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Abstract We propose a test procedure which compares the extreme value indices
of two samples with heavy tail distributions. On a theoretical point of view, we adopt
the minimax nonparametric point of view. We exhibit the separating rate between the
null hypothesis and the alternative of our procedure. Next, we present a data driven
test methodology and we evaluate its performance thanks to an extensive simulation
study. As a practical real-life application, we compare the risk behaviors of a panel of
different financial data.

Keywords Extreme value index · Nonparametric test · Minimax rates

1 Introduction

Our aim in this paper is to give methods which compare the behavior of two series with
respect to their risk. We consider that the risk of a series is given by the tail parameter
of the distribution of the log returns of the series. We assume that the log return
(X1, . . . , Xn) and (Y1, . . . , Ym) associated to the series have distributions denoted by
FX , FY . Their tails are modeled in the usual semiparametric way, following a Pareto
distribution with parameter γ > 0 multiplied by an infinite dimensional parameter
L(·)

1 − FX (x) = x−1/γX L X (x) and 1 − FY (x) = x−1/γY LY (x) (1)
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for x large enough. The nuisance parameter L(·) is supposed to be slowly varying: this
first order condition is defined in (3). Our aim is to compare the tail indices γX and
γY of both series; roughly speaking, that means that we want to solve the test problem
with the null hypothesis H0 : γX = γY .

The minimax test theory has been initiated by Ingster (1993) and developed in
the classical models of the nonparametric estimation. The specificities are the fol-
lowing: first, the null hypothesis H0 and the alternative H1 have symmetric role
when the error of decision is computed (the risk of the test is the sum of the first
type risk and of the second type risk); secondly, we focus on the rate of separa-
tion of the hypotheses. It is a real challenge to determine the smaller distance allo-
wing to distinguish between H0 and H1. Last, the alternative is precisely defined:
generally, the hypothesis is the intersection between a regularity constraint and a
geometrical constraint measuring the distance between H1 and H0 and depending
on a norm chosen by the practitioner. This point of view is completely different
from the other classical point of view where the nonparametric test is built on the
distribution function. In this case, it is unusual to give the alternative; the law of
the statistic of test is studied under H0 but nothing is known under the alternative
and then, the risk of the considered test can not be bounded but under H0. This
explains why the practitioner introduces some nonsymmetry between H0 and H1.
These type of tests are generally excellent for monitoring problems because they
allow to eliminate data which are not conform to H0. But, few results on the power are
given implying that it is impossible to compare different tests and to give optimality
results.

For the comparison of the risks of series, a first idea is to apply Butucea and
Tribouley (2006) who propose procedures to test the homogeneity of two samples:
the null hypothesis is H0 : fX = fY where fX , fY are the densities associated to the
distribution functions FX , FY . This approach is not convenient here because we do
not want to compare the entire density or distribution function but the behavior of the
tails. We focus on the tail indices of the distribution functions, building test procedures
associated to different estimation procedures of these tail indices. This problem of
estimation of the tail index γ has been extensively explored: for a first approach,
see Embrechts et al. (1997). The proposed estimators are depending on a parameter
k whose the influence is similar to the influence of the smoothing parameter in the
nonparametric estimation theory. The parameter k is the number of order statistics of
the sample needed for giving information on the tail of the distribution. For choosing
k, an analogue phenomenon with the usual trade-off between the bias term and the
variance term when estimating curves appears. A second order condition is needed to
determine the asymptotic optimal value of k.

When dealing with the test problem, our comparison procedure depends again on
parameter k to be determined; a trade-off between bias term and variance term is
needed leading to an optimal choice of parameter k∗ which is the same as in the
estimation problem. Next, we exhibit the separating rate of the null hypothesis H0
from the alternative H1 (to a prescribed level) which is the best achievable among the
test family that we consider. To obtain uniform results, we need some restriction on
the space of the considered distributions and introduce a kind of third order condition.
Observe that an analogue is used in Fraga Alves et al. (2003) in the estimation problem.
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Our procedure of test associated to k∗ depends on extra parameters and then is not
adaptive. Usually (see for instance Butucea and Tribouley 2006), in the theory of
nonparametric tests, it is fundamental that the test statistic is unbiased under H0. It
allows to deduce adaptive procedures using Bonferroni’s methods. Unfortunately, the
test statistics based on estimators of the tail indices are always biased under H0 as
soon as we consider H0 as a composite hypothesis.

On a practical point of view, we provide a data driven procedure of comparison
using an estimator of k∗ proposed by Hall and Welsh (1985). Many other recent and
sophisticated procedures could be used (see by instance Fraga Alves et al. 2003) but
we show that the practical qualities of our test are good even with the very simple
and natural procedure introduced by Hall and Welsh (1985). The performances of
our test procedure are studied on simulated samples of specific distributions. First,
we provide a detailed analyze of the adaptive estimation of the tail parameters using
an iterative improvement of the procedure by Hall and Welsh (1985). The impro-
vement consists in reducing significatively the impact of initial values but is still
biased. We then carry out an extensive simulation study to compute the test empi-
rical levels and powers for various conditions for the first and second order para-
meters. The results are very encouraging: the estimators of the level of the test are
generally good even in the case where the second order parameter is very small or
when we consider the limit case where the second order parameter should be zero
associated to a log function. We observe that the second order parameter has no
significative impact on the estimation of the level. Nevertheless, the estimation of
the power of the test does not provide such a good result. We think that we pay
here the fact that the test statistic is biased even under the null hypothesis. From
a theoretical point of view, that means that the separating rate appears to be very
slow.

As a practical use, we also present an application to a real-life data set. Real finan-
cial data are compared using the previous test procedure on their log return series.
Assuming that the model given in (1) is valid for the considered financial data, we
presume that their risk is growing with the tail index γ . Different types of series with
various associated risk are chosen as single share, indexes, bonds, raw material prices
and currencies.

The paper is organized as follows. In Sect. 2, we present the test procedures. In
Sect. 3, we define the functional spaces that we consider and we state a theoretical
frame for the test problem. In Sect. 4, we give the main results about the rate and the
optimality of the previous procedures. Section 5 is devoted to the empirical study. The
proofs are postponed to Sect. 6.

2 Procedures

In this section, we propose procedures to test the null hypothesis H0 : γX = γY

where γX (respectively γY ) is the tail index of the sample X1, . . . , Xn (respectively
Y1, . . . , Ym). First we describe the methods for estimating the tail index: we consider
the same methods as studied in de Haan and Peng (1998). Next, we give the test
procedures based on these estimation methods.
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Let p be either n or m and Z be X either Y and let k vary between 1 and p. Denote
Z(·:p) the sequence of the ordered variables:

Z(1:p) ≤ · · · ≤ Z(k:p) ≤ · · · ≤ Z(p:p).

We consider the usual estimators of the tail index suggested by Hill (1975), Dekkers
et al. (1989), and de Vries (following de Haan and Peng 1998)

γ̂ 1
Z (k) = 1

k

k∑

i=1

log
Z(p−i :p)

Z(p−k:p)

,

γ̂ 2
Z (k) = γ̂ 1

Z (k) + 1 − 1

2

(
1 − (γ̂ 1

Z (k))2

M(k)

)−1

,

γ̂ 3
Z (k) = M(k)

2γ̂ 1
Z (k)

,

where

M(k) = 1

k

k∑

i=1

(
log

Z(p−i :p)

Z(p−k:p)

)2

.

Let now K be a subset of {1, . . . , n} × {1, . . . , m} and let us fix the smoothing
parameters (k, k′) in K. For each method l = 1, 2, 3, we define the sequence of test
statistics Dl

k,k′ comparing the estimator T l
k,k′ = γ̂ l

X (k) − γ̂ l
Y (k′) to a critical value,

t l
k,k′ > 0

Dl
k,k′ =

⎧
⎨

⎩

0 if |γ̂ l
X (k) − γ̂ l

Y (k′)| ≤ t l
k,k′

1 if |γ̂ l
X (k) − γ̂ l

Y (k′)| > t l
k,k′ .

(2)

which means that we decide H0 if |T l
k,k′ | ≤ t l

k,k′ and reject H0 otherwise. This test
procedure is depending on the smoothing parameter (k, k′). In Sect. 4, we explain
how to choose (k, k′) and the critical values t l

k,k′ such that our procedures have good
theoretical properties.

3 Test problem

We first state the assumptions on the considered distributions. The first and second
order conditions are very usual and also needed to obtain results in the problem of esti-
mation. We need extra assumptions: we add a third order condition. Our assumptions
are more restrictive than the third order condition used in Fraga Alves et al. (2003)
(in the case of the estimation problem) because we establish uniform results. Next,
we define precisely our test problem (the null hypothesis and the alternative) and we
describe the optimality criterion allowing to decide of the quality of the procedures.
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3.1 Assumptions

First, we recall the definitions which are usual in the problem of the estimation of the
tail index; these definitions lead to the first order condition and to the second order
condition.

Definition 1 Let γ be a real. G ∈ RV−1/γ if there exists a function g(z, t) tending to
zero when t tends to infinity such that

∀z > 0,∀t > 0,
G(t z)

G(t)
= z−1/γ (1 + g(z, t)), (3)

γ is called the first order parameter.

A second order condition is needed, specifying the rate of convergence in (3). When
G is a survival function, it is usual to give the above definition in terms of the inverse
of the distribution function F = 1 − G; U denotes the right continuous inverse of the
function (1 − F)−1.

Definition 2 Let γ, ρ ≥ 0. 1−F ∈ RV−1/γ,ρ if there exist a function A(t) of constant
sign and a function R(z, t) tending to zero when t is going to infinity such that

∀z > 1,∀t > 1,

U (t z)
U (t) − zγ

A(t)
= zγ

(
1 − z−ρ

ρ

)
(1 + R(z, t)), (4)

we call ρ the second order parameter.

For our purpose, we need to control more precisely the behavior of the functions A, g
or R and we add two notations.

1. Let A, R be functions as described in Definition 2. We denote RV−1/γ,ρ(A, R)

the set of the survival functions satisfying (4) for these given functions A, R.
2. Let g̃ be a nonnegative function tending to zero at infinity. We denote RV−1/γ (g̃)

the set of functions G satisfying (3) for some function g such

∀t > 0, sup
z∈V(1)

|g(z, t)| ≤ g̃(t),

where V(1) is a fixed neighborhood of 1.

We are now ready to describe the set of considered distributions. Let us fix 0 < ρ1 <

ρ2 and let us give functions ã0, r̃0 tending to zero at infinity. Let A be in RV−ρ(ã0)

and R̃0 be in RVτ ′(r̃0) for ρ ∈ [ρ1, ρ2] and some τ ′ < 0. Let us put

� =
{

θ = (γ, ρ, R), γ > 0, ρ ∈ [ρ1, ρ2],

× R : R
+2 → R, sup

z≥1
|R(z, t)| ≤ R̃0(t)

}
. (5)
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For any θ ∈ �, we define the set

F(θ) = {
F d.f. , 1 − F ∈ RV−1/γ,ρ(A, R)

}
. (6)

Remark that the condition on R̃0(·) is a third order condition but the third order
parameter τ ′ will not play any role. Any other conditions are usual (observe that if
the second order condition is satisfied, A has necessary to be in RV−ρ) except that we
need here some uniformity to have exact controls on the behavior of the tails. These
assumptions could be compared with the assumptions on the modulus of continuity
when we deal with curves estimation with regularity constraint (by instance, when the
signal is supposed to belong to a Hölder class). Many distributions belong to the set
F(θ): by instance, our hypothesis are satisfied for the Burr(β, 1/2, λ) distribution

F(x) = 1 −
(

β

β + √
x

)λ

, x > 0

for γ = 2/λ, ρ = 1/λ, A(t) = 2/λ (t1/λ − 1)−1 and ã0(t) = R̃0(t) = t−1/ζ2 .
The second order condition is satisfied by the Cauchy distribution for γ = 1, ρ =
2, A(t) = 2π2/3 t−2 but our uniformity conditions are not satisfied because the func-
tion R(z, t) is not uniformly bounded on ]1,∞[ but is uniformly bounded by ct−2 on
[z0,+∞[ where z0 > 1.

3.2 The test problem

Let κ > 0 and φn,m > 0 be a function of n, m, called the rate of convergence of
the test. Let ã0, r̃0 be functions tending to zero at infinity and 0 < ρ1 < ρ2. Let AX

(respectively AY ) be in RV−ρX (ã0) for ρX ∈ [ρ1, ρ2] (respectively in RV−ρY (ã0) for
ρY ∈ [ρ1, ρ2]) and R̃0 ∈ RVτ (r̃0) for some τ . We define the following semi parametric
set of distribution functions

�0 =
⋃

(θX ,θY )∈�2

{(FX , FY ) ∈ F(θX ) × F(θY ), γX = γY } (7)

and

�n,m(κ) =
⋃

(θX ,θY )∈�2

{(FX , FY ) ∈ F(θX ) × F(θY ), |γX − γY | ≥ κφn,m}

for � defined in (5) and F(θ) in (6). Our problem is to test the null hypothesis

H0 : (FX , FY ) ∈ �0

against the alternative

H1 : (FX , FY ) ∈ �n,m(κ).
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The sequence φn,m measures the rate of separation between the hypothesis H0 and
H1; it defines a marge where it is impossible to distinguish between the hypothesis.
Our aim is to obtain tests with φn,m as fast as possible. A (nonrandomized) test Dn,m

is a measurable function from the space of the data (X1, . . . , Xn, Y1, . . . Ym) to {0, 1}
and we define the risk of Dn,m as follows

α(Dn,m, κφn,m) = sup
(FX ,FY )∈�0

PFX ,FY (Dn,m = 1)

+ sup
(FX ,FY )∈�n,m (κ)

PFX ,FY (Dn,m = 0).

3.3 Theoretical properties of our procedure

Let us fix a prescribed risk for the test problem stated in the previous section. Theorem 1
ensures that the test procedure described in Sect. 2 answers to the test problem and
gives the rate separating the null hypothesis and the alternative achieved for a specific
choice of smoothing parameter (k, k′).

In the sequel, the various indices k are depending on n either m and are tending to
infinity with n ∧ m.

Theorem 1 Let 0 < ρ1 < ρ2 and AX , AY belonging respectively to RV−ρX (ã0) and
RV−ρY (ã0) for ρX , ρY ∈ [ρ1, ρ2] and for ã0 tending to zero at infinity; let R̃0 ∈
RVτ (r̃0) for some τ and some r̃0 tending to zero at infinity. Consider the test problem

H0 : (FX , FY ) ∈ �0 against H1 : (FX , FY ) ∈ �n,m(κ),

where �0 is defined in (7). Let 0 < α < 1 be the prescribed risk of the test. Let
λ > 0 to be chosen and denote k∗

Z the indices varying between log(p) and p/ log(p)

satisfying

k∗
Z A2

Z

(
p

k∗
Z

)
= λ. (8)

We put k∗ = k∗
X ∧ k∗

Y . Then, the corresponding estimator

Tk∗
X ,k∗

Y
= γ̂ 1

X (k∗
X ) − γ̂ 1

Y (k∗
Y )

and the critical value tk∗ = (k∗)−1/2 provide test statistics

Dk∗
X ,k∗

Y
= I{|Tk∗

X ,k∗
Y

|>c tk∗ },

which achieve the rate of testing φ∗
n,m = (k∗)−1/2 as soon as κ is larger than 3c for

c ≥ 4 α−1/2
[
2((eX )2 + (eY )2) + (d2

X + d2
Y )λ

]1/2
,
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where eZ = γZ and dZ = (1 + ρZ )−1.

We emphasize that we are interested in the rates and that the constants are no optimal.
Specifically, the positive constant λ can be everything implying that the rate φ∗

n,m is
determined up to a constant.

3.4 A data driven procedure

Observe that in the specific case where AZ (z) = c0z−ρZ for some constant c0 > 0
(i.e. ã0 ≡ 0), we obtain (choosing in the previous theorem λ = c−2

0 )

k∗ = n
2ρX

2ρX +1 ∧ m
2ρY

2ρY +1 (9)

leading to the separating rate

φ∗
n,m = n

− ρX
2ρX +1 ∨ m

− ρY
2ρY +1 .

Even in this case, the previous result is not tractable in practice because the procedure
is not adaptive: it depends on a crucial way on the functions AX and AY which are
generally unknown (or on the second order parameters ρX , ρY ). To build an estimator
for k∗, we follow Hall and Welsh (1985). Since we are interested only with the order of
k∗, we use their procedure for λ = 1. Suppose that ρZ ∈ [ρ1, ρ2] where 0 < ρ1 < ρ2
are known. Choose σ such that 0 < σ < 2ρ1/(2ρ1 + 1) and then τ1, τ2 such that

2ρ2/(2ρ2 + 1) ∨ (1 − σ/2ρ2) < τ1 < τ2 < 1.

Put

s = [pσ ], t1 = [pτ1], t2 = [pτ2 ]

and

ρ̂Z =
∣∣∣∣
log(|γ̂Z (t1) − γ̂Z (s)|/|γ̂Z (t2) − γ̂Z (s)|)

log(t1/t2)

∣∣∣∣ . (10)

An estimator of k∗ defined in (9) is

k̂ = n
2ρ̂X

2ρ̂X +1 ∧ m
2ρ̂Y

2ρ̂Y +1 . (11)

In the estimation problem of tail index with data X1, . . . , Xn , Hall consider distribution
functions F which satisfy

1 − F(z) = Cz−1/γ
(
1 + Dz−ρ/γ (1 + R(z)

)
, (12)
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where γ, ρ > 0, C > 0, D = 0 and R is tending to zero at infinity (γ is the parameter
to be estimated). When the distribution function is assumed to belong to the Hall class
defined in (12), Hall and Welsh (1985) prove that the method described below leads
to an estimator k̂ satisfying

k̂/k∗ = n
2ρ̂

2ρ̂+1 /n
2ρ

2ρ+1 −→ 1

in probability, as p → +∞.
Observe that there exists many other methods (more sophisticated) to estimate the

parameter ρ. We choose the Hall and Welsh procedure because it is among the first
one and we think that it is straightforward to understand. We propose in Sect. 5 an
empirical study of the data driven procedure Dk̂ . Since the results are not so bad
with the Hall and Welsh procedure, we do not investigate other methods to estimate
ρ; obviously, the better is the procedure to estimate ρ, the better will be the applied
results for our test methodology.

4 Simulations

The purpose of this section is to provide several examples to investigate the perfor-
mances of the test procedure presented in Sect. 3.4. This part is not an illustration of
the theoretical part. Instead to focus on the separating rate between the alternative and
the null hypothesis, our aim is to study the test procedure on the risk point of view. We
leave the theoretical framework by considering specific classes of distribution which
are not necessary in the classes considered in Sect. 3.

4.1 Panel of distributions

Since most of tail parameters from economical data are between 1/3 and 1/5, we
decide to restrict to indices γ laying from 0.2 to 1. However, the nuisance parame-
ters ρ are free. First, we focus on a very simple class of distributions (called here
Pareto–Hall distributions) containing distributions denoted P defined as follows

F(x) = 1 − Cγ,ρ,θ x−1/γ (1 + x−ρ/γ )1x>θ

for some γ, ρ, θ positive constant. By convention, the distribution P of parameters
(γ, log) denote

F(x) = 1 − Cγ,ρ,θ x−1/γ (1 + log(x))1x>θ .

Recall that these distributions do not belong to the Hall class. But these cases are very
interesting because they appear as a limit case and they allow us to study the robustness
of our procedure. Moreover, from a practical point of view, they are common in nonlife
insurance mathematics. We tried various variations with respect to the Pareto–Hall
distribution adding perturbations on the beginning of the support of the simulated data.
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Since the empirical qualities of our procedure are the same for several perturbations,
we limit the presentation with contaminations admitting the log normal distribution.

Then, as in Gomes and Martins (2002), we decide to study the following distribu-
tions (which belong to the Hall class).

– The Frechet distribution denoted F

F(x) = exp
(
−x−1/γ

)
1x>0

for which (γ, ρ) = (1, 1).
– The Student distribution denoted t with ν = 4, 2, 1 degrees of freedom, for which

γ, ρ are (0.25, 0.5), (0.5, 1) and (1, 2).
– the Burr distribution denoted B

F(x) = 1 − (1 + xρ/γ )−1/ρ

1x>0.

Recall that our aim is to apply our methodology on financial series when the expec-
ted number of data is large. The procedure is obviously bad when p is very small (we
try for p � 50). Nevertheless, we decide to present results with smaller samples than
what it is available for financial applications (n = 700, m = 800).

4.2 Tail index estimation

We focus here on the toy model (the Pareto–Hall distributions). First, we compute
the adaptive estimator of γ using the Hall and Welsh standard procedure recalled in
Sect. 3.4. We observe that ρ̂ defined in (10) (and then k̂ defined in (11)) is depending
on the initialized values of σ, τ1, τ2. Without any specific assumptions, σ , τ1, τ2 are
chosen randomly in accordance with the given constraints. For each considered γ ,
N replications are carry out with fixed parameters (ρ, n) but (randomly) changing
parameters σ , τ1, τ2. In order to quantify the difference between γ̂ (k∗) and γ̂ (k̂), we
compute the root mean square error (RMSE) defined as usual by

RMSE(γ̂ (k∗), γ̂ (k̂)) =
√√√√ 1

N

N∑

i=1

(
γ̂i (k∗) − γ̂i (k̂)

)2
.

Figure 1 (Left) shows the distribution of γ̂ (k̂) − γ̂ (k∗) where the Hill estimator
is considered for different γ . For this example, the size of the N = 500 samples is
n = 800; the samples are generated using a Pareto–Hall distribution with parameters
γ = 0.2, 0.4, 0.6, 0.8 and ρ = 1. To estimate k∗ by k̂, the given interval for ρ is
[ρ1, ρ2] = [0.1, 3]. Larger differences can be observed when γ is increasing: γ̂ (k̂)

can be also quite far from the optimal value γ̂ (k∗). This is explained by the large
variability of the estimations of ρ which could be observed when using the same
sample, but with different initialized values σ, τ1, τ2. ρ̂ could be quite far from the
theoretical value, which induces strong variations in the computation of α̂.
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Fig. 1 Left: impact of Hall and Welsh initialized parameters on tail index variations. Distribution
of γ̂ (k̂) − γ̂ (k∗), γ varying. Right: improvement of Hall and Welsh procedure on tail index variations.
Distribution of γ̂ (k̃) − γ̂ (k∗), γ varying

The RMSE (see Fig. 2 Left) increases linearly with γ and measures the differences
induced by the initialization procedure. By instance, for γ = 0.4, we get RMSE
(γ̂ (k∗), γ̂ (k̂)) = 0.18. Under the gaussian assumption and with a level of 95%, the
corresponding confidence interval for the estimation values is [0.04, 0.78]. This inter-
val seems to be large, especially for the parameters γ corresponding to financial data.
In order to eliminate the impact of random numbers, we propose a practical improve-
ment of the standard procedure to estimate k∗. This methodology is used for several
simulating procedures when random initializations are needed (such as neural net-
works methods by instance). The procedure (denoted IHW for Improvement of the
Hall and Welsh procedure ) is iterative and computes the mean, denoted by k̃, of all unit
estimations of k∗. Each unit estimation is computed with the Hall and Welsh standard
procedure, starting from a new set of random conditions for σ , τ1 and τ2 parameters,
in accordance with the given constraints.

k̃ = 1

nρ

nρ∑

i=1

k̂i ,

where nρ is the number of iterations to estimate each underlaying ρ̂. Figure 1 (Right)
shows the distribution of γ̂ (k̃)− γ̂ (k∗) when the Hill method is again considered. The
chosen parameters for distribution are the same as before. The number of iterations for
the Hall improved procedure is nρ = 20. Comparing Fig. 1 Right and Left, we observe
that our improved method reduces significantly the distance between the estimators
of γ built with k̃ and k̂ and the estimator of γ built with the optimal index k∗. Figure
2 (Center) shows the RMSE computed between γ̂ (k̃) and γ̂ (k∗): for any studied γ ,
RMSE(γ̂ (k̃), γ̂ (k∗)) is smaller than RMSE(γ̂ (k∗), γ̂ (k̂)). Observe that the RMSE is
reduced using the iterative method (solid line) compared to the standard method (dot
line).
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Fig. 2 Left: tail index variations due to initialized parameters of Hall and Welsh procedure. RMSE between
Hill estimators for k∗ and k̂, γ varying. Center: Improvement of Hall and Welsh procedure on tail index
variations. Comparison between the RMSE, ρ fixed, γ varying. Hall procedure (dot line); Hall improvement
procedure (regular line). Right: Comparison of different tail index estimators. Comparison between the
RMSE, γ fixed, ρ varying. k known (‘o’) ; k estimated by Hall procedure (‘+’); k estimated by IHW (‘�’)

Similar results are observed for different values of ρ > 0. Figure 2 (Right) shows
RMSE(γ, γ̂ (k̃)), RMSE(γ, γ̂ (k̂)) and RMSE(γ, γ̂ (k∗)) computed for γ = 0.4 and
various ρ. Obviously, the Hill estimator computed with k∗ (γ, ρ known) leads to the
smaller RMSE.

Table 1 quantifies the improvement of results for various γ, ρ values. The last
column give the relative differences I = (RMSE(k̂) − RMSE(k̃))/RMSE(k̂). Dif-
ferent sizes of samples are studied: large samples (n = 5,000), medium samples
(n = 500), and small samples (n = 100). In every case, the iterative procedure
induces a significant decrease of the RMSE comparing to the standard Hall and Welsh
procedure. The improvement is approximatively constant when γ is increasing. The
size of the sample does not have any impact on the improvement. Notice that the
nuisance parameter ρ does not perturb the results.

To conclude, we think that our iterative procedure is a good alternative to estimate
the tail parameter γ without knowing any prior information on the nuisance parameter
ρ. The only weak assumption is to assume than ρ belongs to a given interval, which
can be chosen quite widely thanks to our improvement methodology.

4.3 Algorithm

Let us first describe the algorithm. The level α ∈]0, 1[, the number of data p and the
parameters γZ , ρZ are fixed. In the case of the Pareto–Hall distribution, we choose
θX = 1, θY = 2. The main steps of our algorithm are the following:

1. Both samples are generated; in the case of the Pareto–Hall distributions, each
sample Z∗ of size p contains 20% of noisy observations generated using a log
normal distribution (µ = 0.2, σ = 0.05). Each data set Z∗ is split randomly in
two sub data sets of the same size: Z∗ = Z∗

1 ⊕ Z∗
2 .

2. Subsamples Z∗
1 are used to compute k̃Z applying I H W (see the previous part).

Then the index γ̂Z (k̃Z ) is computed leading to the statistic

TX∗
1 ,Y ∗

1
= |γ̂X∗

1
(k̃X∗

1
) − γ̂Y ∗

1
(k̃Y ∗

1
)|.
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Table 1 Improvement of the RMSE for the Pareto–Hall distribution

n γ ρ/γ RMSE(k̂) RMSE(k̃) I (%)

100 0.2 1.0 0.092 0.899 2

– 0.4 1.0 0.148 0.11 23

– 0.6 1.0 0.259 0.199 23

– 0.8 1.0 0.377 0.260 31

500 0.2 1.0 0.084 0.075 11

– 0.4 1.0 0.174 0.125 28

– 0.6 1.0 0.257 0.202 21

– 0.8 1.0 0.392 0.283 27

5,000 0.2 1.0 0.09 0.070 21

– 0.4 1.0 0.252 0.207 18

– 0.6 1.0 0.356 0.297 16

– 0.8 1.0 0.486 0.410 15

100 0.2 2.0 0.093 0.067 28

– 0.4 2.0 0.162 0.107 34

– 0.6 2.0 0.315 0.260 17

– 0.8 2.0 0.448 0.348 22

500 0.2 2.0 0.07 0.05 23

– 0.4 2.0 0.186 0.142 23

– 0.6 2.0 0.320 0.263 18

– 0.8 2.0 0.435 0.357 18

5,000 0.2 2.0 0.104 0.088 16

– 0.4 2.0 0.239 0.201 15

– 0.6 2.0 0.345 0.277 19

– 0.8 2.0 0.363 0.317 12

3. Subsamples Z∗
2 are used to estimate the variance of the statistics TX∗

1 ,Y ∗
1

using a
bootstrap procedure with B replications: let us denote σX∗

2 ,Y ∗
2

the square roots of
the estimator. We deduce the critical value tX∗

2 ,Y ∗
2
(α) = σX∗

2 ,Y ∗
2
/α.

4. Finally, the test statistic Dα
X∗,Y ∗ at the level α computed with the samples X∗ and

Y ∗ is given by:

Dα
X∗,Y ∗ =

⎧
⎨

⎩

0 if |TX∗
1 ,Y ∗

1
| ≤ tX∗

2 ,Y ∗
2
(α)

1 if |TX∗
1 ,Y ∗

1
| > tX∗

2 ,Y ∗
2
(α).

(13)

5. The final result is α̂ = DX∗,Y ∗(α) computed using the average of N decisions, N
being the number of replications of the previous steps. When H0 is true, α̂ is an
estimation of the prescribed risk γ and when H1 is true, α̂ is an estimation of the
power of the test.
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We made simulations for some smaller and larger values of α, and obtained similar
results. So, we focus in the sequel on results for α = 0.1, 0.05.

4.4 Performances of the test procedure

To estimate the first type error, couples of samples (X∗, Y ∗) with the same theoretical
tail parameter are generated (γX = γY ). To estimate the power of the test, the couple
(X∗, Y ∗) is generated with different tail parameters (γX = γY ). We take n = 800,
m = 700, N = 400, ρ1 = 0.10, ρ2 = 5.00, nρ = 20. The constants for the bootstrap
step are B = 50 replications with the rate 0.9.

The impact of the nuisance parameters ρX and ρY is analyzed. Results on the first
type error and power are presented.

4.4.1 First type error estimation

The estimations α̂ of the first type error are given in Table 2 when the nuisance
parameters ρ are equal or different for both distributions X and Y .

The results are given in Table 2 and induce the following remarks

– We made extensive simulations for the toy model (the Pareto–Hall distributions)
but give here a very short abstract. We observe that the results are excellent and
that different values of the nuisance parameter (small or high) do not modify
the estimations of the level. The behavior of the procedures associated to the
Hill / Dekkers / de Vries estimators are similar. The results in the limit case are also
excellent.

– The best results are obtained with the test methodology built with the Dekkers
estimation procedure; in this case, they are globally good for any family of distri-
butions.

– The level α is generally well fitted when the samples are providing of the same
family of law. The test procedure can underestimate the prescribed level (see by
instance when the samples are issue from the Frechet distribution).

– When the samples are issue from different families, the test methodology using the
Hill estimator is the worst one. By instance, it gives bad result when the Student
model is considered.

– Globally, it seems that the second order parameter has a small impact on the
accuracy of the estimated level.

4.4.2 Power estimation

Results on the estimation of the power are given in Table 3.

– As expected, the estimated power is increasing with the difference between γX and
γY .

– In the case of the Pareto–Hall distributions, the rate of increasing of the power
function is not very high, especially for the test procedure associated to the Dekkers
estimator and in the limit cases.
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Table 2 Empirical levels α̂

γX = γY ρX ρY Hill Dekkers Vries

α̂(10%) α̂(5%) α̂(10%) α̂(5%) α̂(10%) α̂(5%)

PP 0.20 0.50 1.00 6 1 8 2 8 3

PP 0.30 0.50 1.00 8 2 8 4 10 3

PP 0.40 0.50 1.00 7 3 9 4 12 5

PP 0.50 0.50 1.00 6 2 8 3 7 3

PP 0.60 0.50 1.00 7 2 11 4 10 3

PP 0.70 0.50 1.00 9 4 9 4 9 4

PP 0.80 0.50 1.00 7 2 8 3 8 3

PP 0.20 log 1.00 5 1 7 2 7 2

PP 0.30 log 1.00 4 2 6 3 8 3

PP 0.40 log 1.00 7 1 9 4 8 4

PP 0.50 log 1.00 4 2 8 4 6 2

PP 0.60 log 1.00 7 3 12 5 9 4

PP 0.70 log 1.00 7 4 8 3 9 4

PP 0.80 log 1.00 8 4 10 4 9 3

tt 0.25 0.50 0.50 17 6 6 1 20 8

tt 0.50 1.00 1.00 25 11 7 1 13 5

tt 1.00 2.00 2.00 20 9 6 1 8 2

FF 0.25 1.00 1.00 8 1 6 2 6 2

FF 0.50 1.00 1.00 9 2 8 2 6 2

FF 1.00 1.00 1.00 10 3 8 3 9 2

BB 0.25 2.00 2.00 10 3 6 1 6 1

BB 0.25 1.00 2.00 28 14 8 1 15 6

BB 1.00 1.00 1.00 19 9 11 3 13 4

BB 1.00 1.00 2.00 29 14 14 5 14 7

Pt 1.00 0.50 0.50 32 15 13 7 26 11

Pt 1.00 0.50 1.00 37 17 13 4 22 10

PF 0.25 0.50 1.00 24 8 6 2 17 6

PF 0.50 0.50 1.00 26 8 5 2 20 7

PF 1.00 0.50 1.00 23 8 14 4 18 6

PB 0.25 0.50 1.00 52 28 6 4 34 16

PB 0.25 1.00 1.00 54 30 5 3 29 12

PB 1.00 1.00 1.00 49 26 23 10 29 12

PB 1.00 2.00 1.00 42 24 17 8 24 8

tF 0.50 1.00 1.00 57 33 5 2 26 12

tF 1.00 2.00 1.00 16 7 8 1 9 2

tB 0.50 1.00 0.50 36 16 13 4 28 10

tB 1.00 2.00 1.00 22 10 11 2 12 6

tB 1.00 2.00 2.00 20 8 10 2 8 3

FB 0.25 1.00 1.00 28 12 4 1 15 5
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Table 2 continued

γX = γY ρX ρY Hill Dekkers Vries

α̂(10%) α̂(5%) α̂(10%) α̂(5%) α̂(10%) α̂(5%)

FB 0.50 1.00 1.00 24 10 6 2 15 6

FB 1.00 1.00 1.00 26 14 11 4 15 6

FB 0.25 1.00 2.00 10 3 7 1 8 2

FB 0.50 1.00 2.00 9 2 5 1 9 4

FB 1.00 1.00 2.00 10 3 6 2 8 2

The prescribed levels are α = 10, 5%

– For the others distributions, the results are excellent when the Hill estimation
procedure is considered. It is expected because the estimation of probability of the
first type error is not very good in this case (see the previous part). The results
obtained when the Vries method of estimation is used are similar.

– The Dekkers method of estimation produces tests with small power. When the
distance between the tail indices is small, the test procedure has some difficulty to
decide, see for instance the comparison between the t (0.5, 1) and the F(0.25, 1)

leading to an estimated power 0.22 while this power is 0.99 with the Hill procedure
and 0.98 with the Vries procedure. But when the difference between the indices is
large, the results are very good; we observe that the second order parameter seems
to have little influence. The Burr model and the Frechet model provide the best
results.

4.4.3 Conclusion

Our test procedure provides accurate estimators of the first type error even in the limit
case for our toy model and these estimators α̂ do not depend on the nuisance parameter.
The test procedure admits similar behavior when the three estimation procedures are
used. Remark that they are much better than in the nonparametric test setting (see for
instance the simulations in Butucea and Tribouley 2006, where the entire densities are
compared). The results on the power are less satisfying: as expected, the estimated
power is increasing, but its growth towards one is very slow.

The results obtained in this empirical study confirm the interest of the test procedure
for comparing unknown tail indices of various distribution functions even when the
distribution functions do not belong to the same family of distributions.

5 A real life application: financial data

We apply the proposed test methodology on real economical data to compare the risk
behavior of various financial series as companies shares, financial indexes, bonds or
currencies, through their tail parameters. We consider a real-life example for which
the data are not necessary independent. We emphasize that we do not want to test the
validity of the model but decide H0 or H1.
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Table 3 Empirical Power α̂

γX = γY ρX ρY Hill Dekkers Vries

α̂(10%) α̂(5%) α̂(10%) α̂(5%) α̂(10%) α̂(5%)

PP 0.50 = 0.20 1.00 2.00 66 38 11 5 60 33

PP 0.50 = 0.25 1.00 2.00 48 19 9 4 44 20

PP 0.50 = 0.30 1.00 2.00 28 7 9 4 29 15

PP 0.50 = 0.40 1.00 2.00 10 2 11 4 14 6

PP 0.50 = 0.50 1.00 2.00 6 2 8 3 7 3

PP 0.50 = 0.70 1.00 2.00 22 9 10 4 17 6

PP 0.50 = 1.00 1.00 2.00 49 28 20 8 36 17

PP 0.50 = 2.00 1.00 2.00 91 75 76 57 82 63

PP 0.50 = 3.00 1.00 2.00 96 84 90 76 91 75

PP 0.50 = 5.00 1.00 2.00 96 88 95 84 92 81

PP 0.50 = 10.00 1.00 2.00 96 88 96 88 93 82

PP 0.50 = 0.80 log 2.00 9 4 10 3 10 4

PP 0.50 = 1.00 log 2.00 22 10 18 6 21 8

PP 0.50 = 2.00 log 2.00 58 42 56 38 56 37

PP 0.50 = 3.00 log 2.00 71 55 63 45 65 45

PP 0.50 = 5.00 log 2.00 76 57 75 59 72 53

tt 0.25 = 0.50 0.50 1.00 35 20 27 8 40 22

tt 0.25 = 1.00 0.50 2.00 82 62 92 70 91 74

tt 0.50 = 1.00 1.00 2.00 61 39 60 33 58 39

FF 0.25 = 0.50 1.00 1.00 85 61 20 9 68 48

FF 0.25 = 1.00 1.00 1.00 99 94 82 64 94 83

BB 0.25 = 0.50 0.50 0.50 94 82 54 25 95 80

BB 0.25 = 1.00 0.50 0.50 100 100 100 99 100 100

BB 0.25 = 0.50 1.00 0.50 100 98 63 38 99 98

BB 0.25 = 1.00 1.00 0.50 100 100 100 100 100 100

BB 0.25 = 0.50 1.00 2.00 67 40 34 15 64 39

BB 0.25 = 1.00 1.00 2.00 100 97 94 73 98 90

Pt 0.25 = 0.50 2.00 1.00 98 93 15 6 92 80

Pt 0.25 = 1.00 0.50 2.00 100 99 66 44 99 94

Pt 0.50 = 0.25 0.50 0.50 52 29 9 3 22 11

Pt 0.50 = 1.00 1.00 2.00 92 82 44 24 85 61

PF 0.25 = 0.50 0.50 1.00 89 69 16 6 77 54

PF 0.25 = 0.50 1.00 1.00 86 67 16 8 69 51

PF 0.25 = 1.00 0.50 1.00 99 96 59 37 97 86

PF 0.25 = 1.00 1.00 1.00 100 96 59 37 95 87

PF 1.00 = 0.25 0.50 1.00 58 36 34 20 53 33

PF 1.00 = 0.25 2.00 1.00 61 38 35 20 56 37

PF 1.00 = 0.50 0.50 1.00 24 10 14 5 20 10

PF 1.00 = 0.50 2.00 1.00 20 6 17 8 21 9
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Table 3 continued

γX = γY ρX ρY Hill Dekkers Vries

α̂(10%) α̂(5%) α̂(10%) α̂(5%) α̂(10%) α̂(5%)

PB 0.25 = 1.00 0.50 0.50 100 100 86 73 100 100

PB 0.25 = 1.00 0.50 1.00 100 100 72 52 100 97

PB 0.25 = 1.00 0.50 2.00 100 99 66 45 97 92

tF 0.25 = 1.00 0.50 1.00 68 45 82 61 72 52

tF 0.50 = 0.25 1.00 1.00 99 98 22 8 98 91

tF 1.00 = 0.25 2.00 1.00 100 100 91 71 99 93

tF 1.00 = 0.50 2.00 1.00 95 82 61 31 83 62

The prescribed levels are α = 10, 5%

The test procedures are applied on a panel of different financial data. Various types
of series are chosen, as single share, indexes, financial bonds, raw material prices,
and currencies. Financial indexes are selected as an indicator of stock market prices,
based on the value of a set of shares belonging to France (CAC40), US (dowjones),
New York (sandP500), UK (ftse100uk) and Japan (nikkei255). The single shares are
Air Liquide (AL), General Electric (GE), fordmotor and exon mobil. The bonds are
taken in US over 10 years (US10yr), 30 years (US30yr) and in Germany (Germany).
The raw material price is brent. The exchange rates are yen to dollar and deutchmark
to dollar. All these data correspond to daily closing market quotations.

For each time series, the log return sequences are computed and the tail parameters
are estimated on the positive log return series. Tail indexes are estimated using Hill
estimator associated to I H W (see Part 4.2) to estimate the optimal index k∗. For
the initialization procedure, the given interval is [ρ1, ρ2] = [0.1, 5]. The number of
replications is nρ = 30. Remark that we do not discuss about whether the series belong
to the functional class: our aim is to decide if H0 is more suitable than H1 or not. To
test whether the tail condition is not satisfied, see Drees et al. (2006).

Figure 3 shows the computed tail parameters estimations for these series. All these
financial data exhibit heavy tail features withγ values from 0.3 to 0.7. Financial indexes
(cac, ftse) and single shares exhibit the highest tail parameters with values around 0.7.
Financial bonds (US10yr, US30yr, Germany) exhibit the lowest tail parameters with
values around 0.3. All these results confirm the knowledge about these financial time
series.

The algorithm described in page 15 is applied on all couples of financial series to
compare their financial risk quantified by the tail index of the distribution of the log
return. Recall that both samples are split randomly in two subsamples to compute inde-
pendently the test value and its statistical variance. In order to eliminate the potential
influence of this random procedure, an average decision Dα

X∗,Y ∗ is computed. Observe

that Dα
X∗,Y ∗ > 1/2 means that H1 is accepted more often that H0 (and conversely if

Dα
X∗,Y ∗ < 1/2). So the final decision is taken as follows:

– low values of Dα
X∗,Y ∗ means that both distributions have same tail parameter and

then we accept that the risk of both series are the same,
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Fig. 3 Estimation of the tail indices for economical data

– high values of Dα
X∗,Y ∗ means that the distribution have different tail parameters

and we accept that one of the series have a smaller risk than the other one.

Figure 4 shows the average decisions for the bilateral test procedure computing for
the studied financial series. Each subgraph presents Dα

X∗,Y ∗ for α = 5% when the
series X mentioned in the title is tested against all the others series Y mentioned in the
columns of each subgraph. The vertical dotted line is the level 1/2: if Dα

X∗,Y ∗ exceeds
this line, we accept that γX = γY which means that X and Y do not have the same
behavior with respect to the risk.

For instance, considering the last subgraph, we conclude that the behavior with
respect to the risk of the CAC is not the same as the behavior of the bonds (US and Ger-
man), of the share series fordmotor, exonmobil and of the currency series DM/Dollar.
Observe that this conclusion is identical for the others indices ftse, dowjones, nik-
kei, sand and in a much curious way for the currency Yen/Dollar and the commodity
brent. It is interesting to observe that the tail parameters of the series yen/Dollar and the
series DM/dollar are accepted to be different. Moreover, the subgraph corresponding
to DM/Dollar shows that the tail parameter corresponding is accepted to be different
of the tail parameters of the indices series (CAC, ftse, dowjones, nikkei, sand) and
brent, AL and also Yen/Dollar.

To analyze more precisely the difference of the tail parameters, we compare these
parameters in an unilateral way. Figure 5 shows the average decision for the unilateral
test to compare the financial risks of the series at level 5%. In this case, the procedure
test is H0 : γX = γY against H1 : γX > γY where X is mentioned in the title of each
subgraph and where Y is mentioned in the columns of each subgraph. If the quantity
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Fig. 4 Comparison of tail indices for economical data. Bilateral Test (H1 : γX = γY ). Level 5%

Dα
X∗,Y ∗ (represented by a horizontal stick) exceeds 0.5 (represented by the vertical

dotted line), we conclude that the series X is more risked than the series Y .
We have four clusters of series.

C1 = {Cac, Ftse, DowJones, Nikkei, Sand, AL}
C2 = {Ge, Y en/Dollar, Brent}
C3 = {Us10, U S30, Germany, DM/Dollar}
C4 = {ExonMobil, Fordmotor}

Let us denote by γi the tail indices of the series belonging to the cluster Ci for
i = 1, 2, 3, 4. The first one contains all financial indices; Figure 5 shows that we
accept that the γ1’s are larger than the γ3’s. Remark that C3 contains the bonds. γ2 is
greater than the tail parameter of the bonds (see Fig. 5). Last, the series of C4 have
tail parameters different of the tail parameter of the indices when we use the bilateral
test at level 5% but this difference is no more significative when we use unilateral
tests at level 5% each. The financial indices (X ) from France (cac), United Kingdom
(ftse), US (dowjones), Japan (nikkei), have the higher tail parameters compared to all
financial bonds (Y : Us10yr, Us30yr, Germany), with an average decision close to 100.
The test computes also that the (brent) parameter is also one of the heaviest. AL shows
a heavy tail compared to other single shares (it General electrics, fordmotor and exon
mobil). For currencies, yen to dollar shows the heaviest tail compared to DM/dollars.
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Fig. 5 Comparison of tail indices for economical data. Unilateral Test (H1 : γX > γY ). Level 5%

Remark that, we never accept that the bonds and the currency DM/ dollar are more
risked than any other series. The series exonmobil and fordmotor are never accepted
to be more risked than any other series. Note also that our test does not allow us to
separate between the indices series set (or the bonds series set). The bonds in US over
10 years (US10yr), 30 years (US30yr) and in Germany (Germany) show the lowest
tail indexes. For currencies, the deutchmark/dollars shows the lowest tail.

The test procedure applied on this set of real financial series confirms objectively
the knowledge of most financial experts. It reinforces also the strength of the test
procedure and of its associated methodology to compare the risk behavior on both
simulated and real data.

6 Proofs

6.1 Preliminaries

We first state a theorem giving an exact expansion of the estimator γ̂ . This theorem
is given in de Haan and Peng (1998) with less precision in the control of the terms
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404 M. Mougeot, K. Tribouley

which are tending to zero in probability; the proof is given for the Hill’s estimator γ̂ 1

and is rejected at the end of this part.

Theorem 2 Let 0 < ρ1 < ρ2. Let Z1, . . . , Z p be i.i.d. variables associated to the
variable Z. Assume that the distribution function FZ of Z satisfies the second order
condition (4) for

– some γZ and ρZ such that ρZ ∈ [ρ1, ρ2],
– a function AZ belonging to RV−γZ ρZ (ãZ ) for a function ãZ ,
– a function RZ such that supz≥1 |R(z, t)| ≤ R̃Z (t) for a function R̃Z belonging to

RVτ (r̃Z ) for some τ and some function r̃Z .

Then there exists a sequence (Pp(k)) which is equal in distribution to

√
k

(
1

k

k∑

i=1

(Ei − 1)

)
, (14)

where E1, . . . , E p are i.i.d. from a standard exponential distribution such that

γ̂Z (k)
d= γZ + eX

Pp(k)√
k

+ dZ AZ

( p

k

)
(1 + WZ (k))

for

e = γZ , dZ = 1
1+ρZ

and where, for any u > 0,

P(|WZ | > u) ≤ C1

(
1

k
+ AZ

( p

k

)
+ 1

k
R̃2

Z

( p

k

)

+1{R̃Z (
p
k )∨R̃Z (

p
k )r̃Z (

p
k )∨ãZ(

p
k )∨ã2

Z(
p
k )>C2}

)
. (15)

C1, C2 are positive constants depending on ρ1, ρ2, τ and u.

6.2 Proof of Theorem 1

Using the expansion given in Theorem 2, we get

γ̂X (k) − γ̂Y (k′) = (γX − γY ) + 1√
k ∧ k′ Rn,m(k, k′) + b(k, k′) + �(k) − �(k′),

where the random term is

Rn,m(k, k′) =
⎛

⎝eX
Pn(k)√

k
k∧k′

− eY
Pm(k′)√

k′
k∧k′

⎞

⎠
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and the bias terms are

b(k, k′) =
[
dX AX

(n

k

)
− dY AY

(m

k′
)]

and

�(k) = dX AX

(n

k

)
WX , �(k′) = dY AY

(m

k′
)

WY , (16)

where WX (k), WY (k′) verifies (15). Using (14), we obviously have

E Rn,m(k, k′) = 0 and E R2
n,m(k, k′) ≤ 2(e2

X + e2
Y ) = vX,Y .

Let us study the error of the first type and determine the critical value. Under H0, we
have γX − γY = 0 and

P�0

(
Dk,k′ = 1

) = P�0

( |Tk,k′ | ≥ tk,k′
)

≤ P�0

(∣∣∣∣
1√

k ∧ k′ Rn,m(k, k′) + b(k, k′)
∣∣∣∣ ≥ tk,k′/2

)

+P�0

(|�(k)| ≥ tk,k′/4
) + P�0

(∣∣�(k′)
∣∣ ≥ tk,k′/4

)

= p1 + p2 + p3.

Using Markov Inequality, we bound the first term

p1 ≤ 8
[
E R2

n,m(k, k′) + (k ∧ k′)b2(k, k′)
]

(k ∧ k′) t2
k,k′

≤ 8
(

vX,Y + d2
X k A2

X

(n

k

)
+ d2

Y k′ A2
Y

(m

k′
) ) (

(k ∧ k′) t2
k,k′

)−1
.

Fix λ > 0. Choosing the indices k(λ) and k′(λ) such that

k(λ)A2
X

(
n

k(λ)

)
= λ and k′(λ)A2

Y

(
m

k′(λ)

)
= λ (17)

and the critical value

tk(λ),k′(λ) = 4

√
vX,Y + (d2

X + d2
Y )λ

α
(k(λ) ∧ k′(λ))−1/2 , (18)

we bound p1 by α/2. Using (17) and (16), we obtain
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p2 ≤ P�0

⎛

⎝|�(k(λ))| ≥
√

d2
X

α

√
λ

k(λ)

⎞

⎠

= P�0

(
|WX (k(λ))| ≥ 1√

α

)
.

Using (15), since log(n) ≤ k(λ) ≤ n(log n)−1

p2 ≤ C1

(
λ√

log(n)
+ 1{R̃0(log n)∨ã0(log n)>C2}

)
= C3 o(1)

(as soon as n is large enough) where C1, C2, C3 are positive constants depending on
ρ1, ρ2, τ, α and on the functions R̃0, ã0, r̃0. Similarly, we bound p3 by C3 o(1). We
deduce that the risk of the first type is bounded by α/2+o(1). Let us study the second
type error term. Let us denote the optimal index k∗ = k(λ) ∧ k′(λ) where k(λ), k′(λ)

are defined in (17) and tk∗ the optimal critical value defined in (18). Let us denote

B = b(k(λ), k′(λ)) + �(k(λ)) + �(k′(λ)).

We get, setting Rn,m(k(λ), k′(λ)) = Rn,m ,

PFX ,FY (Dk(λ),k′(λ) = 0) = PFX ,FY (|Tk(λ),k′(λ)| ≤ tk∗)

≤ PFX ,FY

(√
k∗ [−tk∗ − |B| − (γX − γY )

] ≤ Rn,m

≤ √
k∗ [

tk∗ + |B| − (γX − γY )
])

≤ PFX ,FY

(√
k∗ [−tk∗ − |B| − (γX − γY )

] ≤ Rn,m and − γX + γY ≥ φn,m

)

+PFX ,FY

(
Rn,m ≤ √

k∗ [
tk∗ + |B| − (γX − γY )

]
and γX − γY ≥ φn,m

)

≤ 2 PFX ,FY

(
|Rn,m | + √

k∗|B| ≥ φn,m
√

k∗
[

1 − 3tk∗

2φn,m

])
.

Let us consider rates satisfying

3tk∗(λ)

2φn,m
≤ 1/2.

We finish as for the error of the first type:

PFX ,FY (Dk(λ),k′(λ) = 0) ≤ p1 + p2 + p3,
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where

p1 = 2 PFX ,FY

(
|Rn,m(k(λ), k′(λ))| + √

k∗|b(k(λ), k′(λ)| ≥ φn,m
√

k∗/2
)

≤ 16
vX,Y + λ(d2

X + d2
Y )

k∗ φ2
n,m

and

p2 + p3 = 2 PFX ,FY

(|�(k(λ))| ≥ φn,m/4
) + 2 PFX ,FY

(|�(k′(λ))| ≥ φn,m/4
)
.

We deduce that the second type error is bounded by α/2+o(1) for rates φn,m satisfying

φn,m ≥ 3tk∗ ∨ 8

√
vX,Y + λ(d2

X + d2
Y )

α k∗ ,

which leads to the announced result.

6.3 Proof of Theorem 2

First we state the following lemma proven at the end of this section

Lemma 1 Let G(·) be a function in RVτ (g̃) for some τ and g̃(·). Then, for any u > 0

P
(∣∣∣G

(
1/ξ(k:p)

) − G
( p

k

)∣∣∣ > u
)

≤ c

k

(
1 + (2−τ τ )2 G2

( p
k

)

u2

)

+1{g̃( p
k )G( p

k )>u(2τ ∧(3/2)τ )},

where c is an universal constant.

Next, note that Z(p−k:p) =d U (1/ξ(k:p)) where ξ1, . . . , ξp are independent uniform
random variables. Put Fi = ξ(k:p)/ξ(i :p) and denote

⎧
⎪⎨

⎪⎩

d1 = E
(

1−(Fi )
−ρ

ρ

)
= 1

1+ρ
,

g1 = V
(

1−(Fi )
−ρ

ρ

)
= 1

ρ2

[
1 + 1

1+2ρ
− 2

1+ρ

]
.

The second order condition (4) implies that

∀x > 0,∀t > 0, log(U (t x)) − log(U (t)) = γ log(x) + S(x, t) + S̃(x, t),

where
{

S(x, t) = A(t)
(

1−x−ρ

ρ

)
(1 + R(x, t)),

S̃(x, t) = log(1 + S(x, t)) − S(x, t) ≤ S2(x, t).
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Taking t = 1/ξ(k:p) and x = Fi = ξ(k:p)/ξ(i :p), we obtain

γ̂ 1 = γ + γ
1

k

k∑

i=1

[
log(Fi ) − 1

] + 1

k

k∑

i=1

[
S(Fi , 1/ξ(k:p))

]

+1

k

k∑

i=1

[
S̃(Fi , 1/ξ(k:p))

]
.

Remark that Fi ≥ 1 and then |R(Fi , 1/ξ(k:p))| ≤ R̃0(1/ξ(k:p)). Writing

S(Fi , 1/ξ(k:p)) = A(1/ξ(k:p))

(
1 − (Fi )

−ρ

ρ

)
(1 + R(Fi , 1/ξ(k:p)))

=
{

A(p/k)E

(
1 − (Fi )

−ρ

ρ

)

+ [
A(1/ξ(k:p)) − A(p/k)

] [(1 − (Fi )
−ρ

ρ

)
− E

(
1 − (Fi )

−ρ

ρ

)]

+ [
A(1/ξ(k:p)) − A(p/k)

]
E

(
1 − (Fi )

−ρ

ρ

)

+A(p/k)

[(
1 − (Fi )

−ρ

ρ

)
− E

(
1 − (Fi )

−ρ

ρ

)]}

×(1 + R(Fi , 1/ξ(k:p))),

it follows

1

k

k∑

i=1

[
S(Fi , 1/ξ(k:p))

] = d1 A(p/k)(1 + W3) + W1W2

+d1W1(1 + W3) + A(p/k)W2∣∣∣∣∣
1

k

k∑

i=1

[
S̃(Fi , 1/ξ(k:p))

]∣∣∣∣∣ ≤ 1

k

k∑

i=1

[
S2(Fi , 1/ξ(k:p))

]

≤ 2A(p/k)2(1 + W 2
6 )W4 + 2(1 + W 2

6 )W4W5

for

W1 = A(1/ξ(k:p)) − A(p/k),

W5 = A(1/ξ(k:p))
2 − A(p/k)2,

W6 = R̃0(1/ξ(k:p)),

|W2| = 1

k

k∑

i=1

{[(
1 − (Fi )

−ρ

ρ

)
− E

(
1 − (Fi )

−ρ

ρ

)] [
1 + R(Fi , 1/ξ(k:p))

]}
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≤
[
1 + R̃0(1/ξ(k:p))

] ∣∣∣∣∣
1

k

k∑

i=1

[(
1 − (Fi )

−ρ

ρ

)
− E

(
1 − (Fi )

−ρ

ρ

)]∣∣∣∣∣ ,

W4 = 1

k

k∑

i=1

(
1 − (Fi )

−ρ

ρ

)
,

|W3| =
∣∣∣∣∣
1

k

k∑

i=1

R(Fi , 1/ξ(k:p))

∣∣∣∣∣ ≤ W6.

For any t > 0, we get

P(|W4| ≥ t) ≤ g1

t
. (19)

Applying Lemma 1 for G := R̃, we have

P(|W3| ≥ t) ∨ P(W 2
6 ≥ t) ≤ P

(
R̃0(1/ξ(k:p)) − R̃0(p/k) > (t ∧ √

t)/2
)

≤ c

k

(
1 + (2−τ τ )2 R̃2

0

( p
k

)

(t2 ∧ t)

)

+1{
r̃0(

p
k )R̃0(

p
k )>(t∧√

t)(2τ ∧(3/2)τ )/2
} (20)

as soon as t > 2R̃(p/k) ∨ 4R̃2(p/k). Similarly, for any t ≥ 4R̃2(p/k),

P(|W2| ≥ 2t) ≤ 2P

(∣∣∣∣∣
1

k

k∑

i=1

(
1 − (Fi )

−ρ

ρ

)
− E

(
1 − (Fi )

−ρ

ρ

)∣∣∣∣∣ > (t ∧ √
t)

)

+P
(

R̃0(1/ξ(k:p)) − R̃0(p/k) >
√

t/2
)

≤ g1 1

k(t2 ∧ t)
+ c

k

(
1 + (2−τ τ )2 R̃2

0

( p
k

)

t

)

+1{
r̃0(

p
k )R̃0(

p
k )>

√
t(2τ ∧(3/2)τ )/2

}. (21)

Using again Lemma 1 for G := A and G := A2, we get

P(|W1| ≥ t) ≤ c

k

(
1 + (2ρρ)2 A2

( p
k

)

t2

)
+ 1{ã0(

p
k )A( p

k )>t (3/2)−ρ/2} (22)

P(|W5| ≥ t) ≤ c

k

(
1 + (22ρρ)2 A4

( p
k

)

t2

)

+1{ã0(
p
k )(2+ã0(

p
k ))A2( p

k )>t (3/2)−2ρ/2}. (23)
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It follows that

γ̂ 1 = γ + γ
Pp(k)√

k
+ d1 A(p/k)(1 + W ),

where

|W | ≤ |W3 + (A(p/k)d1)−1W1W2 + A−1(p/k)W1(1 + W3) + (d1)−1W2|
+2|(d1)−1 A(p/k)(1 + W 2

6 )W4 + (A(p/k)d1)−1(1 + W 2
6 )W4W5|

satisfies, for any t > 0

P(|W | > 9t) ≤ P(|W3| > t) + P(|W1W2| > d1 A(p/k)t) + P(|W1| > A(p/k)t)

+P(|W1W3)| > A(p/k)t) + P(|W2| > d1t)

+P(|W4| > d1 A(p/k)−1t/2)

+P(|W4W 2
6 | > d1 A(p/k)−1t/2) + P(|W4W5| > d1 A(p/k)t/2)

+P(|W4W5W 2
6 | > d1 A(p/k)t/2)

≤ 3P(|W1| > A(p/k)(t ∧ 1)) + 2P(|W3| > t) + 2P(|W2| > d1t)

+4P(|W4| > d1 A(p/k)−1t/2) + 2P(|W5| > A(p/k)2)

+2P(|W6| > 1)

≤ C1

(
1

k
+ A

( p

k

)
+ 1

k
R̃2

0

( p

k

)

+1{R̃0(
p
k )∨R̃0(

p
k )r̃0(

p
k )∨ã0(

p
k )∨ã2

0(
p
k )>C2}

)
,

where C1, C2 are positive constants depending on ρ1, ρ2, τ and t . This ends the proof.

6.4 Proof of Lemma 1

Let us recall the following inequality (see by instance Shorack and Wellner, p 723).

Lemma 2 Let ξ1, . . . , ξp be independent variable which are uniform on [0, 1]. Then,
there exists some universal constant c > 0 such that, for any k = 1, . . . , p

E

(
ξk:p − k

p

)2

≤ c
k

p2 .

For any t > 0, we get

p = P
(∣∣∣G

(
1/ξ(k:p)

) − G
( p

k

)∣∣∣ > t
)

= P

⎛

⎝

∣∣∣∣∣∣

G
(

(k/p)
ξ(k:p)

∗ (p/k)
)

G
( p

k

) − 1

∣∣∣∣∣∣
>

t

G
( p

k

)

⎞

⎠ .
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Since G(·) ∈ RVτ (g̃), there exists g such that

∀x > 0,∀t > 0,
G(t x)

G(t)
= xτ (1 + g(x, t)) with sup

x∈ν(1)

|g(x, t)| ≤ g̃(t).

It follows

p ≤ P

(∣∣∣∣

(
(k/p)

ξ(k:p)

)τ

− 1

∣∣∣∣ >
t

2G
( p

k

)
)

+P

((
(k/p)

ξ(k:p)

)τ ∣∣∣∣g
(

(k/p)

ξ(k:p)

,
p

k

)∣∣∣∣ >
t

2G
( p

k

)
)

≤ P

(∣∣∣∣

(
(k/p)

ξ(k:p)

)τ

− 1

∣∣∣∣ >
t

2G
( p

k

) and

(
(k/p)

ξ(k:p)

)
∈ [1/2, 3/2]

)

+P

((
(k/p)

ξ(k:p)

)τ ∣∣∣∣g
(

(k/p)

ξ(k:p)

,
p

k

)∣∣∣∣ >
t

2G
( p

k

) and

(
(k/p)

ξ(k:p)

)
∈ [1/2, 3/2]

)

+2P

((
(k/p)

ξ(k:p)

)
< 1/2 or

(
(k/p)

ξ(k:p)

)
> 3/2

)
.

Remark that for any u and v varying between 1/2 and 3/2, we have |uτ − vτ | ≤
Mτ |1/u − 1/v| where Mτ = |τ | ((2)1+τ ∨ (2/3)1+τ

)
. Since |g(x, t)| ≤ g̃(t) for any

x ∈ [1/2, 3/2], it follows

p ≤ P

(∣∣∣∣

(
ξ(k:p)

(k/p)

)
− 1

∣∣∣∣ >
t

2Mτ G
( p

k

)
)

+1{
(2−τ ∨(3/2)−τ )g̃( p

k )> t
2G( p

k )

}

+4P

((
ξ(k:p)

(k/p)
− 1

)
> 1 or

(
ξ(k:p)

(k/p)
− 1

)
< −1/3

)

≤ P

(∣∣∣∣ξ(k:p) − k

p

∣∣∣∣ >
tk/p

2Mτ G
( p

k

)
)

+ 1{
r̃( p

k )>t 2G( p
k )

−1
(2−τ ∨(3/2)−τ )

−1
/2

}

+4P

((
ξ(k:p) − k

p

)
> k/p or

(
ξ(k:p) − k

p

)
< −k/3p

)
.

Applying Lemma 2, we deduce the announced inequality and Lemma 1 is proved.
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