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Abstract This paper proposes the use of the bootstrap in penalized model selection
for possibly dependent heterogeneous data. The results show that we can establish (at
least asymptotically) a direct relationship between estimation error and a data based
complexity penalization. This requires redefinition of the target function as the sum
of the individual expected predicted risks. In this framework, the wild bootstrap and
related approaches can be used to estimate the penalty with no need to account for
heterogeneous dependent data. The methodology is highlighted by a simulation study
whose results are particularly encouraging.

Keywords Complexity regularization · Random penalty · Wild bootstrap

1 Introduction

This paper derives a bound for the penalized model selection problem. This bound is
then used to derive and study bootstrap penalties uniform over each class of compe-
ting models. Improvements with penalties over subsets of competing models are also
studied and their performance is highlighted via simulation.

The model selection problem using penalties that approximate the estimation error
uniformly over each class of models has been pioneered by Vapnik and Chervonen-
kis and it is usually referred to as the structural minimization approach (e.g., Vapnik
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1998). A problem with the original approach is that the penalty does not depend on the
sample sequence; consequently it overestimates the estimation error. Subsequent lite-
rature has focused on more data dependent penalties in order to obtain better uniform
estimates of the estimation error (e.g., Koltchinskii 2001; Bartlett et al. 2002; Lugosi
and Wegkamp 2004; Bartlett et al. 2005; Fromont 2007, and references therein). In
particular, Fromont (2007) suggests to use the bootstrap (Efron 1983) to obtain tigh-
ter penalties and provides oracle inequalities. The literature in this area has looked
for improvements in penalty estimation and the selection of subclasses of functions
over which to estimate the estimation error uniformly, but for technical reasons inde-
pendent identically distributed (iid) random variables have been assumed. In the iid
framework, powerful inequalities (e.g., McDiarmid inequality and extensions based
on the martingale method) can be used to obtain uniform bounds of the estimation
error and related quantities. As soon as we allow for dependence, these inequalities
cannot be used and the model selection problem becomes harder both to define and to
study. The goal of this paper is to provide a framework for structural risk minimiza-
tion for dependent heterogeneous data sets using bootstrap penalties. An asymptotic
inequality is derived to show that we can expect the bootstrap to work in this case as in
the case of iid random variables. Because of the use of the bootstrap, the results of this
paper can be related to the ones in Fromont (2007). In order to allow for dependence,
we need to restrict attention to smooth classes of loss functions as defined in terms
of an entropy integral under the uniform distance and we cannot derive so powerful
results as the ones in the literature based on iid observations. Hence, this rules out
the classification problem. Essentially, the class of functions allowed is the same as
in Cesa-Bianchi and Lugosi (2001), where a different problem is considered. Further
remarks on this can be found at the end of Sect. 2.

Some background material can be found below. Section 2 states an inequality with
uniform asymptotic rates for the structural risk minimization problem using some
suitable penalties. Then, it is shown that the bootstrap can be used to define these
penalties. In Sect. 3, a simulation study shows that the proposed methodology works
well in practice. In a variety of situations it seems to outperform other methods like
Akaike information criterion and V-fold cross validation. Section 4 contains proofs of
results.

1.1 Background

1.1.1 IID case

Suppose (Zi )i∈N is a sequence of iid random variables with values in some set Z.
Define Zb

a := (Za, . . . , Zb) (a < b, a, b ∈ N). Suppose that using the sample Zn
1

we want to minimize the expected risk R(Zn
1 , f ) := E f (Z1), where f ∈ F, and F

is some class of loss functions. Suppose also F :=⋃K
k=1 Fk . Our goal is to minimize

R(Zn
1 , f ) with respect to f ∈ Fk and k, i.e., to identify the “right” model (i.e., Fk).

Example 1 Suppose Zi :=(Yi , Xi ) ∈ R×R
K , and f (Zi )= fθ (Zi ) := (Yi − θ ′ Xi

)2,
where θ ∈ R

K . Minimizing R (Zn
1 , f

)
, with respect to f , implies minimization with
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respect to θ. From a technical point of view, what matters is the structure of f , hence,
it is more convenient to see the minimization with respect to f and not θ.Allowing for
some entries in θ to be zero leads to a model selection problem for regression under
the square loss.

1.1.2 Non-IID case

If (Zi )i∈N are not iid random variables, the definition of risk as unconditional expecta-
tion of f (Zi )may not be suitable. In particular, each Zi may take values in Zi , where
Zi �= Z j for i �= j .

Example 2 In Example 1, suppose Xi := (Yi−1, . . . ,Y1) (so that θ also depends on
i). Then, Zi−1 ⊂ Zi . While f depends on i, for simplicity, this dependence will not
be made explicit in the sequel.

When dealing with possibly dependent observations, the goal is to use the Xi

variable as a predictor for Yi .

Example 3 In Example 1 suppose Xi := (Yi−1, . . . ,Yi−K ) . If Yi = θ ′
0 Xi +εi ,where

(εi )i∈Z are iid, then, ( f (Zi ))i∈N is not iid, unless θ is evaluated at θ0. In this case,
it is less sensible to consider full expectation, as Yi depends on Xi which is known
at time i − 1. If Xi is a valid predictor, it must be an exogenous variable and as
such the estimation problem to choose f should be formulated as minimization of
the sum of the prediction errors (Seillier-Moiseiwitsch and Dawid 1993), i.e., mini-
mize R(Zn

1 , f ) := n−1∑n
i=1 Ei−1 f (Zi ), where Ei−1 is expectation conditioning

on the sigma algebra generated by Zi−1
0 . If (Zi )i∈N is iid, risk minimization using

unconditional and conditional expectations is identical.

1.1.3 Prequential definition of risk minimization

Example 3 shows that conditional expectation rather than full expectation might be
required in a time series context. Hence, the risk should be

R (Zn
1 , f

) = 1

n

n∑

i=1

Ei−1 f (Zi ) . (1)

Clearly, under suitable conditions, R(Zn
1 , f ) → E f (Z1) in some mode of conver-

gence. This does not need to be always the case, especially for dependent heteroge-
neous data in misspecified models (e.g., Skouras and Dawid 2000, for examples). This
definition of risk is in line with the prequential principle of Dawid (e.g., Dawid 1984,
1985, 1986).

Unless we know the true conditional distribution, R(Zn
1 , f ) is unknown and, in

practice, we would replace R(Zn
1 , f ) with

Rn
(
Zn

1 , f
) := 1

n

n∑

i=1

f (Zi ) ,
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which is its empirical counterpart. To see that this makes sense, notice thatRn(Zn
1 , f )−

R(Zn
1 , f ) is the average of martingale differences and converges to zero under regu-

larity conditions. Clearly, R(Zn
1 , f )may have a limit under regularity conditions and

this limit may correspond to the expectation of R(Zn
1 , f )with respect to the asympto-

tically stationary measure, when it exists (Gray and Kieffer 1980, for details). While
we will not directly refer to this, we tacitly assume that the sigma algebra generated
by Z0−∞ is trivial with no further mention.

2 Risk minimization problem for possibly dependent heterogeneous data

Suppose F can be represented as the union of the models (Fk)k∈{1,...,K },where K may
tend to infinity with the sample size. This covers the case of estimation by the method
of sieves (e.g., Bühlmann 1997, in the autoregressive case).

Suppose f̂n,k ∈ Fk is a data based estimator. To provide the usual intuition for the
structural minimization problem, consider the following identity:

min
k∈{1,...,K } R

(
Zn

1 , f̂n,k

)
−inf

f
R (Zn

1 , f
) =

[

min
k∈{1,...,K } R

(
Zn

1 , f̂n,k

)
−inf

f ∈F
R (Zn

1 , f
)
]

+
[

inf
f ∈F

R (Zn
1 , f

)− inf
f

R (Zn
1 , f

)
]

.

The first term on the right is usually called the estimation error, while the second
is the approximation error. The approximation error summarizes the loss incurred in
restricting attention to the class F, where the inf f is taken within a larger class that
includes the “true model”. Clearly, the larger is F, the smaller is the approximation
error. However, a large F makes the estimation problem more difficult. This resembles
the usual trade off between bias and variance in the L2 nonparametric problem.

Since R(Zn
1 , f ) is unknown, we may use the following identity and its upperbound:

min
k∈{1,...,K } R

(
Zn

1 , f̂n,k

)
− inf

f
R (Zn

1 , f
) = min

k∈{1,...,K }

[

Rn

(
Zn

1 , f̂n,k

)
−inf

f
R (Zn

1 , f
)

+R
(

Zn
1 , f̂n,k

)
− Rn

(
Zn

1 , f̂n,k

) ]

≤ min
k∈{1,...,K }

[(

Rn

(
Zn

1 , f̂n,k

)
−inf

f
R (Zn

1 , f
)
)

+ sup
f ∈Fk

(R (Zn
1 , f

)− Rn
(
Zn

1 , f
))
]

,

so that the second term in the last inequality is a uniform loss for the estimation error.
Since we do not know R, the above upperbound can be used if we can find a good
estimate of the second term (the one in the supremum). Then, the strategy is to choose
f̂n,k such that the upperbound is minimized (note that inf f R(Zn

1 , f ) is independent
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of f̂n,k and k). For the sake of clarity, but at the cost of some repetition, we introduce
the following notation.

Notation 1 Let F = ⋃K
k=1 Fk . The symbol fk defines a fixed but arbitrary element

of Fk , and

f̂n,k := arg inf
f ∈Fk

Rn
(
Zn

1 , f
)

is the empirical risk minimizer for model k. For some function penn (Fk) (to be cha-
racterized in Condition 3) define

R̂n
(
Zn

1 , fk
) := Rn

(
Zn

1 , fk
)+ penn (Fk)√

n

and

f̂n,k̂ := arg min
k∈{1,...,K } R̂n

(
Zn

1 , f̂n,k

)
.

We shall also use the symbol � to denote inequality up to a multiplicative finite absolute
constant.

Remark 1 Note that R(Zn
1 , f̂n,k) := 1

n

∑n
i=1 Ei−1 f (Zi )| f = f̂n,k

, i.e., the conditional

expectation is taken before evaluating f at f̂n,k .

Usually, f̂n,k̂ is asymptotically consistent if |Rn(Zn
1 , f )−R(Zn

1 , f )| → 0 in some
appropriate mode of convergence uniformly over some subset of Fk , and penn(Fk) →
0 as n → ∞ (see van der Vaart and Wellner 2000; Skouras and Dawid 2000, for details
on the nonpenalized case). To ease notation, set f̂k := f̂n,k . For a random variable X,
M(X) stands for the median of X , i.e., Pr(X < M(X)) = Pr(X > M(X)).

Introduce the following condition.

Condition 1 The following holds for any k ∈ {1, . . . , K }:
(i) If f ∈ Fk , then ‖ f ‖∞ := supz | f (z)| < ∞ a.s.;

(ii) n−1
n∑

i=1

[
(1 − Ei−1) f (Zi )

] [
(1 − Ei−1) g (Zi )

] p→ σ ( f, g) , ( f, g ∈ Fk)

(2)

where σ : F × F → R is some limiting function such that σ ( f, f ) > 0 (∀ f ∈ Fk).

Remark 2 The dependence conditions on the data series are the ones implicit in Condi-
tion 1(ii).

The following definition is needed for the next condition.
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Definition 1 The entropy number N (s,G, d) is the minimal number of balls
{g : d ( f, g) ≤ s} of radius s required to cover the set G, under the distance d. The
entropy integral of G is defined as

H (G, d) :=
∫ diam(G)

0

√
ln N (s,G, d)ds,

where diam (G) = sup f,g∈G d ( f, g) .

Condition 2 Define

dn ( f, g) :=
√
√
√
√n−1

n∑

i=1

sup
z∈Zi

| f (z)− g (z)|2.

Then, the following hold:
(i)

dn ( f, g) � d∞ ( f, g) := lim
n→∞ dn ( f, g) , (3)

where � is inequality up to a finite absolute multiplictive constant on the right hand
side;
(ii)

HF := max
k∈{1,...,K }

[‖ f0k‖∞ + H (Fk, d∞)
]
< ∞,

for any f0k ∈ Fk such that ‖ f0k‖∞ ≥ inf f ∈Fk ‖ f ‖∞.

Remark 3 As mentioned in the previous section, we may allow Zi ∈ Zi , Z j ∈ Z j ,

with Zi �= Z j (i �= j) (Example 2). To ease notation, this is not made explicit
in the notation for f ∈ F and we also use (3) to simplify some arguments and
avoid trivialities in the notation. Clearly, if Zi = Z for any i , then d∞ ( f, g) =
supz∈Z | f (z)− g (z)|. Note that maxk∈{1,...,K } H (Fk, d∞) ≤ H (F, d∞). The odd
looking condition ‖ f0k‖∞ ≥ inf f ∈Fk ‖ f ‖∞ is used just in case the inf is not in Fk .

Remark 4 It is necessary to impose extra conditions to assure that quantities that are
supposed to be random variables are measurable (otherwise, they fail to be random
variables). Since these issues are well understood (e.g., van der Vaart and Wellner 2000)
measurability conditions are overlooked and everything is assumed to be measurable
with no further mention. The simplest option is to take F countable.

Finally, the penalty needs to satisfy the following.

Condition 3 Let (G ( f )) f ∈F be a mean zero Gaussian process with covariance func-
tion σ ( f, g), where σ ( f, g) is as in (2). For any k ∈ {1, . . . , K } , define

penn (Fk) := pen∞ (Fk)+ pn (k) (4)
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such that either
(i)

E sup
f ∈Fk

G ( f ) ≤ pen∞ (Fk)

or
(ii)

M

(

sup
f ∈Fk

G( f )

)

≤ pen∞ (Fk) (5)

and in both cases, there exists a sequence rn → 0 such that for any τ > 0 with
probability at least 1 − e−τ

|pn (k)| �
√

H2
F ln (1 + rneτ ). (6)

Remark 5 It is worth providing some intuition about (6). We shall show that we can
find a version of (G ( f )) f ∈F in Condition 3 such that with probability at least 1−e−τ ,

∣
∣
∣
∣
∣

sup
f ∈Fk

√
n
[R (Zn

1 , f
)−Rn

(
Zn

1 , f
)]− sup

f ∈Fk

G ( f )

∣
∣
∣
∣
∣
�
√

H2
F ln (1 + rneτ )

(Lemma 8) so that we can replace control over

sup
f ∈Fk

√
n
[R (Zn

1 , f
)−Rn

(
Zn

1 , f
)]

with control over sup f ∈Fk
G ( f ). Hence, any additional error incurred in the procedure

shall not be larger than the error due to this approximation. This is the requirement in
(6).

The estimator f̂n,k̂ satisfies the following asymptotic bound.

Theorem 1 Suppose Conditions 1, 2 and 3 are satisfied. Then, for any k ∈ {1, . . . , K },
fk ∈ Fk , and τ > 0, with probability at least 1 − e−τ ,

R
(

Zn
1 , f̂k̂

)
≤ R (Zn

1 , fk
)+ pen∞ (Fk)√

n

+8

√
2 (ln (K )+ τ) σ 2

F + C H2
F ln (1 + rn K eτ )

n
,

for some finite absolute constant C and some sequence rn → 0 both independent
of τ and K and we have defined

σ 2
F := sup

f ∈F
σ ( f, f ) .
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The above result provides a rough bound for penalized risk minimization in terms of
the penalty, the maximum asymptotic variance σ 2

F, the number K of competing models

and a term H2
F ln (1 + rn K eτ ) which goes to zero for any τ > 0 and K < ∞. The

complication in the proof of this result is to show that the constant C and the sequence
rn → 0 can be chosen independently of τ > 0 and K , hence providing a uniform
rate of convergence. However, the sequence rn does depend on maxk H (Fk, dn), i.e.,
on the size of the maximal entropy integral. This dependence could be made explicit
by the use of a more refined argument based on an estimate of the Prohorov distance
between

√
n
[R (Zn

1 , f
)−Rn

(
Zn

1 , f
)]

and the limiting Gaussian process G ( f ) (e.g.,
Doukhan et al. 1987). However, this would also require to impose explicit conditions on
the rate of convergence in Condition 1. For the sake of simplicity as well of generality,
we avoid more refined statements. The purpose of the bound is to identify the main
terms that contribute to the error. If we naively choose k without penalization (i.e.,
penn := 0), the bound is still of root-order, but should be replaced by a bound of the
following form

R
(

Zn
1 , f̂k̂

)
≤ R (Zn

1 , fk
)+ C ′

√
H2

F ln (2K + τ)

n

for some finite absolute constant C ′ (see Lemma 13). Since pen∞ (Fk) /
√

n =
O
(
n−1/2

)
uniformly in τ , and σ 2

F is smaller than H2
F [note that (ln (K )+ τ) �

ln (1 + 2K eτ ) for large τ ] there is an improvement as soon as we require high confi-
dence (i.e., large τ ). When the penalty needs to be estimated, the median might be
preferred because of its robustness. It seems plausible that we may avoid the ln K term
in the bound at the expense of a larger penalty (e.g., Bartlett et al. 2002). The derived
bound reveals a fundamental weakness of penalties that try to control the fluctuations
of the estimation error over the whole set Fk . The term penn(Fk)/

√
n can be quite large

relatively to the actual fluctuations of R(Zn
1 , f̂k)−Rn(Zn

1 , f̂k). As noted by several
authors (e.g., Bartlett et al. 2002), penalties that provide control uniformly over the
whole set Fk tend to perform quite poorly when the noise level is not high. For this
reason, it is worthwhile to derive a uniform bound for the estimation error only over
regions where the minimum is likely to be positioned. If we can obtain information on
where the data driven estimator is more likely to be positioned, then we can improve
on the estimation error.

Condition 4 For any τ > 0 there is a sequences of random functions ûn,k = ûn,k (τ ),
such that Pr(| f̂n,k | < ûn,k) ≥ 1 − e−τ , for k ∈ {1, . . . , K }.

For convenience introduce the following notation.

Notation 2 For any τ > 0, define Un,k (τ ) := { f ∈ Fk : | fn,k | < ûn,k} and
Un (τ ) :=⋃K

k=1 Un,k (τ ), where the argument τ stresses the fact that ûn,k depends on
τ . Moreover,

σ 2
Un(τ )

:= sup
f ∈Un(τ )

σ ( f, f ) , HUn(τ ) := max
k∈{1,...,K }

[‖ f0k‖∞ + H
(
Un,k (τ ) , d∞

)]
.
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Note that using Condition 4, we still find that the bound of Theorem 1 is valid but
with Fk replaced by a smaller set.

Corollary 1 Under Conditions 1, 2, 3 and 4, for any k ∈ {1, . . . , K }, fk ∈ Fk ,
τ > ln 2, with probability at least 1 − 2e−τ ,

R
(

Zn
1 , f̂k̂

)
≤ R (Zn

1 , fk
)+ pen∞

(
Un,k (τ )

)

√
n

+8

√
2 (ln (K )+ τ) σ 2

Un(τ )
+ C H2

Un(τ )
ln (1 + rn K eτ )

n
,

for some finite absolute constant C and some sequence rn → 0 both independent
of τ and K .

The improvement of the above result is that if we can identify ûn,k , then, we
can reduce considerably the size of the error both in terms of pen∞, the maximal
asymptotic variance and the entropy integral. Note that the confidence probability has
decreased from 1 − e−τ to 1 − 2e−τ due to Condition 4. Equipped with these results,
the goal of this paper is to obtain a data based algorithm that would allow us to satisfy
Conditions 3 and 4.

2.1 Bootstrap penalty estimators

In this section, we consider a simple bootstrap empirical process. It can be used to
construct a penalty that satisfies Condition 3. Suppose {(Mi,b)i∈Z, b = 1, . . . , B} are
sequences of iid bounded random variables independent of each other and of (Zi )i∈N

with mean and variance equal to one. The variables {(Mi,b)i∈Z, b = 1, . . . , B} might
be continuous. We shall define the following wild bootstrap empirical process

R∗
n

(
Zn

1 , f,Mi,b
) := 1

n

n∑

i=1

Mi,b f (Zi ) . (7)

This is a generalization of the wild bootstrap (as named in Mammen 1992) to the
empirical risk. Then, conditioning on the sample values,

Rn
(
Zn

1 , f
)− R∗

n

(
Zn

1 , f,Mi,b
) = 1

n

n∑

i=1

(
1 − Mi,b

)
f (Zi ) (8)

is the average of martingale differences like

R (Zn
1 , f

)− Rn
(
Zn

1 , f
) = 1

n

n∑

i=1

(Ei−1 − 1) f (Zi ) . (9)
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We define

penn,B (Fk) := 1

B

B∑

b=1

sup
f b∈Fk

(
Rn

(
Zn

1 , f b
)

− R∗
n

(
Zn

1 , f b,Mi,b

))
, (10)

and show that it can be used to satisfy Condition 3.

Theorem 2 Define penn (Fk) := limB→∞ penn,B (Fk) with penn,B (Fk) in (10).
Then, under Conditions 1 and 2, penn (Fk) satisfies Condition 3.

A more general penalty can be derived in place of (10). Suppose
{(πi,b)i∈Z, b = 1, . . . , B} are sequences of iid bounded random variables independent
of each other with mean zero and variance one. Define

penn,B (Fk) := 1

B

B∑

b=1

sup
f b∈Fk

(
1

n

n∑

i=1

πi,b f b (Zi )

)

. (11)

Then, we have the following generalization of Theorem 2.

Corollary 2 Define penn (Fk) := limB→∞ penn,B (Fk) with penn,B (Fk) in (11).
Then, under Conditions 1 and 2, penn (Fk) satisfies Condition 3.

Note that the penalty defined in (11) reminds quite closely Rademacker penalties
which are an effective mean to upperbound an empirical process via symmetrization
in the iid case. A similar idea is applied here, but asymptotically.

As mentioned previously, a penalty uniform over Fk may perform poorly (cf. the
bound of Theorem 1) and it is desirable to apply Corollary 1. To this end, we need an
estimate of the set Un,k (τ ) := { f ∈ Fk : | fn,k | < ûn,k (τ )} for any τ > 0. Again, the
bootstrap empirical process can be used. Define

f̂ b
n,k := arg inf

f ∈Fk

R∗
n

(
Zn

1 , f,Mi,b
)
.

Then, set û B
n,k = maxb∈{1,...,B}

∣
∣
∣ f̂ b

n,k

∣
∣
∣+ δ, for some δ = δB

n → 0 as either n or B go

to infinity. We have the following.

Theorem 3 For k ∈ {1, . . . , K }, suppose f̂n,k is such that, a.s.,

Rn

(
Zn

1 , f̂k

)
< inf

f /∈Gk
Rn
(
Zn

1 , f
)

(12)

for any open set Gk ⊂ Fk that contains f̂k . Then, for any τ, δ > 0 and n ∈ N,
there exists a B0 = B0 (τ, δ, n) such that for B ≥ B0, Condition 4 is satisfied with
ûn,k = û B

n,k . In particular, B0 → ∞ as either n and/or τ → ∞.
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Bootstrap model selection for possibly dependent and heterogeneous data 525

Theorem 3 allows us to find an estimator for the size of the set over which to
perform optimization of Rn with respect to f so that Corollary 1 applies. This leads
to considerable improvement in many applications. While B0 is unknown, Theorem 3
says that we can choose δ independently of τ and n as long as B is chosen large.
Hence, for sufficiently large B, the performance based on the constrained penalty will
be superior to the one based on a penalty over Fk (Corollary 1 vs. Theorem 1). The
condition in (12) is required for identifiably of the minimizer.

2.2 Bootstrap model selection in practice

From the previous results, the following approach for bootstrap model selection should
be a good choice:
For k = 1, . . . , K :
(1) Estimate f̂n,k from the empirical risk Rn;
(2) Use weights {(Mi,b)i∈Z, b = 1, . . . , B1} with mean and variance equal to one,
and estimate ( f̂ b

n,k)b∈{1,...,B1} from the bootstrapped process R∗
n in (7) and define the

set

B
B1
n,k :=

{
f̂ b
n,k; b = 1, . . . , B1

}
;

(3) Use mean zero, variance one weights {(πi,b)i∈Z, b = 1, . . . , B2} independent of
the weights in (2) and estimate

penn,B2

(
B

B1
n,k

)

√
n

:= 1

B2

B2∑

b=1

max
f b∈B

B1
n,k

(
1

n

n∑

i=1

πi,b f b (Zi )

)

;

(4) Use (1) and (3) to find the penalized risk Rn( f̂n,k)+ penn,B2(B
B1
n,k)/

√
n;

(5) Choose k to minimize Rn( f̂n,k)+ penn,B2(B
B1
n,k)/

√
n.

The only step that requires some further comment is (3). For practical reasons,
instead of using the set {| f | < û B

n,k}, the countable set B
B1
n,k is used where δ := 0

for simplicity. Since ( f̂ b
n,k)b∈{1,...,B1} is random we may expect B

B1
n,k to be a good

approximation for {| f | < û B
n,k} when B1 is large.

If we use the median instead of the mean, in step (3) we should set
penn,B2(B

B1
n,k)/

√
n equal to the n/2 order statistic of

⎧
⎨

⎩
max

f b∈B
B1
n,k

(
1

n

n∑

i=1

πi,b f b (Zi )

)

, b = 1, . . . , B2

⎫
⎬

⎭

(n/2 ∈ N to avoid trivialities in the notation).
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2.3 A few remarks on condition 2

In their paper on regret minimization for the logarithmic loss, Cesa-Bianchi and Lugosi
(2001) use the same entropy condition used here. To draw a more direct relation,
suppose f = − ln p, where p ∈ P, and P is a class of probability density functions
(with respect to some suitable dominating measure). As remarked by these authors,
for most “smooth parametric” classes P, ln N

(
s,P, d ′

n

) ≤ a ln
(
bn1/2/s

)
(a, b > 0),

where

d ′
n (p, q) :=

√
√
√
√

n∑

i=1

sup
z∈Zi

|ln p (z)− ln q (z)|2,

implying that for F being the class of functions f =−ln p with p∈P, ln N (s,F, dn) ≤
a ln (b/s) . Hence all their comments about the entropy numbers under the metric d ′

n
apply in this paper for the metric dn , replacing s balls with sn−1/2 balls, so that the
reader is referred to them for a discussion and examples (their Sect. 4).

The use of the semimetric dn may still lead to large entropy numbers ruling out
some “less smooth” classes. This semimetric is used because our results are based
on a combination of Azuma inequality for bounded martingales and bounds for the
Orlicz norm of the empirical process. An interesting question is if using a Bernstein
inequality for martingales (e.g., De la Peña 1999) and a combination of Orlicz norms
(e.g., van der Vaart and Wellner 2000, Lemma 2.2.10), together with a conditioning
argument, the semimetric dn could be replaced by a weaker one which would allow
us to consider less “smooth” classes of functions. This should be possible in some
circumstances. If we are not interested in uniform control w.r.t. τ in the second term
in the square root of Theorem 1, Condition 2 could be considerably weakened, by use
of weak convergence results for families of martingales (Levental 1989).

3 Simulation study

The performance of the bootstrap model selection strategy relative to other methods
may depend on the specific problem to which it is applied. For this reason, following
Friedman (2001), the performance will be tested on a series of randomly generated
models which can describe a large variety of continuous functions. Consider a function
F: R → R that admits the following representation

F (x) =
S∑

s=1

as gs (x)

gs (x) = exp

{

− (x − bs)

2c2
s

2
}

, (13)

where as ∈ [−1, 1], bs, cs ∈ R, s = 1, . . . , S. For S → ∞ the class of functions F
(parametrized in terms of as, bs , cs , s = 1, . . . , S) is dense in the class of continuous
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Fig. 1 Cross plot for two different data samples

bounded functions on R (e.g., Ripley 1996). For the simulation study, we shall consider
S = 20, (as)s∈{1,...,S} iid uniform in [−1, 1], and (bs)s∈{1,...,S} iid normal with mean
zero and variance one (N (0, 1)). For simplicity, cs = c (∀s) is also N (0, 1). The
scaling parameters cs are set all equal in order to avoid particularly irregular functions
that might be very uncommon in any practical application. One hundred functions are
simulated using this approach and data (Z (r)i )i∈N = (Y (r)i , X (r)i )i∈N (r = 1, . . . , 100)
are simulated adding correlated noise:

Y (r)i = F (r)
(

X (r)i

)
+ U (r)

i

U (r)
i = 0.8U (r)

i−1 + ε
(r)
i ,

where, for each r , (X (r)i )i∈N and (ε(r)i )i∈N are, respectively, sequences of iid N (0, 1)
and N (0, σ 2). Hence, each r corresponds to a simulated function F (r) which is iden-
tified by the parameters as , bs , cs = c in (13). For each of these functions, results are
tested on σ = 0.05, 0.1, 0.2 and sample sizes n = 50, 100, 200, 400, 800. In this case,
the signal to noise ratio is quite high for all σ ’s and r ’s. However, this is necessary
because of the highly nonlinear structure of the target functions F (r). Figure 1 gives
the cross plot of (Y (r)i , X (r)i )1≤i≤100 for two different F (r)’s when σ = 0.1, repre-
senting two opposite extreme cases. Despite the high signal to noise ratio, the second
panel displays a high degree of noise/randomness. Moreover, as mentioned previously,
penalties that provide uniform control of the estimation error tend to perform better
(relative to other methods) when the noise level is high. Hence, comparison with other
methods is of more interest in a framework with a lower level of noise.

Each F (r) is approximated by a k =0, . . . , K order polynomial Pk (x)=∑k
l=0 xlβl ,

where the βl ’s coefficients are estimated by least square, so that the empirical risk is
Rn ( fk) := n−1∑n

i=1 |Yi − Pk (Xi )|2 for the square loss fk (y, x) = |y − Pk (x)|2.
For each r , the estimated loss f̂k(y, x) = |y − P̂k(x)|2 is then used to compute the
prediction error on a validation sample (Y (r)i , X (r)i )n<i≤n+10,000 of 10,000 observa-
tions. Then, the average and median prediction error over r = 1, . . . , 100 is com-
puted. For some r ’s, the prediction error tends to be quite large and also reporting
the median prediction error might be informative. Results for the bootstrap penalties
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Table 1 Prediction error

n A/C Mean V-CV Mean BMean Mean BMedian Mean
Median Median Median Median

Sigma=0.05
50 0.18 1.58 0.11 1.08 0.23 0.37 0.19 0.32

100 0.08 0.46 0.09 0.31 0.13 0.27 0.12 0.24

200 0.08 0.23 0.08 0.22 0.09 0.19 0.08 0.24

400 0.04 0.14 0.04 0.15 0.06 0.16 0.05 0.15

800 0.04 0.11 0.04 0.13 0.06 0.13 0.04 0.11

Sigma=0.1
50 0.24 1.75 0.14 1.20 0.25 0.40 0.21 0.35

100 0.12 0.52 0.11 0.32 0.16 0.29 0.14 0.26

200 0.10 0.26 0.09 0.24 0.12 0.24 0.10 0.26

400 0.06 0.16 0.07 0.17 0.08 0.18 0.08 0.17

800 0.06 0.13 0.06 0.15 0.08 0.15 0.06 0.13

Sigma=0.2
50 0.37 2.30 0.26 1.56 0.35 0.50 0.31 0.45

100 0.23 0.72 0.21 0.53 0.25 0.45 0.24 0.36

200 0.19 0.35 0.19 0.33 0.21 0.30 0.20 0.33

400 0.15 0.25 0.15 0.26 0.17 0.27 0.16 0.26

800 0.14 0.22 0.15 0.24 0.16 0.24 0.15 0.22

based on mean and median (BMean and BMedian) are in Table 1, and are compared to
competitors based on Akaike’s information criterion (AIC) and V-fold cross validation
(V-CV). The bootstrap penalties are computed according to the procedure described
in Sect. 2.2 with

(
Mi,b

)
i≤n Poisson with mean 1 and

(
πi,b
)

i≤n standard Gaussian,
and B1 = B2 = 100. The penalized risk for AIC is given by Rn ( fk) (1 + 2k/n).
For V-CV, the sample is randomly partitioned into V = 10 validation samples. For
each validation sample, estimation is carried out using the remaining observations and
the prediction error is estimated using the validation sample (e.g., van der Laan and
Dudoit 2003).

Note that for this problem, the conditional risk converges to the unconditional risk
(when we divide by n) because of the weak dependence of the simulated data. Given
that model selection procedures are usually studied in terms of unconditional risk, it
makes sense to compare methods within this more restrictive framework.

It is clear that the conditions used in the theoretical analysis are not satisfied by
these simulations: (1) the loss function is not bounded, (2) the bootstrap weights
are not bounded. Despite being unbounded, these quantities have thin tails and we
could easily truncate in the theoretical derivations (but did not do so for the sake of
simplicity). Hence, it is of additional practical interest to test the procedure allowing
for unbounded quantities.

The results show that penalized bootstrap model selection and in particular BMedian
should be favored when we compare in terms of mean prediction error over each
simulated sample r . This is particularly so for small sample size n. When the sample
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Fig. 2 Boxplot of prediction error for σ = 0.1

size increases, the performance remains comparable to the one of the other methods.
The differences between the mean and median prediction error over r is due to the
difficulty of selecting a good model for some of the r ’s. Some target functions F (r)’s
are very challenging to estimate and approximate. While AIC and V-CV often perform
quite well, sometimes they select a model that leads to huge prediction error when
n is small. Figure 2 shows the boxplot for the prediction error when σ = 0.1 and
n = 50, 100, 200, 400 (n = 800 is not reported for economy of space). Recall that
these boxplots are constructed using the prediction error of R = 100 simulated samples
each based on a different target function F (r). The boxplot clearly shows that the
bootstrap penalties do a relatively good job for small n. For small n, AIC and V-CV
tend to be less stable producing the many outliers shown in the boxplot. When n
increases, BMean and BMedian still perform comparably well with respect to AIC
and V-CV. These results confirm the ones in Table 1. For higher noise levels (e.g.,
σ = 0.2, not reported in Fig. 2) the relative performance of the bootstrap penalties
improves.

4 Technical details and proofs

Notation 3 The following notation will be used: Yn( f ) := √
n[R(Zn

1 , f ) − Rn

(Zn
1 , f )] and Xn,b( f ) := n−1/2∑n

i=1 πi,b f (Zi ) where {(πi )i∈Z, b = 1, . . . , B} is as

in the previous section. The symbol
w→ stands for weak convergence and

d= for equality
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in distribution. Recall that for any two sequences an and bn, an � bn means that there
is a finite absolute constant C such that an ≤ Cbn . Reference to van der Vaart and
Wellner (2000) will be abbreviated to VW00.

The proof of Theorem 1 is based on the following steps: replace control over Yn ( f )
with control over a Gaussian process plus a term shown to be small (recall Remark 5),
control a centered version of the supremum of the Gaussian process by standard
inequalities. In particular, all the terms involved in these approximations are given in
Lemma 1 below, and their control proves Theorem 1. Proof of the other results follow
at the end. For the sake of clarity, from time to time, reference will be made to four
simple supplementary lemmata stated at the very end of this section. Since, we are
considering two kinds of penalties (based on mean and median), proofs will deal with
the penalty based on the mean first, without necessarily mentioning it.

4.1 Upperbound for conditional risk

The following upperbound is the starting point for the proof of Theorem 1.

Lemma 1 Suppose Condition 3(i) holds. Then,

R
(

Zn
1 , f̂k̂

)
≤ R (Zn

1 , fk
)+ pen∞ (Fk)√

n
+ max

k∈{1,...,K }

[
(1 − E) sup f ∈Fk

G ( f )√
n

]

+ max
k∈{1,...,K }

[(
sup f ∈Fk

Yn ( f )− sup f ∈Fk
G ( f )

)− pn (k)√
n

]

+ pn (k)− Yn ( fk)√
n

.

If Condition 3(ii) holds, the third term in the above display holds with

(1 − E) sup
f ∈Fk

G ( f )

replaced by

sup
f ∈Fk

G ( f )− M

(

sup
f ∈Fk

G ( f )

)

.

Proof Start with the following identity

R
(

Zn
1 , f̂k̂

)
= R (Zn

1 , fk
)+

[
R
(

Zn
1 , f̂k̂

)
− R̂n

(
Zn

1 , f̂k̂

)]

+
[
R̂n

(
Zn

1 , f̂k̂

)
− R (Zn

1 , fk
)]

= I + II + III.
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We shall deal with II and III separately.

Control over II.

II =
[

R
(

Zn
1 , f̂k̂

)
− Rn

(
Zn

1 , f̂k̂

)
− penn

(
Fk̂

)

√
n

]

[by definition of R̂n]

≤
{

R
(

Zn
1 , f̂k̂

)
− Rn

(
Zn

1 , f̂k̂

)
−

E sup f ∈Fk̂
G ( f )

√
n

− pn (k)√
n

}

[by Condition 3(i)]

≤ max
k∈{1,...,K }

[

sup
f ∈Fk

(R (Zn
1 , f

)− Rn
(
Zn

1 , f
))− E sup f ∈Fk

G ( f )√
n

− pn (k)√
n

]

by a uniform bound over k and then over f .
Control over III.

III =
[
Rn

(
Zn

1 , f̂k̂

)
+ penn

(
Fk̂

)− R (Zn
1 , fk

)]

[by definition of R̂n]

≤ [Rn
(
Zn

1 , fk
)− R (Zn

1 , fk
)]+ penn (Fk)√

n
,

because f̂k̂ is the minimizer of R̂n . Using the definition of Yn ( f ) and (4), the result
follows once we add and subtract sup f ∈Fk

G ( f ) /
√

n and use the fact that the maxi-
mum of a sum is bounded above by the sum of the maxima. The proof when (ii) in
Condition 3 holds is identical. ��

4.2 Uniform bound for Yn ( f )

A uniform bound for Yn ( f ) is found by Gaussian approximation.

4.2.1 Gaussian approximation

To show a Gaussian approximation, finite dimensional (fidi) convergence and stochas-
tic equicontinuity are shown. Together they imply weak convergence to a Gaussian
process.

Lemma 2 (Fidi convergence) Suppose F̄ (⊂ F) is a finite set. Under Condition 1,

(Yn ( f )) f ∈F̄
w→ (G ( f )) f ∈F̄, where (G ( f )) f ∈F̄ is a vector of mean zero Gaussian

random variables with covariance matrix (σ ( f, g)) f,g∈F̄.

Proof Condition 1 satisfies the conditions of Theorem 2.3 in McLeish (1974) which
implies that Yn ( f ) → G ( f ) , weakly for any fixed f , where G ( f ) is a (0, σ ( f, f ))
Gaussian random variable. By the Cramér Wold device fidi convergence follows. ��
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To show stochastic equicontinuity, we shall control the oscillations of Yn ( f ) in
terms of the Orlicz norm defined next.

Definition 2 For a random variable R, its ψ (x) := e|x |2 − 1 Orlicz norm is defined
as

‖R‖ψ := inf

{

C > 0 : Eψ

(
R

C

)

≤ 1

}

.

For the sake of clarity, we recall the statement of a set of inequalities that shall be
used momentarily. At first, we recall Azuma’s inequality (e.g., Devroye et al. 1996).

Lemma 3 (Azuma inequality) Suppose (Rn)n∈N is a martingale sequence such that
|Rn − Rn−1| ≤ cn a.s. for any n > 0 and R0 = 0. Then,

Pr (|Rn| > x) ≤ 2 exp

{

− x2

2
∑n

i=1 c2
i

}

.

Azuma inequality can be used to verify the condition of the following lemma that
relates the tails of a random variable to its Orlicz norm (Lemma 2.2.1 in VW00).

Lemma 4 Suppose R is a random variable such that, for some finite absolute constants
a and C,

Pr (|R| > x) ≤ a exp
{
−Cx2

}
.

Then, ‖R‖ψ ≤ [(1 + a) /C]1/2.

Finally, one uses a bound for the Orlicz norm of the oscillations of a stochastic
process to derive an entropy condition (Corollary 2.2.5 in VW00).

Lemma 5 Suppose that (R ( f )) f ∈G is a stochastic process and (G, d) an arbitrary
semimetric space. If

‖R ( f )− R (g)‖ψ � d ( f, g)

then,

∥
∥
∥
∥
∥

sup
f,g∈G

|R ( f )− R (g)|
∥
∥
∥
∥
∥
ψ

� H (G, d)

where H (G, d) is the entropy integral in Definition 1.

Putting the above ingredients together, we can prove the following result.
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Lemma 6 (Orlicz Norm) For dn as in Condition 2,

‖Yn ( f )− Yn (g)‖ψ � dn ( f, g) ,

which, for any Fk , implies

∥
∥
∥
∥
∥

sup
f,g∈Fk

|Yn ( f )− Yn (g)|
∥
∥
∥
∥
∥
ψ

� H (Fk, dn) . (14)

Proof For any fixed f,
√

nYn ( f ) is the sum of martingale differences. Hence,√
n (Yn ( f )− Yn (g)) is also a sum of martingale differences

√
n [Yn ( f )− Yn (g)] =

n∑

i=1

(1 − Ei−1) ( f (Zi )− g (Zi ))

where

|(1 − Ei−1) ( f (Zi )− g (Zi ))| ≤ 2 sup
z∈Zi

| f (z)− g (z)| .

Then, Lemma 3 gives

Pr (|Yn ( f )− Yn (g)| ≥ x) = Pr
(√

n |Yn ( f )− Yn (g)| ≥ x
√

n
)

≤ 2 exp

{

− nx2

8
∑n

i=1 supz∈Zi
| f (z)− g (z)|2

}

= 2 exp

{

− x2

8dn ( f, g)2

}

.

Lemma 4 and the last display imply ‖Yn ( f )− Yn (g)‖ψ � dn ( f, g) . This inequality
and Lemma 5 give the result. ��
Remark 6 Lemma 6 implies that (Yn ( f )) f ∈F is stochastically equicontinuous. In fact,
define the set Fδ,n := { f, g ∈ F :dn ( f, g) ≤ δ}, for any δ > 0. Then,

∥
∥
∥
∥
∥

sup
f,g∈Fδ,n

|Yn ( f )− Yn (g)|
∥
∥
∥
∥
∥
ψ

� H
(
Fδ,n, d

) ≤
∫ δ

0

√
ln N (s,F, dn)ds.

Another implication is that

∥
∥
∥
∥
∥

sup
f ∈Fk

|Yn ( f )|
∥
∥
∥
∥
∥
ψ

≤ ‖Yn ( f0k)‖ψ + C H (Fk, dn) (15)
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for any f0k ∈ Fk and some finite absolute constant C independent of Fk (VW00,
p.100). Then, using Lemma 3 (with cn = ‖ f ‖∞) an application of Lemma 4 gives
‖Yn ( f0k)‖ψ � ‖ f0k‖∞. Inserting this last relation in (15) together with Condition 2(i)
gives

∥
∥
∥
∥
∥

sup
f ∈Fk

|Yn ( f )|
∥
∥
∥
∥
∥
ψ

�
[‖ f0k‖∞ + H (Fk, d∞)

]
. (16)

Hence, Condition 2 is used to control this Orlicz norm once we take max over k.

Weak convergence easily follows.

Lemma 7 (weak convergence) Under Conditions 1 and 2,

(Yn ( f )) f ∈F
w→ (G ( f )) f ∈F ,

where (G ( f )) f ∈F is a mean zero Gaussian process with covariance function σ ( f, g).

Proof Fidi convergence to a Gaussian random process, stochastic equicontinuity and
total boundedness imply weak convergence of the process (e.g., Example 1.5.10 in
VW00). Hence Lemmas 2 and 6 together with diam (Fk) < ∞ [by Condition 1(i)]
and K < ∞ give the result. ��

Lemma 7 is used to prove a uniform bound by Gaussian approximation using Borell
inequality.

4.2.2 Approximation by Borell inequality

The following approximation is crucial.

Lemma 8 For any k ∈ {1, . . . , K }, under Conditions 1 and 2, there exist Gaussian

processes (G′
n ( f )) f ∈Fk

d= (G ( f )) f ∈Fk and a sequence rn → 0 such that for any
ε ∈ (0, 1), with probability at least 1 − ε,

∣
∣
∣
∣
∣

sup
f ∈Fk

Yn ( f )− sup
f ∈Fk

G
′ ( f )

∣
∣
∣
∣
∣
�
√

H2
F ln

(
1 + rn

ε

)

where H2
F is the maximum entropy integral in Condition 2.

Proof Set Wn = Wn,k := sup f ∈Fk
Yn ( f ) and W = Wk := sup f ∈Fk

G ( f ) and write
Fn and F for their distribution functions. Lemma 7 and the continuous mapping theo-
rem (VW00, Theorem 1.3.6) imply Fn (x) → F (x) as n → ∞ [weak convergence
where F (x) is continuous]. Using weak convergence, we construct a sequence of
random variables (Wn)n∈N distributed as W and such that |Wn − W ′

n| → 0 in pro-
bability. Redefine (Wn)n∈N on a common probability space by enlarging the original
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probability space so that there exists a sequence (Vn)n∈N of iid uniform [0, 1] random
variables independent of (Wn)n∈N and W . Define

F̃ (x, v) := Pr (Wn < x)+ v Pr (Wn = x) ,

so that Un := F̃ (Wn, Vn) is a [0, 1] uniform random variable and F−1
n (Un)

a.s.=
Wn (where F−1

n (u) := inf (x : Pr (Wn ≤ x) ≥ u)) (Rüschendorf and de Valk 1993,

Proposition 1). We shall show that |W ′
n − Wn| p→ 0 where W ′

n := F−1 (Un), and it is
obvious that W ′

n is distributed as W for any n. To this end,

E
∣
∣Wn − W ′

n

∣
∣ =

∫

|Fn (x)− F (x)| dx

[Dudley 2002, Problem 2, p. 425]

→ 0, (17)

because if Wn has an r > 1 absolute moment, then Fn (x) → F (x) implies the
convergence of the above integral (Petrov 1995, Theorem 1.12). Note that Wn has
moments of all orders by Lemma 6 so that the above convergence does indeed hold.
The first display in the statement of the lemma is proved if we show that with probability
at least 1 − ε,

∣
∣Wn − W ′

n

∣
∣ �

√
1

t
ln
(

1 + rn

ε

)
(18)

for some t � H−2
F . By Markov inequality for some t � H−2

F

Pr (Wn > x) ≤ E exp
{
tW 2

n

}

exp
{
t x2
} � exp

{
−t x2

}
(19)

using Lemma 15 with ‖Wn‖ψ � HF by (16). Moreover, for some t �
[
E sup f ∈Fk

|
G ( f )|]−2,

Pr
(
W ′

n > x
) ≤ E exp

{
tW 2

n

}

exp
{
t x2
} � exp{−t x2}

by Lemma 15 with ‖W ′
n‖ψ � E sup f ∈Fk

|G ( f )| by (23), in Lemma 9 below, and
Lemma 4. Hence, by the exponential bounds in the last two displays and (17), we can
apply Lemma 14 implying (18) with t � H−2

F � (H−2
F ∧ [E sup f ∈Fk

|G ( f )|]−2).

Hence, we only need to show that H−2
F � (H−2

F ∧ [E sup f ∈Fk
|G ( f )|]−2), which

requires a bound for E sup f ∈Fk
|G ( f )|. To this end, note that we can apply the same

argument used to bound Yn ( f ) also to bound G ( f ). We just need to apply Lemma 5 to
G ( f ). Continuity of G ( f )−G (g) under theψ Orlicz norm is found by an application
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of the sub-Gaussian inequality of Lemma 6. Note that

ρ ( f, g)2 : = lim
n

1

n

n∑

i=1

[
(1 − Ei−1) f (Zi )− (1 − Ei−1) g (Zi )

]2

= [σ ( f, f )+ σ (g, g)− 2σ ( f, g)] (20)

by Condition 1(ii). Hence, by Gaussianity,

Pr (|G ( f )− G (g)| > x) < exp

{

− x2

2ρ ( f, g)2

}

. (21)

By (20) and Condition 1(i), we also have convergence of the expectation:

lim
n

1

n

n∑

i=1

[
(1 − Ei−1) f (Zi )− (1 − Ei−1) g (Zi )

]2

= E lim inf
1

n

n∑

i=1

[
(1 − Ei−1) f (Zi )− (1 − Ei−1) g (Zi )

]2

≤ lim inf E
1

n

n∑

i=1

Ei−1
[
(1 − Ei−1) f (Zi )− (1 − Ei−1) g (Zi )

]2 (22)

by Fatou lemma and the tower law of conditional expectations. It is then easy to see that
the above display implies ρ ( f, g) ≤ limn dn ( f, g) and that this last relation together
with (21) and Lemma 5 gives E sup f ∈Fk

|G ( f )| ≤ HF [see (16)]. ��

Recall Borell inequality for Gaussian processes (VW00, Proposition A.2.1).

Lemma 9 Suppose (G ( f )) f ∈F is a separable mean zero Gaussian process with
E sup f ∈F G ( f ) < ∞. Define σ 2

F := sup f ∈F V ar (G ( f )). For any x > 0,

Pr

(

(1 − E) sup
f ∈F

G ( f ) > x

)

≤ exp

{

− x2

2σ 2
F

}

Pr

(

sup
f ∈F

G ( f )− M

(

sup
f ∈Fk

G ( f )

)

> x

)

≤ 1

2
exp

{

− x2

2σ 2
F

}

Pr

(

sup
f ∈F

G ( f ) > x

)

≤ exp

{

− x2

8
[
E sup f ∈F |G ( f )|]2

}

.

(23)
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4.3 Proof of Theorem 1

Proof of Theorem 1 By Lemma 1 it is sufficient to bound

I : = max
k∈{1,...,K }

(

sup
f ∈Fk

Yn ( f )− sup
f ∈Fk

G ( f )

)

, II := pn (k) , III := max
k∈{1,...,K }−pn (k) ,

IV : = max
k∈{1,...,K } (1 − E) sup

f ∈Fk

G ( f ) , V := −Yn ( fk) ,

where in the case of the median, IV is changed accordingly. We shall deal with each
term separately. To avoid trivialities in the notation, rn → 0 is a sequence that may
change in the control of each term. Similarly, C , C ′ are finite absolute constants that
my change from line to line. By Lemmas 8 and 17,

I �
√

H2
F ln

(

1 + rn
K

ε

)

,

with probability at least 1 − ε. By (6) in Condition 3, with probability at least 1 − ε,

II �
√

H2
F ln (1 + rn/ε); hence by Lemma 17,

III �
√

ln

(

1 + rn
K

ε

)

with probability at least 1 − ε. By Lemmas 9 and 17, with probability at least 1 − ε,

IV ≤
√

2σ 2
F ln

(
K

ε

)

.

Finally, rewrite

V = [G ( fk)− Yn ( fk)] − G ( fk)

so that it is not difficult to deduce that we can bound the first term in the above display
with the upperbound for I and the second term with the upperbound for IV (note that
the results for I and IV hold for -I and -IV as well). Hence deduce the crude upperbound

V ≤
√

2σ 2
F ln

(
K

ε

)

+
√

C H2
F ln

(

1 + rn
K

ε

)
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with probability at least 1 − 2ε. By Lemma 16, the bounds for I–V imply, with
probability at least (1 − 6ε),

R
(

Zn
1 , f̂k̂

)
≤ R (Zn

1 , fk
)+ pen∞ (Fk)√

n

+2

√
4σ 2

F ln (K/ε)+ C H2
F ln (1 + rn K/ε)

n
+ C ′

√
ln (1 + rn K/ε)

n
[absorbing I and IV (and V) together]

= R (Zn
1 , fk

)+ pen∞ (Fk)√
n

+2

√
8σ 2

F ln (K/ε)+ C H2
F ln (1 + rn K/ε)

n
[absorbing the fourth term into the third]

≤ R (Zn
1 , fk

)+ pen∞ (Fk)√
n

+2

√
8σ 2

F (ln (6K )+ τ)+ C H2
F ln (1 + rn6K eτ )

n

[equating (1 − 6ε) to 1 − e−τ , solving for ε,

and substituting in ln (1/ε) ]

≤ R (Zn
1 , fk

)+ pen∞ (Fk)√
n

+2

√
32σ 2

F (ln (K )+ τ)+ C H2
F ln (1 + rn K eτ )

n

where the last step follows by some further bounding because K ≥ 2 implying that
ln (6K ) ≤ 4 ln (K ). Moreover, we absorbed the constant 6 into the sequence rn . In the
case of the median, mutatis mutandis, IV is controlled using the bound for the median
in Lemma 9 and we get the same result (actually with a slightly smaller constant). ��

4.4 Proof of other results

Corollary 1 is proved next.

Proof of Corollary 1 Recall Un,k := { f ∈ Fk : | f | < ûn,k
}
. Then,

Yn

(
f̂k

)
= inf

gk∈Un,k

[
Yn (gk)+ Yn

(
f̂k

)
− Yn (gk)

]

≤ sup
gk∈Un,k

Yn (gk)+ inf
gk∈Un,k

[
Yn

(
f̂k

)
− Yn (gk)

]
, (24)
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and note that by Condition 4,

Pr

(

inf
gk∈Un,k

[
Yn

(
f̂k

)
− Yn (gk)

]
> 0

)

≤ Pr
(

f̂k /∈ Un,k

)
≤ e−τ .

Then, Lemma 1 applies with Fk replaced by Un,k with probability 1− e−τ . To see this
just use (24) in the control of II in the proof of Lemma 1. Then, the proof is identical
to the one of Theorem 1 but using Un,k rather than Fk . However, by Lemma 16, the
stated bound now holds with probability at least 1 − 2e−τ , which is a well defined
probability value for τ > ln 2. ��

Results related to the bootstrap are proved next. To this end, the following bootstrap
approximation is required.

Lemma 10 (Bootstrap approximation) Let (G ( f )) f ∈Fk
be a Gaussian process with

covariance function σ ( f, g) as in Condition 1. For any k, under Conditions 1 and 2,

there exist mean zero Gaussian processes (G′
b,n( f )) f ∈Fk

d= (G′′
b,n( f )) f ∈Fk

d=
(Gb( f )) f ∈Fk and a sequence rn → 0 such that

E |G ( f )− G (g)|2 ≤ E |Gb ( f )− Gb (g)|2

and for any ε ∈ (0, 1), with probability at least 1 − ε,

∣
∣
∣
∣
∣
E

[

sup
f ∈Fk

Xn,b ( f ) |Zn
1

]

− E sup
f ∈Fk

G
′
b,n ( f )

∣
∣
∣
∣
∣
�
√

H2
F ln

(
1 + rn

ε

)

and
∣
∣
∣
∣
∣
M

(

sup
f ∈Fk

Xn,b ( f ) |Zn
1

)

− M

(

sup
f ∈Fk

G
′′
b,n ( f )

)∣
∣
∣
∣
∣
�
√

H2
F ln

(
1 + rn

ε

)
.

Proof Condition 1 and linearity of lim imply

n−1
n∑

i=1

f (Zi ) g (Zi )
p→ η ( f, g) ,

for some finite functionη ( f, g): F×F → R. Hence, conditioning on the sample values
Zn

1 , the bootstrap process (Xn,b( f )) f ∈Fconverges weakly in probability to a mean zero
Gaussian process (Gb ( f )) f ∈F with covariance function η ( f, g) . Fidi convergence
follows from the Lindeberg Central Limit Theorem. To show stochastic equicontinuity
note that Xn,b ( f ) is a martingale with bounded increments |Xn,b ( f )−Xn−1,b ( f ) | ≤
2‖πi,b‖∞‖ f ‖∞ so that we can apply Lemma 3 and just follow the proof of Lemma 6
step by step to show that (14) holds for (Xn,b ( f )) f ∈Fk as well with the same semi-
metric dn . This holds both unconditionally and conditioning on the sample sequence
Zn

1 . Therefore, Lemma 6 (uniform integrability) implies convergence of moments for
the supremum, e.g.,
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E

[

sup
f ∈Fk

Xn,b ( f ) |Zn
1

]
p→ E sup

f ∈Fk

G
′ ( f ) . (25)

Then, we just replicate the proof of Lemma 8 with Wn = E
[
sup f ∈Fk

Xn,b ( f ) |Zn
1

]
and

W ′
n = E sup f ∈Fk

G
′
b,n ( f ). Note that now W ′

n is a constant, but for ease of reference
we keep the same notation used in the proof of Lemma 8. We want to show a result
analogous to (18) for some suitable choice of t . We can use (25) in place of (17), and,
mutatis mutandis, we only need to show that (19) holds for Wn as defined here. We
note that

I = E exp
{

tW 2
n

}
= E exp

⎧
⎨

⎩
t

[

E

(

sup
f ∈Fk

Xn,b ( f ) |Zn
1

)]2
⎫
⎬

⎭
[by definition of Wn]

≤ E exp

⎧
⎨

⎩
tE

[

sup
f ∈Fk

Xn,b ( f ) |Zn
1

]2
⎫
⎬

⎭

[by convexity]

≤ E exp

⎧
⎨

⎩
t

[

sup
f ∈Fk

Xn,b ( f )

]2
⎫
⎬

⎭
(26)

again by convexity and the tower law for conditional expectations. Since Xn,b ( f ) is a
martingale with bounded increments as Yn ( f ), by the same arguments used for Yn ( f )
we deduce ‖ sup f ∈Fk

Xn,b ( f ) ‖ψ � HF implying, mutatis mutandis, (19) for some

t � H−2
F by Lemma 15. Hence, we just apply Lemma 14 implying the first result.

For convergence of the median, note that by the continuous mapping theorem, weak
convergence of (Xn,b ( f )) f ∈Fk implies weak convergence of the supremum and that
the median is just the 50% quantile which converges to M(sup f ∈Fk

Gb ( f )) (conver-
gence of distributions implies convergence of all quantiles for smooth distributions
assuming the quantiles to be finite). Carrying out a coupling argument for the condi-
tional median rather than the conditional mean, we need to show (26) in the case of the
median: II:=E exp{t M(sup f ∈Fk

Xn,b ( f ) |Zn
1 )} is bounded for some suitably chosen t .

Here, M[sup f ∈Fk
Xn,b ( f ) |Zn

1 ] is the median of sup f ∈Fk
Xn,b ( f ) conditioning on

Zn
1 . Note that

II = E exp

⎧
⎨

⎩
t

[

M

(

sup
f ∈Fk

Xn,b ( f ) |Zn
1

)]2
⎫
⎬

⎭

= EM

⎛

⎝exp

⎧
⎨

⎩
t

(

sup
f ∈Fk

Xn,b ( f )

)2
⎫
⎬

⎭
|Zn

1

⎞

⎠

= M

⎛

⎝exp

⎧
⎨

⎩
t

(

sup
f ∈Fk

Xn,b ( f )

)2
⎫
⎬

⎭

⎞

⎠
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where the second equality follows because the median of a strictly increasing function
is the strictly increasing function of the median, and ex2

is strictly increasing for
x > 0. The third equality follows by taking expectation. We need to show that the
above display is bounded. To ease notation, write ϕt = exp{t[sup f ∈Fk

Xn,b ( f )]2}.
Since ϕt ≥ 0, by Markov inequality, Pr (ϕt ≥ 4) ≤ Eϕt/4 ≤ 1/2 for some t � H−2

F ,
using (26) and Lemma 15. By this remark,

M

(

ϕt

(

sup
f ∈Fk

Xn,b ( f )

))

≤ 4, (27)

implying II ≤ 4 and the proof is completed along the lines of the proof for the condi-
tional mean by an application of Lemma 14.

We finish the proof showing that

E |G ( f )− G (g)|2 ≤ E |Gb ( f )− Gb (g)|2 .

By (20) and (22),

E |G ( f )− G (g)|2 = lim
n

1

n

n∑

i=1

E
[
(1 − Ei−1) f (Zi )− (1 − Ei−1) g (Zi )

]2

and mutatis mutandis,

E |Gb ( f )− Gb (g)|2 = lim
n

1

n
E

[(
n∑

i=1

πi,b f (Zi )

)

−
(

n∑

i=1

πi,bg (Zi )

)]2

= lim
n

1

n

n∑

i=1

E [ f (Zi )− g (Zi )]
2 ,

by independence of
(
πi,b
)

i∈N
. Noting that

Ei−1
[
(1 − Ei−1) f (Zi )− (1 − Ei−1) g (Zi )

]2 ≤ Ei−1 [ f (Zi )− g (Zi )]
2

the result is deduced using the tower law of conditional expectations. ��

Recall the Sudakov–Fernique Inequality (Proposition A.2.6 in VW00).

Lemma 11 Suppose (G ( f )) f ∈F and (G′( f )) f ∈F are separable mean zero Gaussian
processes such that

E |G ( f )− G (g)|2 ≤ E
∣
∣G′ ( f )− G

′ (g)
∣
∣2
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for any f, g ∈ F. Then, for any x > 0,

Pr

(

sup
f ∈F

G ( f ) ≥ x

)

≤ Pr

(

sup
f ∈F

G
′ ( f ) ≥ x

)

Then, Theorem 2 and Corollary 2 are a direct consequence of the following.

Lemma 12 (Bootstrap inequality) For k ∈ {1, . . . , K }, under Conditions 1 and 2,
there exists a sequence rn → 0 and a finite absolute constant C such that, for any
ε ∈ (0, 1), with probability at least 1 − ε,

E sup
f ∈Fk

G ( f )− E

[

sup
f ∈Fk

Xn,b ( f ) |Zn
1

]

�
√

H2
F ln

(
1 + rn

ε

)
,

M

(

sup
f ∈Fk

Yn ( f )

)

− M

(

sup
f ∈Fk

Xn,b ( f ) |Zn
1

)

�
√

H2
F ln

(
1 + rn

ε

)
.

Proof By Lemma 10,

E |G ( f )− G (g)|2 ≤ E |Gb ( f )− Gb (g)|2 , (28)

where Gb ( f ) and G ( f ) are the Gaussian processes of Lemma 10, so that, by Lemma 11,

Pr

(

sup
f ∈F

G ( f ) ≥ x

)

≤ Pr

(

sup
f ∈F

Gb ( f ) ≥ x

)

(29)

for all x , implying

E sup
f ∈F

G ( f ) ≤ E sup
f ∈F

Gb ( f ) . (30)

Now, consider the following identity,

E sup
f ∈F

G ( f )− E

(

sup
f ∈F

Xn,b ( f ) |Zn
1

)

=
[

E sup
f ∈F

G ( f )− E sup
f ∈F

G
′
b ( f )

]

+
[

E sup
f ∈F

G
′
b ( f )− E

(

sup
f ∈F

Xn,b ( f ) |Zn
1

)]

= I + II.

The result of the Lemma follows bounding I by (30) (i.e., I ≤ 0) and II by Lemma 10.
The inequality for the median also follows using (29) and Lemma 10. ��

Finally, this is the proof of Theorem 3.
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Proof of Theorem 3 We need to show that for any τ > 0 and δ = δB
n > 0 we can find

a B0 such that for B ≥ B0,

Pr

(

max
b∈{1,...,B}

∣
∣
∣ f̂ b

n,k

∣
∣
∣+ δ ≥

∣
∣
∣ f̂n,k

∣
∣
∣

)

= Pr

((

min
b∈{1,...,B} f̂ b

n,k ∧ 0

)

− δ ≤ f̂n,k ≤
(

max
b∈{1,...,B} f̂ b

n,k ∨ 0

)

+ δ

)

≥ 1 − e−τ .

For simplicity, we assume Fk only contains positive functions, so that we only need
to show that

Pr

(

f̂n,k ≤ max
b∈{1,...,B} f̂ b

n,k + δ

)

≥ 1 − e−τ .

Conditioning on the sample sequence Zn
1 ,

sup
f ∈Fk

∣
∣R∗

n

(
Zn

1 , f,Mi,b
)− Rn

(
Zn

1 , f
)∣
∣ = sup

f ∈Fk

∣
∣
∣
∣
∣

1

n

n∑

i=1

(
Mi,b − 1

)
f (Zi )

∣
∣
∣
∣
∣

p→ 0

by Markov inequality and (25). This together with (12) implies that, for any b and for
any δ > 0 there exists a γn,δ ∈ (0, 1) such that

Pr
(

f̂n,k ≤ f̂ b
n,k + δ|Zn

1

)
≥ (1 − γn,δ

) ↑ 1, a.s.

i.e., conditioning on Zn
1 , f̂ b

n,k
p→ f̂n,k for any b as n → ∞ (VW00, Corollary 3.2.3).

Hence, for any n,

Pr

(

max
b∈{1,...,B} f̂ b

n,k − f̂n,k < −δ
)

= E Pr

(

max
b∈{1,...,B} f̂ b

n,k − f̂n,k < −δ|Zn
1

)

= E

[
Pr
(

f̂ b
n,k − f̂n,k < −δ|Zn

1

)]B

[by independence conditioning on Zn
1 ]

= E

[
1 − Pr

(
f̂n,k ≤ f̂ b

n,k + δ|Zn
1

)]B

≤ E
(
γn,δ
)B
.

Since γn,δ is bounded and coverges to zero a.s., there is a non random sequence γn,δ

such that E
(
γn,δ
)B ≤

(
γ ′

n,δ

)B → 0. This means that for any τ > 0, δ > 0 and n > 0,

we can choose a B0 such that, for B ≥ B0, (γ
′
n,δ)

B ≤ e−τ . ��
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4.5 Supplementary Lemmata

The following is cited in the text after Theorem 1.

Lemma 13 Set penn (Fk) = 0 so that

R̂n
(
Zn

1 , fk
) := Rn

(
Zn

1 , fk
)

and

f̂n,k̂ := arg min
k∈{1,...,K } R̂n

(
Zn

1 , f̂k

)
= arg min

k∈{1,...,K } Rn

(
Zn

1 , f̂k

)
.

Then, there is a finite absolute constant C such that, for all τ > 0, with probability at
least 1 − e−τ

R
(

Zn
1 , f̂k̂

)
= R (Zn

1 , fk
)+ C

√
H2

F ln (2K + τ)

n
.

Proof Note that

R
(

Zn
1 , f̂k̂

)
= R (Zn

1 , fk
)+

[
R
(

Zn
1 , f̂k̂

)
− Rn

(
Zn

1 , f̂k̂

)]

+
[
Rn

(
Zn

1 , f̂k̂

)
− R (Zn

1 , fk
)]

and
[
R
(

Zn
1 , f̂k̂

)
− Rn

(
Zn

1 , f̂k̂

)]
≤ max

k∈{1,...,K } sup
f ∈Fk

[R (Zn
1 , f

)− Rn
(
Zn

1 , f
)]

.

By Markov inequality and the union bound,

Pr

(

max
k∈{1,...,K } sup

f ∈Fk

√
n
[R (Zn

1 , f
)− Rn

(
Zn

1 , f
)]
> x

)

≤ K
E exp

{
t sup f ∈Fk

√
n
[R (Zn

1 , f
)− Rn

(
Zn

1 , f
)]}

exp
{
t x2
}

for some suitable t > 0. The expectation can be bound by the ψ Orlicz norm so that
by Remark 6 this expectation is finite if t � H−2

,F . This implies that with probability
at least 1 − ε

max
k∈{1,...,K } sup

f ∈Fk

[R (Zn
1 , f

)− Rn
(
Zn

1 , f
)]

�

√
H2

F ln (K/ε)

n
.

The result follows by crudely bounding
√

n[Rn(Zn
1 , f̂k̂)−R(Zn

1 , fk)] with the above
display along the same lines of the proof of Theorem 1. ��

123



Bootstrap model selection for possibly dependent and heterogeneous data 545

The following lemma is simple, but convenient.

Lemma 14 Suppose that (Xn)n∈N is a sequence of random variables converging
in probability to a random variable X. Suppose that for any x > 0, and n > 0,
Pr (|Xn| > x) � exp{−t x2} and Pr (|X | > x) � exp{−t x2} for some t > 0. Then,
there exists a sequence rn → 0 as n → ∞ such that for any ε ∈ (0, 1), with probability
at least 1 − ε,

|Xn − X | ≤
√

4

t
ln
(

1 + rn

ε

)
.

Proof We claim that by the conditions of the lemma, for ψ (x) = ex2 − 1 and some

z > 0, rn := Eψ (z |Xn − X |) → 0. Since ψ (0) = 0, and |Xn − X ′
n| p→ 0, to

show convergence of this expectation, it is sufficient to show uniform integrability of
ψ (z |Xn − X |) which is implied by integrability of ψ (2z |Xn − X |). Clearly

Eψ (2z |Xn − X |) ≤ Eψ (4zXn)+ Eψ (4zX) � z−1/2

by Lemma 4 for 4z ≤ t . Hence, for z ≤ t/4,

Pr (|Xn − X | > x) ≤ Eψ
(
z
∣
∣Xn − X ′

n

∣
∣
)

ψ (zx)
= rn

ψ (zx)

= ε ∈ (0, 1) for x =
√

4

t
ln
(

1 + rn

ε

)
.

The last equality is found by solving rn/ψ (zx) = ε and replacing the constraint on
z. ��

The next three results are elementary and stated for convenience of repeated refe-
rence. The first follows by definition of the Orlicz norm (Definition 2), the second by
a simple application of Bonferroni inequality while the third by the union bound.

Lemma 15 Suppose that X is a random variable with ψ Orlicz norm satisfying
‖X‖ψ ≤ C for some finite absolute constant C. Then E exp{t X2} ≤ 2 for t ≤ C−2.

Lemma 16 Suppose X1, . . . , X I are real valued random variables. Then, for any
xi ∈ R (i = 1, . . . , I ),

Pr

(
I∑

i=1

Xi ≤
I∑

i=1

xi

)

≥ 1 −
I∑

i=1

Pr (Xi > xi ) .

Lemma 17 Suppose X1, . . . , X K are random variables and there is a function Q :
(0, 1) → R such that, for any k ∈ {1, . . . , K } and ε ∈ (0, 1), Pr (Xk > Q (ε)) ≤ ε.
Then,

Pr

(

max
k∈{1,...,K } Xk > Q (ε/K )

)

≤ ε.
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