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Abstract In maximum penalized or regularized methods, it is important to select a
tuning parameter appropriately. This paper proposes a direct plug-in method for tuning
parameter selection. The tuning parameters selected using a generalized information
criterion (Konishi and Kitagawa, Biometrika, 83, 875–890, 1996) and cross-validation
(Stone, Journal of the Royal Statistical Society, Series B, 58, 267–288, 1974) are shown
to be asymptotically equivalent to those selected using the proposed method, from the
perspective of estimation of an optimal tuning parameter. Because of its directness, the
proposed method is superior to the two selection methods mentioned above in terms
of computational cost. Some numerical examples which contain the penalized spline
generalized linear model regressions are provided.

Keywords Cross-validation · Direct plug-in method · Generalized information
criterion · Kullback–Leibler information · Maximum penalized likelihood method ·
Penalized spline · Ridge regression · Tuning parameter estimation

1 Introduction

Maximum penalized or regularized methods are widely used tools to stabilize
estimators, which are introduced in spline smoothing (Green and Silverman 1994).
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They include the ridge estimator, which is introduced to avoid multi-collinearity in
least-squares multiple regression estimation, but with a rather different motivation
from them. The efficiency of the penalization methods depends strongly on setting the
tuning parameter that controls the extent of penalization. Therefore, it is important to
select the tuning parameter appropriately. In the description in this paper, we consider
penalization in a maximum likelihood framework: the maximum penalized likelihood
estimator (MPLE; Good and Gaskins 1971; Green and Silverman 1994). Recently,
concerning the MPLE, Fan and Li (2001) proposed a maximum penalized likelihood
approach for automatic variable selection, similarly to the Lasso (Tibshirani 1996).

Several methods are useful to select the tuning parameter. They are established
through proposal of an appropriate selection criterion, where the selection is done by
minimizing them with respect to the tuning parameter, as typified by Marrows’ C p,
cross-validation, generalized cross-validation and other methods in the least-squares
regression context. Information criteria, including AIC-type criteria (Akaike 1974;
Takeuchi 1976; Shimodaira 2003), cross-validation, BIC-type criteria and others, play
a central role in the likelihood framework. One AIC-type criterion for the MPLE is
a generalized information criterion (GIC; Konishi and Kitagawa 1996), which forms
the empirical log-likelihood with the correction term for the bias, derived analytically
with the influence function. The GIC can evaluate the models not only with MPLE but
also with a robust estimator, maximum weighted likelihood estimator, etc. Imoto and
Konishi (2003) and Nonaka and Konishi (2005) used GIC for selection of smoothing
parameters in nonlinear regression models estimated by regularization. Alternatively,
cross-validation (CV; Stone 1974) is applicable to choose the value of a tuning para-
meter in the maximum penalized likelihood method. The CV requires no analytic
calculations as in the GIC, although the computational cost for the CV is higher than
the GIC. This paper analyzes the properties of the tuning parameters selected using
the GIC and CV.

On the other hand, for BIC-type criteria, the penalization is interpreted as a Bayesian
inference with a corresponding prior density. Konishi et al. (2004) extended the BIC
to evaluate models with MPLE, particularly for radial basis function networks.

Existing methods of selecting tuning parameter are based on minimizing each cri-
terion. Finding the minimum is usually accomplished through a sequential search or
numerical optimizations; thereby, it is often extensive in its requisite computations. To
overcome computational problems, we derive an optimal tuning parameter in expected
log-likelihood, or equivalently, in Kullback–Leibler information, with an asymptotic
theory under model misspecification. In normal noise regression models, it coincides
with Wand’s (1999) optimal smoothing parameter in penalized spline regression. We
propose a direct plug-in tuning parameter by replacing unknown quantities in the
optimal tuning parameter by suitable consistent estimatorss. The direct plug-in tuning
parameter often comes to be simple under the parametric assumption that the model
includes the true distribution. We call it the parametric direct plug-in tuning para-
meter. The direct plug-in tuning parameter saves the computational cost relative to
existing methods because of the directness with analytical calculations.

This paper is organized as follows. Section 2 describes the MPLE. Section 3
proposes the direct plug-in method, through defining an optimal tuning parameter
with respect to the Kullback–Leibler information. Section 4 shows that the tuning
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parameters selected by the GIC and CV are asymptotically equivalent to that with
the direct plug-in method, in the sense that the tuning parameter selection is a point
estimation. Section 5 discusses the behavior of Kullback–Leibler information when
using our direct plug-in method or existing methods, GIC and CV, for tuning parame-
ter estimation. Some numerical examples are described in Sect. 6. Section 7 presents
simulations for the penalized spline generalized linear model regression.

2 Maximum penalized likelihood estimator

This section describes the maximum penalized likelihood estimator (MPLE). First
assume n i.i.d. observations Xn = (X1, . . . , Xn) from an unknown true distribution
G(x). Then, let { f (·; θ) : θ = (θ1, . . . , θp)

T ∈ �} be a model with a parameter
vector θ , where � is an open subset in R

p. Using a penalty term k(θ), the penalized
log-likelihood and the MPLE are given, respectively, as

n∑

α=1

log f (Xα; θ)− λk(θ) and θ̂λ = argmax
θ

{
n∑

α=1

log f (Xα; θ)− λk(θ)

}
, (1)

where λ is a scalar tuning parameter controlling the extent of the penalization. The
MPLE is used widely for stabilization of the estimators, such as the MLE. It is impor-
tant to discuss the selection of the tuning parameter λ because the performance of
MPLE depends strongly on the value of the tuning parameter λ.

The above described MPLE includes the ridge-type estimator, which is frequently
used in practice. Consider a multiple regression model y = β1+x2β2+· · ·+x pβp +ε,
where ε is a normal random variable with mean 0 and variance σ 2. Also, β2, . . . , βp

are coefficients of covariates x2, . . . , x p;β1 is an intercept. Letβ = (β1, β2, . . . , βp)
T .

Presuming that we have n independent observations Y1, X1,2, . . . , X1,p), . . .,
(Yn, Xn,2, . . . , Xn,p), let Y = (Y1, . . . ,Yn)

T be an n-dimensional observation vector
and let X be the n × p design matrix. The ridge-type estimator of β is written as
β̂λ = (X T X + λIp)

−1 X T Y, where Ip is a p × p identity matrix, and λ is a scalar
tuning parameter, which controls the penalization. In a view of likelihood framework,
β̂λ maximizes the penalized log-likelihood

log

{
1

(2πσ 2)n/2
exp

(
− 1

2σ 2 ||Y − Xβ||2
)}

− λ
||β||2
2σ 2 ,

with a penalty ||β||2/(2σ 2). Here || · || denotes the Euclidean norm. The ridge-type
estimator could stabilize the ordinary least-squares estimator.

3 Direct plug-in tuning parameter

In this section, we define an optimal tuning parameter and propose the direct plug-in
method. We define the optimality with the goodness of the resultant MPLE θ̂λ in the
sense of expected log-likelihood:
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η(θ) = η(θ; G) =
∫

log f (x; θ)dG(x). (2)

It equals the Kullback–Leibler information ignoring the constant term, which is inde-
pendent of the model. The model is better if its expected log-likelihood value is larger.
Therefore, we define the optimal tuning parameter λopt as

λopt = argmax
λ

E{η(θ̂λ)}.

Using the notation in (2) and assuming that the penalty term k(θ) in (1) does not depend
on Xn , the MPLE is rewritten as θ̂λ = argmaxθ {nη(θ; Ĝ) − λk(θ)}, where Ĝ is the
empirical distribution function corresponding to the observations Xn . Analogously,
we define

θλ = argmax
θ

{nη(θ; G)− λk(θ)}.

We also define θ0 = argmaxθ {nη(θ; G)}, which is the nearest point to the G in the
model { f (·; θ) : θ ∈ �}. Here, θ0 coincides with the true parameter vector if the model
includes the true distribution G. We designate it as the model under a parametric
assumption. We assume that both the MPLE and MLE converge to the θ0 as the
sample size increases. We further assume that the penalty function k(·) is independent
of n. Alternatively, Konishi and Kitagawa (1996) deal with a penalized log-likelihood
function

∑n
α=1 {log f (Xα; θ)− λk(θ)} instead of (1). In their assumption, the MPLE

does not necessarily converge to the θ0 as the sample size increases.
The following result reveals the effect of tuning parameter λ for the mean expected

log-likelihood.

Theorem 1 Assume that the assumptions provided in Appendix hold. Let θ̂λ be the
MPLE defined by Eq. (1) and θ̂ be the MLE. Then the difference of the mean expected
log-likelihood between the models with θ̂λ and θ̂ is given as

E{η(θ̂λ)− η(θ̂)} = − 1

2n2 {a(θ0)λ
2 − 2b(θ0)λ} + o(n−2), (3)

where

a(θ) = ∂k(θ)

∂θT
{J (θ)}−1 ∂k(θ)

∂θ

and

b(θ) = tr

{
∂2k(θ)

∂θ∂θT
V (θ)

}
+ q(θ)T d(θ)+ 2q(θ)T e(θ).

123



Tuning parameter estimation 417

Here, q(θ) = {J (θ)}−1∂k(θ)/∂θ , J (θ) = −∂2η(θ)/∂θ∂θT ,

I (θ) =
∫
∂ log f (x; θ)

∂θ

∂ log f (x; θ)
∂θT

dG(x), V (θ) = {J (θ)}−1 I (θ){J (θ)}−1,

di (θ) =
p∑

j,k=1

∂3η(θ)

∂θi∂θ j∂θk
Vjk(θ)

and

ei (θ) =
p∑

j,k=1

J jk(θ)

∫
∂2 log f (x; θ)

∂θi∂θ j

∂ log f (x; θ)
∂θk

dG(x),

where J i j (θ) denotes the (i, j) element of the matrix {J (θ)}−1.

Since J (θ0) is positive definite, the first term in the right hand side of Eq. (3) attains
a maximum at λ = b(θ0)/a(θ0), asymptotically, unless ∂k(θ0)/∂θ = 0. Consequently,
the optimal tuning parameter λopt is given as

λopt = b(θ0)

a(θ0)
+ o(1). (4)

Then, the MPLE θ̂λopt optimally dominates the MLE θ̂ in mean Kullback–Leibler
information, asymptotically. When λ = b(θ0)/a(θ0) + o(1), the mean expected log-
likelihood attains the asymptotic maximum of n−2b(θ0)

2/{2a(θ0)} > 0 with error
o(n−2).

It is a direct consequence from (4) that

λ̂DPI = b̂(θ̃)

â(θ̃)
(5)

is a point estimator of λopt, where â(·) and b̂(·) are suitable consistent estimators of

a(·) and b(·), and θ̃ is a consistent estimator of θ0 such as the MLE θ̂ . We call λ̂DPI
a direct plug-in tuning parameter. The λ̂DPI is obtained directly, whereas the existing
methods for selecting λ relies on some sequential search, or numerical optimization.
Consequently, the suggested method reduces computational costs drastically, with
some analytical effort. For instance, λ̂DPI can be calculated by substituting the empi-
rical distribution Ĝ(x) instead of the unknown distribution G(x) in (4). Alternatively,
the calculation of λ̂DPI is often easier under the parametric assumption that the true
distribution G is included in the model, where the true parameter is θ0. Then we use
the specific functional forms of a(θ) and b(θ) directly. The quantities under the para-
metric assumption are simpler than those under misspecification because J (θ) = I (θ)
and V (θ) = {J (θ)}−1 hold. Accordingly, we obtain the corresponding estimator by
substituting θ̃ into a(θ) and b(θ) under the parametric assumption as
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λ̂PDPI = b(θ̃)

a(θ̃)
. (6)

We designate λ̂PDPI as the parametric direct plug-in tuning parameter. The method
(5) is a consistent estimator of λopt. Therefore, the mean and mean squared error of
(5), respectively, equal λopt +o(1) and o(1). Implementation of (6) is often easier than
that of (5). In the following, we present some examples of λ̂PDPI.

3.1 Examples of λ̂PDPI

Example 1 We deal with the ridge-type estimator described in Sect. 2, where we note
that the i.i.d. framework is extended to regression settings (see, e.g., Fan and Li 2001).
We consider a quadratic polynomial regression model in which σ 2 is known,

f (y|x;β) = 1

(2πσ 2)1/2
exp

{
− (y − β1 − β2x − β3x2)2

2σ 2

}
,

with a parameter vector β = (β1, β2, β3)
T ∈ R

3. Let (Y1, X1), . . . , (Yn, Xn) be the
n observation pairs. The penalty function is k(β) = ||β||2/(2σ 2). For the true para-
meter vector β0, the expected log-likelihood is η(β̂; G) = −||X (β̂ − β0)||2/(2σ 2)−
n/(2σ 2)− (n/2) log(2πσ 2), where X is the n ×3 design matrix whose (i, α)-element
is Xi−1

α . The optimal tuning parameter λopt = b(β0)/a(β0)+ o(1) in (4) is calculated
as a(β) = βT (X T X/n)−1β/σ 2 and b(β) = tr{(X T X/n)−1}. Accordingly, we have

λ̂PDPI = σ 2tr{(X T X)−1}
β̂T (X T X)−1β̂

,

where β̂ is the ordinary least-squares estimator. The optimal tuning parameter in this
example is a special case of Wand’s (1999) λAMASE,1 when m = Xβ, D = Ip in his
notation.

Example 2 The model used here is the normal distribution model, {N (µ, σ 2) : µ ∈ R,

σ 2 ∈ R+} with a penalty k(µ, σ 2) = µ2/(2σ 2). The MPLE for (µ, σ 2) is the maxi-
mizer of

n η(µ, σ 2; Ĝ)+ k(µ, σ 2) = n

2
log(2πσ 2)+

n∑

α=1

(Xα − µ)2

2σ 2 + λ
µ2

2σ 2 .

They are given explicitly as µ̂λ = X̄/(1+λ/n) and σ̂ 2
λ =∑(Xα− µ̂λ)2/n +λ µ̂2

λ/n.
For the true parameters (µ0, σ

2
0 ), the expected log-likelihood is η(µ̂, σ̂ 2; G) = −(µ̂−

µ0)
2/(2σ̂ 2)− σ 2

0 /(2σ̂
2)− log(2πσ̂ 2)/2. The optimal tuning parameter λopt is calcu-

lated using a(µ, σ 2) = µ2/σ 2+µ4/(2σ 4) and b(µ, σ 2) = 1+3µ2/σ 2. Accordingly,

λ̂PDPI = µ̂2/σ̂ 2 + µ̂4/(2σ̂ 4)

1 + 3µ̂2/σ̂ 2 ,

where (µ̂, σ̂ ) is the MLE.
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Example 3 Here we consider a re-parameterized exponential density: f {x;µ(θ)} =
µ(θ)e−µ(θ)x , where µ(θ) = eθ , θ ∈ R and x ≥ 0. The penalty function is k(θ) =
θ2/2. For the true parameter θ0, the expected log-likelihood is η(θ̂; G) = θ̂ − eθ̂ /eθ0 .
The optimal tuning parameter λopt is calculated as a(θ) = θ2 and b(θ) = 1 + θ .
Accordingly,

λ̂PDPI = 1 − θ̂

θ̂2
,

where θ̂ is the MLE.

3.2 A numerical differentiation approach in estimation of b(·)

It is often cumbersome to implement (5) since estimation of b(θ0) in (4) requires
third-order tensor computation. Here we propose a method to avoid the difficulties
by using a numerical differentiation as used in DiCiccio and Efron (1992, 1996) and
DiCiccio and Monti (2001). The motivation comes from the facts that

q(θ)T d(θ) =
∑

i, j,k

qi (θ)
∂3η(θ)

∂θi∂θ j∂θk
Vjk(θ) =

∑

j,k

d

dε

∂2η{θ + εq(θ)}
∂θ j∂θk

∣∣∣∣
ε=0

Vjk(θ)

= − d

dε
tr
[
J {θ + εq(θ)} V (θ)

] ∣∣∣∣
ε=0
, (7)

and, similarly,

2q(θ)T e(θ) =
∑

j,k

J jk d

dε
I jk{θ + εq(θ)}

∣∣∣∣
ε=0

= d

dε
tr
[
{J (θ)}−1 I {θ + εq(θ)}

] ∣∣∣∣
ε=0

. (8)

The right-hand sides in both (7) and (8) enable us to use a numerical differentiation
approach, in which we use suitable consistent estimators Î (·) and Ĵ (·) of I (·) and
J (·), respectively. Lastly, we substitute a consistent estimator θ̃ of θ0 into θ in both (7)
and (8). The method is advantageous to avoid the difficulties caused by the third-order
tensor quantities in b(·). See also Sect. 7 for practical implementations.

4 Tuning parameters selected using the GIC and CV

The previous section presented a description of a direct plug-in method for tuning
parameter selection. Although the method is useful, it sometimes requires complicated
analytic calculations. In such cases, it is valuable to implement some existing methods,
e.g., a generalized information criterion (GIC; Konishi and Kitagawa 1996) applied
to MPLE, BIC-type criteria, cross-validation (CV; Stone 1974), and others. In tuning
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parameter selection for the MPLE, it remains a noticeable problem that seems not
to have been investigated: ‘How well does the selection method perform using these
selection criteria?’ This section analyzes the properties of λ selected with GIC and
CV through the result (4).

First, we consider the GIC. According to the fact that the MPLE is an M-estimator
(Konishi and Kitagawa 1996), the GIC applied to the selection of λ is given as

GIC(λ) = −2
n∑

α=1

log f (Xα; θ̂λ)+ 2tr
[
{R̂λ(θ̂λ)}−1 Q̂λ(θ̂λ)

]
,

where

R̂λ(θ) = −1

n

n∑

α=1

∂2{log f (Xα; θ)− λ
n k(θ)}

∂θ∂θT
,

Q̂λ(θ) = 1

n

n∑

α=1

∂{log f (Xα; θ)− λ
n k(θ)}

∂θ

∂ log f (Xα; θ)
∂θT

.

Define λ̂GIC = argminλ GIC(λ).

Theorem 2 Suppose that the assumptions provided in Appendix hold. Then λ̂GIC is a
consistent estimator of λopt.

Second, we consider the CV, which uses the leave-one-out method:

CV(λ) = −
n∑

α=1

log f (Xα; θ̂ (−α)λ ).

In that equation, θ̂ (−α)λ is the MPLE with the observations (X1, . . ., Xα−1, Xα+1, . . .,
Xn). Define λ̂CV = argminλ CV(λ).

Theorem 3 Suppose that the assumptions provided in Appendix hold. Then λ̂CV is a
consistent estimator of λopt.

Comparing Theorems 2 and 3 implies an asymptotic equivalency between λ̂GIC
and λ̂CV.

5 Behaviors of mean Kullback–Leibler information with λ̂DPI, λ̂GIC and λ̂CV

The goal of selecting the tuning parameter is not to estimate the optimal tuning
parameter, but to improve the performance of estimation. Therefore, it is more impor-
tant to analyze the behavior of mean Kullback–Leibler information. Here we study the
behaviors with the direct plug-in tuning parameter and the tuning parameters selected
by the GIC and CV.

123



Tuning parameter estimation 421

Theorem 4 Assume that the assumptions provided in Appendix hold. Then the expec-
ted log-likelihoods with λ̂DPI, λ̂GIC and λ̂CV are given as

η(θ̂
λ̂DPI

) = η(θ̂)− λopt

n2

p∑

i, j

qi c
(1)
j,nκi j + op(n

−3/2),

η(θ̂
λ̂GIC

) = η(θ̂
λ̂DPI

)+ op(n
−3/2) and

η(θ̂
λ̂CV
) = η(θ̂

λ̂DPI
)+ op(n

−3/2),

respectively, where c(1)j,n and κi j are defined in the Appendix.

It is noteworthy that λ̂DPI, λ̂GIC and λ̂CV possess equivalent performance asymptoti-
cally.

6 Numerical results

In this section, we provide some numerical results for Examples 1–3 in Sect. 3. We
compare the proposed method, the direct plug-in tuning parameter, with the tuning
parameters selected by the GIC and CV. The settings for simulations are as follows:

Example1 (continued). Artificial data are from the model with a true parameter
β0 = (−3/4, 1, 1)T and σ 2 = 1, in which we employ the fixed design that the n cova-
riates are spaced equally on [−1, 1]. In selecting λ with GIC and CV, the candidates
of λ’s are (0, 0.1, 0.2, 0.3, . . . , 99.9, 100).

Example2 (continued). The artificial data are from the model with a true parameter
(µ0, σ

2
0 ) = (2, 22). In selecting λ with GIC and CV, the candidates of λ’s are (0, 0.1,

0.2, 0.3, . . ., 19.9, 20).
Example3 (continued). The artificial data are from the model with a true parameter

θ0 = 2. In selecting λ with GIC and CV, the candidates of λ’s are (−1, −0.99, −0.98,
−0.97, . . ., 2.99,3).

We repeat the numerical experiments 1,000 times for two cases: n = 20 and n = 50.
Table 1 shows the summaries of the tuning parameters selected by each method in 1,000
simulations. Figures 1, 2, and 3 show the boxplots for estimators λ̂PDPI, λ̂GIC, and λ̂CV,
together with the dotted horizontal line, which indicates the optimal tuning parameter
λopt given by Eq. (4), where only Fig. 1 displays the results for log(λ+ 0.1) because
of the large variability relative to Examples 2 and 3. The simulation results illustrate
that λ̂GIC, λ̂CV and λ̂PDPI converge to λopt as n increases. Notably, there are large
difference between the mean value of DPI and those of GIC and CV in Example 1
when n = 20. This observation was caused by some cases that the criteria diverged
as the tuning parameter gets larger. This might mean that the sample size n = 20 is
somewhat fewer than the sample size enough to get stable selections with GIC and
CV in Example 1. Apparently, the proposed method λ̂PDPI performs better than the
other methods because of the smaller mean squared errors (Table 1) and the minor
variations (Figs. 1, 2, 3). In all simulation results, λ̂GIC is more stable than λ̂CV.
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Fig. 1 Example 1. Boxplots for three estimates of λopt , for n = 20 and n = 50, in 1,000 simulations, where
log(λ+ 0.1) are displayed. The dotted horizontal line indicates log(λopt + 0.1)
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Fig. 2 Example 2. Boxplots for three estimates of λopt , for n = 20 and n = 50, in 1,000 simulations. The
dotted horizontal line indicates λopt
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Table 1 Summaries of numerical experiments in Examples 1–3

Example n λopt b/a PDPI MSE GIC MSE CV MSE
Mean mean mean

1 20 0.9 0.77 1.45 4.63 3.56 218.21 5.85 381.84

50 0.8 0.78 1.11 1.69 1.09 1.60 1.33 2.28

2 20 2.7 2.67 2.72 1.25 2.41 2.46 3.05 4.49

50 2.5 2.67 2.70 0.39 2.54 0.72 2.84 1.20

3 20 0.76 0.75 0.76 0.01 0.64 0.09 0.75 0.13

50 0.75 0.75 0.75 0.01 0.70 0.04 0.76 0.06

In the 1,000 simulations, for n = 20 and n = 50, λopt , b/a in (4) and the mean and MSE with respect to

λopt , for λ̂PDPI, λ̂GIC and λ̂CV, are shown

PDPI GIC CV
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1.
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5

2.
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2.
5

Example 3, n = 20

PDPI GIC CV
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5

1.
0

1.
5

2.
0

2.
5

Example 3, n = 50

Fig. 3 Example 3. Boxplots for three estimates of λopt , for n = 20 and n = 50, in 1,000 simulations. The
dotted horizontal line indicates λopt

7 Tuning parameter selections in penalized spline regressions

This section demonstrates the direct plug-in tuning parameters in more practical cases
of smoothing problems, “penalized spline generalized linear model regressions”. See
Wand (1999) for a penalized spline least-squares regression. The degree p penalized
spline uses a transformation of the univariate covariate x into a (p+K +1)-dimensional
vectorφ(x) = {1, x, x2, . . . , x p, (x−κ1)

p
+, (x−κ2)

p
+, . . . , (x−κK )

p
+}, where (y)+ =

max{0, y}, and κ j ’s are called the knots. Suppose that we have n pairs of observations
(Yα, xα)α=1,...,n and define X be an n × (p + K + 1) design matrix whose αth row is
φ(xα). Now we consider a penalized spline generalized linear model regression. The
method models the conditional distribution of Y given x by f {y;µ(x)}, where f is a
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Fig. 4 Example 4. One random sample example (n = 100) of the penalized spline with λ using PDPI
(bold), GIC (dashed) and CV (long dashed) together with the true curve µ(x) (dotted)

member of an exponential family,

f (y;µ) = f (y;µ,ψ) = exp

[
yξ(µ)− u{ξ(µ)}

ψ
+ v(y, ψ)

]
,

where ξ(µ) = u′−1(µ) represents the natural parameter, u(·) is the cumulant function,
v is the normalizing factor, ψ is an unknown scale parameter and µ(x) = E(Y |X =
x) is the conditional expectation of Y given x . The expectation function µ(x) is
approximated by a transformed linear combination h{φ(x)β} by a link function h(·),
where β is a (p + K + 1)-dimensional coefficients vector. We take ξ−1 as a link
function h (canonical link) hereafter. The MLE for β often results in an over-smoothed
estimation. A penalized method then works successively. To estimate β, we maximize
the following penalized log-likelihood criterion about β,

n∑

α=1

log f [Yα; ξ−1{ψ(xα)β}] − λ

2
βT Dβ, (9)

where D = diag(0p+1, 1K ) is a (p+ K +1)-diagonal matrix representing a roughness
penalty, in which 0k and 1k denote k-dimensional vectors of, respectively, zeros and
ones. Denoting the above MPLE by β̂λ with a tuning parameter λ, we obtain an
estimate of µ(x) by µ̂λ(x) = ξ−1{φ(x)β̂λ}. One can see that the first term of (9) is
the criterion in the familiar generalized linear model regression with design matrix X
and a coefficient vector β.

In what follows, we apply our DPI method. Notably, the estimation of b(β0)

in the DPI method requires a complicated third-order tensor computation. Thus,
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we use a numerical differentiation approach presented in Sect. 3.2. From the fact
that there appears no y in the expression of ∂2 log f [y; ξ−1{ψ(x)β}]/∂βi∂β j = −
u′′{ψ(x)β}ψi (x)ψ j (x)/ψ , we can find that ∂k η̂(·)/∂βi1 . . . ∂βik = ∂kη(·)/
∂βi1 . . . ∂βik for k ≥ 2, where “hat” means that the empirical distribution is substituted,
and that e(β0) is zero. Consequently, we apply the numerical differentiation to com-
pute q̂(β̂)T d̂(β̂), where β̂ is the MLE. In addition we use the parametric assumption,
then I = J . Then (7) becomes

q̂(β̂)T d̂(β̂) = − d

dε
tr
[

J {β̂ + εq(β̂)}{J (β̂)}−1
] ∣∣∣∣

ε=0
. (10)

In this setting, J (β̂) = X T Ŵ X/n where Ŵ is a diagonal matrix whose (α, α)-element
is u′′{ψ(xα)β̂}/ψ ,

a(β̂) = β̂T D(X T Ŵ X/n)−1 Dβ̂,

and

b(β̂) = tr{D(X T Ŵ X/n)−1} − d

dε
tr
[

J {β̂ + εq(β̂)}{J (β̂)}−1
] ∣∣∣∣

ε=0
.

Using these quantities, λ̂PDPI = b(β̂)/a(β̂). We examine the following simulations
or λ̂PDPI, where we employ the Fisher scoring algorithm to compute the MPLE
(e.g., Green and Silverman 1994; Konishi et al. 2004). We employ “grad” function
of “numDeriv” package (Gilbert 2006) in the statistical software R to carry out
the numerical differentiation. Throughout our simulations, we use n equally spa-
ced design points in [−5, 5], i.e., xα = −5 + 10(α − 1)/(n − 1), α = 1, . . . , n,
eight fixed knots κ j = −5 + 10 j/9, ( j = 1, . . . , 8) and the degree p = 2. In
addition, we compare the selections using GIC and CV, in which the candidates of λ
are (0, 1, 4, 9, 16, . . . , 502)/100. We took the simulations 500 times for two cases of
n = 50 and 100. We also set λ̂PDPI be zero if λ̂PDPI takes negative value.

Example 4 (Penalized spline Bernoulli regression) We consider a Bernoulli regression
model: f (y;µ) = µy(1 − µ)y , u(ξ) = log(1 + eξ ), ψ = 1 and v(y, ψ) = 0. We
take the data from the model f {yα;µ(xα)} with µ(x) = 1/[1 + exp{sin(1.5x)}].
Figure 4 illustrates one random sample example (n = 100) of the penalized spline
with λ using PDPI (bold), GIC (dashed) and CV (long dashed) together with the true
curve µ(x) (dotted). One can imagine how the penalized spline method with tuning
parameter estimators behaves. Figure 5 shows the boxplot of the estimated λ’s by each
method, where log(λ + 0.1) is shown. Figure 6 displays values of the true expected
log-likelihoods η(β̂

λ̂
) for each estimate β̂

λ̂
where λ̂ represents the selected λ. The

average expected log-likelihoods are −22.1, −21.5 and −24.9 for PDPI, GIC and CV
when n = 50, and −44.1, −44.2 and −47.6 for PDPI, GIC and CV when n = 100.

Example 5 (Penalized spline Poisson regression) We consider a Poisson regression
model: f (y;µ) = e−µµy/y!, u(ξ) = eξ , ψ = 1 and v(y, ψ) = − log(y!). We
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Fig. 5 Example 4. Boxplots for three estimates of λopt , for n = 50 and n = 100, in 500 simulations, where
log(λ+ 0.1) are displayed
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Fig. 6 Example 4. Boxplots for the resulting expected log-likelihoods with three estimates of λopt , for
n = 50 and n = 100, in 500 simulations
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Fig. 7 Example 5. One random sample (n = 100) example of the penalized spline with λ using PDPI
(bold), GIC (dashed) and CV (long dashed) together with the true curve µ(x) (dotted)

take the data from the model f {yα;µ(xα)} with µ(x) = exp{x exp(−x2/2)+ log 3}.
Figure 7 illustrates one random sample example (n = 100) of the penalized spline
with λ using PDPI (bold), GIC (dashed) and CV (long dashed) together with the
true curve µ(x) (dotted). Figure 8 shows the boxplot of the estimated λ’s by each
method, where log(λ + 0.1) is shown. Figure 9 displays values of the true expected
log-likelihoods η(β̂

λ̂
) for each estimate β̂

λ̂
where λ̂ represents the selected λ (in which,

model independent constant is removed). The average expected log-likelihoods are
33.7, 33.7 and 32.1 for PDPI, GIC and CV when n = 50, and 62.6, 62.7 and 61.7 for
PDPI, GIC and CV when n = 100.

Figures 5 and 8 tell that estimated λ’s behave as in the previous Examples 1–3. It is
important to emphasize the expected log-likelihoods for comparison of each method’s
performance, in which large expected log-likelihoods is preferable. Figures 6 and 9
state that the PDPI method is useful. Moreover the performance with the PDPI method
is near to that using the GIC.

8 Concluding remarks

In this paper, we propose a direct plug-in method for selecting a tuning parameter in
maximum penalized likelihood methods. The use of our asymptotic result for a tuning
parameter reduces the computational cost in seeking the minimum that the existing
methods require. It also gives a guide for the selections using some existing methods,
even if it is subtle that the regularity conditions for the direct plug-in method hold.
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Fig. 8 Example 5. Boxplots for three estimates of λopt , for n = 50 and n = 100, in 500 simulations, where
log(λ+ 0.1) are displayed
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Fig. 9 Example 5. Boxplots for the resulting expected log-likelihoods with three estimates of λopt , for
n = 50 and n = 100, in 500 simulations
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Appendix A: Proofs

Assumptions

Here, we provide the following regularity conditions resembling those described in
White (1982). The model f (·; θ) is sufficiently smooth. It has the same support as
that of the true distribution function, G(x), for all θ . The parameter vectors θ0, θ̂ , θλ

and θ̂λ lie in the interior for all λ. In addition, J (θ), the Hessian matrix of −η(θ), is
positive definite at θ0. Finally, the penalty function k(θ) is sufficiently smooth.

Preparations and useful results

The arguments to be described work mainly with the functions S(x1, . . . , x j ), which
depend on the data X1, X2, . . . only through the implied arguments x1, . . . , x j , such
as

∫
S(x1, . . . , x j )dG(xr ) = 0 for 1 ≤ r ≤ j. (11)

We assign a superscript ( j) to a function S satisfying (11) as S( j)(x1, . . . , x j ). Then

we note that n−1 E
{∑n

α=1 S(1)(Xα)
} = 0, n−2 E

{∑n
α,β=1 S(2)(Xα, Xβ)

}
= O(n−1)

and, for j ≥ 3, n− j E
{∑n

α1,...,α j =1 S( j)(Xα1 , . . . , Xα j )
}

= o(n−1), for i.i.d. samples

Xn = (X1, . . . , Xn) from a distribution G(x).
Before proving the theorems, we prepare some notations:

�i1...im (x; θ) = ∂m log f (x; θ)
∂θi1 . . . ∂θim

, γi1...im (θ) = ∂mk(θ)

∂θi1 . . . ∂θim

,

κi1...im (θ) = ∂mη(θ)

∂θi1 . . . ∂θim

, Li1...im (θ) = 1

n

n∑

α=1

�i1...im (Xα; θ). (12)

Here note that κi j (θ) = −Ji j (θ). For brevity, we omit θ0 in A(θ0), where A is a
function evaluated at θ0; that is, we write A(θ0) as A.

Under the regularity conditions, the MLE θ̂ satisfies that

θ̂ − θ0 = 1

n
c(1)n + 1

2n2 c(2)n + op(n
−1), (13)

where c(1)n = ∑n
α=1 T (1)(Xα; θ0) and c(2)n = ∑n

α,β=1 T (2)(Xα, Xβ; θ0). The vector

valued functions T (1)(x; θ) and T (2)(x1, x2; θ), which satisfy (11), are called the first
and second compact derivatives, respectively (Konishi and Kitagawa 1996, 2003). The
specification of their exact expressions is given in Appendix.
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Lemma 1 Assume that the conditions given in Appendix hold. Then,

θ̂λ − θ̂ = −λ
n

(
q + 1

n
A(1)n + 1

n2 A(2)n

)
+ λ2

n2 B + op(n
−2),

where A(1)n =∑n
α=1 A(1)(Xα; θ0), A(2)n =∑n

α,β=1 A(2)(Xα, Xβ; θ0), and A(1)(x; θ)
and A(2)(x1, x2; θ) are the functions which satisfy (11). In addition, q = q(θ0) is defi-
ned in Theorem1 and B = B(θ0) is a quantity that is independent of the observations.

The proof of the above lemma and the specifications of A(1) and A(2) are given in
Appendix.

Proof of Theorem 1

Taylor expansion around θ0 and (13) yields

κi (θ̂) =
p∑

j

(
1

n
c(1)j,n + 1

2n2 c(2)j,n

)
κi j (θ0)+ 1

2

p∑

j,k

1

n2 c(1)j,nc(1)k,nκi jk(θ0)+ op(n
−1),

(14)

where we use the fact that κi (θ0) = 0 for i = 1, . . . , p by definition of θ0. Applying
Lemma 1 and (14), we have

η(θ̂λ) = η(θ̂)+
p∑

i

{
−λ

n

(
qi + 1

n
A(1)i,n + 1

n2 A(2)i,n

)
+ λ2

n2 Bi

}
κi (θ̂)

+1

2

p∑

i, j

λ2

n2 qi q jκi j (θ̂)+ op(n
−2)

= η(θ̂)− λ

n

p∑

i, j

qi

{(
1

n
c(1)j,n + 1

2n2 c(2)j,n

)
κi j + 1

2n2 c(1)j,n

p∑

k

c(1)k,nκi jk

}

−
p∑

i, j

λ

n3 A(1)i,n c(1)j,nκi j + 1

2

p∑

i, j

λ2

n2 qi q jκi j + op(n
−2). (15)

Taking expectation for (15) over Xn , we obtain

E{η(θ̂λ)} = E{η(θ̂)} + λ

n2

p∑

i

⎡

⎣1

2
γi EX {T (2)i (X, X)}

−1

2
qi

p∑

j,k

EX {T (1)j (X)T (1)k (X)}κi jk
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+
p∑

j

EX {A(1)i (X)T (1)j (X)}Ji j

⎤

⎦− λ2

2n2 a(θ0)+ o(n−2), (16)

where we adopt −κi j (θ) = Ji j (θ), γi =∑p
j=1 Ji j q j and (11). By (29) and (30), the

second term in the right-hand side of (16) reduces to

λ

n2

p∑

i, j

⎡

⎣γi

p∑

k,l

EX {� jk(X)�l(X)}J i j J kl + EX {A(1)i (X)T (1)j (X)}Ji j

⎤

⎦ . (17)

Moreover, according to (28) and (29),

p∑

i, j

EX {A(1)i (X)T (1)j (X)}Ji j

=
p∑

i, j

(
γi j Vi j + qi

p∑

k

[
EX {�i j (X)�k(X)}J jk + κi jk Vjk

])
.

Consequently, (17) equals λb(θ0)/n2, which proves the assertion.

Proof of Theorem 2

Using the notation (12), the GIC is rewritten as

1

2n
GIC(λ) = −L(θ̂λ)+

p∑

i, j

{R̂λ(θ̂λ)}−1
i j

{
Q̂i j,0(θ̂λ)− λ

n
γi L j (θ̂λ)

}
, (18)

where {R̂λ(θ)}−1
i j and Q̂i j,0(θ) are the (i, j) element of the matrices {R̂λ(θ)}−1 and

Q̂λ(θ)|λ=0, respectively. Noting that Li (θ̂) = 0 (i = 1, . . . , p) and Lemma 1, the first
term of GIC is expanded around θ̂ as

− L(θ̂λ) = −L(θ̂)− 1

2

p∑

i, j

(θ̂i,λ − θ̂i )(θ̂ j,λ − θ̂ j )Li j (θ̂)+ op(n
−2)

= −L(θ̂)+ λ2

2n2 a + op(n
−2), (19)
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where κi j (θ) = −Ji j (θ) is used. On the other hand, it follows from the notation (12)
and the Taylor expansion for R̂λ around λ = 0 that

{R̂λ(θ̂λ)}−1
i j = {R̂0(θ̂λ)}−1

i j − λ

n

p∑

k,l

{R̂0(θ̂λ)}−1
ik γkl(θ̂λ){R̂0(θ̂λ)}−1

jl + op(n
−1)

= {R̂0(θ̂λ)}−1
i j − λ

n

p∑

k,l

γkl J ik J jl + op(n
−1).

Therefore, the second term of GIC is

p∑

i, j

[
{R̂0(θ̂λ)}−1

i j

{
Q̂i j,0(θ̂λ)− λ

n
γi L j (θ̂λ)

}

− λ

n

p∑

k,l

γkl J ik J jl Q̂i j,0(θ̂λ)

⎤

⎦+ op(n
−1). (20)

Observing the result of Lemma 1, θ̂λ = θ̂+ Op(n−1), it holds that L j (θ̂λ) = Op(n−1)

and Q̂i j,0(θ̂λ) = Q̂i j,0(θ̂)+ Op(n−1). In addition, by

{R̂0(θ̂λ)}−1
i j = {R̂0(θ̂)}−1

i j −
p∑

k,l,m

λ

n
qk{R̂0(θ̂)}−1

il {R̂0(θ̂)}−1
jm Lklm(θ̂)+ op(n

−1)

and Q̂i j,0(θ̂λ) = Q̂i j,0(θ̂)− 2
∑p

k
λ
n qk∂ Q̂i j,0(θ̂)/∂θk + op(n−1). Therefore,

p∑

i, j

{R̂0(θ̂λ)}−1
i j Q̂i j,0(θ̂λ) = C0 − λ

n

p∑

i, j,k

qk

⎛

⎝
p∑

l,m

J il J jm Lklm Q̂i j,0 + 2Mik, j J i j

⎞

⎠

+op(n
−1),

where C0 is a constant that is independent of λ and Mik, j = 1
n

∑n
α=1 �ik(Xα; θ0)

� j (Xα; θ0). Combining the results described above, (20) equals

C0 − λ

n

⎧
⎨

⎩

p∑

i, j,k

qk

⎛

⎝
p∑

l,m

J il J jm Lklm Q̂i j,0 + 2Mik, j J i j

⎞

⎠

+
p∑

i, j,k,l

γkl J ik J jl Q̂i j,0

⎫
⎬

⎭+ op(n
−1).
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Substituting (19) and (20) into (18) and observing a > 0,

λ̂GIC = 1

a

⎧
⎨

⎩

p∑

i, j,k,l

γkl J ik J jl Q̂i j,0

+
p∑

i, j,k

qk

⎛

⎝
p∑

l,m

J il J jm Lklm Q̂i j,0 + 2Mik, j J i j

⎞

⎠

⎫
⎬

⎭+ op(1). (21)

Thus, we have that

E(λ̂GIC) = λopt + o(1) and E(λ̂2
GIC) = λ2

opt + o(1),

which prove the assertion.

Proof of Theorem 3

Lemma 1 implies that

(θ̂
(−α)
λ − θ̂ (−α))− (θ̂λ − θ̂) = − λ

n − 1

[
q + 1

n − 1
{A(1)n − A(1)(Xα)}

]

+λ
n

(
q + 1

n
A(1)n

)
+ op(n

−2)

= − λ

n2 {q − A(1)(Xα)} + op(n
−2). (22)

Analogously, (13) implies that

θ̂ (−α) − θ̂ = (θ̂ (−α) − θ0)− (θ̂ − θ0)

= 1

n

{
1

n
c(1)n − T (1)(Xα)

}
+ C2 + op(n

−2), (23)

where C2 is a constant vector independent of λ, of order Op(n−2). Combining (22)
and (23),

θ̂
(−α)
λ − θ̂λ = − λ

n2 {q − A(1)(Xα)} + 1

n

{
1

n
c(1)n − T (1)(Xα)

}
+ C2 + op(n

−2).

(24)

On the other hand, Lemma 1 yields that

�i (Xα; θ̂λ) = �i (Xα; θ̂)− λ

n

p∑

j

(
q j + 1

n
A(1)j,n

)
�i j (Xα; θ̂)+ op(n

−1). (25)
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Summarizing (24), (25) and (19), the following is obtained.

CV(λ) = −
n∑

α=1

�(Xα; θ̂ (−α)λ )

= −nL(θ̂λ)−
n∑

α=1

p∑

i

(θ̂
(−α)
i,λ − θ̂i,λ) �i (Xα; θ̂λ)+ op(n

−1)

= −nL(θ̂λ)

−
n∑

α=1

p∑

i

[
− λ

n2 {qi − A(1)i (Xα)} + 1

n

{
1

n
c(1)i,n − T (1)i (Xα)

}
+ Ci,2

]

×
⎧
⎨

⎩�i (Xα; θ̂)− λ

n

p∑

j

(
q j + 1

n
A(1)j,n

)
�i j (Xα; θ̂)

⎫
⎬

⎭+ op(n
−1)

= −nL(θ̂λ)+
n∑

α=1

λ

n2

p∑

i

{qi − A(1)i (Xα)} �i (Xα; θ̂)

+
n∑

α=1

p∑

i, j

1

n

{
1

n
c(1)i,n − T (1)i (Xα)

}

λ

n

(
q j + 1

n
A(1)j,n

)
�i j (Xα; θ̂)+ C3 + op(n

−1)

= −nL(θ̂)+ λ2

2n
a − λ

n2

n∑

α=1

p∑

i

A(1)i (Xα)�i (Xα)

− λ

n2

n∑

α=1

p∑

i, j

T (1)i (Xα)q j�i j (Xα)+ C3 + op(n
−1),

where C3 is a constant independent of λ. Because a > 0,

λ̂CV = 1

na

n∑

α=1

p∑

i

⎧
⎨

⎩A(1)i (Xα)�i (Xα)+
p∑

j

q j T
(1)

i (Xα)�i j (Xα)

⎫
⎬

⎭+ op(1)

= 1

na

n∑

α=1

p∑

i, j

[{
T (1)i (Xα)γi j + 2qi�i j (Xα)+ qi

p∑

k

T (1)k (Xα)κi jk

}
T (1)j (Xα)

+ qi Ji j T
(1)
j (Xα)

]
+ op(1), (26)

where we use (28). The same argument in the proof of Theorem 2 proves the assertion.
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Proof of Theorem 4

Using the fact that λ̂DPI = λopt + op(1), Eq. (15) where λ = λ̂DPI becomes

η(θ̂
λ̂DPI

) = η(θ̂)− λopt + op(1)

n

×
p∑

i, j

qi

{(
1

n
c(1)j,n + 1

2n2 c(2)j,n

)
κi j + 1

2n2 c(1)j,n

p∑

k

c(1)k,nκi jk

}

−
p∑

i, j

λopt + op(1)

n3 A(1)i,n c(1)j,nκi j

+1

2

p∑

i, j

{λopt + op(1)}2

n2 qi q jκi j + op(n
−2). (27)

Using the fact that the quantities which possess super-script of ( j) are Op(n j/2)

for j = 1, 2, we have the first assertion. Similarly, the second and third assertions in
Theorem 4 follow from the consistency results in Theorems 2 and 3.

Proof of Lemma 1

Let ξ = θ̂λ − θ̂ . The Taylor expansion around θ̂ yields that, for i = 1, . . . , p,

0 = −Li (θ̂λ)+ λ

n
γi (θ̂λ)

=
p∑

j

ξ j

{
Ji j − 1

n
ν
(1)
i j,n(θ̂)

}
− 1

2

p∑

j,k

ξ jξk Li jk(θ̂)+ λ

n
γi (θ̂λ)+ op(n

−2),

where ν(1)i j,n(θ) =∑n
α=1 ν

(1)
i j,n(Xα; θ) and ν(1)i j,n(x; θ) = �i j (x; θ)+ Ji j , where ν(1)i j,n(θ)

satisfies (11). Furthermore,

p∑

j

ξ j Ji j = 1

n

p∑

j

ξ jν
(1)
i j,n(θ̂)+ 1

2

p∑

j,k

ξ jξk Li jk(θ̂)

−λ
n

⎧
⎨

⎩γi (θ̂)+
p∑

j

ξ jγi j (θ̂)

⎫
⎬

⎭+ op(n
−2)

= −λ
n
γi (θ̂)+ 1

n

p∑

j,k

J jk

{
−λ

n
γk(θ̂)+ 1

n

p∑

l

ξlν
(1)
kl,n(θ̂)

}
ν
(1)
i j,n(θ̂)

+1

2

p∑

j,k

ξ jξk Li jk(θ̂)− λ

n

p∑

j

ξ jγi j (θ̂)+ op(n
−2)
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= −λ
n
γi (θ̂)− λ

n2

p∑

j,k

J jkγk(θ̂)ν
(1)
i j,n(θ̂)

−
∑

j,k,l,m

J jk J lm λ

n3 γm(θ̂)ν
(1)
kl,n(θ̂)ν

(1)
i j,n(θ̂)

+ λ2

2n2

p∑

j,k,l,m

J jl J kmγl(θ̂)γm(θ̂)Li jk(θ̂)

+λ
2

n2

p∑

j,k

J jkγk(θ̂)γi j (θ̂)+ op(n
−2)

≡ −λ
n

Ii,1 − λ

n
Ii,2 − λ

n
Ii,3 + λ2

2n2 Ii,4 + λ2

n2 Ii,5 + op(n
−2).

In what follows, we shall compute Ii,1, . . . , Ii,5 specifically. By (13),

Ii,1 = γi +
p∑

j

(
1

n
c(1)j,n + 1

2n2 c(2)j,n

)
γi j + 1

2n2

p∑

j,k

c(1)j,nc(1)k,nγi jk + op(n
−1).

Put ν(1)i jk,n(θ) =∑n
α=1 ν

(1)
i jk(Xα; θ) and ν(1)i jk(x; θ) = �i jk(x; θ)−κi jk , where ν(1)i jk,n(θ)

satisfies (11). Then Ii,2 equals

p∑

j,k

J jk

(
γk +

p∑

l

1

n
c(1)l,nγkl

)⎧⎨

⎩
1

n
ν
(1)
i j,n +

p∑

l

(
1

n
c(1)l,n + 1

2n2 c(2)l,n

)
Li jl

+ 1

2n2

p∑

l,m

c(1)l,n c(1)m,n Li jlm

⎫
⎬

⎭+ op(n
−1)

=
p∑

j,k

J jk

(
γk +

p∑

l

1

n
c(1)l,nγkl

)

⎧
⎨

⎩
1

n
ν
(1)
i j,n +

p∑

l

(
1

n
c(1)l,n + 1

2n2 c(2)l,n

)(
1

n
ν
(1)
i jl,n + κi jl

)

+ 1

2n2

p∑

l,m

c(1)l,n c(1)m,nκi jlm

⎫
⎬

⎭+ op(n
−1).

Similarly,

Ii,3 =
p∑

j,k,l,m

J jk J lmγm
1

n2 S(1)kl,n S(1)i j,n + op(n
−1),
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where S(1)i j,n = ν
(1)
i j,n +∑p

k c(1)k,nκi jk which satisfies (11), and

Ii,4 =
p∑

j,k,l,m

J jl J kmγlγmκi jk + op(1), Ii,5 =
p∑

j,k

J jkγkγi j + op(1).

The Lemma is obtained by summarizing each term that has a superscript of (1) or (2)
or double (1)’s in Ii,1, Ii,2 and Ii,3:

p∑

j

A(1)j,n Ji j =
p∑

j

(
c(1)j,nγi j + q jν

(1)
i j,n + q j

p∑

k

c(1)k,nκi jk

)
,

and

p∑

j

A(2)j,n Ji j = 1

2

p∑

j

c(2)j,nγi j + 1

2

p∑

j,k

c(1)j,nc(1)k,nγi jk

+
p∑

j,l

q j

(
c(1)l,nν

(1)
i jl,n + 1

2
c(2)l,nκi jl + 1

2
c(1)l,n

p∑

m

c(1)m,nκi jlm

)

+
p∑

j,l,m

J jmγlmc(1)l,n

(
ν
(1)
i j,n +

p∑

k

c(1)k,nκi jk

)
+

p∑

j,k,l

J jkql S(1)kl,n S(1)i j,n,

where qi =∑p
j J i jγ j is used. On the other hand, Ii,4 and Ii,5 derive that

∑p
j B j Ji j =

1
2

∑p
j,k q j qkκi jk +∑p

j q jγi j .

It is straightforward from the above to specify the functions A(1)(x; θ) and
A(2)(x; θ) satisfying (11): A(1)(x; θ) satisfies

p∑

i

A(1)i (x; θ)Ji j (θ)

=
p∑

i

{
T (1)i (x; θ)γi j (θ)+ qi (θ)ν

(1)
i j (x; θ)+ qi (θ)

p∑

k

T (1)k (x; θ)κi jk(θ)

}
.

(28)

Here, A(2)(x; θ) is derived similarly.

Expressions of c(1)n and c(2)n

Analogous arguments in the proof of Lemma 1 show that

c(1)i,n =
p∑

j

J i j L(1)i and c(2)i,n =
p∑

j,k,l

c(1)k,n

(
2ν(1)jk,n +

p∑

l

c(1)l,nκ jkl

)
J i j , (29)
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where L(1)i = nLi (θ0) = ∑n
α=1 �i (Xα; θ0) which satisfies (11). The relations (29)

are also obtained from the compact derivatives (Konishi and Kitagawa 1996) for the
M-estimator applied to MLE. By (29), we have

EX {T (2)i (X, X)} =
p∑

j,k,l

[
2J kl EX {�l(X)� jk(X)} + Vklκ jkl

]
J i j , (30)

where EX {T (1)k (X)T (1)l (X)} = Vkl is used.
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