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Abstract Consider the model φ(S(z|X)) = βββ(z) �X , where φ is a known link func-
tion, S(·|X) is the survival function of a response Y given a covariate X , �X =
(1, X, X2, . . . , X p) and βββ(z) is an unknown vector of time-dependent regression
coefficients. The response is subject to left truncation and right censoring. Under
this model, which reduces for special choices of φ to e.g. Cox proportional hazards
model or the additive hazards model with time dependent coefficients, we study the
estimation of the vector βββ(z). A least squares approach is proposed and the asymptotic
properties of the proposed estimator are established. The estimator is also compared
with a competing maximum likelihood based estimator by means of simulations.
Finally, the method is applied to a larynx cancer data set.
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466 B. Teodorescu et al.

1 Introduction

In survival analysis interest often lies in the relationship between the survival function
and a certain number of covariates. It usually happens that for some individuals we
cannot observe the event of interest, due to the presence of right censoring and/or
left truncation. A typical example is given by a retrospective medical study, in which
one is interested in the time interval between birth and death due to a certain disease.
Patients who die of the disease at early age will rarely have entered the study before
death and are therefore left truncated. On the other hand, for patients who are alive at
the end of the study, only a lower bound of the true survival time is known and these
patients are hence right censored.

In the case of censored responses (in the absence of truncation), lots of models exist
in the literature that describe the relationship between the survival function and the
covariates (proportional hazards model or Cox model, log-logistic model, accelera-
ted failure time model, etc.). These models are special cases of linear transformation
models, that are of the following form (a): ϕ(Y ) = βββ �X + ε, with Y the survival time,
ϕ an unknown monotone increasing function, ε a random variable with known distri-
bution function F and independent of the covariates �X , and βββ is a vector of constant

coefficients or, equivalently, (b): ς
(

SY (z| �X)
)

= ϕ(z) − βββ �X , where ς is a known

increasing function, ς−1(u) = 1 − F(u) and SY (z| �X) = P(Y > z| �X). We get the
proportional hazards model and the proportional odds models by taking in (a) ε to
follow the extreme-value distribution and the standard logistic distribution, respecti-
vely or, by taking in (b) ς(u) = log(− log(u)) and ς(u) = log( u

1−u ), respectively.
For more details on transformation models see, for example, Doksum (1987), Cheng
et al. (1995, 1997), Fine et al. (1998), Fine and Gray (1999) or Chen et al. (2002).

In these models, the regression coefficients are usually supposed to be constant
over time. In practice, the structure of the data might however be more complex,
and it might therefore be better to consider coefficients that can vary over time. In
the previous example, certain covariates (e.g. sex, genetic indicators, smoking status,
etc.) can have a relatively low impact on early age survival, but a higher influence at
higher age. This motivated a number of authors to extend the Cox model to allow for
time-dependent coefficients, see, for example Murphy and Sen (1991), Nan and Lin
(2003), Cai and Sun (2003), among others. Also other time-dependent survival models
have been considered, see, for example Lambert and Eilers (2004) and Kauermann
(2005).

In this paper we go one step further. We consider a very general model, which
includes as special cases the above mentioned models (Cox model, additive model,
log-logistic model, linear transformation models, etc.) and study the estimation of the
(time-dependent) regression coefficients by means of a least squares approach. The
response is allowed to be subject to right censoring and/or left truncation.

More precisely, let Y denote the survival time, T the truncation time and C the
censoring time. When data are left-truncated and right-censored we observe (T, Z , δ)

only if Z ≥ T , where Z = min{Y, C} and δ = 1{Y≤C}. Let (Ti , Zi , δi , Xi ), i =
1, . . . , n be an iid sample from (T, Z , δ, X), where X is a (one-dimensional) covariate.
A very common assumption that is made in this setup is that Y , T and C are independent
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Generalized time-dependent conditional linear models 467

given X . We are interested in the relationship between the survival function of Y ,
S(z|X) = P(Y > z|X) and X . We suppose that this relationship is of polynomial
type, via a known monotone transformation φ : [0, 1] → IR of the survival function,
i.e.,

φ(S(z|X)) = β0(z) + β1(z)X + · · · + βp(z)X p, (1)

for some known p. No assumption is made on the form of the survival function S(z|X),
except for the usual smoothness assumptions. Particular choices of φ give well known
models in survival analysis, but extended to time-dependent coefficients. The choice
φ(u) = log( u

1−u ) gives the logistic model, φ(u) = − log(u) gives the additive risk
model and φ(u) = log(− log(u)) leads to a model close to the proportional hazards
model.

In the absence of truncation, model (1) has been considered by Jung (1996), who
proposed an estimator for the regression coefficients based on the maximum likelihood
method, when the observations are censored and the covariate is discrete. His method
is valid only in the case where the censoring is independent of the covariates. Using
the same technique, Subramanian (2001) improved Jung’s estimator by relaxing the
hypothesis of independence between the censoring time and the covariates. Subra-
manian (2004) extended the estimator to the case of a one-dimensional continuous
covariate.

All of these papers propose estimators that are based on a maximum likelihood
approach, whereas the estimator we propose in this paper is based on a least squares
principle. In comparison with the former, the latter approach has the advantage of
being easier to compute, since it does not require any iterative computation. The
method proposed in this paper is inspired by Cao and González-Manteiga (2008),
who study a least squares procedure for the case where the coefficients are considered
as being time-independent.

The paper is organized as follows. In the next section we introduce the proposed
estimator and its asymptotic properties. In Sect. 3 we present a bootstrap based method
for the selection of the smoothing parameter, while in Sect. 4 we give some numerical
results. The analysis of larynx cancer data is conducted in Sect. 5. Finally, Section 6
contains the proofs.

2 Least squares estimator and its asymptotic properties

We need to introduce the following notations: M(x) = P(X ≤ x), F(y|x) = P(Y ≤
y|x), G(y|x) = P(C ≤ y|x) , L(y|x) = P(T ≤ y|x), H(y|x) = P(Z ≤ y|x),
H1(y|x) = P(Z ≤ y, δ = 1|x), L(y) = P(T ≤ y), H(y) = P(Z ≤ y), H1(y) =
P(Z ≤ y, δ = 1), C(y|x) = P(T ≤ y ≤ Z |x, T ≤ Z), and α(x) = P(T ≤ Z |X =
x), which is the probability of absence of truncation conditionally on X = x . For
any distribution function W (t) = P(η ≤ t), we denote the left and right support
endpoints by aW = inf{t |W (t) > 0} and bW = sup{t |W (t) < 1}, respectively. We
define W ∗(t) = P(η ≤ t |T ≤ Z). Finally, let m denote the density of X and m∗ the
density of X conditionally on T ≤ Z .
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468 B. Teodorescu et al.

The estimator ofβββ(z) = (β0(z), . . . , βp(z))t we propose, is based on a least squares
estimation procedure. More precisely, for a fixed value of z, we estimate βββ(z) by
fitting a pth degree polynomial through the points ((1, Xi , . . . , X p

i ), φ(Ŝn(z|Xi )))

(i = 1, . . . , n), for some estimator Ŝn(z|Xi ). We estimate the survival function S(z|Xi )

in a completely nonparametric way, by means of the estimator of the conditional
distribution, proposed by Iglesias-Pérez and González-Manteiga (1999):

Ŝn(z|x) = 1 − F̂n(z|x) =
n∏

i=1

(
1 − 1{Zi ≤z,δi =1}Bni (x)

Cn(Zi |x)

)
, (2)

where

Bni (x) = K
( x−Xi

h

)
∑n

j=1 K
( x−X j

h

)

are Nadaraya–Watson weights, K is a known probability density function (kernel),
h = hn → 0 a bandwidth sequence, and Cn(u|x) = ∑n

j=1 1{Tj ≤u≤Z j }Bnj (x).
Note that this estimator reduces to the estimator of Beran (1981) in the absence

of truncation, to the one of Tsai et al. (1987) in the absence of covariates and to the
classical Kaplan and Meier (1958) estimator when there is no truncation and there are
no covariates.

Next, using the estimated responses φ(Ŝn(z|Xi )) (i = 1, . . . , n), apply the classical
weighted least squares method to compute the estimators of β j (z) ( j = 0, . . . , p):

β̂̂β̂β(z) =

⎛
⎜⎜⎜⎜⎝

β̂0(z)

β̂1(z)
...

β̂p(z)

⎞
⎟⎟⎟⎟⎠

= (XXXtWWW XXX)−1XXXtWWWφ̂φφ(z), (3)

where

XXX =

⎛
⎜⎜⎜⎜⎝

1 X1 · · · X p
1

1 X2 · · · X p
2

...
...

. . .
...

1 Xn · · · X p
n

⎞
⎟⎟⎟⎟⎠

, φ̂φφ(z) =

⎛
⎜⎜⎜⎝

φ(Ŝn(z|X1))

φ(Ŝn(z|X2))
...

φ(Ŝn(z|Xn))

⎞
⎟⎟⎟⎠

and WWW = diag(w(X1), . . . , w(Xn)), where w(·) is a trimmed function defined in
terms of a proper weight function w̃, as precised in (H11).

The above procedure can be repeated for all possible z. In practice only the uncen-
sored data need to be considered, since the estimator of the survival function, and
hence the estimator of βββ(z), only changes at these points.

Note that the above procedure can be adapted in a straightforward way to the case
where the covariate is discrete (or categorical). In fact, it suffices to estimate the
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Generalized time-dependent conditional linear models 469

survival function without using any smoothing in that case. We will not consider this
case any further, as the results for continuous covariates can be reduced in an obvious
way to discrete covariates. Also, combinations of several discrete covariates and a
(one-dimensional) continuous covariate can be considered. An example is given in
Sect. 5, where we analyse data containing one continuous and three binary covariates.

In order to obtain the asymptotic properties of β̂ββ(z) some conditions, (H1)–(H12),
have to be assumed. They are collected in Sect. 6.

Let φφφ(z) = (φ(S(z|X1)), . . . , φ(S(z|Xn)))t .
Model (1) implies that φφφ(z) = XXXβββ(z), which leads to

βββ(z) = (XXXtWWW XXX)−1XXXtWWWφφφ(z), (4)

and hence

β̂ββ(z) − βββ(z) = (XXXtWWW XXX)−1XXXtWWW (φ̂φφ(z) − φφφ(z)).

The latter expression is the starting point for the asymptotic normality of the estimator
β̂ββ(z), which is established in the next theorem.

Theorem 1 Suppose that conditions (H1) through (H12) hold. Then, for any
a ≤ z ≤ b,

n1/2(β̂ββ(z) − βββ(z))
d−→ N (0, AAA−1			(z)(AAA−1)t ),

where 			(z) = (σi j (z))
p
i, j=0, with

σi j (z) =
∫

I
xi+ j w̃2(x)S2(z|x)φ

′
(S(z|x))2

∫ z

0

d H∗
1 (u|x)

C2(u|x)
m∗(x)dx, (5)

and AAA = (ai j )
p
i, j=0, with ai j = E(Xi+ jw(X)).

Corollary 2 Suppose that conditions (H1) through (H12) hold. Then

sup
z∈[a,b]

|β̂ββ(z) − βββ(z)| = Op(n
−1/2)

Remark 1 In a similar way we can obtain the asymptotic properties of the estimator
of the coefficients β j (z) when we have only discrete covariates or a combination of
discrete covariates and a one-dimensional continuous covariate. Note that in the case
where we have only discrete covariates, no smoothing is required, since the estimator
of the survival function Ŝ(z|x) is the Kaplan–Meier estimator extended to the case
when we also have truncation (Tsai et al. 1987).

Remark 2 As an immediate consequence of this result we can obtain the asymptotic
normality of the estimator S̃(z|x) = φ−1(β̂0(z) + β̂1(z)x + . . . + β̂p(z)x p) of the
conditional survival function under model (1). Note that this estimator is in general
non-monotone. A convenient and satisfactory solution is to keep the estimator constant
until it starts decreasing again.
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470 B. Teodorescu et al.

Remark 3 It is important to have at hand a procedure to check the validity of the
assumed model (1), thus to test H0 : ∃βββ(z) such that (1) holds against HA :(1) does
not hold for any βββ(z). The main idea is to compare a semiparametric estimator of the
response, φ(Ŝ(z|XXX)), with its parametric counterpart, β̂ββ(z)XXX , where Ŝ is the estimator
in (2) and β̂ββ(z) is the least-squares estimator proposed in (3). A large deviation between
them indicates the lack of fit of the parametric form and thus the rejection of the null
(this topic will be the object of future work).

Remark 4 The choice of the weight matrix WWW can be done in such a way to accom-
modate heterocedasticity in the model.

Remark 5 The β̂ j (z) are step functions, but can be smoothed in z using, e.g., the kernel
method.

Remark 6 Note that the above methodology is not only applicable to polynomial
models. Consider for example a general nonlinear model of the form:

φ(S(z|x)) = v(βββ(z), x)or equivalentlyS(z|x) = µ(βββ(z), x),

where µ = φ−1 ◦ v and where the function v : R
p+1 × R → R is known. Then, βββ(z)

can be estimated by

β̂ββ(z) = argmin
βββ(z)

n∑
i=1

w(Xi )
[
φ(Ŝn(z|Xi )) − v(βββ(z), Xi )

]2

When v(βββ(z), x) ≡ β0(z) + β1(z)x + · · · + βp(z)x p, this estimator coincides with
(3). Theorem 2.1 can be extended in a similar way to this more general estimator.

3 Bandwidth selection

The estimator β̂ββ(z) defined in Sect. 2, is based on a kernel estimator of the conditional
survival function S(z|X). Therefore, a bandwidth parameter h needs to be selected.
We propose a bootstrap procedure which selects for a fixed z, the bandwidth for which
the estimated mean squared error (MSE) of β̂ββ(z) is minimal. It suffices to consider the
uncensored observations, since the estimator β̂ββ(z) only changes at these points. The
procedure is as follows:

1. For fixed z consider values for h ∈ {h1, . . . , hr }, a fine grid of bandwidths in the
interval (0, µ(supp(X))), where µ is the Lebesgue measure.

2. For each h j ( j = 1, . . . , r):
(a) Choose a pilot bandwidth, g j , (usually larger than h j ) to estimate S(z|Xi ),

G(z|Xi ) and L(z|Xi ) by Ŝg j (z|Xi ), Ĝg j (z|Xi ) and L̂g j (z|Xi ), respectively

(i = 1, . . . , n) , where Ŝg j (z|Xi ) is the estimator in (2),
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Ĝg j (z|x) = 1 −
n∏

i=1

(
1 − 1{Zi ≤z,δi =0} Bni (x)

Cn(Zi |x)

)
,

L̂g j (z|x) =
n∏

i=1

(
1 − 1{Ti >z}Bni (x)

Cn(Ti |x)

)
,

and the subscript g j indicates the bandwidth we are working with.
(b) Replace S(z|Xi ) by Ŝg j (z|Xi ) in (1) and estimate β0(z), . . . , βp(z) by the

least squares estimator in (3) to obtain β̂0,g j (z), . . . , β̂p,g j (z). Plug these
estimators into (1) and re-estimate S(z|Xi ) by

S̃g j (z|Xi ) = φ−1(β̂0,g j (z) + β̂1,g j (z)Xi + · · · + β̂p,g j (z)X p
i ).

(c) For every i = 1, . . . , n draw random observations Y ∗
i , C∗

i and T ∗
i from

S̃g j (·|Xi ), Ĝg j (·|Xi ) and L̂g j (·|Xi ), respectively. Compute Z∗
i = min

{Y ∗
i , C∗

i }, δ∗
i = 1{Y ∗

i ≤C∗
i } and simulate new values Y ∗

i , C∗
i and T ∗

i if T ∗
i > Z∗

i .
(d) Use this resample {(T ∗

1 , Z∗
1 , δ∗

1 , X1), . . . , (T ∗
n , Z∗

n , δ∗
n , Xn)} to estimate a

bootstrap version of the conditional survival function, Ŝ∗
h j

(z|Xi )

(i = 1, . . . , n) using the bandwidth h j . This bootstrap version is used
to obtain the bootstrap coefficients β̂∗

0,h j
(z), . . . , β̂∗

p,h j
(z) using the least

squares estimator.
(e) Repeat the steps (c)–(d) B times and compute the bootstrap estimator of the

mean squared error (MSE):

M SE∗(h j ) =
p∑

k=0

{
1

B

B∑
b=1

(β̂∗
k,h j ,b(z) − β̂k,g j (z))

2

}

3. Choose the value h j which leads to the smallest M SE∗(h j ).
4. Repeat steps 1–3 for all the values of z considered.

Remark 7 A similar bootstrap procedure can be used to estimate the variance of β̂ββ(z),
or to approximate the distribution of β̂ββ(z). For small samples, this might lead to better
approximations than the normal limit established in Theorem 1.

Remark 8 The asymptotic validity of a slight variation of the above bootstrap proce-
dure has been established by Iglesias-Pérez and González-Manteiga (2003). In fact,
they resampled from Ŝg(z|Xi ), Ĝg(z|Xi ) and L̂g(z|Xi ) for each Xi (i = 1, . . . , n) in
order to obtain Y ∗

j , C∗
j and T ∗

j respectively. Bootstrapping from S̃ instead of Ŝ allows
us to actually mimic the model.

4 Numerical results

In this section, we will first conduct some simulations in order to compare the proposed
least squares method (LS) with the maximum likelihood method (ML) proposed by
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Jung (1996) and Subramanian (2001, 2004). We will deal with the cases of discrete
covariates and of a one-dimensional continuous covariate, both under censoring. Next,
we will study the performance of the new method in the case of a one-dimensional
continuous covariate when truncation is also present. Finally, some simulations will
illustrate the effect of the bootstrap bandwidth selector, proposed in Sect. 3.

Along the simulations, the following model is considered:

φ(S(z|x)) = β0(z) + β1(z)x . (6)

In the discrete case, model 1 considers that X is uniformly distributed in {0.1, 0.3,

0.5, 0.7, 0.9}, Y |X=x ∼ Logistic(0, π2

3(4x)2 ) (i.e. F(y|x) = 1/(1 + exp(4xy)), E(Y |x)

= 0 and Var(Y |x) = π2/{3(4x)2}), exp(C)|X=x ∼ U [0, dx], where d > 0 will be
chosen according to the desired censoring probability, and φ(u) = log( u

1−u ) (logistic
model), which gives us the true model φ(S(z|x)) = −4zx . A similar model has also
been considered by Subramanian (2001). The sample size is taken n = 200, the number
of Monte Carlo simulations is M = 10,000 and d is taken to be 0.008, 0.022, 0.05
and 0.1 in order to give 10, 20, 30 and 40% of censoring, respectively. For estimating
the survival function we use the Kaplan–Meier estimator, since there is no truncation
and no smoothing is required. For z = 0.1 the results are given in Table 1. We notice
that the results are very similar for the two methods in the case of censoring and in
the presence of discrete covariates. Other simulations not reported here lead to similar
conclusions: the difference between the two procedures is only very minor, regarding
both bias and variance.

Model 2 deals with the continuous case, X ∼ U [0, 1], Y |X=x ∼ Exp(4x), C |X=x ∼
Exp(dx) with d > 0 that gives different censoring probabilities, and φ(u) = log(u)

(additive hazards model), which gives the true model φ(S(z|x)) = −4zx . Note that
φ(S(z|X = 0)) = β0(z) and φ(S(z|X = 1)) = β0(z) + β1(z). The sample size
is taken n = 100, M = 10,000 Monte Carlo simulations are conducted and d is
taken to be 1 and 8/3 in order to give 20 and 40% of censoring, respectively. Since

Table 1 Comparison between the ML and LS methods for model 1, at point z = 0.1

Censoring Method β0(z) = 0 β1(z) = −0.4

percentage Bias MSE Bias MSE

10 LS −0.0035 0.0917 −0.0071 0.2742

ML 0.0025 0.0910 0.0056 0.2810

20 LS −0.0044 0.1002 −0.0056 0.3017

ML 0.0013 0.0993 0.0081 0.3065

30 LS −0.0028 0.1246 −0.0053 0.3475

ML 0.0026 0.1217 0.0126 0.3492

40 LS 0.0056 0.1696 −0.0083 0.4207

ML 0.0040 0.1630 0.0113 0.4239
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we have a one-dimensional continuous covariate, a bandwidth, h, is needed in order
to estimate S(z|x). We worked with h ∈ {0.2, 0.25, 0.3, 0.35, 0.4}. The Nadaraya–
Watson weights are calculated based on the Epanechnikov kernel K (u) = 1{−1≤u≤1} ·
3(1−u2)/4 and the weight function w̃(x) = 1{0.025≤x≤0.975} has been chosen in order
to avoid the boundary problems.

Table 2 shows the results for z = 0.3. The table shows the bias and MSE of the
estimators of β0(z) and β1(z), and also of the estimators of the regression function
β0(z) + β1(z)x , evaluated at the endpoints of the support of X , namely at 0 and 1.
The values are computed with the LS and the ML methods and they correspond to the
minimum in h of the total MSE, i.e. T M SE(h) = M SEh(β̂0(z)) + M SEh(β̂1(z)).
The optimal bandwidth is also displayed. The results in Table 2 show that the LS
method behaves better than the ML procedure. In the simulation studies, we also
noticed that the ML algorithm had some serious convergence problems. In the case
of 20% censoring we noticed 393 divergences on a total of 10,000, while for the 40%
censoring case 1,323 on a total of 10,000.

Table 3 gives the results for model 2 computed only with the LS method and with
the bandwidth estimated by means of the bootstrap procedure described in Sect. 3.
The bandwidth is selected from the grid {0.2, 0.25, 0.3, 0.35, 0.4}. B = 100 bootstrap
replications are generated each time in order to compute the bootstrap version of the
MSE and M = 1, 000 Monte Carlo simulations are conducted. We notice that the
results are very comparable to those of Table 2.

Model 3 is a variation of model 2, where a truncation variable has been added:
T |X=x ∼ Exp(r x), where r > 0 controls the probability of truncation and is taken
to be 45 and 22 in order to give 10 and 20% of truncation, respectively. The results
are given in Tables 4 and 5. No comparison with other methods is possible here. The

Table 2 Comparison between the ML and LS methods for model 2, at point z = 0.3 (x1 = 0, x2 = 1)

Censoring hopt Method β0(z) = 0 β1(z) = −1.2 φ(S(z|x2)) = −1.2

percentage Bias MSE Bias MSE Bias MSE

20 0.25 LS −0.0644 0.0181 0.1213 0.1217 0.0569 0.0644

0.4 ML −0.1333 0.0444 0.3085 0.1507 0.1752 0.0977

40 0.35 LS −0.0863 0.0219 0.3282 0.1529 0.1041 0.0799

0.3 ML −0.0978 0.0449 0.2349 0.1636 0.1371 0.0839

Table 3 MSE of the LS estimator for model 2 using the bootstrap bandwidth selector, at point z = 0.3
(x1 = 0, x2 = 1)

Censoring β0(z) = 0 β1(z) = −1.2 φ(S(z|x2)) = −1.2

percentage Bias MSE Bias MSE Bias MSE

20 −0.0974 0.0234 0.2799 0.1595 0.1826 0.0758

40 −0.1225 0.0281 0.4068 0.2343 0.2843 0.1176
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Table 4 MSE of the LS estimator for model 3, at point z = 0.3 (x1 = 0, x2 = 1)

Censoring Truncation hopt β0(z) = 0 β1(z) = −1.2 φ(S(z|x2)) = −1.2

percentage percentage Bias MSE Bias MSE Bias MSE

20 10 0.25 −0.0851 0.0378 0.1335 0.1674 0.0484 0.0736

20 0.2 −0.0581 0.0381 0.0727 0.1844 0.0146 0.0864

40 10 0.2 −0.0514 0.0358 0.0636 0.1999 0.0123 0.0968

20 0.2 −0.0537 0.0424 0.0610 0.2129 0.0073 0.1003

Table 5 MSE of the LS estimator for model 3 using the bootstrap bandwidth selector, at point z = 0.3
(x1 = 0, x2 = 1)

Censoring Truncation β0(z) = 0 β1(z) = −1.2 φ(S(z|x2)) = −1.2

percentage percentage Bias MSE Bias MSE Bias MSE

20 10 −0.1391 0.0488 0.2708 0.2028 0.1317 0.0755

20 −0.1524 0.0583 0.2923 0.2283 0.1399 0.0851

40 10 −0.1506 0.0494 0.3072 0.2178 0.1566 0.0859

20 −0.1692 0.0662 0.3126 0.2370 0.1434 0.0853

tables show similar results to those obtained for model 2, when we had only censoring,
thus the MSE increases with the percentage of censoring and truncation. For Table 4
we conducted M = 10,000 Monte Carlo simulations, while for Table 5, M = 1,000
and B = 100 for the bootstrap replications.

5 Data analysis

The methods presented in the previous sections have been applied to the larynx cancer
data set previously studied by Klein and Moeschberger (1997). The data consist of
90 observations about males suffering from larynx cancer. No truncation is present,
thus T = 0 with probability one. Patients are classified in four groups, according
to the stage of their disease. For each individual i (i = 1, . . . , 90) we observe the
time-to-death or on-study, Zi , the death indicator δi (0 = alive, 1 = dead), the stage
of the disease and the age at diagnosis. For these data the independece between Y and
C given XXX seems a reasonable assumption.

The model considered by Klein and Moeschberger (1997) is the additive hazards
model, which can be written in the following form:

φ(S(z|XXX)) = β0(z) + β1(z)X1 + β2(z)X2 + β3(z)X3 + β4(z)X4, (7)

where φ(u) = − log(u), Xi is the indicator of being at stage i + 1 (i = 1, 2, 3) and
X4 is the age at diagnosis minus its mean (64.11 years).
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Klein and Moeschberger (1997) estimated the regression functions βi (z) (i =
0, . . . , 4) by means of the classical method for additive models (see Chap. 10 in their
book for more details). They also verified that the assumptions for the additive hazards
model hold. We apply the proposed least squares method to estimate the coefficients
of this model and compare them to the results obtained by Klein and Moeschberger
(1997). Denote τ = 4.4 for the largest Zi , for which at least one patient is still at
risk in each of the four disease stages. The coefficients are estimated for time-points
z ∈ [0, τ ] and w̃(x) = 1{−18.66≤x≤19.44}, where −18.66 and 19.44 are the percentiles
2.5 and 97.5% of X4, respectively. For the new method, the bandwidth, h, that is
needed for the estimation has been chosen by bootstrap among the values 20, 25, 30,
35, 40, 45. Its value was 25.

The 95% pointwise confidence intervals for βk(z) (0 ≤ k ≤ 4) have also been
constructed. For the classical method they were found as:

β̂k(z) ± 1.96
√

ˆV ar [β̂k(z)] (0 ≤ k ≤ 4).

with the variance computed using the formulas presented in Chap. 10 of Klein and
Moeschberger (1997), while for the new method they were estimated using percentile
method, via the bootstrap procedure presented in Sect. 3.

As it can be seen in Fig. 1 the estimator of the cumulative baseline hazard rate, β0(z),
is almost the same with both methods, as well as its confidence intervals. Similar things
happen for the cumulative excess risk of stage 2, stage 3 and stage 4 of larynx cancer,
as compared to stage 1, given by the functions β1(z), β2(z) and β3(z), respectively. As
an example, we give the graphs of the estimators of β3(z), as well as their pointwise
confidence intervals in Fig. 2. As for the coefficient corresponding to the continuous

Fig. 1 Estimate of the cumulative baseline hazard rate (β0(z)) and 95% pointwise confidence intervals
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Fig. 2 Estimate of the cumulative excess risk of stage 4 cancer as compared to stage 1 cancer (β3(z)) and
95% pointwise confidence intervals

Fig. 3 Estimate of the cumulative effect of age (β4(z)) and 95% pointwise confidence intervals

covariate, β4(z), we notice in Fig. 3 that the two curves are slightly different but both
very close to zero.
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Appendix

Conditions

We now state the conditions used in the result of Sect. 2. Conditions (H1)–(H6) are
taken from Iglesias-Pérez and González-Manteiga (1999), on which our proof is based.

Remark 9 Condition (H2) comes from Dabrowska (1989) and comes from the fact
that we stay away from the boundaries of the domain of the covariate while estimating
the survival function S(z|x), to avoid boundary effects.

(H1) X, Y, T, C are absolutely continuous random variables (r.v.).
(H2) (a) Let I = [x1, x2] be an interval contained in the support of m∗, such that

0 < γ = inf{m∗(x) : x ∈ Iδ} < sup{m∗(x) : x ∈ Iδ} = � < ∞
for some 1δ = [x1 − δ, x2 + δ] with δ > 0 and 0 < δ� < 1.

(b) For all x ∈ I the r.v. Y, T, C are independent conditionally on X = x .
(c) aL(·|x) ≤ aH(·|x) and bL(·|x) ≤ bH(·|x) for all x ∈ Iδ .
(d) There exist a < b ∈ R satisfying

inf{α−1(x)(1 − H(b|x))L(a|x) : x ∈ Iδ} ≥ θ > 0.

(H3) The first and second derivatives with respect to x of the functions m(x) and α(x)

exist and are continuous in Iδ .
(H4) All first and second derivatives with respect to x and y of the functions L(y|x),

H(y|x) and H1(y|x) exist and are continuous and bounded in (y, x) ∈ [0,∞)×
Iδ .

(H5) The corresponding (improper) densities of the distribution (subdistribution)
functions L(y), H(y) and H1(y) are bounded away from 0 in [a, b].

(H6) The kernel function K is a symmetric density vanishing outside (−1, 1) and the
total variation of K is less than some λ < +∞.

(H7) The function φ is twice continuously differentiable and its first and second
derivatives are bounded by N1 and N2, respectively.

(H8) There exists some N3 < ∞ such that P(|X | ≤ N3) = 1.
(H9) The matrix AAA is nonsingular.

(H10) h → 0 as n → ∞ and
log3 n

nh3 → 0, nh4 → 0.

(H11) The weights w(x) are given by w(x) = 1{x∈I }w̃(x), with I as defined in
condition (H2) and where w̃(x) satisfies w̃(x) ≥ 0 for all x , supx w̃(x) ≤ B

for some B < ∞ and
∫

I w̃(x)
∫ ∞

0
d H∗

1 (u|x)

C(u|x)
dx < ∞.

(H12) det(XXXtWWW XXX) = 0.
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Proof of Theorem 1

From (3) and (4) we may write

β̂̂β̂β(z) − βββ(z) = (XXXtWWW XXX)−1XXXtWWW (φ̂̂φ̂φ(z) − φφφ(z)) = Â̂ÂA−1b̂̂b̂b(z) (8)

where Â̂ÂA = n−1XXXtWWW XXX = (âi j )
p
i, j=0, with âi j = n−1 ∑n

l=1 Xi+ j
l w(Xl) and

b̂̂b̂b(z) = n−1XXXtWWW (φ̂̂φ̂φ(z) − φφφ(z)).

The strong law of large numbers implies that Â̂ÂA → AAA a.s., provided that E(Xi+ jw(X))

is finite for all i, j = 0, . . . , p. Using condition (H9) this implies that Â̂ÂA−1 → AAA−1.
On the other hand, b̂̂b̂b(z) = (b̂0(z), b̂1(z), . . . , b̂p(z))t , with

b̂i (z) = 1

n

n∑
j=1

Xi
jw(X j )(φ̂ j (z) − φ j (z))

= 1

n

n∑
j=1

Xi
jw(X j )(φ(Ŝn(z|X j )) − φ(S(z|X j ))).

A Taylor expansion of φ around S(z|X j ) gives b̂i (z) = b̂(1)
i (z) + b̂(2)

i (z), where

b̂(1)
i (z) = 1

n

n∑
j=1

Xi
jw(X j )φ

′
(S(z|X j ))(Ŝn(z|X j ) − S(z|X j ))

and

b̂(2)
i (z) = 1

2n

n∑
j=1

Xi
jw(X j )φ

′′
(� j (z))(Ŝn(z|X j ) − S(z|X j ))

2,

with some � j (z) in between S(z|X j ) and Ŝn(z|X j ).

First, we will prove that b̂(2)
i (z) = op(n−1/2). Note that

|b̂(2)
i (z)| ≤ 1

2n sup
y∈[a,b]

x∈I

|F(y|x) − F̂n(y|x)|2
n∑

j=1
|Xi

j | w(X j ) |φ ′′
(� j (z))|.

Applying the uniform consistency of F̂n(z|x), given by Lemma 5 in Iglesias-Pérez
and González-Manteiga (1999), together with conditions (H7) and (H8) gives that
b̂(2)

i (z) = op
(
n−1/2

)
uniformly in z.
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Let us now concentrate on b̂(1)
i (z). Using the iid representation for Ŝn(z|X) given

in Iglesias-Pérez and González-Manteiga (1999), we have:

Ŝn(z|X j ) − S(z|X j ) =
n∑

l=1

Bnl(X j )S(z|X j )ξ(Zl , Tl , δl , X j , z) + Rn(z|X j ), (9)

where

sup
y∈[a,b]

x∈I

|Rn(y|x)| = Op

((
log n

nh

)3/4
)

, (10)

and

ξ(Z , T, δ, x, y) = 1{Z≤y,δ=1}
C(Z |x)

−
∫ y

0

1{T ≤u≤Z}
C2(u|x)

d H∗
1 (u|x).

Observe that E[ξ(Z , T, δ, x, y)|X = x] = 0. We plug (9) into b̂(1)
i (z) to obtain:

b̂(1)
i (z) = 1

n

n∑
j=1

Xi
jw(X j )φ

′
(S(z|X j ))

n∑
l=1

Bnl(X j )S(z|X j )ξ(Zl , Tl , δl , X j , z)

+1

n

n∑
j=1

Xi
jw(X j )φ

′
(S(z|X j ))Rn(z|X j )

= b̂(11)
i (z) + b̂(R)

i (z).

Define B̃nl(X j ) = m∗(X j )
−1(nh)−1 K (

X j −Xl
h ). Then,

b̂(11)
i (z) = b̂(111)

i (z) + b̂(112)
i (z) + b̂(113)

i (z),

with

b̂(111)
i (z) = 1

n

n∑
j=1

Xi
jw(X j )φ

′
(S(z|X j ))

n∑
l = j
l=1

B̃nl(X j )S(z|X j )ξ(Zl , Tl , δl , X j , z), (11)

b̂(112)
i (z) = 1

n

n∑
j=1

Xi
jw(X j )φ

′
(S(z|X j ))B̃n j (X j )S(z|X j )ξ(Z j , Tj , δ j , X j , z),

b̂(113)
i (z) = 1

n

n∑
j=1

Xi
jw(X j )φ

′
(S(z|X j ))

n∑
l=1

(Bnl(X j )

−B̃nl(X j ))S(z|X j )ξ(Zl , Tl , δl , X j , z).

We shall first prove that b̂(R)
i (z), b̂(112)

i (z) and b̂(113)
i (z) are op(n−1/2).
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For b̂(R)
i (z) we have from (10) and using condition (H10) that

|b̂(R)
i (z)| ≤ N i

3 N1 Op

((
log n

nh

)3/4
)

= op(n
−1/2),

uniformly in z.

For b̂(113)
i (z), note that

Bnl(X j ) − B̃nl(X j ) = Bnl(X j )
m∗(X j ) − m̂∗(X j )

m∗(X j )
,

where m̂∗(x) = (nh)−1 ∑n
j=1 K (

x−X j
h ). This implies that

b̂(113)
i (z) = 1

n

n∑
j=1

Xi
jw(X j )φ

′
(S(z|X j ))

m∗(X j ) − m̂∗(X j )

m∗(X j )

× S(z|X j )

n∑
l=1

Bnl(X j )ξ(Zl , Tl , δl , X j , z)

= 1

n

n∑
j=1

Xi
jw(X j )φ

′
(S(z|X j ))

m∗(X j ) − m̂∗(X j )

m∗(X j )

×
{

F(z|X j ) − F̂n(z|X j ) + Op

(( log n

nh

)3/4
)}

.

Since

sup
x∈I

|m∗(x) − m̂∗(x)| = Op

(( log n

nh

)1/2 + h2
)

(see e.g. Silverman 1978), it follows that

|b̂(113)
i (z)| ≤ 1

n
N i

3 N1

{
sup
x∈I

|m∗(x) − m̂∗(x)|
}

×
{

sup
x∈I,y∈[a,b]

|F̂n(y|x) − F(y|x)| + Op

(( log n

nh

)3/4
)}

n∑
j=1

w(X j )

m∗(X j )

= Op

(
log n

nh

)
= op(n

−1/2).

As done for the term b̂(111)
i (z) in the proof of Corollay 2 we can show that under

condition (H11) b̂(112)
i (z) is Op(n−1/2) uniformly in z.

So far we have proved that

b̂i (z) = b̂(111)
i (z) + op(n

−1/2),

uniformly in z ∈ [a, b].
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We will now prove the asymptotic normality of b̂(111)
i (z) for a fixed a ≤ z ≤ b.

Define

hi (VVV j , VVV l) = Xi
jw(X j )φ

′
(S(z|X j ))S(z|X j )B̃nl(X j )ξ(Zl , Tl , δl , X j , z),

where VVV j = (Z j , Tj , δ j , X j ). Let h̃i (VVV j , VVV l) = 1
2 (hi (VVV j , VVV l) + hi (VVV l , VVV j )). Then,

b̂(111)
i (z) = 1

n

n∑
j=1

n∑
l = j
l=1

h̃i (VVV j , VVV l).

Thus, b̂(111)
i (z) is a symmetric U statistic. Note however that its kernel h̃i depends

on n. We use the Hájek projection [see Serfling (1980), p. 190] to decompose it into
the following sum:

b̂(111)
i (z) = D(1)

i + D(2)
i + D(3)

i + D(4)
i ,

where

D(1)
i = 2

n

n∑
j=1

n∑
k=1
k> j

h(1)
i (VVV j , VVV k),

D(2)
i = n − 1

n

n∑
j=1

h(2)
i (VVV j ),

D(3)
i = n − 1

n

n∑
k=1

h(3)
i (VVV k),

D(4)
i = (n − 1)E[h̃i (VVV 1, VVV 2)],

with

h(1)
i (VVV j , VVV k) = h̃i (VVV j , VVV k) − E[h̃i (VVV j , VVV k)|VVV j ]

−E[h̃i (VVV j , VVV k)|VVV k] + E[h̃i (VVV j , VVV k)],
h(2)

i (VVV j ) = E[h̃i (VVV j , VVV k)|VVV j ] − E[h̃i (VVV j , VVV k)],
h(3)

i (VVV k) = E[h̃i (VVV j , VVV k)|VVV k] − E[h̃i (VVV j , VVV k)].

Note that D(2)
i = D(3)

i because of the symmetry of h̃i . Since D(1)
i , D(2)

i , D(3)
i and

D(4)
i depend on n, standard results for U statistics cannot be applied, and so we need

to compute directly the mean and the variance of each of the above terms. We will
first prove that D(1)

i = op(n−1/2). It is easy to prove that E(D(1)
i ) = 0, while tedious

but straightforward algebra show that
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Var
(

D(1)
i

)
= 2(n − 1)

n
E

{
[h(1)

i (VVV 1, VVV 2)]2
}

.

It can be easily proved that

E[h(1)
i (VVV 1, VVV 2)

2] ≤ E[h̃i
2
(VVV 1, VVV 2)],

with E[h̃i
2
(VVV 1, VVV 2)] ≤ E[h2

i (VVV 1, VVV 2)] = O(h−1n−2). This implies that

E[h(1)
i (VVV 1, VVV 2)

2] = O(h−1n−2) and, consequently, Var(D(1)
i ) = O(n−2h−1), which

gives

D(1)
i = Op(n

−1h−1/2) = op(n
−1/2).

Now, D(4)
i = (n − 1)E[h̃i (VVV 1, VVV 2)] = O(h2) = op(n−1/2) .

It remains only to deal with D(2)
i and D(3)

i , which are two sums of iid terms and will

give the asymptotic normality of b̂(111)
i (z). For D(2)

i it is easy to show that E[D(2)
i ] = 0

and that for any 0 ≤ i, j ≤ p,

Cov(D(2)
i , D(2)

j ) = (n − 1)2

n
E[h̃i (VVV 1, VVV 2)h̃ j (VVV 3, VVV 2)]

− (n − 1)2

n
E[h̃i (VVV 1, VVV 2)]E[h̃ j (VVV 1, VVV 2)].

On the other hand,

E[h̃i (VVV 3, VVV 2)h̃ j (VVV 1, VVV 2)] = �
(1)
i j + �

(2)
i j + �

(3)
i j + �

(4)
i j ,

where �
(1)
i j = 1

4 E[hi (V3, V2)h j (V1, V2)], �(2)
i j = 1

4 E[hi (V2, V3)h j (V1, V2)], �(3)
i j =

1
4 E[hi (V3, V2)h j (V2, V1)] and �

(4)
i j = 1

4 E[hi (V2, V3)h j (V2, V1)]. It can be easily
seen that

�
(1)
i j = 1

4n2

∫

I
xi+ j w̃2(x)S2(z|x)φ

′
(S(z|x))2

∫ z

0

d H∗
1 (u|x)

C2(u|x)
m∗(x)dx + O(h2n−2),

�
(2)
i j = �

(3)
i j = O(h2n−2) and �

(4)
i j = O(h4n−2), since E[hi (VVV 1, VVV 2)|VVV 1] =

O(h2n−1).
As a consequence

Cov(D(2)
i , D(2)

j ) = (n − 1)2

4n3 [σi j (z) + O(h2)],

with σi j (z) defined in (5). It now follows from the central limit theorem for triangular
arrays that for any d ∈ R

p+1,

n1/2dtb̂bb(z) = 2n1/2dt (D(2)
0 , . . . , D(2)

p )t + op(n
−1/2)

d→ N (0, dt			(z)d).
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Direct application of the Cramér-Wold device implies that

n1/2b̂bb(z)
d−→ N (0,			(z)).

From this and the fact that β̂̂β̂β(z) − βββ(z) = Â̂ÂA−1b̂̂b̂b(z) (see (8)), we then get

n1/2(β̂ββ(z) − βββ(z))
d−→ N

(
0, AAA−1			(z)(AAA−1)t

)
,

which concludes the proof.

Proof of Corollary 2

From the proof of Theorem 1 it follows that we only have to prove that b̂(111)
i (z)

(defined in (11)) is is Op(n−1/2) uniformly in z. For this, partition the interval [a, b]
into Un ∼ n1/2 subintervals a = Z

′
0 ≤ Z

′
1 ≤ . . . ≤ Z

′
Un

= b, of length O(n−1/2).
Then,

sup
z

|b̂(111)
i (z)| ≤ max

1≤r≤Un
sup

Z
′
r−1≤z≤Z ′

r

|b̂(111)
i (z) − b̂(111)

i (Z
′
r )| + max

0≤r≤Un
|b̂(111)

i (Z
′
r )|

:= R1 + R2
We will first prove that R2 = op(n−1/2) and then that R1 = Op(n−1/2). Consider

for εn = cn−1/2 (c > 0),

P( max
0≤r≤Un

|b̂(111)
i (Z

′
r )| > εn)

= P

(
max

0≤r≤Un

∣∣∣∣
1

n

n∑
j=1

n∑
l = j
l=1

Xi
jw(X j )φ

′
(S(Z

′
r |X j ))

× S(Z
′
r |X j )B̃nl(X j )ξ(Zl , Tl , δl , X j , Z

′
r )

∣∣∣∣ > εn

)

≤
Un∑

r=0

P

(∣∣∣∣
1

n

n∑
j=1

n∑
l = j
l=1

Xi
jw(X j )φ

′
(S(Z

′
r |X j ))

× S(Z
′
r |X j )B̃nl(X j )ξ(Zl , Tl , δl , X j , Z

′
r )

∣∣∣∣ > εn

)

≤ 1

ε2
n

Un∑
r=0

V ar

(
1

n

n∑
j=1

n∑
l = j
l=1

Xi
jw(X j )φ

′
(S(Z

′
r |X j ))

× S(Z
′
r |X j )B̃nl(X j )ξ(Zl , Tl , δl , X j , Z

′
r ) > εn

)

= O(n1/2 · n · n−1h2) = o(1).
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where we used Chebysev’s inequality and the variance that appears in the expression
above is proved to be O(n−1h2) by Taylor developments and expectations computa-
tions. Next, consider R1:

R1 = max
1≤r≤Un

sup
Z

′
r−1≤z≤Z ′

r

|b̂(111)
i (z) − b̂(111)

i (Z
′
r )|

≤ max
1≤r≤Un

sup
Z

′
r−1≤z≤Z ′

r

∣∣∣∣
1

n

n∑
j=1

n∑
l = j
l=1

Xi
jw(X j )B̃nl(X j )

×
[
φ

′
(S(z|X j ))S(z|X j )

1{Zl≤z,δl=1}
C(Zl |X j )

− φ
′
(S(Z

′
r |X j ))S(Z

′
r |X j )

1{Zl≤Z ′
r ,δl=1}

C(Zl |X j )

]∣∣∣∣

+ max
1≤r≤Un

sup
Z

′
r−1≤z≤Z ′

r

∣∣∣∣
1

n

n∑
j=1

n∑
l = j
l=1

Xi
jw(X j )B̃nl(X j )

×
[
φ

′
(S(z|X j ))S(z|X j )

∫ z

0

1{Tl≤u≤Zl }
C2(u|X j )

d H∗
1 (u|X j )

−φ
′
(S(Z

′
r |X j ))S(Z

′
r |X j )

∫ Z
′
r

0

1{Tl≤u≤Zl }
C2(u|X j )

d H∗
1 (u|X j )

]∣∣∣∣
≤ A1 + A2.

Write

A1 = max
1≤r≤Un

1

n

n∑
j=1

n∑
l = j
l=1

|X j |i · w(X j ) · B̃nl(X j ) · sup
Z

′
r−1≤z≤Z ′

r

1{Zl≤z,δl=1}
C(Zl |X j )

· sup
Z

′
r−1≤z≤Z ′

r

|φ ′
(S(z|X j ))S(z|X j ) − φ

′
(S(Z

′
r |X j ))S(Z

′
r |X j )|

+ max
1≤r≤Un

1

n

n∑
j=1

n∑
l = j
l=1

|X j |i · w(X j )

·B̃nl(X j )
1

C(Zl |X j )
|φ ′

(S(Z
′
r |X j ))S(Z

′
r |X j )|

· sup
Z

′
r−1≤z≤Z ′

r

|1{Zl≤z,δl=1} − 1{Zl≤Z ′
r ,δl=1}|

= A11 + A12.

Using the fact that sup
Z

′
r−1≤z≤Z ′

r

|φ ′
(S(z|X j ))S(z|X j ) − φ

′
(S(Z

′
r |X j ))S(Z

′
r |X j )| =

O(U−1
n ) and condition (H11) it is easy to prove that A11 = O(U−1

n ) = Op(n−1/2),
and in a similar way it can be shown that A2 = O(U−1

n ) = Op(n−1/2).
Similar techniques as for R2 combined with

123



Generalized time-dependent conditional linear models 485

sup
Z

′
r−1≤z≤Z ′

r

|1{Zl≤z,δl=1} − 1{Zl≤Z ′
r ,δl=1}| = 1{Z

′
r−1≤Zl≤Z ′

r ,δl=1},

give us that A12 = Op(n−1/2). Hence, b̂(111)
i (z) = Op(n−1/2) uniformly in z.
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