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Abstract We consider the median regression with a LASSO-type penalty term for
variable selection. With the fixed number of variables in regression model, a two-
stage method is proposed for simultaneous estimation and variable selection where
the degree of penalty is adaptively chosen. A Bayesian information criterion type
approach is proposed and used to obtain a data-driven procedure which is proved
to automatically select asymptotically optimal tuning parameters. It is shown that the
resultant estimator achieves the so-called oracle property. The combination of
the median regression and LASSO penalty is computationally easy to implement via
the standard linear programming. A random perturbation scheme can be made use of to
get simple estimator of the standard error. Simulation studies are conducted to assess
the finite-sample performance of the proposed method. We illustrate the methodology
with a real example.

Keywords Variable selection · Median regression · Least absolute deviations ·
Lasso · Perturbation · Bayesian information criterion

1 Introduction

In the general linear model with independent and identically distributed errors, the
Least Absolute Deviation (LAD) or L1 method has been a viable alternative to the
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488 J. Xu, Z. Ying

least squares method especially for its superior robustness properties. Consider the
linear regression model

Yi = βT
0 xi + ei , 1 ≤ i ≤ n, (1)

where xi are known p-vectors, β0 the unknown p-vector of regression coefficients,
and ei the i.i.d random errors with a common distribution F .

The L1 estimator β̂L1 is defined as a minimizer of the L1 loss function

Ln(β) =
n∑

i=1

|Yi − βT xi |. (2)

Although there is no explicit analytic form for β̂L1 , the minimization may be carried
out easily via linear programming (see for example, Koenker and D’Orey 1987). The
more recent paper by Portnoy and Koenker (1997) gives speedy ways to compute the
L1 minimization, even for very large problems.

An important aspect in (regression) model building is model (variable) selection.
For the least squares-based regression, there are a number of well established meth-
ods, including the Akaike Information Criterion (AIC), the Bayesian Information
Criterion (BIC), Mallows’s C p and etc. These approaches are characterized by two
basic elements: a goodness of fit measure and a complexity index. The selection cri-
teria are typically based upon various ways of balancing the two elements, so the
resultant prediction errors are minimized. Remarkably, for the L1 based regression,
there have been very few works on model selection. Hurvich and Tsai (1990) proposed
a (double-exponential) likelihood function-based criterion and studied its small sam-
ple properties via simulations. Robust modification of Mallows’s C p were proposed
by Ronchetti and Staudte (1994) under the framework of M estimation. Develop-
ing general variable selection methods with sound theoretical foundation and feasible
implementation for L1-based regression remains a great challenge.

An intriguing and novel recent advancement in variable selection is known as Basis
Pursuit, proposed by Chen and Donoho (1994) or the Least Absolute Shrinkage and
Selection Operator (LASSO), proposed by Tibshirani (1996). In it, the estimation and
model selection are simultaneously treated as a single minimization problem. Knight
and Fu (2000) established some asymptotic results for LASSO-type estimators. Fan
and Li (2001) introduced Smoothly Clipped Absolute Deviation (SCAD) approach and
proved its optimal properties. Efron et al. (2004) introduced Least Angel Regression
(LARS) algorithm and its close connection to LASSO is extensively discussed.

With the fixed p and the invertible X T X , the least squares estimate βL S =
(X T X)−1 X T Y uniquely minimizes the squared loss

n∑

i=1

(Yi − βT xi )
2.
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LASSO estimate is defined as the minimizer of

n∑

i=1

(Yi − βT xi )
2 subject to

p∑

j=1

|β j | ≤ s ∗
p∑

j=1

|βL S
j |,

where 0 ≤ s ≤ 1 controls the amount of shrinkage that is applied to the estimates.
LASSO is similar in form to the ridge regression where the term in the constraint is

β2
j rather than |β j |. A remarkable feature of LASSO , as a result of the L1 constraint, is

that for some β j ’s, their fitted values are exactly 0. In fact, as the shrinkage parameter
s goes from 1 to 0, the estimates go from no 0 to all 0. LASSO can also be regarded
as a penalized least squares estimator with L1 penalty: a minimizer of the objective
function:

n∑

i=1

(Yi − βT xi )
2 + λn

p∑

j=1

|β j |,

where λn is the tuning parameter.
In the present paper, we propose a parallel approach borrowing the ideas from

LASSO by using the L1 penalty, but with the least squares loss replaced by the L1
loss. In doing so, we gain advantages in two fronts. First, it allows us to penetrate
the difficult problem of variable selection for the L1 regression. Appealingly, the
shrinkage property of the LASSO estimator continues to hold in L1 regression, see
Fig. 1. Second, the single criterion function with both components being of L1-type
reduces (numerically) the minimization to a strictly linear programming problem,
making any resulting methodology extremely easy to implement.

To be specific, our proposed estimator is a minimizer of the following criterion
function

n∑

i=1

|Yi − βT xi | + λn

p∑

j=1

|β j |.

It can be equivalently defined as a minimizer of the objective function

n∑

i=1

|Yi − βT xi | subject to
p∑

j=1

|β j | ≤ s ∗
p∑

j=1

|βL1
j |,

where βL1 is the usual L1 estimator.
As pointed out by Fan and Li (2001), LASSO does not possess the so-called oracle

property in the sense that it cannot simultaneously have the best rate of convergence
while correctly, with probability tending to one as sample size increases, set all unnec-
essary coefficients to 0. With this in mind, they proposed a variant of the penalty, called
SCAD, smoothly clipped absolute deviation. Using such penalty, they were able to
achieve the oracle property for the resulting estimator. Unfortunately, if we modify
our approach by replacing the L1 penalty function with the SCAD function, then the
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resultant minimization will be much more complicated. In particular, it is no longer
numerically solvable by the linear programming.

To maintain numerical simplicity and uniqueness of solution of the linear program-
ming, and to achieve the desirable oracle property, it is necessary for us to modify
and extend the LASSO-type objective function. The tuning parameter λn there plays a
crucial role of striking a balance between estimation of β and variable selection. Large
values of λn tend to remove variables and increase bias in the estimation aspect while
small values tend to retain variables. Thus it would be ideal that a large λn be used if
a regression parameter is 0 (to be removed) and a small value be used if it is not 0. To
this end, it becomes clear that we need a separate λn for each parameter component
β j . In other words, we need to consider the estimator as a minimizer of the objective
function:

n∑

i=1

|Yi − β ′ Xi | +
p∑

j=1

λnj |β j |.

In particular, we are interested in the case that λnj = ηnξnj , where ξnj are fixed
weighting parameter. Likewise, the estimator can be regarded as a minimizer of

n∑

i=1

|Yi − βT xi | subject to
p∑

j=1

ξnj |β j | ≤ s ∗
p∑

j=1

ξnj |βL1
j |.

In the Bayesian view, the β j s have independent prior distributions- double exponential

f (β j ) = λnj

2
exp(−λnj |β j |).

With proper choice of tuning parameters, we will show the resultant penalized estima-
tor exhibit optimal properties. After we obtained our results (Xu 2005), we noticed a
recent work of Adaptive LASSO by Zou (2006) which has the same spirit in propos-
ing different scaling parameters in LASSO for fixed p and squared loss. However, our
work is motivated by a unified L1 based approach for simultaneous estimation and
variable selection and focus on theoretical investigation of the resultant data-driven
procedure for the absolute deviation loss.

The rest of the paper is organized as follows. In Sect. 2, we introduce some notations
for L1 regression, list some conditions under which our main results hold and establish
a useful proposition. In Sect. 3, asymptotics for the estimator are considered. The
conditions under which consistency or

√
n-consistency hold are given and limiting

distribution results are proved. In Sect. 4, for properly chosen tuning parameters,
we establish the oracle property of the estimator and use the perturbation method to
estimate the standard error of the estimator. A two-stage data-driven procedure is also
provided and proved to automatically select asymptotically optimal tuning parameters.
In Sect. 5, simulation study as well as real data application are conducted to examine
the performance of the proposed approach.
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Model selection in median regression 491

2 Differentially penalized L1 estimator

We define the differentially penalized L1 estimator β̂ as a minimizer of the objective
function

Zn(β) = 1

n

n∑

i=1

|Yi − βT xi | + 1

n

p∑

j=1

λnj |β j |, (3)

where λnj , 1 ≤ j ≤ p are regularization parameters.
We need to make the following assumptions on the error distribution and the covari-

ates. These assumptions are essentially the same as those made in Pollard (1991) and
Rao and Zhao (1992).

(C.1) {ei } are i.i.d with median 0 and a density function f (·) which is continuous
and strictly positive in a neighborhood of 0.

(C.2) {xi } is a deterministic sequence and there exists a positive definite matrix V
for which 1

n V 2
n = 1

n

∑
i≤n xi xT

i → V 2.

Now we introduce some notations. Let the true coefficient vector β0 =
(

β1
0

β2
0

)
,

where β1
0 is s-vector and β2

0 is (p − s)-vector. Without loss of generality, assume
1 ≤ s < p, β2

0 = 0. Considering only the first s covariates, by (C.2), we have
1
n V 2

n1 = 1
n

∑
i≤n x1

i x1
i

T → V 2
1 , where x1

i is the subvector of xi which contains the
first s components.

Denote Gn(β) = 1
n

n∑
i=1

E(|Yi − xT
i β|− |Yi − xT

i β0|), Ri (β) = |Yi − xT
i β|− |Yi −

xT
i β0| + (β − β0)

T xi sgn(ei ), then

1

n
(Ln(β) − Ln(β0)) = −1

n

n∑

i=1

(β − β0)
T xi sgn(ei ) + Gn(β)

+1

n

n∑

i=1

[Ri (β) − E Ri (β)].

In order to study the asymptotical properties of the penalized estimator, we need to
establish the Local Asymptotic Quadratic (LAQ) property of the loss function (2).

Proposition 1 Under (C.1)–(C.2), for every sequence dn > 0 with dn → 0 in proba-
bility, we have

n−1Ln(β) − n−1Ln(β0) = −n−1
n∑

i=1

(β − β0)
T xi sgn(ei )

+ f (0)(β − β0)
T V 2(β − β0) + op(‖β − β0‖2 + n−1)

(4)

holds uniformly in ‖β − β0‖ ≤ dn.
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Proof It is easy to see that

|Ri (β)| ≤ 2|xT
i (β − β0)|I (|Yi − xT

i β| ≤ |xT
i (β − β0|)),

so

sup
‖β−β0‖≤dn

Ri (β)

‖β − β0‖ ≤ 2‖xi‖I (|Yi − xT
i β0| ≤ 2dn‖xi‖).

Since for any compact set B, the class of functions { Ri (β)
‖β−β0‖ : β ∈ B}, is Euclidean

with an integrable envelope in the sense of Pakes and Pollard (1989), we can apply
the maximal inequality of Pollard (1990, p. 38) to get, for some C > 0,

E

⎡

⎢⎢⎣ sup
‖β−β0‖≤dn

n∑
i=1

(Ri (β) − E Ri (β))

√
n‖β − β0‖

⎤

⎥⎥⎦

2

≤ C

n

n∑

i=1

‖xi‖2 I (|εi | ≤ 2dn‖xi‖) = o(1)

as n → ∞ and dn → 0. Thus uniformly in ‖β − β0‖ ≤ dn ,

1

n

n∑

i=1

(Ri (β) − E Ri (β)) = o(‖β − β0‖/√n). (5)

and

Gn(β) = 1

n

n∑

i=1

∫ −xT
i (β−β0)

0
Esgn(εi + u)du,

where Esgn(εi + u) = 2
∫ 0
−u f (x)dx . Since Gn(β) is a convex function, it has deriv-

ative 0 at β0, and its second derivative at β0 is 1
n

n∑
i=1

xi xT
i 2 f (0), by Taylor expansion,

Gn(β) = f (0)(β − β0)
T V 2(β − β0) + o(‖β − β0‖2). (6)

Hence, (4) follows directly from (5) and (6). 	


3 Large sample properties

Knight and Fu (2000) studied the limiting distributions of LASSO-type estimator
in least squares setting. In this section, we establish similar large sample properties
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Model selection in median regression 493

for the proposed estimator β̂n . The key tools we use are the LAQ property of the
loss function and a novel inequality. The following result shows that β̂n is consistent
provided λnj = op(n).

Theorem 1 Under (C.1)–(C.2) and lim
n→∞ λnj/n

p→ λ0 j ≥ 0, 1 ≤ j ≤ p, β̂n →
argmin (Z), where

Z(β) = lim
n→∞ Gn(β) +

p∑

j=1

λ0 j |β j |.

In particular, since β0 is the minimizer of Gn(β), β̂n is consistent, provided λnj =
op(n).

Proof By the uniform law of large numbers (Pollard 1990), n−1Ln(β)−n−1Ln(β0)−
Gn(β) = o(1) uniformly for β in any compact set K , hence Zn(β) − Z(β) = op(1).
Since Zn(β) ≥ 1

n Ln(β) and argmin (Ln) = Op(1), we know that argmin (Zn) =
Op(1). It follows that β̂n → argmin (Z). 	


In order to establish the root-n consistency of β̂n , we need to study the following
object function:

C(u) = uT Du/2 − aT u +
s∑

j=1

λ j u j +
p∑

j=s+1

λ j |u j |

where u ∈ R p, D is a positive definite matrix, λ1, . . . , λs are constants, λs+1, . . . , λp

are nonnegative constants, and suppose that û is a minimizer of c(u), then we have
the following proposition

Proposition 2 For any u, we have C(u) − C(û) ≥ (u − û)T D(u − û)/2

Proof First, let us look at the case when s = 0, and without loss of generality, assumes
û = (û1

0

)
,,where û1 ∈ Rr ,and û1i �= 0, 1 ≤ i ≤ r

denote

D =
(

D11 D21
D12 D22

)

where D11, D12, D21, D22 are r × r, r × (p − r), (p − r) × r, (p − r) × (p − r)

matrices, and DT
12 = D21.

denote a = (a1
a2

)
, a1, a2 are r, (p − r) dimensional vectors respectively.

Since the
(û1

0

)
are minimizer of C(u), we have

(D11û1)i − a1i + λi sgn(û1i ) = 0, 1 ≤ i ≤ r (7)

|(D21û1)i − a2i | ≤ λi , r + 1 ≤ i ≤ p (8)
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the first equality holds because û1 is not zero componentwise and is the minimizer of
the objective function

uT
1 D11u1/2 − aT

1 u1 +
r∑

j=1

λ j |u j |

so the derivative of the objective function at the minimizer will be 0. The second
inequality holds because generally 0 ∈ R p is the minimizer of

uT Mu − bT u +
p∑

i=1

λi |ui |

is equivalent to say that

|bi | ≤ λi

To show the proposition holds, we need to prove the inequality

uT
1 D11u1/2 + uT

2 D22u2/2 + uT
2 D21u1 − aT

1 u1 − aT
2 u2 +

p∑

i=1

λ j |u j |

≥ ûT
1 D11û1/2 − aT

1 û1 +
r∑

i=1

λi |û1i | + (u1 − û1)
T D11(u1 − û1)/2

+ (u1 − û1)
T D12u2 + uT

2 D22u2/2

equivalent to

uT
2 D21u1 − aT

1 u1 − aT
2 u2 +

p∑

i=1

λ j |u j |

≥ ûT
1 D11û1 − aT

1 û1 +
r∑

i=1

λi |û1i | − ûT
1 D11u1 + (u1 − û1)

T D12u2

by (7)

ûT
1 D11û1 − aT

1 û1 +
r∑

i=1

λi |û1i | = 0

and

−aT
1 u1 +

r∑

i=1

λ j |u j | ≥ −ûT
1 D11u1
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so we only need to prove that

−aT
2 u2 +

p∑

i=r+1

λi |u2(i−r)| ≥ −ûT
1 D12u2

which is apparent by (8).
Now we consider the general case when the s > 0,denote

D =
(

C B
BT A

)

where C, B, BT , A are s × s, s × (p − s), (p − s) × s, (p − s) × (p − s)matrices.
denote a = (a1

a2

)
, a1, a2 are s, (p − s) dimensional vectors respectively.

denote b = (λ1, . . . , λs)
T we take the transformation v1 = u1+C−1 Bu2, the objective

function becomes

vT
1 Cv1/2 + uT

2 (A − BT C−1 B)u2/2 − (aT
2 − aT

1 C−1 B)u2

−aT
1 v1 +

p∑

i=s+1

λi |u2(i−s)| + bT v1 − bT C−1 Bu2

and when minimizing this function u2 and v1 can be separated. for the function of u2
we apply the result we just got above, and rewrite the function of v1 in its quadratic
form and it is straightforward to have

c(u) − c(û)

≥ (u2 − û2)
T (A − BC−1 BT )(u2 − û2)/2

+(v1 − v̂1)
T C(v1 − v̂1)/2 = (u − û)T D(u − û)/2

Hence the proposition holds in the general case. 	

Suppose that ûn is a minimizer of the objective function

Bn(u) = −n−1/2xT
i sgn(εi )u + f (0)uT V 2u +

s∑

i=1

λni√
n

sgn(β0i )ui +
p∑

i=s+1

λni√
n
|ui |.

(9)

The following result shows that β̂n is
√

n-consistent provided λnj = Op(
√

n).

Theorem 2 Under (C.1)–(C.2) and λnj/
√

n
p→ λ0 j ≥ 0, 1 ≤ j ≤ p, then

√
n(β̂n −

β0)
d→ argmin (V ), where

V (u) = W T u + f (0)uT V 2u +
s∑

i=1

λ0i sgn(β0i )ui +
p∑

i=s+1

λ0i |ui |,
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and W has a N (0, V 2) distribution. In particular if λnj = op(
√

n), the penalized
estimator behaves like the full L1 estimator β̂L1 .

Proof It follows from Theorem 1 that, β̂n is consistent. By (4)

Zn(β̂n) − Zn(β0)

=−n−1xT
i sgn(ei )(β̂n −β0)+ f (0)(β̂n −β0)

T V 2(β̂n −β0)/2+op(‖β̂n −β0‖2+n−1)

+
s∑

i=1

λni

n
(|β̂ i

n| − |β0i |) +
p∑

i=s+1

λni

n
|β̂ i

n|

=−n−1xT
i sgn(ei )(β̂n −β0)+ f (0)(β̂n −β0)

T V 2(β̂n −β0)/2+op(‖β̂n −β0‖2+n−1)

+
s∑

i=1

λni

n
sgn(β0i )(β̂

i
n − β0i ) +

p∑

i=s+1

λni

n
|β̂ i

n − β0i |

let n
1
2 (β̂n − β0) = ũn , then

Zn(β̂n) − Zn(β0) = n−1 Bn(ũn) + op(n
−1‖ũn‖2 + n−1)

It is easy to see that ûn
p→ argmin (V ) = Op(1). So n− 1

2 ûn converges to 0 in probabil-

ity, again by (4), we have Zn(β0 +n− 1
2 ûn)− Zn(β0) = n−1 Bn(ûn)+op(n−1‖ûn‖2 +

n−1).
Furthermore, since β̂n is a minimizer of Zn(β), we have

0 ≥ n−1(Bn(ũn) − Bn(ûn)) + op(n
−1‖ũn‖2 + n−1‖ûn‖2 + n−1)

by the Proposition 2, we have,

1

n
f (0)(ũn − ûn)T V 2(ũn − ûn) + op(n

−1‖ũn‖2 + n−1‖ûn‖2 + n−1) ≤ 0

It says that n
1
2 (β̂n − β0) and ûn has the same asymptotic distribution, and completes

the proof. 	


4 Adaptive two-stage procedure

4.1 Oracle property

In this section, we show that for properly chosen tuning parameters, the resultant
penalized estimator exhibits the so-called oracle property. Suppose the {λnj } satisfy
the following conditions:

(C.3)
λnj√

n

p→ 0 for 1 ≤ j ≤ s and
λnj√

n

p→ ∞ for s + 1 ≤ j ≤ p.
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The first part of (C.3) tries to preserve the
√

n-consistency of the estimator, and the
second part of it does the work of shrinking the zero coefficients directly to zero.
Notice that the rates of regularization parameters are different between zero coefficients
and nonzero ones. Practically, we do not know beforehand about such information,
and actually this is exactly the task that the variable selection procedure is trying to
accomplish. However, since we can estimate the coefficients with some precision, we
can choose data-driven tuning parameters with asymptotically correct rates, and then
the penalized estimator can exhibit the same asymptotic properties as the one with
ideal tuning parameters. An approach based on this idea is given and illustrated in
Sect. 4.3.

Perturbation methods are used to estimate the covariance matrix, define a new loss
function

Z∗
n(β) := 1

n

n∑

i=1

∣∣∣Yi − βT xi

∣∣∣ωi + 1

n

p∑

j=1

λnj
∣∣β j

∣∣

where ωi (i = 1, . . . , n) are independent positive random variables with E(ωi ) =
V ar(ωi ) = 1 and are independent of the data (Yi , Xi )(i = 1, . . . , n), let the β̂∗

n be a
minimizer Z∗

n(β). We will show in Sect. 4.2 that conditional on the data (Yi , xi )(i =
1, . . . , n), n

1
2 (β̂∗

n − β̂n) has the same asymptotic distribution as n
1
2 (β̂n − β0), hence

the realizations of β̂∗
n by repeatedly generalizing the random sample (ω1, . . . , ωn) can

be used to estimate the covariance matrix.
We need to establish the following

√
n-consistency for later use.

Proposition 3 (
√

n-consistency) Under (C.1)–(C.3), we have n
1
2 (β̂n −β0) = OP (1).

Proof We only need to show that for any given ε > 0, there exists a large constant C
such that

P

{
inf‖u‖=C

Zn

(
β0 + u√

n

)
> Zn(β0)

}
≥ 1 − ε (10)

together with the convexity of Zn , this implies that n
1
2 (β̂n − β0) = OP (1).

And

n

{
Zn

(
β0 + u√

n

)
− Zn(β0)

}
≥ Ln

(
β0 + u√

n

)
− Ln(β0)

+
s∑

j=1

λnj

( ∣∣∣∣β j0 + u j√
n

∣∣∣∣ − |β j0|
)

−
n∑

i=1

uT xi√
n

sgn(ei ) + f (0)

2
uT V 2u

+ op(1 + ‖u‖2) (11)

for sufficiently large C, the second term of (11) dominates the rest terms, hence (10)
holds. It completes the proof. 	

The following Proposition is needed to establish the oracle property of the estimator.
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Proposition 4 Under conditions (C.1)–(C.3), with probability tending to one, for any
given β1 satisfying that ‖β1 − β1

0‖ = Op(n−1/2) and any constant C,

Zn

{(
β1

0

)}
= min

‖β2‖≤Cn−1/2
Zn

{(
β1

β2

)}

Proof Denote the gradient of Ln(β) by Un(β) = −
n∑

i=1
xi sgn(Yi − βT xi ). It is suffi-

cient to show that with probability tending to one as n → ∞, for any β1 satisfying
that β1 − β1

0 = OP (n−1/2), and ‖β2‖ ≤ Cn−1/2, Unj (β) + λnj sgn(β j ) and β j have
the same signs for β j ∈ (−Cn−1/2, Cn−1/2) for j = s + 1, . . . , p.

Similarly as in Proposition 1, we have

Un(β) = Un(β0) + 2 f (0)nV 2(β − β0) + op(n
1/2 + n‖β − β0‖) (12)

it follows that

Unj (β) + λnj sgn(β j ) = n1/2
{

n−1/2U j (β0) + 2 f (0)n1/2[V 2(β − β0)] j

+ o(1 + n1/2‖β − β0‖) + λnj√
n

sgn(β j )

}

= n1/2(OP (1) + λnj√
n

sgn(β j )),

since
λnj√

n
→ ∞, for j = s+1, . . . , p, the sign of the U j (β)+λnj sgn(β j ) is completely

determined by the sign of the β j , this completes the proof. 	

Now, we can establish the following main theorem. The first component is exactly

zero and the second component is estimated as well as if the correct model were
known. This is the so-called oracle property.

Theorem 3 (Oracle property) Under (C.1)–(C.3),with probability tending to one, the

penalized estimator β̂n =
(

β̂1
n

β̂2
n

)
has the following properties:

(a) β̂2
n = 0

(b) n
1
2 (β̂1

n − β1
0 ) → N (0, 1

4 f (0)2 V −2
1 ).

Proof It follows from Proposition 4 that part (a) holds. To prove part (b), notice that
β̂1

n is the minimizer of the object function

Zn1(β
1) := 1

n

n∑

i=1

∣∣∣Yi − β1T
x1

i

∣∣∣ + 1

n

s∑

j=1

λnj

∣∣∣β1
j

∣∣∣ , (13)

it is the penalized estimator considering only the first s covariates. Since β̂1
n is the

minimizer and λnj = o(n1/2), 1 ≤ j ≤ s, by Theorem 2, we know that
√

n(β̂1
n −
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β1
0 ) → argmin (V1), where V1(u1) = W T

1 u1 + f (0)uT
1 V 2

1 u1, and W1 has a N (0, V 2
1 )

distribution. argmin (V1) = (2 f (0))−1V −2
1 W1 → N (0, 1

4 f (0)2 V −2
1 ). It completes the

proof. 	

Remark 1 By Theorem 2, we can see that although with positive probability, the
LASSO estimate shrinks some coefficients to zero, it does necessarily shrink the true
zero coefficients and thus may erroneously retain insignificant variables in the model
and in the meantime increase biases in the estimation of true nonzero coefficients.
However, by Theorem 3 (b), with differentially scaled tuning parameters, the MLASSO
performs the correct variable selection and achieves the asymptotic efficiency.

4.2 Distributional approximation

Now we establish the asymptotic properties of the perturbed penalized estimator, β̂∗
n

is a minimizer of the loss function

Z∗
n(β) = 1

n

n∑

i=1

|Yi − βT xi |ωi + 1

n

p∑

j=1

λnj |β j |, (14)

We are able to show conditional on data, the randomly perturbed estimator can be
used to approximate the distribution of the estimator. To be more specific, we have the
following theorem:

Theorem 4 Under conditions (C.1)–(C.3), with probability tending to one, condi-

tional on the data (Yi , xi )(i = 1, . . . , n), β̂∗
n =

(
β̂∗

n1

β̂∗
n2

)
has the following properties:

(a) β̂∗
n2 = 0

(b) n
1
2 (β̂∗

n1 − β̂1
n ) → N

(
0, 1

4 f (0)2 V −2
1

)
.

Proof Using the same arguments as in proving Proposition 1, denote L∗
n(β) =∑n

i=1 |Yi − xT
i β|ωi , for every sequence dn > 0 with dn → 0 in probability, we

can prove

n−1L∗
n(β) − n−1L∗

n(β0) =

−n−1
n∑

i=1

(β − β0)
T xi sgn(ei )ωi + f (0)(β − β0)

T V 2(β − β0)

+op(‖β − β0‖2 + n−1) (15)

holds uniformly in ‖β − β0‖ ≤ dn , Then as in Proposition 3, we can prove that

conditionally on the original data, n
1
2 (β̂∗

n − β̂n) = OP (1), and as in Proposition 4, for
any given β1 satisfying that ‖β1−β1

0‖ = Op(n−1/2) and any constant C , conditionally
on the original data, we have

Z∗
n

{(
β1

0

)}
= min

‖β2‖≤Cn−1/2
Z∗

n

{(
β1

β2

)}
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By Theorem 1, with probability tending to one , β̂2
n = 0, it follows that conditionally

on the original data, β̂∗
n2 = 0, then considering only the first s covariates, β̂∗

n1 is a
minimizer of function

Z∗
n1(β

1) = 1

n

n∑

i=1

|Yi − β1T
x1

i |ωi + 1

n

s∑

j=1

λnj |β1
j |,

By Proposition 1 and Theorem 2, we have

Vn1(β̂
1
n − β1

0 ) = 1

2 f (0)

n∑

i=1

x1
i

T
V −1

n1 sgn(ei ) + op(1) (16)

and similarly we have

Vn1(β̂
∗
n1 − β1

0 ) = 1

2 f (0)

n∑

i=1

x1
i

T
V −1

n1 sgn(ei )ωi + op(1).

Thus,

Vn1(β̂
∗
n1 − β̂1

n ) = 1

2 f (0)

n∑

i=1

x1
i

T
V −1

n1 sgn(ei )(ωi − 1) + op(1).

It suffices to show conditionally on (Yi , xi ), i = 1, . . . , n,

1

2 f (0)

n∑

i=1

x1
i

T
V −1

n1 sgn(ei )(ωi − 1) → N

(
0,

Is

4 f (0)2

)
(17)

Since
∑n

i=1 V −1
n1 x1

i x1
i

T
V −1

n1 sgn(ei )
2 = Is and max

1≤i≤n
|x1

i
T

Vn1sgn(ei )| → 0, by the

central limit theorem, (17) follows, it completes the proof. 	


4.3 Selection of tuning parameters

Although the theoretical result in Sects. 4.1 and 4.2 is interesting, it is impractical if
we can not find λnj which satisfy C.3. Noticing that the rates of tuning parameters
for nonzero and zero coefficients are different, we must base our selection of λnj on
some preliminary estimation procedure. Denote the components of the L1 estimator
β̂L1 by a j , j = 1, . . . , p. The estimates of their standard errors are denoted by b j ,
j = 1, . . . , p. Let

λnj = η ∗
(√

n ∗ |b j |
|a j |

)γ

, γ > 1, η > 0. (18)

For the λnj defined in (18), we have the following proposition:
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Proposition 5 For a fixed (η, γ ), the λnj defined in (18) satisfy C.3.

Proof (i) If the j th component of the β0 is zero, then a j/b j converges to a N (0, 1)

r.v.. Denoting the sequence by Zn and the latter by Z , we have λnj/
√

n = η ∗
nγ /2−1/2/|Zn|γ → ∞
(ii) If the j th component of the β0 is non-zero, denote it by θ , it is known that

n
1
2 (a j − θ) → N (0, σ 2), where σ is a fixed positive constant, denote the sequence

by Zn and the latter by Z . So
√

n ∗ b j → σ and a j = Zn/
√

n + θ , then λnj/
√

n =
η ∗

( √
n∗|b j |

|Zn/
√

n+θ |
)γ

/
√

n → η ∗
(

σ
|Z/

√
n+θ |

)γ

/
√

n → 0. 	

Now if the λnj is chosen as above to estimate the β0, we also have to select parame-

ters η and γ . Resampling-based model selection methods such as cross-validation or
generalized degrees of freedom (Shen and Ye 2002) can be employed which are com-
putationally intensive. Tibshirani (1996) constructed the generalized cross-validation
style statistic to select the tuning parameter. A key statistic therein is the number
of effective parameters or the degrees of freedom. An interesting property of the
LASSO-type procedure is that the number of nonzero coefficients of the estimator is
an unbiased estimate of its degrees of freedom; see, for example, Efron et al. (2004)
or Zou et al. (2004). In this connection, generalized cross-validation (GCV) can be
modified to choose η and γ where the residual sums of squares is replaced with the
sum of absolute residuals and the degrees of freedom d is taken as the number of
nonzero coefficients of the differentially penalized L1 estimator. This allows us to
reduce computational burden greatly. In traditional subset selection, GCV criterion
is not consistent in the sense of choosing true subset model with probability tending
to 1 as sample size goes to infinity while the bayesian information criterion (BIC) is.
To come up with a consistent data-driven variable selection procedure, a BIC type
criterion seems necessary. For tradition subset selection in the L1 regression, the BIC
is defined as

BIC = Ln{β̂}/σ̂ + log n

2
α,

where σ̂ =
n∑

i=1
|Yi − β̂L1 xi |/n is the maximum likelihood estimate of scale parameter

σ in the full model with all the candidate variables and α is the size of subset model.
The size of subset model is its degrees of freedom while the degrees of freedom
of the Lasso-type procedure can be unbiasedly estimated by the number of nonzero
coefficients of the estimator. Thus the number of nonzero coefficients is denoted by d
and the following BIC-type criterion is proposed for the selection of tuning parameters
η and γ .

BIC = Ln{β̂}/σ̂ + log n

2
d.

The selected (ηn, γn) minimizes the BIC function in the region (η, γ ) ∈ (0,∞) ×
(1,∞).
The proposed selection criterion has at least two advantages. First, since the optimal
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tuning parameters are found by a grid search, computationally it is feasible. Second,
the asymptotic optimality such as the oracle property is usually established for the
penalized estimator with fixed tuning parameters (Fan and Li 2002). Theoretically, it
is more worthy to investigate theoretical properties of the penalized estimator with
data-driven tuning parameters. Interestingly, in the following theorem, the differen-
tially penalized L1 estimator with the BIC-based data-driven tuning parameters indeed
exhibits the oracle property.

Theorem 5 If we define the tuning parameters {λnj } as in (18), and select (η, γ ) by
the BIC function defined above, the resultant penalized estimator exhibits the oracle
property.

Proof It suffices to prove that the selected tuning parameters satisfy the C.3 or the
penalized estimator is asymptotically equivalent to the estimator with tuning parame-
ters satisfying the C.3. Without loss of generality, we assume that 0 ≤ lim

n→∞
λnj√

n
≤ ∞

and 0 ≤ lim
n→∞

λnj
n ≤ ∞. In the case where the limits do not exist, similar arguments

can be applied for subsequences of λnj . It is easy to see that tuning parameters {λnj }
can fall into the following five cases.

(1) lim
n→∞

λnj√
n

= 0, 1 ≤ j ≤ p,

(2) lim
n→∞

λnj√
n

= 0, 1 ≤ j ≤ s, 0 < lim
n→∞

λnj√
n

< ∞, s + 1 ≤ j ≤ p,

(3) lim
n→∞

λnj√
n

= 0, 1 ≤ j ≤ s, lim
n→∞

λnj√
n

= ∞, s + 1 ≤ j ≤ p,

(4) 0 < lim
n→∞

λnj√
n

< ∞, 1 ≤ j ≤ s, lim
n→∞

λnj
n = ∞, s + 1 ≤ j ≤ p,

(5) 0 < lim
n→∞

λnj√
n

= ∞, 1 ≤ j ≤ s, lim
n→∞

λnj
n = ∞, s + 1 ≤ j ≤ p,

(i) For tuning parameters in case 1, the estimator have no zero components, denote
it by β̂(p), while the penalized estimator with tuning parameters in case 3 only
have s true nonzero coefficients, denote it by β̂(s), denote the usual L1 estimator
with all the p covariates and only the first s covariates by β̂L1(p) and β̂L1(s),
respectively. Hence

BIC(β̂(p)) =
n∑

i=1

|Yi − xT
i β̂(p)|/σ̂ + log n

2
p

≥
n∑

i=1

|Yi − xT
i β̂T

L1
(p)|/σ̂ + log n

2
p

and

BIC(β̂(s)) =
n∑

i=1

|Yi − x1
i

T
β̂(s)|/σ̂ + log n

2
s

≤
n∑

i=1

|Yi − x1
i

T
β̂L1(s)|/σ̂ + log n

2
s +

s∑

j=1

λ0
nj (|β̂L1(s)

j | − |β̂(s) j |,
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since β̂L1(s) and β̂(s) are both
√

n− consistent and {λ0
nj } satisfy C.3, BIC(β̂(s)) ≤

n∑
i=1

|Yi − x1
i

T
β̂L1(s)|/σ̂ + log n

2 s + op(1). And by Proposition 1, we know that

n∑

i=1

(|Yi − x1
i

T
β̂L1(p)| − |ei |)/σ̂

and

n∑

i=1

(|Yi − x1
i

T
β̂L1(s)| − |ei |)/σ̂

are both Op(1), so with probability tending to 1, BIC(β̂(p)) > BIC(β̂(s)), hence the
selected tuning parameters are not in case 1.

(ii) For tuning parameters in case 2, by consistency, true nonzero components of
the estimator remain nonzero, and some of true zero components might be zero. If
all true zero components are zero, then the estimator is asymptotically equivalent to
the penalized estimator with tuning parameters in case 3, otherwise, apply the same
argument as before, with probability tending to 1, those tuning parameters are not
chosen.

Ln(β) = Op(n), with probability tending to 1, true zero components of the esti-
mator are zero, some of true nonzero components might be zero. If all true nonzero
components are nonzero, then its degrees of freedom is the same as in the case 3.
Suppose that the estimator is β̃(s) and the estimator corresponding to tuning parame-
ters in case 3 is β̂(s). Since its tuning parameters are larger than the ones in the case
3, if they are not asymptotically equivalent, Ln(β̃(s)) is strictly larger than Ln(β̂(s))
and tuning parameters are not chosen. In the other situation, the subset of nonzero
components of the resultant estimator is a true subset of {1, 2, . . . , s}. Without loss
of generality, assume the subset of nonzero components of the resultant estimator is
{1, 2, . . . , s−1}, denote it by β̂(s−1), to show these tuning parameters are not chosen,
it suffices to prove that, with probability tending to 1, BIC(β̂(s − 1)) > BIC(β̂(s)),
denote the L1 estimator with only the first s − 1 covariates by β̂L1(s − 1), we only

need to prove that
n∑

i=1
(|Yi − x1

i
T
β̂L1(s − 1)| − |ei |)/σ̂ > log n + Op(1).

Actually, we will show that for sufficiently large n,

n∑

i=1

(|Yi − x1
i

T
β̂L1(s − 1)| − |ei |) > δn, (19)

where δ is a positive number.

Denote β
(s)
0 = (β01, . . . , β0s)

T , let B =
{
β(s) ∈ Rs : |β(s) − β

(s)
0 | = |β0s |

2

}
. By the
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uniform law of large number, we have

sup
{β(s)∈B}

|1

n

n∑

i=1

{(|Yi − x1
i

T
β(s)| − |ei |) − E(|Yi − x1

i
T
β(s)| − |ei |)}| p→ 0 (20)

For large n, |β̂L1(s) − β
(s)
0 | <

|β0s |
2 , thus there exists a point β̂(s) ∈ B satisfying,

n∑

i=1

|Yi − x1
i

T
β̂L1(s − 1)| ≥

n∑

i=1

|Yi − x1
i

T
β̂(s)|,

Also there exists β̄(s) such that

inf
β(s)∈B

n∑

i=1

E |Yi − x1
i

T
β(s)| =

n∑

i=1

E |Yi − x1
i

T
β̄(s)|.

So

n∑

i=1

(|Yi − x1
i

T
β̂(s)| − |ei |)

=
n∑

i=1

{(|Yi −x1
i

T
β̂(s)|−|ei |) − E(|Yi − x1

i
T
β̂(s)| − |ei |)}+E(|Yi −x1

i
T
β̂(s)|−|ei |)}

≥ op(n) +
n∑

i=1

E(|Yi − x1
i

T
β̄(s)| − |ei |) ≥ δn,

thus (19) holds, hence concludes the proof. 	

Remark 2 Other model selection criteria such as GCV and AIC can also be modified
accordingly to choose parameters η and γ . However, as GCV and AIC criteria are not
consistent in the sense of choosing the true model with probability tending to 1 as n
goes to infinity, the GCV or AIC based differentially scaled L1 penalized estimator
do not enjoy the desired oracle property.

Simulation results in Sect. 5 shows that the finite-sample performance of the estimates
does not vary much with different values of γ . As a referee pointed out, it is worthy
to explore how the tuning parameter γ changes the behavior of the estimator. To
gain some insights into this, here we study how the estimate changes with γ in the

orthonormal case. Denote
√

n∗|b j |
|a j | by znj and λnj = λzγ

nj . In the orthonormal case, the

covariate vector x1, . . . , x p are mutually orthogonal, and β̂ j = sgn(xT
i Y )(|xT

i Y | −
λ
2 zγ

nj )I (|xT
i Y | ≥ λ

2 zγ

nj ). For true zero coefficients, znj = Op(
√

n); for true nonzero
coefficients, znj = Op(1). The magnitudes of znj of true zero coefficients are much
larger than those of true nonzero coefficients and this contrast is power factored by
γ into λnj to differentially shrink coefficients. Large γ itself leads to large tuning
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parameters for nonzero coefficients although it magnifies the difference of tuning
parameters for true zero coefficients and nonzero coefficients. Thus the ideal γ should
be slightly larger than 1 to not only assure the correct asymptotic rate and but also
minimize its impact on inflating the tuning parameters. From the explicit formula for
the estimates, we see that small change of γ will not in general influence much on the
behavior of the estimates.

5 Numerical studies

We have conducted extensive numerical studies to compare our proposed method with
LASSO, traditional subset selection methods and the oracle least absolute deviations
estimates. We denote our method by MLASSO since it is the natural generalization
of LASSO by considering multiple tuning parameters. All simulations are conducted
using IMSL’s routine for L1 regression RLAV in Fortran. We select the tuning para-
meter of LASSO and MLASSO by BIC or GCV function. For MLASSO, the results
between selecting both η and γ and selecting only η with a fixed γ = 1.5 are very
similar. So we let γ = 1.5 in most of the examples. For subset selection methods, the
best subset is chosen as the one which minimizes BIC or GCV function. Following
Tibshirani (1996) and Fan and Li (2001), we report simulation results in terms of
model error instead of prediction error (PE). In the setting of linear models, suppose
that

Y = βT X + ε,

from the (Y, X) we get β̂ as an estimate of β and use the β̂T Xfuture to predict the
future response Yfuture, where (Yfuture, Xfuture) is an independent copy of (Y, X). The
mean-squared error (ME) is defined by

ME = E(β̂T Xfuture − βT Xfuture)
2 = (β̂ − β)T R(β̂ − β),

The prediction error (PE) is defined as

PE = E(Y − β̂T Xfuture)
2 = M E + σ 2,

where R is the population covariance matrix of X , and σ 2 is the variance of the error.

5.1 Normal error case

Considering the simulation scenario of Fan and Li (2001), we simulate 100 datasets.
Each of them consists of n observations from the model

Yi = βT Xi + σεi (21)

β = (3, 1.5, 0, 0, 2, 0, 0, 0)T , the components of x and ε are standard normal. The
correlation between xi and x j is ρ|i− j | with ρ = 0.5. We compare the model error of
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each variable selection procedure to that of the full L1 estimator. The relative value
is called the relative model error (RME). We do the simulations for different sample
sizes and σ values. In Table 1, we summarize the results in terms of the median of
relative model errors (MRME), the average correct 0 coefficients and the average
incorrect 0 coeffients over 100 simulated datasets. Our resampling procedure uses
1, 000 random samples from standard exponential distribution. The results are similar
for the other distributions. From Table 1, we see that in the situation of small sample
size and big noise, Best subset performs the best in reducing the model error while
LASSO tends to identify the least incorrect zero components. When the noise level is
decreased, even in the situation of small sample size, all procedures do not identify any
nonzero component to be zero and in terms of both the number of correctly identified
zero components and the reduction of the model error, MLASSO and Best subset
perform much better than LASSO. When the sample size is increased, MLASSO
tends to perform better than Best subset and closer to the true oracle estimator. It is
also interesting to notice that the same criterion (BIC or GCV) based Best subset and
MLASSO perform very similarly. In all the simulations, the methods of fixing γ = 1.5
and selecting γ give almost the identical performance. Hence in the later examples,
we will let γ = 1.5.

We also use the simulations to test the accuracy of the estimated standard error of
the estimator via the perturbation method. The standard error of 100 estimates (SD)
is regarded as the true standard error of the estimator. The mean and the standard
error of 100 estimated standard errors of the estimator via the perturbation method
(SDm, SDs) are used to assess the performance of the perturbation method. In Table 2,
we summarize the results for the situation of n = 60, σ = 1.0. From Table 2, it can
be seen that SD and SDm are very close and hence the perturbation method performs
very well.

To demonstrate the consistent property of BIC-type MLASSO, we increase the
sample size. In Table 3, we summarize the results about the proportion of the procedure
selecting the true model. It can be seen from Table 3 BIC-based MLASSO and BIC-
based Best subset tend to select the true model with the proportion increases to 1 as
the sample size increases. The other procedures do not exhibit this good property. It
can also be seen that BIC-based MLASSO performs even better than BIC-based Best
subset when the sample size is large.

5.2 Laplace error case

In this example and the next example, we change the error distribution in model (21) to
explore the robustness of the proposed estimator. We simulate 100 datasets consisting
of 60 observations from model (21) with the error distribution now drawn from the
standard double exponential (Laplace) distribution. The σ is set to be 1.0. Table 4 and
Table 5 summarize the results of the simulations. From Table 4, it can be seen that
the MLASSO performs favorably compared to the other methods. Form Table 5, we
see that the perturbation method indeed gives a very accurate estimate of the standard
error for the estimator.
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Table 1 Variable selection in normal error case

Avg. no. of 0 coefficients

Method MRME (%) Correct Incorrect

n = 40, σ = 3.0

LASSO (BIC) 72.49 3.34 0.15

LASSO (GCV) 75.76 3.55 0.17

LASSO (AIC) 75.69 2.60 0.15

MLASSO1 (BIC) 81.12 3.85 0.32

MLASSO1 (GCV) 78.81 4.21 0.42

MLASSO1 (AIC) 77.33 3.20 0.13

MLASSO2 (BIC) 80.87 3.90 0.32

MLASSO2 (GCV) 79.54 4.21 0.41

MLASSO2 (AIC) 76.22 3.24 0.13

Subset (BIC) 69.40 4.11 0.34

Subset (GCV) 65.09 4.44 0.40

Subset (AIC) 68.52 3.44 0.29

Oracle 37.95 5 0

n = 40, σ = 1.0

LASSO (BIC) 72.49 3.25 0

LASSO (GCV) 72.49 3.46 0

LASSO (AIC) 73.85 2.60 0

MLASSO1 (BIC) 59.63 4.19 0

MLASSO1 (GCV) 51.83 4.51 0

MLASSO1 (AIC) 73.58 3.46 0

MLASSO2 (BIC) 59.63 4.19 0

MLASSO2 (GCV) 50.92 4.52 0

MLASSO2 (AIC) 72.40 3.48 0

Subset (BIC) 56.45 4.16 0

Subset (GCV) 52.21 4.51 0

Subset (AIC) 68.86 3.40 0

Oracle 37.95 5 0

n = 60, σ = 1.0

LASSO (BIC) 69.19 3.45 0

LASSO (GCV) 68.53 3.53 0

LASSO (AIC) 73.82 2.38 0

MLASSO1 (BIC) 53.30 4.35 0

MLASSO1 (GCV) 52.13 4.44 0

MLASSO1 (AIC) 72.79 3.28 0

MLASSO2 (BIC) 54.35 4.37 0

MLASSO2 (GCV) 54.06 4.42 0

MLASSO2 (AIC) 71.60 3.32 0
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Table 1 Continued

Avg. no. of 0 coefficients

Method MRME (%) Correct Incorrect

Subset (BIC) 65.07 4.26 0

Subset (GCV) 55.33 4.39 0

Subset (AIC) 81.48 3.48 0

Oracle 33.63 5 0

The value of γ in MLASSO1 is selected, whereas the value of γ in MLASSO2 is 1.5

Table 2 Estimation in normal error case (n = 60, σ = 1.0)

β̂1 β̂2 β̂5

Method SD SDm (SDs) SD SDm (SDs) SD SDm (SDs)

LASSO (BIC) 0.208 0.224 0.055 0.216 0.230 0.050 0.193 0.231 0.058

LASSO (GCV) 0.207 0.225 0.055 0.214 0.231 0.050 0.191 0.231 0.058

LASSO (AIC) 0.207 0.224 0.056 0.215 0.230 0.049 0.191 0.232 0.058

MLASSO1 (BIC) 0.200 0.205 0.053 0.225 0.206 0.051 0.191 0.191 0.054

MLASSO1 (GCV) 0.195 0.206 0.054 0.209 0.205 0.051 0.193 0.190 0.055

MLASSO1 (AIC) 0.196 0.205 0.053 0.217 0.205 0.050 0.192 0.190 0.054

MLASSO2 (BIC) 0.198 0.205 0.053 0.224 0.207 0.050 0.191 0.190 0.053

MLASSO2 (GCV) 0.198 0.206 0.055 0.211 0.205 0.050 0.190 0.189 0.053

MLASSO2 (AIC) 0.199 0.206 0.054 0.212 0.206 0.049 0.190 0.190 0.053

Subset (BIC) 0.199 0.201 0.050 0.226 0.201 0.054 0.181 0.182 0.044

Subset (GCV) 0.194 0.202 0.051 0.215 0.201 0.051 0.181 0.182 0.041

Subset (AIC) 0.195 0.203 0.052 0.217 0.203 0.055 0.183 0.182 0.042

Oracle 0.192 0.209 0.052 0.196 0.205 0.051 0.155 0.180 0.039

The value of γ in MLASSO1 is selected, whereas the value of γ in MLASSO2 is 1.5

Table 3 Performance on consistency

sample size (n) 60 100 200 500 1,000 2,000

Subset (BIC) 0.45 (4.26) 0.66 (4.58) 0.64 (4.61) 0.81 (4.79) 0.81 (4.80) 0.80 (4.77)

Subset (GCV) 0.53 (4.39) 0.60 (4.52) 0.56 (4.44) 0.62 (4.54) 0.56 (4.42) 0.52 (4.34)

Subset (AIC) 0.16 (3.48) 0.19 (3.55) 0.18 (3.50) 0.23 (3.60) 0.21 (3.54) 0.22 (3.56)

LASSO (BIC) 0.24 (3.45) 0.27 (3.83) 0.28 (3.75) 0.38 (4.11) 0.44 (3.97) 0.19 (3.53)

LASSO (GCV) 0.29 (3.53) 0.27 (3.79) 0.20 (3.53) 0.25 (3.65) 0.29 (3.47) 0.17 (3.18)

LASSO (AIC) 0.05 (2.38) 0.06 (2.39) 0.08 (2.42) 0.07 (2.40) 0.10 (2.50) 0.10 (2.52)

MLASSO (BIC) 0.65 (4.35) 0.68 (4.59) 0.83 (4.78) 0.84 (4.80) 0.85 (4.83) 0.90 (4.90)

MLASSO (GCV) 0.67 (4.44) 0.67 (4.57) 0.67 (4.52) 0.68 (4.51) 0.71 (4.53) 0.61 (4.40)

MLASSO (AIC) 0.25 (3.28) 0.26 (3.29) 0.28 (3.35) 0.29 (3.36) 0.32 (3.38) 0.32 (3.34)

The number in the parenthesis is the average number of correctly identified nonzero coefficients
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Table 4 Variable selection in
Laplace error case

Avg. no. of 0 coefficients

Method MRME (%) Correct Incorrect

LASSO (BIC) 61.17 3.67 0

LASSO (GCV) 60.94 3.81 0

LASSO (AIC) 58.55 2.71 0

MLASSO (BIC) 42.89 4.64 0

MLASSO (GCV) 41.20 4.74 0

MLASSO (AIC) 61.32 3.88 0

Subset (BIC) 43.73 4.69 0

Subset (GCV) 42.59 4.71 0

Subset (AIC) 59.32 3.89 0

Oracle 25.32 5 0

Table 5 Estimation in Laplace error case

β̂1 β̂2 β̂5

Method SD SDm (SDs) SD SDm (SDs) SD SDm (SDs)

LASSO (BIC) 0.213 0.252 0.059 0.225 0.270 0.072 0.214 0.257 0.069

LASSO (GCV) 0.212 0.253 0.060 0.222 0.270 0.072 0.213 0.258 0.068

LASSO (AIC) 0.212 0.253 0.060 0.224 0.271 0.071 0.214 0.259 0.068

MLASSO (BIC) 0.212 0.222 0.060 0.203 0.229 0.068 0.191 0.204 0.058

MLASSO (GCV) 0.213 0.222 0.0584 0.203 0.229 0.067 0.183 0.204 0.0580

MLASSO (AIC) 0.212 0.222 0.059 0.202 0.228 0.065 0.183 0.205 0.057

Subset (BIC) 0.210 0.217 0.064 0.218 0.217 0.056 0.162 0.187 0.046

Subset (GCV) 0.210 0.218 0.0638 0.218 0.217 0.056 0.164 0.188 0.046

Subset (AIC) 0.211 0.217 0.064 0.219 0.218 0.057 0.164 0.189 0.047

Oracle 0.201 0.224 0.067 0.210 0.221 0.057 0.153 0.190 0.047

5.3 Mixed error case

In this example, we do the same simulations as in the previous example except that we
now draw the error distribution from the standard normal distribution with 30% outliers
from standard Cauchy distribution. Table 6 and Table 7 summarize the simulation
results. It can be seen that the MLASSO performs the best in this situation and the
perturbation method still performs very well.

5.4 Prostate cancer example

In this example, we apply the proposed approach to the prostate cancer data. The
dataset comes from a study by Stamey et al. (1989). It consists of 97 patients who
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Table 6 Variable selection in
mixed error case

Avg. no. of 0 coefficients

Method MRME (%) Correct Incorrect

LASSO (BIC) 71.35 3.90 0.00

LASSO (GCV) 71.29 4.02 0.00

LASSO (AIC) 56.43 3.24 0.00

MLASSO (BIC) 37.84 4.76 0.00

MLASSO (GCV) 36.38 4.80 0.00

MLASSO (AIC) 45.45 4.28 0.00

Subset (BIC) 41.28 4.82 0.03

Subset (GCV) 41.00 4.86 0.03

Subset (AIC) 29.02 4.09 0.00

Oracle 37.27 5 0

Table 7 Estimation in mixed error case

β̂1 β̂2 β̂5

Method SD SDm (SDs) SD SDm (SDs) SD SDm (SDs)

LASSO (BIC) 0.241 0.272 0.091 0.239 0.271 0.072 0.222 0.269 0.085

LASSO (GCV) 0.251 0.274 0.090 0.237 0.273 0.072 0.213 0.268 0.085

LASSO (AIC) 0.247 0.274 0.090 0.236 0.272 0.073 0.214 0.269 0.086

MLASSO (BIC) 0.231 0.236 0.067 0.244 0.233 0.063 0.171 0.204 0.051

MLASSO (GCV) 0.230 0.236 0.067 0.245 0.234 0.064 0.170 0.204 0.050

MLASSO (AIC) 0.234 0.238 0.066 0.247 0.233 0.064 0.171 0.204 0.050

Subset (BIC) 0.267 0.245 0.066 0.322 0.234 0.075 0.280 0.202 0.053

Subset (GCV) 0.267 0.245 0.066 0.322 0.234 0.074 0.279 0.202 0.053

Subset (AIC) 0.269 0.245 0.067 0.322 0.233 0.074 0.280 0.203 0.054

Oracle 0.215 0.245 0.064 0.239 0.242 0.069 0.188 0.203 0.050

were about to receive a radical prostatectomy. A number of clinical measures for
each patient were recorded. The purpose of the study was to examine the correlation
between the level of prostate specific antigen and eight factors. The factors are log
(cancer volume) (lcavol), log (prostate weight) (lweight), age, log (benign prostaic
hyperplasia amount) (lbph), seminal vesicle invasion (svi), log (capsular penetration)
(lcp), Gleason score (gleason) and percentage Gleason scores 4 or 5 (pgg45). First
we standardize the predictors and center the response variable, then we fit a linear
model that relates the log (prostate specific antigen) (lpsa) to the predictors. We use
the full LAD, the LASSO and the MLASSO method to estimate the coefficients in
the model. The results are summarized in Table 8. With BIC or GCV, LASSO and
Best subset result in the identical model and both of them exclude variable lcp and
pgg45. With AIC, Best subset excludes only variable pgg45 while LASSO selects
η = 0 and results in the full LAD. With GCV, MLASSO selects η = 0.16 and
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Table 8 Prostate cancer example

Predictor 1 lcavol 2 lweight 3 age 4 lbph 5 svi 6 lcp 7 gleason 8 pgg45

LAD 0.63(0.13) 0.25 (0.12) −0.16 (0.08) 0.20 (0.11) 0.35 (0.12) −0.17 (0.14) 0.14 (0.11) 0.09 (0.13)

Subset (BIC) 0.58 (0.11) 0.23 (0.11) −0.19 (0.08) 0.25 (0.11) 0.32 (0.13) 0.00 (−) 0.12 (0.09) 0.00 (−)

Subset (GCV) 0.58 (0.11) 0.23 (0.11) −0.19 (0.08) 0.25 (0.11) 0.32 (0.13) 0.00 (−) 0.12 (0.09) 0.00 (−)

Subset (AIC) 0.61 (0.12) 0.22 (0.11) −0.17 (0.09) 0.21 (0.10) 0.38 (0.12) −0.15 (0.08) 0.19 (0.11) 0.00 (−)

LASSO (BIC) 0.59 (0.11) 0.24 (0.11) −0.11 (0.08) 0.17 (0.11) 0.23 (0.13) 0.00 (0.07) 0.04 (0.07) 0.00 (0.09)

LASSO (GCV) 0.59 (0.11) 0.24 (0.11) −0.11 (0.08) 0.17 (0.11) 0.23 (0.13) 0.00 (0.07) 0.04 (0.07) 0.00 (0.09)

LASSO (AIC) 0.63 (0.13) 0.25 (0.12) −0.16 (0.08) 0.20 (0.11) 0.35 (0.12) −0.17 (0.14) 0.14 (0.11) 0.09 (0.13)

MLASSO (BIC) 0.64 (0.12) 0.18 (0.10) 0.00 (0.05) 0.11 (0.07) 0.22 (0.11) 0.00 (0.04) 0.00 (0.03) 0.00 (0.00)

MLASSO (GCV) 0.60 (0.12) 0.22 (0.11) −0.18 (0.08) 0.25 (0.11) 0.35 (0.12) −0.06 (0.09) 0.14 (0.08) 0.00 (0.05)

MLASSO (AIC) 0.63 (0.13) 0.25 (0.12) −0.16 0.08) 0.20 (0.11) 0.35 (0.12) −0.17 (0.14) 0.14 (0.11) 0.09 (0.13)

Fig. 1 Graphical display of LASSO shrinkage of eight coefficients as a function of shrinkage parameter s
in the prostate cancer example. The broken line s = 0.69 is selected by both BIC and GCV criterion

excludes only variable pgg45 while with BIC it selects η = 0.84 and results in a
very parsimonious model that retains only the four variables (lcavol, lweight, lbph and
svi). With AIC, η is again selected to be 0 and MLASSO produces the full LAD. In
Fig. 1, we show the LASSO estimates as a function of shrinkage parameter s, both
BIC-based and GCV-based approach select the shrinkage parameter s = 0.69. In
Fig. 2, we show the MLASSO estimates as a function of shrinkage parameter s, the
BIC-based and GCV-based approach select the shrinkage parameter s = 0.28, 0.71
respectively.
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Fig. 2 Graphical display of MLASSO shrinkage of eight coefficients as a function of shrinkage parameter
s in the prostate cancer example. The broken line s = 0.28 is selected by BIC and s = 0.71 is selected by
GCV

6 Discussion

Variable selection is a fundamental problem in statistical modeling. A variety of meth-
ods have been well developed in the least squares-based regression while their counter-
parts in the median regression are much less understood. With the recent advancement
of the linear programming techniques for the L1 minimization, numerical simplicity
is now also a nice property for the methods in the median regression. In this arti-
cle, we consider the problem of simultaneous estimation and variable selection in the
median regression model via penalizing the L1 loss function via the L1 (Lasso) penalty.
Combining L1 loss function with LASSO-type penalty, the penalized estimator can
be solved easily by standard linear programming packages. Differentially scaled L1
penalty are used to achieve desirable properties in terms of both identifying zero coef-
ficients and estimating nonzero coefficients. Large sample properties of the proposed
estimator are established by using local asymptotic quadratic property of the L1 loss
function and a novel inequality. Standard error of the estimator is obtained by using the
random perturbation method. It is shown that for properly chosen tuning parameters,
the differentially penalized L1 estimator exhibits the oracle property. More interest-
ingly, a modified BIC function is employed to obtain data-driven tuning parameters
and the resultant two-stage procedure is proved to enjoy optimal properties. Extensive
numerical studies show that the unified L1 method fares comparably well in terms of
simultaneous estimation and variable selection and retains the appealing robustness
of L1 estimator. The numerical simplicity of the proposed methodology gains extra
benefits in real data analysis.

In spirit, the differentially scaled L1 penalty is similar to the Adaptive Lasso pro-
posed by Zou (2006) though the latter is developed for the squared loss while our
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investigation is conducted under the L1 loss setting. A practical issue for both the
differentially scaled L1 penalty and the Adaptive Lasso is the construction of tun-
ing parameters which behaves differently for the true nonzero coefficients and the
true zero coefficients. A slight difference between our construction and the Adaptive
Lasso is that we standardize the preliminarily estimated coefficients via their standard
errors while the Adaptive Lasso uses the unstandardized ones. As the magnitudes of
the standard errors for the least squares estimates or the median estimates may differ
substantially in practice especially when the predictor variables are highly correlated,
the differential or adaptive weights should be standardized to decrease their impact on
the tuning parameters.
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