly different proof here. x L y|z, x 1L w|(y vz) = x 1 (v v

w)|z, corresponds to

WX\/)’ W.;C W;), WXVIU — X Ww

z = vz yvz 'lyvz

= T,V =TT 32)

The R- and L-Law applied to the first condition in (32) using Ty, yields T;v .=
T.. The R-Law applied to the second condition using T”"* gives T =
W;VZWUNY Vi So THYWYIVE = IV which by the L-Law using T, implies
the last equation in (32).

“P6”. Note that P6 is equivalent to, for any z, w € L,

xllylyrz), xlylyAaw)=xLyl(yArzrw)
the coin equational form being given by
T =T T T =T Tonw = Toronw = Tynznw 1o

YAZ YAZ N YyAZ? YAW yAw U yAw YAZAW YAZAW T yAZAW

@ Springer



772 J. Wang

which, by the R-Law, is equivalent to

\ ) Vv \
™= W;AZW}’ ™= W)y(‘AwTy = T = W;AzAwWy' (33)
The conditions in (33) imply W;C = W)y‘ Aw> Which, by Theorem 5, implies in turn
WTCAZ = Wf;/\“w, proving (33). O
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