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Abstract This paper is concerned with the asymptotic behaviour of estimation pro-
cedures which are recursive in the sense that each successive estimator is obtained
from the previous one by a simple adjustment. The results of the paper can be used
to determine the form of the recursive procedure which is expected to have the same
asymptotic properties as the corresponding non-recursive one defined as a solution
of the corresponding estimating equation. Several examples are given to illustrate the
theory, including an application to estimation of parameters in exponential families of
Markov processes.
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Exponential families of Markov processes

1 Introduction

Let X1, . . . , Xn be random variables with a joint distribution depending on an unknown
parameter θ . Then an M-estimator of θ is defined as a solution of the estimating equa-
tion

n∑

i=1

ψi (v) = 0, (1)

where ψi (v) = ψi (Xi
1; v), i = 1, 2, . . . , n, are suitably chosen functions which

may, in general, depend on the vector Xi
1 = (X1, . . . , Xi ) of all past and pres-

ent observations. If fi (x, θ) = fi (x, θ |X1, . . . , Xi−1) is the conditional probability

T. Sharia (B)
Department of Mathematics, Royal Holloway University of London,
Egham, Surrey TW20 0EX, UK
e-mail: t.sharia@rhul.ac.uk

123



344 T. Sharia

density function or probability function of the observation Xi , given X1, . . . , Xi−1,

then one can obtain a maximum likelihood estimator (MLE) on choosing ψi (v) =
f ′
i (Xi , v)/ fi (Xi , v). Besides MLEs, the class of M-estimators includes estimators

with special properties such as robustness. Under certain regularity and ergodicity
conditions, it can be proved that there exists a consistent sequence of solutions of (1)
which has the property of local asymptotic linearity.

If ψ-functions are nonlinear, it is rather difficult to work with the corresponding
estimating equations. In this paper, we consider estimation procedures which are recur-
sive in the sense that each successive estimator is obtained from the previous one by
a simple adjustment. In particular, we consider a class of estimators

θ̂n = θ̂n−1 + Γ −1
n (θ̂n−1)ψn(θ̂n−1), n ≥ 1, (2)

where ψn is a suitably chosen vector process, Γn is a normalizing matrix process, and
θ̂0 ∈ R

m is an initial value. A detailed discussion and a heuristic justification of this
estimation procedure are given in Sharia (2007a).

In i.i.d. models, estimating procedures of type (2) have been studied by a number
of authors using methods of stochastic approximation theory. Some work has been
done for non i.i.d. models as well. A review of the existing literature can be found in
Sharia (2007a).

We study multidimensional estimation procedures of type (2) for the general statis-
tical model. This work can be regarded as the final part of a series of three papers: see
Sharia (2007a,b). In Sharia (2007a), we study convergence of the recursive estimators
for an arbitrary starting value θ̂0. In Sharia (2007b), we present results on the rate of the
convergence. In this paper, we are concerned with asymptotic behaviour of the esti-
mators defined by (2). The main objective is to prove that θ̂n is locally asymptotically
linear, that is, for each θ there exist a matrix process Gn(θ) such that

θ̂n − θ = G−1
n (θ)

n∑

i=1

ψi (θ)+ εθn ,

where G1/2
n (θ)εθn → 0 in probability Pθ (see Sect. 2).

Since ψt (θ) is typically a martingale-difference, asymptotic distribution of an
asymptotically linear estimator can be studied using a suitable form of the central limit
theorem for martingales; see, e.g., Feigin (1981), Hutton and Nelson (1986), Jacod and
Shiryayev (1987). Detailed discussion of the literature on this subject can be found in
Barndorff-Nielsen and Sorensen (1994), Heyde (1997) and Prakasa-Rao (1999). For
example, results in Shiryayev (1984) (see, e.g., Chap. VII, Sect. 8, Theorem 4) show
that, under certain conditions, local asymptotic linearity implies asymptotic normality.

In the case of one dimensional parameter θ , an estimator is said to be asymptotically
efficient if it is asymptotically linear with

ψn(θ) = f ′
n

(
θ, Xn |Xn−1

1

)/
fn

(
θ, Xn |Xn−1

1

)
and Gn(θ) = In(θ),

where In(θ) is the conditional Fisher information. This kind of efficiency is called
asymptotic first-order efficiency. The motivation behind this general definition is the
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same as in the classical scheme of i.i.d. observations. For a detailed discussion of this
notion see, e.g., Hall and Heyde (1980), Sect. 6.2. Under relatively mild conditions,
asymptotically efficient estimators are asymptotically equivalent to the MLE Tn , i.e.

I 1/2
n (θ)(θ̂n − Tn) → 0

in probability; see, e.g., Hall and Heyde (1980), Section 6.2, Theorem 6.2. A general-
isation of these concepts can be found in Heyde (1997).

Note that the recursive procedure (2) is not a numerical solution of (1) (see the
corresponding discussion in Sharia 2007a). Nevertheless, as the results of the paper
show, the recursive estimator and the corresponding M-estimator are expected to have
the same or equivalent asymptotic linearity expansions under quite mild conditions. It
therefore follows that they are asymptotically equivalent, in the sense that, depending
on the regularity and ergodicity properties of the underlying model, they both have
the same asymptotic distribution.

Note also that the global convergence results for (2) were obtained in Sharia (2007a)
under conditions that allow Γn to belong to quite a wide class of processes which does
not directly depend on the choice of ψn’s. It turns out that to ensure local asymptotic
linearity, one has to restrict this class to an explicit choice of Γn , depending on the
choice ofψn . In other words, the results of the paper can be used to determine the form
of a recursive procedure (see Remark 3 (iv)–(vi) below) which is expected to have
the same asymptotic properties as the corresponding non-recursive one defined as a
solution of the Eq. (1). The fact that one is restricted to this choice ofΓt is probably not
very surprising in retrospective, but this issue does not seem to have been discussed
in the existing literature.

The paper is organized as follows. Section 2 introduces the main objects and defini-
tions. The main results are obtained in Sect. 3 which also contains various comments
and explanations of the conditions used there. In Sect. 4, we consider examples to
illustrate the results of the paper.

2 Basic model

Let Xt , t = 1, 2, . . . , be observations taking values in a measurable space (X,B(X))
equipped with a σ -finite measure µ. Suppose that the distribution of the process
Xt depends on an unknown parameter θ ∈ �, where � is an open subset of the
m-dimensional Euclidean space R

m . Suppose also that for each t = 1, 2, . . ., there
exists a regular conditional probability density of Xt given values of past observations
of Xt−1, . . . , X2, X1, which will be denoted by

ft

(
θ, xt | xt−1

1

)
= ft (θ, xt | xt−1, . . . , x1),

where f1(θ, x1 | x0
1 ) = f1(θ, x1) is the probability density of the random variable

X1. Without loss of generality we assume that all random variables are defined on a
probability space (Ω,F) and denote by

{
Pθ , θ ∈ �}

the family of the corresponding
distributions on (Ω,F).
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Let Ft = σ(X1, . . . , Xt ) be the σ -field generated by the random variables
X1, . . . , Xt . By (Rm,B(Rm)) we denote the m-dimensional Euclidean space with
the Borel σ -algebra B(Rm). Transposition of matrices and vectors is denoted by T .
By (u, v) we denote the standard scalar product of u, v ∈ R

m, that is, (u, v) = uT v,

and the corresponding norm is denoted by ‖u‖.
Suppose that h is a real valued function defined on� ⊂ R

m . We denote by ḣ(θ) the
row-vector of partial derivatives of h(θ) with respect to the components of θ , that is,

ḣ(θ) =
(
∂

∂θ1 h(θ), . . . ,
∂

∂θm
h(θ)

)
.

The m × m identity matrix is denoted by 1.

If for each t = 1, 2, . . . , the derivative ḟt

(
θ, xt | xt−1

1

)
w.r.t. θ exists, then we can

define

lt
(
θ, xt | xt−1

1

)
= 1

ft

(
θ, xt | xt−1

1

) ḟ T
t

(
θ, xt | xt−1

1

)

and the process

lt (θ) = lt
(
θ, Xt | Xt−1

1

)

with the convention 0/0 = 0. Let us denote

it

(
θ | xt−1

1

)
=

∫
lt

(
θ, z | xt−1

1

)
lT
t

(
θ, z | xt−1

1

)
ft

(
θ, z | xt−1

1

)
µ(dz).

The one step conditional Fisher information matrix for t = 1, 2, . . . is defined as

it (θ) = it

(
θ
∣∣Xt−1

1

)
.

Note that the process it (θ) is “predictable”, that is, it (θ) is Ft−1 measurable for each
t ≥ 1. Note also that by definition, it (θ) is a version of the conditional expectation
w.r.t. Ft−1, that is,

it (θ) = Eθ
{

lt (θ)l
T
t (θ) | Ft−1

}
.

Everywhere in the present work conditional expectations are meant to be calculated
as integrals w.r.t. the conditional probability densities.

The conditional Fisher information at time t is

It (θ) =
t∑

s=1

is(θ), t = 1, 2, . . . .
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We say thatψ = {ψt (θ, xt , xt−1, . . . , x1)}t≥1 is a sequence of estimating functions
and write ψ ∈ �, if for each t ≥ 1, ψt (θ, xt , xt−1, . . . , x1) : � × Xt → R

m is a
Borel function.

Let ψ ∈ � and denote ψt (θ) = ψt (θ, Xt , Xt−1, . . . , X1). We write ψ ∈ 	M if
ψt (θ) is a martingale-difference process for each θ ∈ �, i.e., if Eθ {ψt (θ) | Ft−1} =
0 for each t = 1, 2, . . . . We assume that the conditional expectations above are well-
defined and F0 is the trivial σ -algebra.

Note that if differentiation of the equation 1 = ∫
ft (θ, z | xt−1

1 )µ(dz) is allowed
under the integral sign, then {lt (θ)}t≥1 ∈ �M .

Suppose that ψ ∈ � and Γt (θ) is a predictable m × m matrix process with
detΓt (θ) �= 0. We say that an estimator θ̂t is locally asymptotically linear if for
each θ ∈ �,

θ̂t = θ + Γ −1
t (θ)

t∑

s=1

ψs(θ)+ εθt , (3)

and At (θ)ε
θ
t → 0 in probability Pθ , where At (θ) is a sequence of invertible m × m

matrices such that A−1
t (θ) → 0 in probability Pθ and At (θ)Γ

−1
t (θ)At (θ) → η(θ)

weakly w.r.t. Pθ for some random matrix η(θ). That is, θ̂t is locally asymptotically
linear if

At (θ)(θ̂
∗
t − θ̂t ) → 0 (4)

in probability Pθ , where

θ̂∗
t = θ + Γ −1

t (θ)

t∑

s=1

ψs(θ), (5)

is a linear statistic.
Convention Everywhere in the present work θ ∈ R

m is an arbitrary but fixed value
of the parameter. Convergence and all relations between random variables are meant
with probability one w.r.t. the measure Pθ unless specified otherwise. A sequence of
random variables (ξt )t≥1 has some property eventually if for every ω in a set Ωθ of
Pθ probability 1, ξt has this property for all t greater than some t0(ω) < ∞.

3 Main results

Suppose that ψ ∈ � and Γt (θ), for each θ ∈ R
m , is a predictable m × m matrix

process with det Γt (θ) �= 0, t ≥ 1. Consider the estimator θ̂t defined by

θ̂t = θ̂t−1 + Γ −1
t (θ̂t−1)ψt (θ̂t−1), t ≥ 1, (6)

where θ̂0 ∈ R
m is an arbitrary initial point.

Let θ ∈ R
m be an arbitrary but fixed value of the parameter and for any u ∈ R

m

define
Rt (θ, u) = Γt (θ)Γ

−1
t (θ + u)Eθ {ψt (θ + u) | Ft−1} .
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348 T. Sharia

Denote ∆t = θ̂t − θ . Then (6) can be rewritten as

∆t = ∆t−1 + Γ −1
t (θ)Rt (θ,∆t−1)+ Γ −1

t (θ)εθ t , (7)

where

εθ t = Γt (θ)Γ
−1

t (θ +∆t−1)ψt (θ +∆t−1)− Rt (θ,∆t−1)

is a Pθ -martingale difference.

Lemma 1 Suppose that ψ ∈ 	 and there exists a sequence of invertible random
matrices At (θ) such that A−1

t (θ) → 0 in probability Pθ and

(E)

At (θ)Γ
−1

t (θ)At (θ) → η(θ)

weakly w.r.t. Pθ , where η(θ) is a random matrix with η(θ) < ∞ Pθ -a.s.;
(S1)

lim
t→∞ A−1

t (θ)

t∑

s=1

(
Γs(θ)∆s−1 + Rs(θ,∆s−1)) = 0

in probability Pθ ;
(S2)

lim
t→∞ A−1

t (θ)

t∑

s=1

Es(θ) = 0

in probability Pθ , where

Es(θ)=Γs(θ)Γ
−1

s (θ +∆s−1)
[
ψs(θ +∆s−1)−Eθ {ψs(θ +∆s−1) | Fs−1}

]−ψs(θ).

Then At (θ)(θ̂
∗
t − θ̂t ) → 0 in probability Pθ , i.e., θ̂∗

t is locally asymptotically linear.

Proof To simplify notation we drop the fixed argument or the index θ in some of the
expressions below. Rewrite (7) as

∆t =
(

1 − Γ −1
t 
Γt

)
∆t−1 + Γ −1

t (
Γt∆t−1 + Rt (θ,∆t−1))+ Γ −1
t εt . (8)

Denote Ht := ∑t
s=1 (
Γs∆s−1 + Rs(θ,∆s−1)) and M̄t := ∑t

s=1 εs . Then the
expression

∆t = Γ −1
t

{
M̄t + Ht +∆0

}
, t ≥ 1
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can easily be obtained by inspecting the difference between t’th and (t − 1)’th term
of this sequence to check that (8) holds. Therefore, denoting

δt := θ̂t − θ̂∗
t = ∆t − (θ̂∗

t − θ),

we obtain

δt = Γ −1
t {Mt + Ht +∆0} , t ≥ 1,

where Mt := ∑t
s=1 (εs −ψs).Now, (S1) implies that A−1

t Ht → 0 in probability Pθ .
Also, by (S2), A−1

t Mt = A−1
t (θ)

∑t
s=1 Es(θ) → 0 in probability Pθ . So, using (E),

it follows that Atδt → 0 in probability Pθ . ��
The next result gives sufficient conditions for (S1) and (S2).

Proposition 2 (a) Suppose that At (θ) in Lemma 1 are diagonal matrices with non-
decreasing (w.r.t. t) elements and

(L1)

A−2
t (θ)

t∑

s=1

As(θ)[
Γs(θ)∆s−1 + Rs(θ,∆s−1)] → 0

in probability Pθ ;
Then (S1) holds.

(b) Suppose that At (θ) in Lemma 1 are diagonal non-random matrices, ψ ∈ 	M

and
(L2) for each j = 1, . . . ,m,

lim
t→∞

1

(A( j j)
t (θ))2

t∑

s=1

Eθ

{(
E ( j)

s (θ)
)2 | Fs−1

}
= 0

in probability Pθ , where A( j j)
t (θ) is the j-th diagonal element of the

matrix At (θ)andE ( j)
s (θ) is the j-th component ofEs(θ)which is defined

in (S2).
Then (S2) holds.

(c) Suppose that At (θ) in Lemma 1 are diagonal with non-decreasing elements
A( j j)

t (θ) → ∞, ψ ∈ 	M and
(LL2) for each j = 1, . . . ,m,

∞∑

s=1

Eθ
{
(E ( j)

s (θ))2 | Fs−1

}

(A( j j)
s (θ))2

< ∞

Pθ -a.s., where E ( j)
s (θ) is the j-th component of Es(θ)which is defined

in (S2).
Then (S2) holds.
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Proof See Sect. 5. ��

Remark 3 (i) As was mentioned above, strong consistency of the recursive estimator
θ̂t , that is the convergence∆t = θ̂t −θ → 0 (Pθ -a.s.) is established in Sharia (2007a).
Here we are interested in the asymptotic behaviour of the recursive estimator given
that it is consistent. Note that although consistency is not formally required in Lemma
1, it is easy to see that if θ̂t is not consistent, conditions (S1) and (S2) will be satisfied
for very special cases only. Note also that given that ∆t = θ̂t − θ → 0, conditions
(S1) and (S2) are local in the sense that they are determined by the local behaviour of
the corresponding functions w.r.t. the parameter.
(ii) Condition (E) is an ergodicity type assumption on the statistical model. If Γt (θ) =
It (θ) and At (θ) and η(θ) are non-random, then the model is called ergodic. Further
discussion of this concept and related work appears in Basawa and Scott (1983), Hall
and Heyde (1980), Sect. 6.2, and Barndorff-Nielsen and Sorensen (1994).
(iii) Let us examine condition (S2) in Lemma 1. Given that ∆t = θ̂t − θ → 0, if
the functions ψt (θ) and Γt (θ) are continuous w.r.t. θ with certain uniformity w.r.t.
t , we expect Et (θ) → 0. Parts (b) and (c) in Proposition 2 give sufficient condi-
tions for (S2). If there exists a non-random sequence At (θ), then obviously (L2) is
less restrictive then (LL2). But unfortunately, (L2) can only be used for non-random
At (θ). In the case of random At (θ), when (LL2) may be used, just the convergence
Eθ

{
(Et (θ))

2 | Ft−1
} → 0 may not be enough since in many models the components

of At (θ) have the rate
√

t . In such cases one may also use the result on the rate of
convergence of θ̂t presented in Sharia (2007b); see examples 4.1 and 4.3 in the next
section.
(iv) Condition (S1) gives an important clue for an optimal choice of the normalizing
sequence Γt (θ). To see this, let us assume that ψ ∈ 	M so that Rt (θ, 0) = 0 and
consider (S1) and (L1) in the case of the one dimensional parameter θ ∈ R. Now we
can write


Γt (θ)∆t−1 + Rt (θ,∆t−1) =
(


Γt (θ)+ Rt (θ,∆t−1))− Rt (θ, 0)

∆t−1

)
∆t−1.

In most applications, the rate of At is
√

t and the best one can hope for is that
√

t∆t

is stochastically bounded. Therefore we must at least have the convergence 
Γt (θ)+
(Rt (θ,∆t−1)) − Rt (θ, 0))/∆t−1 → 0. Given that ∆t−1 → 0 we expect 
Γt (θ) ≈
−∂/∂u Rt (θ, u) |u=0 for large t’s. Also, since Rt (θ, 0) = Eθ {ψt (θ) | Ft−1} = 0,
if Γt (θ)/Γt (θ + u) is smooth in u = 0, we can write that ∂/∂u Rt (θ, u) |u=0=
∂/∂u Eθ {ψt (θ + u) | Ft−1} |u=0 . So,


Γt (θ) ≈ −b′
t (θ, 0), (9)

where

bt (θ, u) = Eθ {ψt (θ + u) | Ft−1} and b′
t (θ, 0) = ∂

∂u
bt (θ, u) |u=0 .
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Using the similar arguments, for the multidimensional case, we expect (9) to hold for
large t’s, where b′

t (θ, 0) is the total differential of bt (θ, u) in u = 0. Therefore,

Γt (θ) = −
t∑

s=1

b′
s(θ, 0) (10)

is an obvious candidate for the normalizing sequence. If ψt (θ) is differentiable in θ
and differentiation of bt (θ, u) = Eθ {ψt (θ + u) | Ft−1} is allowed under the integral
sign, then b′

t (θ, 0) = Eθ {ψ̇t (θ) | Ft−1}. This implies that, for a given sequence of
estimating functions ψt (θ), another possible choice of the normalizing sequence is

Γt (θ) = −
t∑

s=1

Eθ {ψ̇s(θ) | Fs−1}, (11)

or any sequence with the increments ∆Γt (θ) = −Eθ {ψ̇t (θ) | Ft−1}. Also, if the
differentiation w.r.t. θ of 0 = ∫

ψt (θ, z | Xt−1
1 ) ft (θ, z | Xt−1

1 )µ(dz) is allowed
under the integral sign, using the product rule it is easy to obtain that Eθ {ψ̇t (θ) |
Ft−1} = −Eθ {ψt (θ)lT

t (θ) | Ft−1}.Therefore, another possible choice of the normal-
izing sequence is

Γt (θ) =
t∑

s=1

Eθ {ψs(θ)l
T
s (θ) | Fs−1} = 〈Mθ ,U θ 〉t (12)

where 〈Mθ ,U θ 〉t is the mutual quadratic characteristic of the martingales

Mθ
t =

t∑

s=1

ψs(θ) and U θ
t =

t∑

s=1

ls(θ).

(v) Let us consider a likelihood case, that isψt (θ) = lt (θ).Then the process (12) in this
case is the conditional Fisher information It (θ) = ∑t

s=1 is(θ). So, the corresponding
recursive procedure is

θ̂t = θ̂t−1 + I −1
t (θ̂t−1)lt (θ̂t−1), t ≥ 1, (13)

Also, given that the model possesses certain ergodicity properties, asymptotic linearity
of (13) implies asymptotic efficiency. In particular, in the case of i.i.d. observations, it
follows that the above recursive procedure is asymptotically normal with parameters
(0, i−1(θ)); see Corollary 4 in Sect. 4.
(vi) Normalizing sequences suggested in (iv) have been derived from the asymptotic
considerations. In practice however, behaviour ofΓ sequence for the first several steps
might also be important. This can happen when the number of observations is small or
even moderately large. According to (iv), to achieve asymptotic linearity, one has to
choose a normalizing sequenceΓ with the property that 
Γt (θ) ≈ −b′

t (θ, 0) for large
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352 T. Sharia

t’s. So, we can consider any sequence of the form C + ctΓt , where Γt is one of the
sequences introduced above [by (10), (11), or (12)], ct is a sequence of non-negative
r.v.’s such that ct = 1 eventually, and C is a suitably chosen constant. In practice,
ct and C can be treated as tuning constants to control behaviour of the procedure for
the first several steps; see Remark 4.4 in Sharia (2007a). Under certain assumptions,
at each step, the recursive procedure (6) on average moves towards the direction of
the unknown parameter; see Remark 3.2 in Sharia (2007a) for details. Nevertheless,
if the values of the normalizing sequence are too small for the first several steps, then
the procedure will oscillate excessively around the true value of the parameter. On
the other hand, too large values of the normalizing sequence will result in slower
convergence of the procedure. A good balance can be achieved by using the tuning
constants. The detailed discussion of these and related topics will appear elsewhere,
but as a rough guide, the graph of θ̂t against t should ideally have a shape of those
in Fig. 1 in Sharia (2007a); that is, a reasonable oscillation at the beginning of the
procedure before settling down at a particular level.

4 Special models and examples

4.1 The i.i.d. scheme

Consider the classical scheme of i.i.d. observations X1, X2, . . . ,with a common prob-
ability density/mass function f (θ, x), θ ∈ R

m . Suppose thatψ(θ, x) is an estimating
function with

Eθ (ψ(θ, X1)) =
∫
ψ(θ, z) f (θ, z)µ(dz) = 0.

Let us define the recursive estimator θ̂t by

θ̂t = θ̂t−1 + 1

t
γ−1(θ̂t−1)ψ(θ̂t−1, Xt ), t ≥ 1, (14)

where θ̂0 ∈ R
m is any initial value. According to Remark 3 (iv) and the condition (V)

below, an optimal choice of γ (θ) would be either

γ (θ) = Eθ (ψ̇(θ, X1))

or

γ (θ) = Eθ (ψ(θ, X1)l
T (θ, X1)) where l(θ, x) = ḟ T (θ, x)

f (θ, x)
,

or any non-random invertible matrix function that satisfies conditions listed below.
Suppose that

jψ(θ) =
∫
ψ(θ, z)ψT (θ, z) f (θ, z)µ( dz) < ∞
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and consider the following conditions.

(I) For any 0 < ε < 1,

sup
ε≤‖u‖≤ 1

ε

uT γ−1(θ + u)
∫
ψ(θ + u, x) f (θ, x)µ( dx) < 0.

(II) For each u ∈ R
m,

∫ ∥∥∥γ−1(θ + u)ψ(θ + u, x)
∥∥∥

2
f (θ, x)µ( dx) ≤ Kθ (1 + ‖u‖2)

for some constant Kθ .
(III) γ (θ) is continuous in θ.

(IV)
lim
u→0

∫
‖ψ(θ + u, x)− ψ(θ, x)‖2 f (θ, x)µ( dx) = 0.

(V)
∫
ψ(θ + u, x) f (θ, x)µ( dx) = −γ (θ + u)u + αθ (u),

where αθ (u) = o(‖u‖1+ε) as u → 0 for some ε > 0.

Corollary 4 Suppose that for any θ ∈ R
m conditions (I) – (V) are satisfied. Then the

estimator θ̂t is strongly consistent and tδ(θ̂t − θ) → 0 (Pθ -a.s.) for any 0 < δ < 1/2
and any initial value θ̂0. Furthermore, θ̂t is asymptotically normal with parameters
(0, γ−1(θ) j (θ, 0)γ−1(θ)), that is,

L
(

t1/2(θ̂t − θ) | Pθ
)
w→N

(
0, γ−1(θ) jψ(θ)γ

−1(θ)
)
.

In particular, in the case of the maximum likelihood type recursive procedure with
ψ(θ, x) = ḟ T (θ, x)/ f (θ, z) and γ (θ) = i(θ) = jl(θ), the estimator θ̂t is asymptoti-
cally efficient, i.e., asymptotically normal with parameters

(
0, i−1(θ)

)
.

Proof See Sect. 5.

The results in Corollary 4 are similar to those obtained in the classical works by
Khas’minskii and Nevelson (1972; see Chap. 8, Sect. 4) and Fabian (1978).

4.2 Linear procedures

Consider the recursive procedure

θ̂t = θ̂t−1 + Γ −1
t

(
ht − γt θ̂t−1

)
, t ≥ 1, (15)
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where the Γt and γt are predictable matrix processes, ht is an adapted process, i.e., ht

is Ft -measurable for t ≥ 1. Assume also that all three processes are independent of
θ. The following result gives a set of sufficient conditions for the asymptotic linearity
of the estimator defined by (15) in the case when the linear ψt (θ) = ht − γtθ is a
martingale-difference, i.e., Eθ {ht | Ft−1} = γtθ, for t ≥ 1.

Corollary 5 Suppose that Γt → ∞ and

Γ
−1/2

t

t∑

s=1

(
Γs − γs)∆s−1 → 0 (16)

in probability Pθ , where ∆s−1 = θ̂s−1 − θ. Then the recursive estimator defined by
(15) is asymptotically linear with

Γ
1/2

t (θ̂t − θ) = Γ
−1/2

t

t∑

s=1

ψs(θ)+ oPθ (1), (17)

where oPθ (1) → 0 in probability Pθ .

Proof Let us check the conditions of Lemma 1 for At (θ) = Γ
1/2

t . Condition (E)
trivially holds. Then, since ψt (θ) = ht − γtθ and

bt (θ, u) = Eθ {(ψt (θ + u)) | Ft−1} = Eθ {(ht − γt (θ + u)) | Ft−1} = −γt u,

we have

Rt (θ, u) = Γt (θ)Γ
−1

t (θ + u)bt (θ, u) = −γt u.

Therefore, (S1) is equivalent to (16). Then, it is easy to see that for Es(θ) defined in
(S2) we have

Es(θ) = ψs(θ +∆s−1)− bs(θ,∆s−1)− ψs(θ) = 0

implying that (S2) holds which completes the proof. ��
Remark 6 Condition (16) trivially holds if∆Γt = γt , that is if Γt = ∑t

s=1 γs . In this
case, the solution of (15) is

θ̂t = Γ −1
t

(
θ̂0 +

t∑

s=1

hs(Xs)

)
. (18)

This can be easily seen by inspecting the difference θ̂t − θ̂t−1 for the sequence (18) to
check that (15) holds. Also, since (18) can obviously be rewritten as

θ̂t = Γ −1
t θ̂0 + Γ −1

t

t∑

s=1

(hs(Xs)− γsθ)+ θ,
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it follows that in this case, Γt → ∞ is indeed an obvious necessary and sufficient
condition for θ̂t to be asymptotically linear for arbitrary starting value θ̂0.

4.3 Exponential family of Markov processes

Consider a conditional exponential family of Markov processes in the sense of Feigin
(1981); see also Barndorf-Nielson (1988). This is a time homogeneous Markov chain
with the one-step transition density

f (y; θ, x) = h(x, y) exp
(
θT m(y, x)− β(θ; x)

)
,

where m(y, x) is a m-dimensional vector and β(θ; x) is one dimensional. Then in our
notation ft (θ) = f (Xt ; θ, Xt−1) and

lt (θ) =
(

d

dθ
log ft (θ)

)T

= m(Xt , Xt−1)− β̇T (θ; Xt−1).

It follows from standard exponential family theory (see, e.g., Feigin 1981) that lt (θ)
is a martingale-difference and the conditional Fisher information is

It (θ) =
t∑

s=1

β̈(θ; Xs−1).

A maximum likelihood type recursive procedure can be defined as

θ̂t = θ̂t−1 +
(

t∑

s=1

β̈(θ̂t−1; Xs−1)

)−1 (
m(Xt , Xt−1)− β̇T (θ̂t−1; Xt−1)

)
, t ≥ 1.

Now suppose that θ is one dimensional and the process belongs to the conditionally
additive exponential family, that is,

f (y; θ, x) = h(x, y) exp (θm(y, x)− β(θ; x)) ,

with

β(θ; x) = γ (θ)h(x) (19)

where h(·) ≥ 0 and γ̈ (·) ≥ 0 (see Feigin 1981). Then,

It (θ) = γ̈ (θ)Ht where Ht =
t∑

s=1

h(Xs−1).
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Assuming that γ̈ (θ) �= 0, the likelihood recursive procedure is

θ̂t = θ̂t−1 + 1

γ̈ (θ̂t−1)Ht

(
m(Xt , Xt−1)− γ̇ (θ̂t−1)h(Xt−1)

)
. (20)

Remark 7 Consistency and rate of convergence of the estimator derived by (20) are
studied in Sharia (2007b). To ensure that (20) has the same asymptotic properties as
the maximum likelihood estimator, one has to impose certain restrictions on the γ (θ)
and Ht . In Corollary 9 in Sect. 5, the conditions of Sect. 3 written in terms of this
model are presented. These conditions will be satisfied if there is a certain balance
between requirements of smoothness on γ (·), the rate at which Ht → ∞, and ergo-
dicity of the model. For instance, suppose that the model is ergodic, that is, there exists
a non-random sequence H̃t such that

Ht/H̃t → η < ∞

weakly. This will often follow from an ergodic theorem with H̃t = t. Then

1

I 1/2
t (θ)

t∑

s=1

Es(θ) → 0,

will hold if the process

1

It (θ)

t∑

s=1

Eθ
{
E2

s (θ) | Fs−1

}
= 1

It (θ)

t∑

s=1


Is(θ)

(
γ̈ (θ +∆s−1)− γ̈ (θ)

γ̈ (θ +∆s−1)

)2

converges to zero; criterion based on the Lenglart-Rebolledo inequality, see (L2) and
formula (26) in Sect. 5. So, assuming that the estimator is consistent, that is ∆t → 0,
by the Toeplits lemma the above will be guaranteed by the continuity of γ̈ (·). On the
other hand, if the model is non-ergodic, then one may need to impose smoothness of
higher order on γ (·) function (see condition (iii) below) and restrictions on the growth
of the sequence Ht (see condition (i) below). The following result gives one possible
set of sufficient conditions for the recursive estimator to be consistent and to have the
same asymptotic properties as the maximum likelihood estimator.

Proposition 8 Suppose that Ht → ∞ and

(i)

h(Xt )

Ht
→ 0;

(ii) there exists a constant B such that

1 + γ̇ 2(u)

γ̈ 2(u)
≤ B(1 + u2)
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for each u ∈ R.
(iii) The function γ̈ (·) is locally Lipschitz , that is, for any θ there exists a constant

Kθ and 0 < εθ ≤ 1/2 such that

|γ̈ (θ + u)− γ̈ (θ)| ≤ Kθ |u|εθ

for small u’s.

Then θ̂t defined by (20) is strongly consistent, i.e., θ̂t → θ Pθ -a.s. for any initial
value θ̂0. Furthermore, H δ

t (θ̂t − θ) → 0 Pθ -a.s. for any δ ∈]0, 1/2[, and θ̂t is
asymptotically linear with

H1/2
t (θ̂t − θ) = H−1/2

t

t∑

s=1

(m(Xs, Xs−1)− γ̇ (θ)h(Xs−1))+ oPθ (1), (21)

where oPθ (1) → 0 in probability Pθ .

Proof See Sect. 5.

Acknowledgment I am grateful to the referee for constructive and helpful comments and suggestions.

5 Appendix

Proof of Proposition 2 To simplify notation we drop the fixed argument or the index
θ in some of the expressions below.
To prove (a), denote

χs = As[
Γs(θ)∆s−1 + Rs(θ,∆s−1)]

and

Gt = A−1
t

t∑

s=1

[
Γs(θ)∆s−1 + Rs(θ,∆s−1)] = A−1
t

t∑

s=1

A−1
s χs .

Applying the formula

t∑

s=1

Ds∆Cs = Dt Ct −
t∑

s=1

∆DsCs−1, C0 = 0 = D0,

with Cs = ∑s
m=1 χm and Ds = A−1

s we obtain

Gt = A−2
t

t∑

s=1

χs − A−1
t

t∑

s=1


A−1
s

s−1∑

m=1

χm .
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Then, 
A−1
s = A−1

s − A−1
s−1 = −A−1

s (As − As−1)A
−1
s−1 = −
As A−1

s A−1
s−1, where

the last equality follows since As is diagonal. Therefore,

Gt = A−2
t

t∑

s=1

χs + A−1
t

t∑

s=1


As

{
A−1

s A−1
s−1

s−1∑

m=1

χm

}
.

Finally, since At ’s are diagonal with non-decreasing elements, applying the Toepl-
its Lemma to the components of the right hand side of latter formula we obtain that
Gt → 0.
To prove (b) and (c) denote Mt := ∑t

s=1 Es . Since ψ ∈ 	M, it follows that Mt is a

martingale. Denote by M ( j)
t the j-th component of Mt . Then the quadratic character-

istic 〈M ( j)〉t of the martingale M ( j)
t is

〈M ( j)〉t =
t∑

s=1

Eθ

{(
E ( j)

s

)2 | Fs−1

}

and, by (LL2),
∑∞

s=1 
〈M ( j)〉s/(A
( j j)
s )2 < ∞. It therefore follows that M ( j)

t /

At
( j j) → 0 Pθ -a.s. (see e.g., Shiryayev 1984, Chap. VII, Sect. 5, Theorem 4).

This proves (c). Now, use of the Lenglart-Rebolledo inequality (see, e.g., Liptser and
Shiryayev 1989, Chap. 1, Sect. 9) yields

Pθ
{
(M ( j)

t )2 ≥ K 2
(

At
( j j)

)2
}

≤ ε

K
+ Pθ

{
〈M ( j)〉t ≥ ε

(
At
( j j)

)2
}

for each K > 0 and ε > 0. Then, by (L2), 〈M ( j)〉t/(At
( j j))2 → 0 in probability

Pθ . This implies that M ( j)
t /At

( j j) → 0 in probability Pθ and so, since At is diagonal,
(S2) follows. ��

Proof of Corollary 4 Using Corollary 4.1 in Sharia (2007a) it follows that (I) and (II)
imply (θ̂t −θ)→0. We have Γt (θ)= tγ (θ) and b(θ, u)=∫

ψ(θ+u, z) f (θ, z)µ( dz).
It is easy to see that (II) implies (B2) from Corollary 4.1 in Sharia (2007b), and (V)
implies that (B1) of the same corollary holds with Cθ = 1. So, for any 0 < δ < 1/2,

tδ(θ̂t − θ) → 0. (22)

Let us check that conditions of Lemma 1 are also satisfied with At = √
t1. Condition

(E) trivially holds. According to Proposition 2, condition (S1) follows from (L1). To
check (L1), it is sufficient to show that

1

t

t∑

s=1

[γ (θ)∆s−1 + R(θ,∆s−1)]√s → 0, (23)
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where

R(θ, u) = Rt (θ, u) = γ (θ)γ−1(θ + u)
∫
ψ(θ + u, z) f (θ, z)µ( dz).

By (V), R(θ, u) = −γ (θ)u + γ (θ)γ−1(θ + u)αθ (u) and

[γ (θ)∆s−1+R(θ,∆s−1)]√s =√
sγ (θ)γ−1(θ +∆s−1)α

θ (∆s−1)=√
s‖∆s−1‖1+εδs

where, by (III) and (V), δs = γ (θ)γ−1(θ +∆s−1)α
θ (∆s−1)/‖∆s−1‖1+ε → 0. Then,

√
s‖∆s−1‖1+εδs =

√
s

s − 1

(
(s − 1)

1
2(1+ε) ‖∆s−1‖

)1+ε
δs

which, by (22) (since 1/(2(1 + ε)) < 1/2) converges to zero. Therefore, (23) is now
a consequence of the Toeplits Lemma.

For the process Es(θ) from (L2) (since ‖u − v‖2 ≤ 2‖u‖2 + 2‖v‖2), we have

‖Es(θ)‖2 = ‖γ (θ)γ−1(θ +∆s−1) (ψ(θ +∆s−1, Xs)− b(θ,∆s−1))− ψ(θ, Xs)‖2

≤ 2‖γ (θ)γ−1(θ +∆s−1)ψ(θ +∆s−1, Xs)− ψ(θ, Xs)‖2

+ 2‖γ (θ)γ−1(θ +∆s−1)b(θ,∆s−1)‖2.

(III) and (V) imply that
(
γ (θ)γ−1(θ +∆s−1)− 1

) → 0 and b(θ,∆s−1) → 0 as

s → ∞. So, using (IV), it is easy to see that Eθ

{(
E ( j)

s (θ)
)2 | Fs−1

}
→ 0. Since

(A( j j)
t (θ))2 = t, (L2) follows from the Toeplitz lemma.
Therefore, the conditions of Lemma 1 hold for At (θ) = √

t1. This implies that√
t(θ̂t − θ∗

t ) → 0 in probability Pθ , where

θ∗
t = 1

tγ (θ)

t∑

s=1

ψs(θ, Xs).

The asymptotic normality now obviously follows from the central limit theorem for
i.i.d. random variables. ��
Corollary 9 Suppose that Ht → ∞ and θ̂t is derived by (20). Denote ∆t = θ̂t − θ ,
lt (θ) = m(Xt , Xt−1)− γ̇ (θ)h(Xt−1), and suppose also that

(I)

H−1/2
t

t∑

s=1

Es(θ) → 0,

where

Es(θ) = γ̈ (θ +∆s−1)− γ̈ (θ)

γ̈ (θ +∆s−1)
ls(θ);
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(II) one of the following two conditions are satisfied;

H−1/2
t

t∑

s=1


HsCs(θ) → 0,

OR

H−1
t

t∑

s=1


Hs H1/2
s Cs(θ) → 0,

where

Cs(θ) = γ̈ (θ +∆s−1)− γ̈ (θ + ∆̃s−1)

γ̈ (θ +∆s−1)
∆s−1

and ∆̃t is a predictable process with |∆̃t | ≤ |∆t |.
Then (21) holds, i.e., the estimator θ̂t is asymptotically linear.

Proof Let us check the conditions of Lemma 1 for ψt (θ) = lt (θ),

Γt (θ) = It (θ) = γ̈ (θ)Ht (24)

and At (θ) = H1/2
t . Since lt (θ) is a martingale-difference, we have Eθ {m(Xt , Xt−1) |

Ft−1} = γ̇ (θ)h(Xt−1) and so

bt (θ, u) = Eθ {lt (θ + u) | Ft−1} = h(Xt−1) (γ̇ (θ)− γ̇ (θ + u)) (25)

and

Rt (θ, u) = γ̈ (θ)

γ̈ (θ + u)
h(Xt−1)(γ̇ (θ)− γ̇ (θ + u)) = − γ̈ (θ)

γ̈ (θ + u)
h(Xt−1)γ̈ (θ + ũ)u

where |ũ| ≤ |u|. Then, since 
Γt (θ) = 
It (θ) = h(Xt−1)γ̈ (θ) we have


Γt (θ)u + Rt (θ, u) = h(Xt−1)γ̈ (θ)
γ̈ (θ + u)− γ̈ (θ + ũ)

γ̈ (θ + u)
u.

Now, since 
Ht = h(Xt−1), it is easy to see that the first condition in (II) implies (S1)
in Lemma 1 and the second condition in (II) implies (L1) in Proposition 2. Therefore,
(S1) holds.

To verify (S2), consider the process Es(θ) defined in (S2). Using (24) and (25), it
is easy to see that

Es(θ) =
(

1 − γ̈ (θ)

γ̈ (θ +∆s−1)

)
(m(Xs, Xs−1)− γ̇ (θ)h(Xs−1))

= γ̈ (θ +∆s−1)− γ̈ (θ)

γ̈ (θ +∆s−1)
ls(θ). (26)
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This shows that (I) implies (S2). ��

Proof of Proposition 8 Since, by (iii), γ̈ (·) is obviously a continuous function, condi-
tion (M2) of Proposition 4.1 in Sharia (2007b) holds. Also, (M1) in the same propo-
sition obviously follows from (i). So, it follows that all the conditions of Proposition
4.1 and Corollary 4.2 in Sharia (2007b) are satisfied implying that H δ

t (θ̂t − θ) → 0
(Pθ -a.s.). Also, by (i), 
Ht/Ht−1 = h(Xt−1)/Ht−1 → 0 implying that Ht/Ht−1 =
1 + 
Ht/Ht−1 → 1. So,

H δ
t ∆t−1 = H δ

t (θ̂t−1 − θ) → 0. (27)

To establish asymptotic linearity let us verify the conditions of Corollary 9. Since
∆s−1 = θ̂s−1 − θ → 0 (Pθ -a.s.) and |∆̃s−1| ≤ |∆s−1|, by (iii) we obtain that
|γ̈ (θ +∆s−1)− γ̈ (θ + ∆̃s−1)| ≤ 2Kθ |∆s−1|εθ eventually.So,

|H
1
2

s Cs(θ)| = H
1
2

s
|γ̈ (θ +∆s−1)− γ̈ (θ + ∆̃s−1)||∆s−1|

γ̈ (θ +∆s−1)
≤ 2Kθ H

1
2

s |∆s−1|1+εθ
γ̈ (θ +∆s−1)

eventually. Now,

H
1
2

s |∆s−1|1+εθ =
∥∥∥∥H

1
2(1+εθ )

s (θ̂s−1 − θ)

∥∥∥∥
1+εθ

→ 0,

by (27) since 1
2(1+εθ ) <

1
2 . So, since the function γ̈ (·) is continuous, we obtain that

|H
1
2

s Cs(θ)| → 0.Therefore, by the Toeplits Lemma, the second condition of (II) holds.
Now, since Es(θ) is a martingale-difference, to verify (I), it is sufficient to show

that (see e.g., Shiryayev 1984, Chap. VII, Sect. 5, Theorem 4),

∞∑

s=1

Eθ
{E2

s (θ) | Fs−1
}

Hs
< ∞.

Since Eθ {l2
s (θ) | Fs−1} = γ̈ (θ)h(Xs−1) = γ̈ (θ)
Hs, the above series can be rewrit-

ten as

∞∑

s=1


Hs

Hs
γ̈ (θ)

(
γ̈ (θ +∆s−1)− γ̈ (θ)

γ̈ (θ +∆s−1)

)2

= γ̈ (θ)

∞∑

s=1


Hs

H1+εθ /2
s

rs

where, by (iii),

rs = (γ̈ (θ +∆s−1)− γ̈ (θ))2 H εθ /2
s

γ̈ 2(θ +∆s−1)
≤ K 2

θ

|∆s−1|2εθ H εθ /2
s

γ̈ 2(θ +∆s−1)
= K 2

θ

(|∆s−1|H1/4
s )2εθ

γ̈ 2(θ +∆s−1)
.
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Now, using (27) and continuity of γ̈ (·) we deduce that rs → 0. Also,

∞∑

s=1


Hs

H1+εθ /2
s

< ∞

(see Sharia 2007b, Appendix A, Proposition A2), implying that the above series con-
verge which completes the proof. ��

References

Barndorff-Nielsen, O.E. (1988). Parametric statistical models and likelihood. Lecture Notes in Statistics 50,
New York: Springer.

Barndorff-Nielsen, O. E., Sorensen, M. (1994). A review of some aspects of asymptotic likelihood theory
for stochastic processes. International Statistical Review. 62(1), 133–165.

Basawa, I. V., Scott, D. J. (1983). Asymptotic optimal inference for non-ergodic models. New York: Springer.
Fabian, V. (1978). On asymptotically efficient recursive estimation. Annals of Statistics, 6, 854–867.
Feigin, P. D. (1981). Conditional exponential families and a representation theorem for asymptotic inference.

Annals of Statistics, 9, 597–603.
Feigin, P. D. (1985). Stable convergence for semimartingales. Stochastic Processes and Their Applications,

19, 125–134.
Hall, P., Heyde, C. C. (1980). Martingale limit theory and its application. New York: Academic Press.
Heyde, C. C. (1997). Quasi-likelihood and its application: a general approach to optimal parameter

estimation. New York: Springer.
Hutton, J. E., Nelson, P. I. (1986). Quasi-likelihood estimation for semimartingales. Stochastic Processes

and Their Applications. 22, 245–257.
Jacod, J., Shiryayev, A. N. (1987). Limit theorems for stochastic processes. Heidelberg: Springer.
Khas’minskii, R. Z., Nevelson, M.B. (1972). Stochastic approximation and recursive estimation. Moscow:

Nauka.
Liptser, R. Sh., Shiryayev, A. N. (1989). Theory of martingales. Dordrecht: Kluwer.
Prakasa Rao, B. L. S. (1999). Semimartingales and their statistical inference. New York: Chapman & Hall.
Sharia, T. (2007a). Recursive parameter estimation: convergence. Statistical Inference for Stochastic

Processes (in press). doi:10.1007/s11203-007-9008-x.
Sharia, T. (2007b). Rate of convergence in recursive parameter estimation procedures. Georgian

mathematical Journal. 14(4), 721–736.
Shiryayev, A. N. (1984). Probability. New York: Springer.

123

http://dx.doi.org/10.1007/s11203-007-9008-x

	Recursive parameter estimation: asymptotic expansion
	Abstract
	1 Introduction
	2 Basic model
	3 Main results
	4 Special models and examples
	4.1 The i.i.d. scheme
	4.2 Linear procedures
	4.3 Exponential family of Markov processes

	Acknowledgment
	5 Appendix
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


