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Limiting behavior of relative Rényi entropy
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Abstract We calculate the limiting behavior of relative Rényi entropy between
adjacent two probability distribution in a non-regular location-shift family which is
generated by a probability distribution whose support is an interval or a half-line. This
limit can be regarded as a generalization of Fisher information, and seems closely
related to information geometry and large deviation theory.

Keywords Relative Rényi entropy - a-divergence - Information geometry -
Non-regular location shift family

1 Introduction

In a regular distribution family, Cramér-Rao inequality gives the bounds of the first
order coefficient of the mean square error and the exponential decreasing rate of
error probability with an infinitesimal radius in the large deviation evaluation, and
the maximum likelihood estimator (MLE) attains under the regularity conditions.
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548 M. Hayashi

Therefore, Fisher information can be regarded as the amount of accessible information.
However, in a non-regular location shift family that is generated by a distribution of
R whose support is not R (e.g., a Weibull distribution, gamma distribution, or beta
distribution), the Fisher information diverges and cannot be defined. Therefore, in
order to characterize the bound of asymptotic performance in estimation, we need a
information quantity generalizing Fisher information.

For this1 purpolse, Akabhira et al. (1995) proposed the limit of the Hellinger affinity

—log [ pg (w) pg L(@)dw as a substitute information quantity. This value is
obtained by a transformation from the Hellinger distance. Moreover, Akahira (1996)
proposed the limit of the relative Rényi entropy (Chernoff’s distance) I°(p|lq) :=
—log [ p* (w)g'*(w)dw (0 < s < 1) as a substitute information quantity for a non-
regular location shift family while the relative Rényi entropy is discussed by several
authors (Chernoff 1952; Hoeffding 1965). When the probability distribution function
satisfies boundary conditions, Akahira (1996) calculated the limit of 1 (pg || po+c)/ €2.
However, when the probability distribution function does not satisfy the boundary con-
ditions, Akahira et al. (1995) derived only the order of / 172(pg || po+e). That is, they
obtain the relation between the order and the behavior of distribution function on the
neighborhood of the boundary. However, it has been an open problem to calculate its
coefficient with arbitrary o € (0, 1). In this paper, we calculate the asymptotic behav-
ior of 1*(pg || po-+<) based on the behavior of distribution function on the neighborhood
of the boundary in the case of location shift family.

This calculation has the following two meanings, i.e., a statistical meaning and
a geometrical meaning. As is shown by Chernoff’s formula (Chernoff 1952) and
Hoeffding’s formula (Hoeffding 1965), the asymptotic error exponents in simple hy-
pothesis testing are characterized by the relative Rényi entropy /°(p|lg). Using these
bounds, Hayashi (2006) gives the following statistical meaning of the obtained cal-
culation. In the large deviation evaluation, the exponential decreasing rates of error
probability with an infinitesimal radius can be upperly bounded by the function of
the limit of 7*(pg || po+c)/g(€), where g(¢) is the order function. That is, the upper
bounds contain minimizations of the limit concerning «. This relation is summarized
in Sect. 4.

As a geometrical meaning, the relative Rényi entropy I°(pllq) is linked with
a-divergence D*(pllq) = ﬁ (1 — prFTa(w)ql%a(w) da)), which was intro-
duced by Amari et al. (2000) from an information geometrical viewpoint, by the

. —o? . . . .
monotone transformation x — —log (1 -1 v x). Since a-divergence is a special

case of f-divergence introduced by Csiszar (1967), which satisfies the information
processing inequality, the relative Rényi entropy satisfies the information processing
inequality

Fpllg) = I (po flIgo fh

for any map f. When the Kullback-Leibler divergence is finite, the relative Rényi
entropies are connected with the Kullback-Leibler divergence by the relation
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Limiting behavior of relative Rényi entropy in a non-regular location shift family 549

s : 1 N
1 (pllq)—}grg)s(l_s)l qllp). (1)
Thus, the relative Rényi entropies are suitable as substitutes for the Kullback-Leibler
divergence.

As is known, if a one-parameter distribution family S := {py|6 € ® C R} satisfies
suitable regularity conditions, Kullback-Leibler divergence is closely related to the
Fisher information Jy defined by (3) as

D = li
(rlig) lim S0 —s)

1 1
lim — D = —J 2
lim =3 D(po+elipe) = 5o )

2

3 log ;’I,L:O(w)

Jo 1=/ By E— po(dw). 3)
Q

However, when the support depends on the parameter 6, the equation does not hold
because the divergence is infinite. As was shown by Akahira (1996), under suitable
regularity conditions, the equation

eli_f)% mIS(PGHPGH-e) = %Je 4)
holds. As the examples in Sects. 2 and 3 show, there are cases where relation (4) holds,
but Eq. (2) does not. The above facts indicate that the limit of the relative Rényi entropy
is a suitable substitute for the Fisher information in a non-regular location shift family
from a geometrical viewpoint.

Moreover, in a regular family, since Fisher information is well-defined, the Riemann
metric can be naturally defined on every tangent space. However, in a non-regular
location shift family, as was pointed out by Amari (1984), the natural metric on the
tangent space is not a Riemann metric, but a general Minkowski metric. Such a mani-
fold with a general Minkowski metric on every tangent space is called a Finsler space.
In order to treat the asymptotic behavior of the MLE, Amari (1984) proposed to
regard a non-regular location shift family as a Finsler space with the Minkowski met-
ric F(0) := lim¢_g éH(pg ||pg+e)'<l, where H is the Hellinger distance and « is a
real positive number. Unfortunately, the relation between the MLE and this Minkowski
metric has not been adequately clarified, and the value of this Minkowski metric has not
been calculated. Our result for the case s = % gives the value of this Minkowski metric.

This paper is organized as follows. As a main result, Sect. 2 gives the limit of
relative Rényi entropy in the interval support case, which is proven in Sect. 5. As
another main result, Sect. 3 gives that in the half-line support case, which is proven in
Sect. 6. Section 4 gives a summary of large deviation bound in the non-regular case
given in Hayashi (2006).

2 Interval support case

In this section, we discuss the location shift family generated by a C* continuous
probability density function f whose support is an open interval (a,b) C R. We
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550 M. Hayashi

assume conditions (5) and (6) for f:

fix) == fla+x) = Ax71 asx — 40 3)
Hrx) = f(b—x) = Apx 27! asx — +0, (6)

where k1, k> > 0, and f(x) = g(x) (g(x) is a polynomial with real powers of x) as
x — 40 means that f(x)x;eg(x) — 0asx — 40 and € is the maximum power of g(x).
In addition, if x; # 1, we assume the following conditions:

fl) = Ak — Dx72 as x — 40 (7
) = Al — Dk —2)x73 as x — 40 if i #2 (8)
xf'(x) > 0 as x > +0 ifk; =2, 9)

where g’(x) and g”(x) are the first and second derivatives of f (x) with respect to x.
If k; = 1, we assume the existence of the limits lim,_, 1o f/(x) and lim,_. 4o f/"(x).
If x; > 2, we assume that

b
Iy = / ST U0 dx < oo (10)

For example, when f is the beta distribution f(x) = B(oll ﬁ)x”‘_1 (1 — x)#~1 whose
support is (0, 1), the above conditions are satisfied and we have

_ 1
"~ B p)’

kKi=a, kx=p, A=A (1D
In this paper, we denote the beta function by B(x, y). Then, we have the following
theorem.

Theorem 1 Assume that k := k1 = k7, we obtain the following relations:
1 —«
—— (A1sB(s +«x(1 —9),1 —k)

K

T+ A1 =Bl —s+ks,1—k)) 0=<x<I

. P(foll fote)
Jim TS F A+ Ax(1 =) o
Aps(1=s(k—1)B(s+k(1—s),2—k)

P l<k<?2
4 A2(1=9) (= (=)= D) B(I =55, 2=K) (12)
K

. I(follfore) (A1 + A2)s(1 =)

lim = K =2
e>+0 —e2loge 2

. P(follfore) sl =)

1 = J 2 s
e—l>n-i}0 62 2 Y =K

where fy(x) 1= f(x —0). These convergences are uniform for0 < s < 1. If k1 < k2,
substituting k = k1, Az := 0, we obtain the above equations.
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Limiting behavior of relative Rényi entropy in a non-regular location shift family 551

The uniformity of 0 < s < 1 is essential for the discussion in Hayashi (2006). The
above theorem in cases (ii) and The case k > 2 is an example where relation (4)
holds, but relation (2) does not. Note that when 0 < k < 2, in general, the equation
lime_, 1o % = lim¢_, o % does not hold.

Next, we introduce two quantities for any ¢ € (a, b) as

I7(c. foe) = / W £ x4 O dy — / @ f@se 3 o,
b—e b
I (e, fre) = FI75 ) f5(x + €) dx —/ fx)dx + f(c)se + %f/(c)ez.

c

Lemma 1 We obtain the following relations:

1 -k
———A1sB(s+x1(1 —=5),1 —«1)

- 0 1
lim I e. fio) _ 7A1Ksl K1<=K11 <
e—+0 €kl _A]S(l — sty —D)BG+x1(1—=5),2—x1) 1 <k <2

_ . k1 (13)

Ig (c, f,€) =_A15(1—s) P
e—>+0 —e2loge 2 1

. Ig (c, f.€) s(1—s) _
1 s = J )
6—1>T-() €2 2 fic < K]
and
1—xo

" (—A2(1 —$)B(1 —s + k25,1 —K2))) 0 <ky <1
tim 2RO aa ) o =1
e>+0 €2 A=A - (1= - D)BU—5+k25,2—K2) | <ky <2

2 (14)

i B0 As(i—y) o
e—=>+0 16210g€ 2 2
I fie)  s(l—s)
egr{‘l-o €2 =75 Jre 2 <Ky

where J; and J]J{ are defined as

¢ b
le= [ o wran so= [ rtogor

These convergences are uniform for0 <s < 1.
Lemma 1 is proven in Appendix 5.

Proof of Theorem 1 Since I’ (foll fo+e) = I" (f-ell fo), IX(fO”f@i—e) = —log(l +
17 (e, fi+I;7 (¢, £.0)). Thus, lime, 4o DY) = lim,_, 4 Lol (L),
Therefore, Lemma 1 yields equation (12). O

Akahira (1996) proved the following proposition.
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Proposition 1 When

li = i = 15
x_gln+of(X) x;g}gof(X) ¢, (15)
li '(x) = — i ") =h
Jmg S0 == lim, ) =h

and the condition (10) holds, then,

cz—h—l-s(l—s)Jf )
€

0.
> as € —> +

P (fol fo+e) = ce +

At first glance, the above proposition contains our case (iv). However, in case (iv), the
relation (10) does not hold, i.e., J diverges. That is, our result with case (iv) does
not contradict with the above proposition. Further, our case (ii) with (15) coincides
with the above proposition in the first order. Also, our case (v) coincides with the
above proposition with ¢ = h = 0. Note that the above proposition does not treat the
uniformity of the convergence concerning s while our theorem treats it.

3 Half-line support case
In this section, we discuss the case where the support is the half-line (0, o) and the
probability density function f is C? continuous. Similarly to (5) and (6), we assume
that

fx) = Ax lasx — 0. (16)

When « # 1, we assume the following conditions:

F(x) Z Aj(k — Dx*"2 as x — +0 (17)
F'x) = Aj(k — Dk —2)x* 3 as x »> +0ifk #2 (18)
xf'(x) = 0 as x - +0if k = 2. (19)

When « = 1, we assume the existence of the limits lim,_, 1o f'(x) and lim,_, ;¢
f”(x). In addition, we assume that there exist real numbers ¢ > 0 and € > 0 such that
f(x) is monotone decreasing for x > ¢ and

oo
/ £ () dx < 00 (20)
lim lim sup AS)) < +00 @n
€240 R—>00  y> R:ilx—y|<e fx)
o Lim sup f/(y) < 400 (22)
€=>+0 R—>00  yo Rijx—y|<e S (X)
lim lim sup o < 400, (23)

€>4+0 R—>00y y= R:i|x—y|<e Sf(x)
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Limiting behavior of relative Rényi entropy in a non-regular location shift family 553

and there exists R > 0O such that

f"(x) > 0forx > R. 24)

For example, when f is Weibull distribution f(x) = afx?1e P the above con-

ditions are satisfied and we have

Kk=a, A=uaof. (25)
When f is gamma distribution f(x) = %x“‘le_ﬂx , the above conditions are
satisfied and
o
K =a, = P . (26)
(@)

Now, we obtain the following theorem.

Theorem 2 We obtain

1 —«
T(AsB(s +x(1—s5),1—x)

0 <k <1
IS
hm (f0|Lf0+€) — AS . l
e—>+0 € As(l —=s(k —I)Bs +x(1—5),2—Kk) | <k <2
ke 27
. (ol fo+e)  As(l—ys) 27
lim = =2
e~+0 —e2loge 2
IS 1 _
lim (f6||2f0+e) _s( s)Jf )
e—>+0 € 2
where
o0
Ty 3=/0 IO 00 da (28)

These convergences are uniform for(0 < s < 1.

For a real number ¢ > 0 satisfying (20)—(23), we define

I, fe)= / I (x +e)dx— / nfryf(x)dx+f<c>se+§f’<c>e2.
Lemma 2 We obtain

. It fr e s(1—s)
lim = —
e——+0 62 2

i, @

and the convergence of (29) is uniform for 0 < s < 1, where

I = / o ) dx.
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554 M. Hayashi

Lemma 2 is proven in Appendix 6.

Proof of Theorem 2 Similarly to Theorem 1, it follows from Lemma 1 and Lemma 2
that I°(fo |l fo+e) = —log(1 + I (c, f, €) + I (c, f, €)), which yields Eq. (27). O

4 Relation between main results and large deviation theory

We will outline a relation between Theorems 1 and 2 and large deviation theory only
for alocation shift family { fp (x) := f(x —0)|0 € R}, where f satisfies the conditions
given in Sects. 2 or 3. This relation was discussed by Hayashi (2006) more precisely.
As generalizations of Bahadur’s large deviation type bound, we define the following
quantities:

1
a1 (0) :=limsup——sup inf  B(T,0,¢)
est0 8(€) T 6—€<b'<b+¢

1
0) == lim inf — inf T, ¢,
a0) i suplininf o5, I, P00

—1
B(T, 0, €) := liminf — log pj{|T,, — 6| > €},
n

where T = {7},} is a sequence of estimators, i.e. every T, is a function from the data
set R" to the parameter set R. Also, g(€) is chosen by

€ 0 <k <2
gle) =1 —€?loge k =2
€2 K > 2.

As Ibragimov (1981) pointed out, when KL-divergence is infinite, there exists a super
efficient estimator T such that B(T, 0, ¢) and lim¢_, +¢ ﬁ B(T, 0, €) are infinite at
one point 0. Therefore, we need to take the infimum infy_.<p'<g 4 into account. Of
course, in a regular case, as was proven by Hayashi (2006), the two bounds o1 () and
o (0) coincide. ,

If the convergence lim._,¢ % is uniform for s € (0, 1) and 6 € K for
any compact set K C R, these quantities are evaluated as

0) < a(0) := 2Ksup0<s<11§,9 if0 <k <2
(@) <a10) = 4supg .5 <1 Ig,& ifk >2

r s

Ig9 1 e
SUPg <5 <1 m (s'(*l + _S)"’l) if0 <k <1

MRS

_ 21 ife =1
ax(0) < @ (0) := .6

I* k—1
infg _s -1 ﬁ(w— +(1—s)~%1) 2 >k > 1

1
. 0 .
mf0<s<ls(1g__s) if2 <«,
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Limiting behavior of relative Rényi entropy in a non-regular location shift family 555

where 1 ; o are defined by

I (po—e )21l Po+e)2)

200 1>s5>0.

Ig’g = lime_ 19
Note that the uniformity of the convergence concerning 0 < s < 1 is necessary for

deriving the above inequalities. In Hayashi (2006), these inequalities were proven and
the attainability of bounds o (6) and o, (0) were discussed.

5 Proof of Lemma 1
5.1 Asymptotic behavior of I (¢, f, €)

In the following, when the limit lim¢_, 19 g(x + €) (lime_, 19 g(x — €)) exists for a
function g, we denote it by g(x + 0) (g(x — 0)), respectively. Our situation is divided
into five cases: 1)) 0 < x; < 1, (1)« = 1, (i) 1 < x; < 2, ({v) k1 = 2, and
(v) k1 > 2. First, we discuss cases (ii) and (v).

/ I+ e)dx
c 2
= / 7w [fs(x +e) — (fs(x) + (f%) (x)e + (fs)”(x)%)} dox
c 2
+ / (f(x) + IO (x)e + fl‘s(x)(fs)”(x)%) dx (30)

The second term is calculated by

c 2
/ (f(x) + I (e + f““(x)(fs)”(x)%) dx

-/ (f(x) T fse + (s<s2_ Do o + %f”(x)) ez) dx
:/ac S dx + fo)es + f/(C)S§ — fla+0)se
- (@ / O ) dx — Sfa+ o>) é. 31)
The term
Eiz/ac ) |:fS(X +e€)— (fx(x) + (f9) (x)e + (fs)”(x)g)] dx (32)
goes to 0 uniformly for 0 < s < 1ase — +0 as follows. In case (ii), k1 = 1,
the term [ St e) — ( 50 + () ()€ + ( f‘)”(x)%)] /€2 goes to O uniformly

on (a, c]. This speed does not depends on s. This is because lim,_, 4 f1(x) < +o0.
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That is, the above argument has been shown. In case (v), k1 > 2, this convergence
is uniform on any compact subset of (a, c]. We choose a sufficiently small number
8 > 0. From condition (8), we have 0 < (f*)"(x) < f"(y) fora <y <x <a — .
Then, there exists ¢ (¢, x) € [0, 1] such that

a+3s ¢
[l rero - (ror@ywerrmS )| o

1
€2

a+$
/ FI @[ (x+ e, 06 — () ()] dx

1
)

5%( sup  f170(x) / LT £ (x) dx

s€l0,1],x€la,c]

1 ‘
== sup [N @+8) — fa+0) < 0.

s€l0,1],x€la,c]

Thus, for any €’ > 0, there exists a postive real number 8’ such that the above value is
less than €’. Now, by choosing a sufficiently small number ¢ > 0 independently of s,
we have

1 c 2
= / 17w [fs(x +e)— (fs(x)+(fs)/(x)6+(fs)”(x)e—)} dx <€,
€~ Ja+s 2
(33)

This implies that (32) goes to 0 uniformly concerning s. Therefore, in case (ii), since
f(a+0) = Ap, we obtain (13) and the uniformity for 0 < s < 1. In case (v), since
f(a+0)= f'(a + 0) =0, we obtain (13) and the uniformity for «; > 2.

Next, we discuss cases (i), (iii), and (iv). We can calculate I (c, f, €) as

/ O (e dx

c 2
- 170 |:fx(x +€) — (fs(x) + (f) (x)e + (fs)”(x)%)] &

a+é

¢ 2
+/ s (f(x) + W e + fl_s(x)(fs)”(x)%) dx
a+
a+s
+ e Erod (34)

a

In the following, we discuss only case (i). Concerning the second term of (34), we
have

c 2 a+é
/ (f(x) F WY e + f”(x)(fs)”(x)%) dx + / £ dx

+6
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= / Cf(x)dx+( / ) f’<x)dx)se+s(s )( / ' f‘l(x)(f/(x))zdx)ez
a a+§8 a+s

S ¢ 1"
+§ ( a+3s f 0 dx)
= / f)ydx 4+ (f(e) = fla+8)se + (f'(c) — f'(a + 3))%62
s(s 1)

/ FH ) (60))? dxe?
=/ fx)dx + f(c)se + 5sf’(c)e2

— f(a+8)se — f'(a+ 5)262 + @ (/ O (1)) dx) 2
a-+é
(35)

Concerning the third term of (34), we can calculate
a-+3s a+s
/ IS (e dx — / f(x)dx
a a+8 a
- / (f@fa+ea—fw) dr
aa+5 €
- / / FI Y (x4 ) dy dx

T2 Ao+ D) ,
d dy, 36
/ / = v(y(ZJrl)) 70 zyfi(y)dy (36)

where we set 7 = % Note that when y is small enough, f{(y) and fi(y(z + 1)) is
positive because of (5) and (7). Since

o0 Z(/qfl)(lfs)
/0 (1 Dl 92 = Blats —was, 1 =),

using (5) and (7), we can prove that for any €’ > 0 there exist real numbers § > 0 and
€ > 0 independently for s such that

<€é (37

LA 1—s ’
/) ; H 09 [GGE+D) dz — B(k1 +5 — k15, 1 — k1)
0

T e+ AW

for any y satisfying € > y > 0. For any €’ > 0, there exists a real € > 0 such that

Jo vfl(» dy Ll
— ]

<é€. 38
g e (38)
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Therefore,
(y2)  fiy+D) dzv /() d
f() f() 1 v 1 f’( ) ny](y) y 1_
OG+D) SO A Bk s —K1s, 1—/<1)S( K1)
ekl K1
8 1—s / € /
y +1 d
- /s _fsl (»2) fl(y(/z D 4z — sBler 45 — k15,1 — 1) Jo YA (dy
o fi 'OG+1) [ €x1
€ /
d 1-
+sBlcy + 5 — k15, 1 — K1) fO yfi(y)dy +A1( K1) s
K1 K1
1—
€ (Al( “1) +sB(/<1+s—/<1s,1—/c1)+e/)
K1
/ (I —x1) / /
€ \Aj——+¢€ + sup sBki+s—«1s, 1 —k1) ) < Coe’, (39)
K1 0<s<l1

where we choose Cop = (A d=r1) K') +1+supy_s8Bk1 +5—«18,1 —Kl))
Therefore, relations (34), (35), (36) and (39) yield

, fo€) —A1B(ki +5 —kys, 1 — Kl)%f"‘

ekl

=0 [/ VAC) (f (x+e€) — (f )+ (Y e+ (f° )”(x)_)) dx

¥ |-fa+8)se— f'(a +5)§€2+S(52_ (/ f_l(x)(f/(x))2dx) &2 ]
a+é
+Coe. (40)

Thus,

, f,€) —A1B(k1 +5 — K15, 1_K1)S(1 k) ¢

ekl
< 1 C C 2 ) /
= 1€ + Cre” + €€ ) + Coe,
where Cy = |f(a + §)|, C2 = WTH)'. Note that the constants C; and C, are

independent of 1 > s > 0. We obtain (13) and the uniformity in case (i).

@ Springer



Limiting behavior of relative Rényi entropy in a non-regular location shift family 559

Next, we discuss cases (iii), (1 < x; < 2) and (iv), (k1 = 2). Concerning the
second term of (34), we can calculate

2

/ (f(x) + IO (e + fls(x)(fs)”(x)%) o

+6

a-+é
+ / F)+ 70U (0 dx

= / (G + £ ()se) dx + s(s; D ( / 08 f‘1<x><f/(x>)2dx) e
a a—+

+£( ' f”(X)dX)e2

2 a+é

c 2
=/ f(X)dx+(f(C)—f(a+0))se+(f’(6)—f’(a+8))s€?
+S(12_ 9 ( ' f‘l(X)(f’(X))zdx) = @1
a-+é

Concerning the last term of (34), we have

a+s a+$
/ I (e +8)dx — / FOO+ 750 (x) dx

a+s ey
= / /0 /O FI5 @ (x + y2) dya dy; dx

_ / /y' / [s fI7000) 0+ 1) £ )
o Jo Jo L f102+1D)  f7G2) (/M%)

175 (n2) o) (N0 + 1))]
+s(s—1)
IS+ 1) fOriz+1D)  (fH2(2)
()
dz———y,dy,dy;. 42
x dz ) y2dy> dy; (42)

In the following, we consider only case (iii). Since
o
/ IOV 42D dz = B(L+ (1= )1 = 1,2 = k1),
0

using (5), (7), and (8), we can show that for any €’ > 0, there exist real numbers § > 0
and € > 0 such that

/ (S F55ma) a4+ 1) ) ()
o UG+ /00 ()20

+s(s —1)

=5 (n2) fO2) () + 1>)) i
FI75Onz+ 1) fOriz+ 1) (f)2(2)
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—B(I+ =51 —1),2—«1)

sk =2+ (s = Dk —1»” o

K1 — 1
(43)
for € > Vy, > 0. For any €’ > 0, there exists a real number € > 0 such that
)’1 (ff)(y(;;z) vy dys dyp — Kl L
< €. (44)

€f
Similarly to (39), it follows from (42)—(44) that we can choose a constant C such that

JOFB €I FImS () (£0) (x + y2) dyn dyy d

ekl

AB(+ (1 = 5)(xc) — 1), 2 — i) 2 C=t0=0t@ 1)
+

K1

eki

< Coe. (45)

From (34), (41), (42), and (44), we can evaluate

o€+ ALB(L+ (1= $) (g — 1), 2 — k) St 0= Z) g

K1
<— [/ @)
el

2 _
+‘—f/(a+8)s% sU=s) (/ IS (x)(f(x))zd)c)

ekl

[x+e) - (f @)+ () e+ ()0 S )‘

] + Coé/.
(46)

Note that f(a 4+ 0) = 0. Thus, from (33), we can choose a constant C» independently
for0 < s < 1 such that

L+ AIB(L+ (1 —8)(k) — 1), 2 — k) 28=atl=9a—b) e

K1

€

1
5—(C2€ +€e )+Co€/.
€x

Thus, we obtain (13) and the uniformity in case (iii).
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Limiting behavior of relative Rényi entropy in a non-regular location shift family 561

In the following, we discuss case (iv). Using the conditions (5), (7), and (9), we can
prove that for any €’ > 0, there exist real numbers § > 0 and € > 0 such that

)
2 57 L020 SOt D) [ 0n)f 0a)
0 "7 nG+l) 702 (f)7(0n)

—log y2

dz

)
» e [ fo)  (N0nE+D)
Jo* 56 = D S5, Toaer ) G200 4 s —9)(=logyy)

—log y» —log y2

<€ A7
for € > y, > 0. For any €’ > 0, there exists a real number € > 0 such that

N2 (.
Jo J§" —log y2 LAy dys dyy — Ar(—3€? loge)

‘. 48
—€2loge =€ (“8)

Similarly to (39), we can choose a constant Cq such that

SR IS () (e y2) dya dyp de+ A 202 €2 (Clog e)

—€2loge

<Coe’ (49)

From (34), (41), (42), and (49), we can evaluate this as

I=(c. f.e) + A1#62(—loge)‘

€2(—loge)
1 c 2
e YA PO [ 7@ | ffaete)— (fs(x) + (fs)/(x)6+(fs)//(x)€_) &
€“(—loge) [ Jats 2

2 1— c
n ‘—f/(a +ays s 48U (/ O )2 dx) e2
2 2 a+d

} +Coel. (50)

Note that f(a 4+ 0) = 0. Thus, from (33), we can choose a constant C, independently
for 1 > s > 0 such that

I7(c, fre) + A2 (—loge) 1

<
€2(—loge) ~ €2(—loge)

(C262 + 6’62) + Coe’.
Thus, we obtain (13) and the uniformity in case (iv).
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5.2 Asymptotic behavior of I (c, f, €)

As in subsection 5.1, our situation is divided into five cases: (i) 0 < k < 1, (ii)
Ky =1,(i1) 1 < kp < 2, (iv) kp = 2, and (v) kp > 2. First, we consider cases (ii) and

).

b—e
@ ff(x +e)dx
b—e

2
- 17500 [fs(x +e€) — (fs(x) + (f) (x)e + (fs)”(x)%)] .

s(s— )

1
2 + f”(x)iez) dx

b—e
- / (f(x) + £ @)se + FHEODH )

(

b
/ (f(x>+f(x>se+f 18 1 S P LI )Zez) X

b

—/b (fB) + f(b)(x —b) + f'(b)se) dx
b—e 2

+ ) [fs(x +e€)— (fS(X) + (f) (x)e + (fx)”(X)%)] dx

b
—/ (f(x)+f(x)se+fl(x)(f)()( De

b—e

—(f(—0)+ f'(b—0)(x —b) + f'(b— 0)se) dx

+ f”(x) —€ )

The first and second terms are calculated as

(

b
/ (f(x)+f<x)se+f 10 G S P AL I e)

b
_/ (f(b—O)-I-f/(b)(x—b)—l-f’(b—O)se) dx

b—e

:/cbf(x)dx+(f(b—0)—f(c))se+(f/(b_0)_f/(c))%62
+ ( / @ dx) ol

_/bi (f(b—0)+ /(b —0)(x — b) + f'(b)se) dx

=/b fx)dx — f(c)se _f/(c)£62+f(b)se+f’(b)%e2
(/ SO () dx ) (2 D f(b—0)6+f’(b_o)§_f/(b_o)sez

= / f(x)dx — f(c)se — f’(C)%e2
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2 b _
+f(b—0><s—1)6+f’<b—0><1—s>%+(/ f_l(X)(f’)z(x)dx) wole

The term

1
€2

+

b—e :
/ 150 [fs(x +e)— (fS(X) + () (e + (fs)”(x)e_)} o
(

b
/b (f(X)+f’(X)se+f ) () (x) =

}

goes to 0 uniformly forO < s < 1ase — 40 as follows. The second term is bounded
by

e+ ()= 6)

— (f(B) + f'(b)(x — b) + f(b)s€) dx

1 b
S| s 0= ol [ dx=bi+sods

xe(b—e,b)

f‘l () (f)*(x) dx

b—e

£2 ’ _ ( 1)2
+26(f(b) fb—€)+——7F— >

1
= sup [f'(x)— fB) (s + 5) + %(f/(b) — fb—e)

xe(b—e,b)
ss — 1)

b
/b F ) () dx

1 1 1 (b
< sup If/(x)—f/(b)l(1+§)+§(f/(b)—f(b—e))+§ /Hf_l(x)(f/)z(x)dx,

xe(b—€,b)

which goes to 0 as € — +0. Similarly to (33), we can show that the first term goes to 0
uniformly concerning s. In particular in case (v), we can show this by dividing the first

term into two integrals fc ~ " and f _s - In the following, we will use the convergence

concerning the part fc fb_ . That is, for any § > 0 and any €’ > 0, there exists a real
number € > 0 such that

b3
<€

2
17500 |:fs(x + e)_(fs(x)+(fs)/(x)e+(fs)”(x)%)] &

€2 ).

&1y

Thus, from the existence of f2’ (0) and the relation f(b —0) = A;, we obtain (14) and
the uniformity in case (ii). From (10) and the relations f(b —0) = f/(b —0) = 0, we
obtain (14) and the uniformity in case (v).
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Next, we consider cases (i), (iii), and (iv).

b—e
IO f (x +e)dx
' b—3 . ) ) ) ) 62
= 7 [fé (x+e€ — (fA ) + (5 (e + (fé)”(x);)] dx
b—§ 62
[ SO FefTOUND 0+ S T ) dx
b—e
+ FIR@) fR(x + e) dr. (52)
b—§

In the following, we discuss only case (i). we have

b=5 1 / 62 1 i b
/ F@+ef @U@+ S @ 0 d+ /b L, S

c

b b—8+e€
=/ f(x)dx—/ f(x)dx
c b—48

b—§ , b—4§ 1 62
+ ( / FI O ) dx) e+ ( / FI @Y () dx) =
b b—5+€ b—$
:/ F(x)dx —/ f(x)dx +(/ f/(x)dx)se
c b—§ c

s b5
+(S(s 1)/ (s — 1)‘f*1(x)(f’(x))2dx+%/ f"(x)dx)e2

2

b b—6+€ S )
= / fx)dx — /b F)dx + (f(b—38) — f(e)se+ (f'(b—8) — f’(c))ie

_ b—4§
+s(“2 D ( / FEO ! (0)? dx)ez. (53)
Letting z := b);,x, we have
b—e b
I+ edy — / f(x)dx
b—§ b—5+€

b
= /h (fe=—arw=rw) d

—8+€

b 0
= /h £ [ e+ y)dydx

—d0+4€ —€

8—¢
I L B+
) d dy. 54

/0 /0 L0GC+D) £ 2yH () dy (54)
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Similarly to (39), we can prove that for any ¢’ > 0, there exist real numbers § > 0
and € > 0 such that

S—¢

5 /G2 fg(y(zﬂ))d

Jo z -
sd—e)|

S(y(z+1 7 N
HGGE+HD) £ + B(ka + 5 — ka8, 1 — k2)

55
pr P (35

for any y satisfying € > y > 0. Therefore, from (51)—(55), similarly to (40) we can
choose constants C| and C, independently for s, such that

I (e, f,€) + ABla + (1 = 5) — k2 (1 = 8), 1 — kp) U==2) g2

€k2

1
< — (Cle + Cre? + 6/62) +é. (56)
K2

Thus, we obtain (14) and the uniformity in case (i).
Next, we consider cases (iii) and (iv). Concerning the second term of (52), we have

b—§

2
FO)+ef 0 0 + %flfs(X)(fs)”(X) dx

b

+/ F@) = FO ) (e dx
b—8+¢€

2

) €
2

b
c

=/ (f(x) + f'(x)s€) dx+(

b
_/ (fx) + f'(x)s€) dx+/
b

-8 b—6+e€

I () dx)

b
(1) = @) (e) de
62

U (x) dx) >

b—8

b
=/ f(x)dx+f(b—0)se—f(c)se+(

b b
[ (o sese axs [
b

-8 b—6+e€

c

(f0 = £V e) dx.
(57)

We can evaluate this as

b
‘— [ Gwrrasgars [ (10— poewe) a
b—3§ b—b+e€

b—8+¢€ b—8+¢€ b
= ‘—/ f(x)dx —/ f/(x)sedx —/ f/(x)edx
b

=4 b—38 b—b+€

b

b—§+¢€
/ fb—=8+e) — f(x)— f(x)sedx
b

-3

b—6+€
s/b (b =846 — OOl + 1 (0)]se dx

-6
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3
< max |f’(b—5+et>|§ez. (58)

0<tr<

Concerning the third term of (52), we have

b—e b

FIS £+ ) dx + / P+ PO e d

b= b—8+e¢

b
[ rw( e w1 me) ar

—d8+e€

b 0
=/b 1) (— (f]s)/(x‘i‘)’l)_(f]s)/(x)d)ﬂ) dx

—38+e€ —€

b 0 ryn
=/ f2(x) (—/ / (17" (x + y2) dyn dyl) dx
b—38—+e€ —e JO

_ / /w / |:(l—s) B2 G+ D) H02)f ()
o Jo Jo BnG+D) ') (20

13 (322) L2 (D) dz(fz’)z(yz)
5 zD) Lr(ni+D)  (£)2(n) f2(y2)

+s(s—1) y2dyz2dy

(59)

Similarly to (45), in case (iii), we can prove that for any €’ > 0 there exist real numbers
6 > 0 and € > 0 such that

Bsre 2@ (= [2 [ 1) 4 v dyz dyn ) dx

€k2

AB(1 +5s(k2 —1),2 — k2) (l_s)(z_“:;s(“_l))ékz

ek2

<€ (60)

Similarly to (46), from (51), (52), (57)—(60), we can choose a constant C, indepen-
dently for s such that

IF(e, fo€) 4+ AaB( 4 s(ky — 1), 2 — 1ep) 1=2@=2tst2=1) o

K2

ek2

1
< — (C262 + 6/62) +é. (61)
€2
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Thus, we obtain (14) and the uniformity in case (iii). Similarly to (49), in case (iv),
we can prove that

e £200 (210 31 (1) Gy dya ) dx + 4220502 (—loge)

<€
€2(—loge)

(62)

Similarly to (50), from (51), (52), (57)-(59), and (62), we can choose a constant C3
independently for s such that

If (e, fro) + A U722 (~ loge) |
€2(—loge) = €2(—loge)

(C262 + 6’62) e, (63)
Thus, we obtain (14) and the uniformity in case (iv).

6 Proof of Lemma 2

We can calculate

/ FI W+ e dr
> 2
= [T (rero - (Fos e @) e

00 2
+/ @) (f‘(x) + (f") (x)e + (fs)”(x)%) dx. (64)

The second term of (64) is calculated as

e’} 2
/ 7w (f“(x) + (%) (x)e + (ff)”(x)%) dx

= /Oo £+ f(x)se + f_l(x)(f’)z(x)wg + f"(x)%ez dx
= / h f(x)dx + / h f”(x)(f/)z(x)w dx — f(c)se — f/(c)%& dx.

(65)

We choose a sufficiently large number R such that f”(x) > 0 for x > R. Now, we

JMe))

put three real numbers Eo := SUp, - p:x—y|<e -J’;E—)yc;, Ey = Sup, yo Rijx—y|<e oy

and Ey 1= SUP, yo pijx—y|<e % Choosing a number #(x, €) € [0, 1] suitably, we
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obtain

00 2
/R IO +e) - (fS(X) + (f) (x)e + (fs)”(X)%) dx

1
2

1 oo
=3 ‘/R I (x+ 1 (x, €)€) — (f°)'(x)) dx

IA

1 o0
3 /R FIUEIE;™ — Dsts — D720 ()2 (x)

H(E2E) ™ — Dsf* x) f/(x)]dx

1 [ EIZE(% -1 _1 s 1 / /
< E/R - ST ) (x)dx + E(Eon — D(f'(+00) — f'(R) |,

(66)

Forany €’ > 0, we choose a sufficiently large number R such that the right hand side of
(66) s less than ¢’. Similarly to (33), the term & | [ 175 (x) % (x +-€) — (f* (1) + (f*)’

2
x)e + (fH"(x) %) dx‘ goes to 0 uniformly concerning s. Therefore, we obtain (29)

and the uniformity for0 <s < 1.

7 Conclusion

We have calculated the limit of the relative Rényi entropy. As mentioned in Sect. 4,
this calculation plays an important role in large deviation type asymptotic theory. On
the other hand, we conjecture that these limits characterize the asymptotic behavior
of the MLE. This relation, though, is expected to be clarified. From the information
geometrical viewpoint, this result indicates that a non-regular family gives a new
geometrical structure.
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