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Abstract In this paper we consider the problem of estimating a conditional distri-
bution function in a nonparametric way, when the response variable is nonnegative,
and the observational procedure is length-biased. We propose a proper adaptation of
the estimate to right-censoring provoked by limitation in following-up. Large sample
analysis of the introduced estimator is given, including rates of convergence, limi-
ting distribution, and efficiency results. We show that the length-bias model results
in less variance in estimation, when compared to methods based on observed trun-
cation times. Practical performance of the proposed estimator is explored through
simulations. Application to unemployment data analysis is provided.

Keywords Cross-sectional sampling · Left-truncation · Regression · Unemployment
duration

1 Introduction

Let (X,Y ) be a bivariate random variable, where Y stands for a lifetime (or survival
time) and X is a covariate. In a number of applications, observation of (X,Y ) is
performed via cross-sectional sampling. This means that only individuals “in progress”
at a single time point (the cross-section date) are observed. As a result, the sampled
information is biased with respect to the length of Y , in the sense that the longer
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the lifetime, the greater the probability of observing it. In this paper we address the
problem of estimating the conditional distribution function (df) of Y given X from
such length-biased observations.

Specifically, we will propose nonparametric (kernel) estimation of the conditional
df

Fx (y) = P(Y ≤ y | X = x) = E
[
1{Y≤y} | X = x

]

on the basis of the biased (X,Y )’s. Our method will be adapted to censoring effects
due to time limitations in the following-up after cross-section. After all, we will deal
with a censored sample of the so-called length-biased (conditional) df of Y , namely

F∗
x (y) = µ−1

Fx

∫ y

0
sdFx (s), y ≥ 0,

where µFx stands for the conditional expectation of Y given X = x . The model
proposed in Sect. 2 motivates this sampling issue through the inclusion of a uniformly
distributed left-truncation variable, which is defined as time elapsed from onset to
the cross-section date. In this manner the underlying assumptions, which validate the
length-bias model in a cross-sectional scenario as long as the practical limitations of
the methods to be introduced will be clear.

In order to illustrate the main ideas behind the paper, consider the following appli-
cation coming from labour economics, which will be more thoroughly discussed in
Sect. 4. Let the Y denote unemployment time, and let X represent the individual’s
age when entering the unemployment stock. Assume that we get information on the
pair (X,Y ) from the unemployment stock at a given date; that is, the surveyed data
correspond to those individuals who are searching for a job at some specific time.
Assume that one is interested in the estimation of the unemployment duration df for a
given age at onset. In this application, ordinary statistical methods lead to an overesti-
mation of the unemployment duration. This is because the length-bias induced by the
cross-sectional sampling, see Lancaster (1990, pp. 88–97), for a deeper discussion.
Hence, proper corrections of the length-bias issue are needed. Besides, assume that
some of the unemployment spells are not completely observed because the individual
following-up stops some time after recruitment. As a consequence, one has to face the
problem of accounting for these censoring effects at the right tail of the distribution
too.

Many contributions to solving the length-bias problem have appeared in the statis-
tical literature during the last two decades. Starting with Vardi (1982) (see also Vardi
1985), nonparametric estimation of the marginal df of Y is performed by attaching
to each lifetime a weight which is inversely proportional to its size. This method
leads to the nonparametric maximum-likelihood estimator (NPMLE) of the lifetime
df. Smoothing the NPMLE was considered by Jones (1991) for the purpose of esti-
mating a density. In the context of regression with biased responses, Sköld (1999);
Wu (2000); de Uña-Álvarez (2003a), and Cristóbal et al. (2004) (among others) made
significant contributions. As in the marginal case, consistent estimation of a regression
function under length-biased is obtained by attaching to each pair (X,Y ) = (x, y) a
weight proportional to y−1, see the mentioned references. These ideas can be adapted
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Conditional distribution under length-bias 325

to the problem of estimating Fx (y), since this target can be regarded as the conditional
expectation of the indicator 1{Y≤y}.

New interesting problems arise when both length-bias and right-censoring phe-
nomena appear in a given data set. For the length-biased and censored scenario, the
first relevant contributions in nonparametric df estimation go back to de Uña-Álvarez
(2002) and Asgharian et al. (2002), who adapted Vardi’s NPMLE to the censored case.
The basic model proposed in de Uña-Álvarez (2002) assumes the independence bet-
ween the Y and the potential censoring time. This assumption may be inappropiated in
most applications, since the length-bias issue induces dependencies between lifetimes
and censoring times. Asgharian et al. (2002) overcame this difficulty by assuming
the independence between the residual (length-biased) lifetimes and censoring times
(which are defined as forward times from the cross-section date), an assumption that
will be more realistic in applications. One drawback of the NPMLE in Asgharian et al.
(2002) is that it remains unclear how the covariates can be incorporated in the estima-
tor. As an interesting alternative, under the residual independence model in Asgharian
et al. (2002); de Uña-Álvarez (2004) proposed a moment based estimator of the margi-
nal df. This estimator is easily adapted to the presence of covariates, as we will show in
this paper. The efficiency of the moment based estimator relative to that of the NPMLE
in Asgharian et al. (2002) was investigated in de Uña-Álvarez and Rodríguez-Casal
(2006), who concluded that the former estimator may be fairly competitive for light
censoring, and that it may be less biased than the NPMLE (depending on the shape of
the underlying df).

The rest of the paper is organized as follows. In Sect. 2 we introduce the model
and the estimator for Fx , as a proper adaptation of the methods in de Uña-Álvarez
(2004) to the covariate setup. In Sect. 3, the asymptotic properties of the estima-
tor are investigated, including rates of convergence, limiting distribution, and effi-
ciency results. In particular, we show that the length-bias assumption results in less
variance in estimation, when compared to methods based on observed truncation times
(Iglesias-Pérez and González-Manteiga 1999). In Sect. 4, the practical performance
of the proposed estimator is explored through simulations. Finally, Sect. 5 illustrates
the possibilities of the proposed estimator through unemployment data analysis for
the Galician labour market (Spain).

2 Estimation

As announced in the Introduction, we motivate the length-bias model by considering
a left-truncation variable (or backwards recurrence time) T , defined as time elapsed
from onset to the cross-section date. Under cross-sectional sampling, the Y value is
observed if and only if Y ≥ T (otherwise, some truncation from the left occurs). In
such a case, the T value is also available. We assume that:

H1. Y and T are conditionally independent, given the X ;
H2. For each x , the conditional df of T is uniform on an interval containing the

support of Fx , and the lower bound of the support of T is zero
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Let F∗
x be the conditional df of the observed Y ; under H1–H2, we get

F∗
x (y) = P(Y ≤ y | Y ≥ T, X = x) = µ−1

Fx

∫ y

0
sdFx (s), y ≥ 0,

where

µFx =
∫ ∞

0
sdFx (s) = E(Y | X = x)

(assumed to exist). That is, the conditional df of the observed time response Y is
the so-called length-biased distribution of Fx (see e.g. Vardi (1982)). Hypothesis H1
is typical in left-truncated scenarios, for which appropriate methods were developed
in the eighties (Tsai et al. 1987). On the other hand, H2 implies that the relative
probability of observing a spell of a given duration Y = y is proportional to the
size of the spell (that is: the sample procedure is length-biased). The convenience of
such an assumption when sampling the data via cross-sections is discussed in e.g.
Lancaster (1990) and Wang (1991). Under length-bias, the observed truncation times
are useless for inference, since the information on the truncation distribution allows
for the construction of more efficient estimators (see Wang 1991; Asgharian et al.
2002; de Uña-Álvarez 2004). Assumption H2 is somehow implicitly assumed in most
literature devoted to inference from length-biased data. As a technical remark, we
mention that H2 implies that the support of Fx is bounded.

Assume that a given duration Y satisfies Y ≥ T , so the corresponding spell enters
the sample. In order to incorporate censoring effects in the model, we assume in
this case that, rather than (T,Y ), one observes (T, Z , δ), where Z = min(Y,C) and
δ = 1{Y≤C}. Here, C denotes the potential right-censoring time, and δ is an indicator
variable which takes the value 1 for uncensored durations. In this work we deal with
censoring induced by limitation in following-up, so

H3. C = T + τ with probability 1, for a known positive constant τ

This assumption H3 states that individuals still in progress τ time units (the
following-up duration) after interception will be automatically censored. This is a
special censorship model under which all the censoring times are known in advance.
The relevance of such a model was discussed in a number of papers, including Oakes
(1993); Chiu (1999) and Wang and Li (2005). Lawless (1982) termed this type of cen-
soring as “Type I censoring” (see Sect. 1.4.1b), see also Kalbfleisch and Prentice (1980,
p. 40). We also mention that, in the context of left-truncation and right-censoring, Wang
(1991) considered this censoring scheme in her Sect. 2.1, as a special case with some
relevance. Under H3, the events {Y ≥ T } and {Z ≥ T } coincide with probability 1.
This hypothesis was used to analyze unemployment data and survival data in previous
papers of the authors, see de Uña-Álvarez (2003b, 2004) and de Uña-Álvarez and
Rodríguez-Casal (2007). Despite of its interest in applications, assumption H3 could
be relaxed to include possible lost to follow-up cases. This will be discussed later on
(see Remark 1).

The sample information will be represented by n independent vectors

(X1, T1, Z1, δ1) , . . . , (Xn, Tn, Zn, δn)
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Conditional distribution under length-bias 327

with the same distribution of (X, T, Z , δ) conditionally on Z ≥ T . For each i , we
have Zi = min(Yi ,Ci ) = min(Yi , Ti +τ), and δi = 1{Yi ≤Ci } = 1{Yi ≤Ti +τ }. In order to
derive a consistent estimator of the conditional df Fx , we introduce the (conditional)
subdistribution function of the uncensored, sampled times

H1∗
x (y) = P (Z ≤ y, δ = 1 | Z ≥ T, X = x) .

Under H1–H3 it is easily seen that

H1∗
x (y) = µ−1

Fx

∫ y

0

(
s1{s<τ } + τ1{s≥τ }

)
dFx (s).

Hence,
d H1∗

x (y) = µ−1
Fx
w (y) dFx (y) (1)

where w (y) = y1{y<τ } + τ1{y≥τ }.
Equation (1) leads to

Fx (y) = µFx

∫ y

0

dH1∗
x (s)

w(s)
, (2)

where besides µFx admits the representation

µFx =
(∫ ∞

0

dH1∗
x (s)

w(s)

)−1

. (3)

Then, estimation of Fx can be performed through a proper estimator of H1∗
x by using

these identifiability equations. We construct an estimator for Fx by replacing the
conditional subdistribution H1∗

x in (2) and (3) by the Nadaraya–Watson type smoother

Ĥ1∗
x (y) =

n∑

i=1

1{Zi ≤y,δi =1}Bni (x)

where

Bni (x) = K

(
x − Xi

h

)⎛

⎝
n∑

j=1

K

(
x − X j

h

)⎞

⎠

−1

,

K is a kernel function, and h is the bandwidth (which controls the smoothing level). For
simplicity, we assume that X is a continuous univariate random variable. Estimation
in the general situation of a multivariate X follows similar lines, although practical
problems related to dimension may (and will) appear. From (2) and (3), we come up
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with

F̂x (y) =
(∫ ∞

0

dĤ1∗
x (s)

w(s)

)−1 ∫ y

0

dĤ1∗
x (s)

w(s)

=
n∑

i=1

1{Zi ≤y}
δi Bni (x)

w(Zi )

⎛

⎝
n∑

j=1

δ j Bnj (x)

w(Z j )

⎞

⎠

−1

(4)

where w(Z j ) = Z j if Z j < τ and w(Z j ) = τ if Z j ≥ τ . We see that the truncation
times T1, . . . , Tn are not needed for computing F̂x ; this is because of the length-
bias assumption. Estimation methods conditional on the observed truncation times
are possible in our context (Iglesias-Pérez and González-Manteiga 1999), but (as we
show in Sect. 3) the pertaining standard errors exceed those of (4).

In the uncensored case (τ = ∞), each time response is weighted by the inverse
of its size, plus a factor which measures the closeness of the covariate to the x value.
Interestingly, in the uncensored case, this weighting of the data by the inverse of
the lifetime is also obtained through maximization of the full likelihood of the biased
(Xi ,Yi )’s. As noticed by a referee, in the length-biased scenario, consistent estimation
can not be achieved through maximization of a partial likelihood, since the marginal
distribution of the covariates contains relevant information on the conditional df. We
also point out that F̂x collapses to the estimator proposed in de Uña-Álvarez (2004)
in absence of covariates. The asymptotic properties of (4) are investigated in the next
section.

Remark 1 As mentioned, assumption H3 may be relaxed in order to incorporate a
random residual censoring time C–T . Assume that (H3∗) C–T and (T,Y ) are inde-
pendent conditionally on T ≤ Y , X = x . Under H1, H2 and H3∗ one gets

H1∗
x (y) = µ−1

Fx

∫ y

0
ψx (s)dFx (s)

where

ψx (y) =
∫ y

0
(1 − R∗

x (y − t))dt

and R∗ stands for the conditional df of the residual censoring time C −T given X = x .
As a result, we get the representation

Fx (y) =
∫ y

0

dH1∗
x (s)

ψx (s)

[∫ ∞

0

dH1∗
x (s)

ψx (s)

]−1

and one may introduce an estimator for Fx as above, by previously approximating
the function ψx . An empirical approximation of ψx is defined as

ψ̂x (y) =
∫ y

0
(1 − R̂∗

x (y − t))dt,
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Conditional distribution under length-bias 329

where R̂∗
x denotes the conditional product-limit estimator (Dabrowska 1989) of the

residual censoring time df. The statistical properties of the estimator corresponding to
this extended model are unexplored at the present date. The empirical function ψ̂x (.)

collapses to w(.) whenever P(C − T = τ) = 1.

3 Large sample results

Before we state the main results concerning the estimator F̂x , we need some extra
notation and technical regularity conditions. We assume

(i) X is a real-valued, continuous random variable
Let M∗ denote the biased df of the covariate, M∗(x) = P (X ≤ x | T ≤ Z)
and let m∗ denote the pertaining probability density function. We will refer to
the following assumptions too:

(ii.a) There exists and interval I = [x1, x2] contained in the support of m∗ such that,
for some δ > 0,

0 < γ = inf
[
m∗(x) : x ∈ Iδ

]
< sup

[
m∗(x) : x ∈ Iδ

] = � < ∞,

with 0 < δ� < 1, where Iδ = [x1 − δ, x2 + δ]
(ii.b) H1–H2 hold for x ∈ Iδ , H3 holds, and there exists a > 0 such that the support

of Fx is contained in [a,∞) for x ∈ Iδ
(iii) The functions m∗, x �→ µFx , and x �→ Fx (y) are continuously differentiable

on Iδ , and the first derivative of x �→ Fx (y) is bounded on Iδ , uniformly for
y > 0.

(iv) The functions m∗, x �→ µFx , and x �→ Fx (y) are twice continuously diffe-
rentiable on Iδ , and the second derivative of x �→ Fx (y) is bounded on Iδ ,
uniformly for y > 0.

(v) The support of K is contained in [−1, 1], and the total variation of K is less
than some λ < ∞

(vi) h = (hn) is a deterministic sequence of positive real number satisfying h → 0,
ln n/ (nh) → 0 and nh5/ ln n = O(1).

The order of convergence of F̂x is given in our first Theorem.

Theorem 1 Under (i)–(vi),

sup
y≥a,x∈I

∣
∣∣F̂x (y)− Fx (y)

∣
∣∣ = O

((
ln n

nh

)1/2
)

with probability 1.

Proof The result is obtained by considering the following decomposition

F̂x (y)− Fx (y) =
(∫ ∞

0

dH1∗
x (s)

w(s)

)−1
[∫ y

0

dĤ1∗
x (s)

w(s)
−

∫ y

0

dH1∗
x (s)

w(s)

]

+
∫ y

0

dĤ1∗
x (s)

w(s)

⎡

⎣
(∫ ∞

0

dĤ1∗
x (s)

w(s)

)−1

−
(∫ ∞

0

dH1∗
x (s)

w(s)

)−1
⎤

⎦
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and by noting that 0 < a ≤ w (y) < τ for y ≥ a, and

sup
y≥0,x∈I

∣
∣∣Ĥ1∗

x (y)− H1∗
x (y)

∣
∣∣ = O

((
ln n

nh

)1/2
)

with probability 1. (5)

Equation (5) is, in its turn, a consequence of Lemma 5 in Iglesias-Pérez and González-
Manteiga (1999). �	

The asymptotic distributional law of the estimator is investigated now. Our next
result states the convergence of the standardized process to a Gaussian distribution.

Theorem 2 Under (i)–(vi),

√
nh

[
F̂x (y)− Fx (y)

]
− bx (y)

d−→ N
(

0, σ 2
x (y)

)
for x ∈ I and y ≥ a,

where

bx (y) =
((

nh5
)1/2

)
µFx

2m∗ (x)

(∫
u2 K (u) du

) (
2�′(x)m∗′ (x)+�′′(x)m∗ (x)

)
,

where �(u) = µ−1
Fu

[Fu (y)− Fx (y)] , and

σ 2
x (y)=

µFx

m∗ (x)

(∫
K 2 (z) dz

)[
(1 − 2Fx (y))

∫ y

0

dFx (s)

w(s)
+ F2

x (y)
∫ ∞

0

dFx (s)

w(s)

]
.

Proof Write

F̂x (y)− Fx (y) =
(∫ ∞

0

dH1∗
x (s)

w(s)

)−1
[∫ y

0

dĤ1∗
x (s)

w(s)
−

(∫ ∞

0

dĤ1∗
x (s)

w(s)

)

Fx (y)

]

+
[∫ y

0

dĤ1∗
x (s)

w(s)
−

(∫ ∞

0

dĤ1∗
x (s)

w(s)

)

Fx (y)

]

×
⎡

⎣
(∫ ∞

0

dĤ1∗
x (s)

w(s)

)−1

−
(∫ ∞

0

dH1∗
x (s)

w(s)

)−1
⎤

⎦

= S1 + S2

We have
√

nhS2 = o (1) with probability 1, since (from Theorem 1)

S2 =
[

F̂x (y)− Fx (y)
](∫ ∞

0

dH1∗
x (s)

w(s)

)−1
[∫ ∞

0

dH1∗
x (s)

w(s)
−

∫ ∞

0

dĤ1∗
x (s)

w(s)

]

= O

(
ln n

nh

)
with probability 1.
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So, the aim is to study the asymptotic distribution of
√

nhS1. Because

√
nhS1 = µFx

m̂∗ (x)

[√
nh

n∑

i=1

1

nh
K

(
x − Xi

h

)
δi

w(Zi )

(
1{Zi ≤y} − Fx (y)

)
]

, (6)

where m̂∗ (x) is the Parzen–Rosenblatt estimator for the density function of the sam-
pled covariate, and m̂∗ (x) converges in probability to m∗ (x), it suffices to study the
limiting distribution of the second term in (6) which is

√
nh

n∑

i=1

1

nh

{
K

(
x − Xi

h

)
δi

w(Zi )

(
1{Zi ≤y} − Fx (y)

)

− E

[
K

(
x − Xi

h

)
δi

w(Zi )

(
1{Zi ≤y} − Fx (y)

)]}

+√
nh

n∑

i=1

1

nh
E

[
K

(
x − Xi

h

)
δi

w(Zi )

(
1{Zi ≤y} − Fx (y)

)] = I + I I.

We analyze I and I I similarly as in Iglesias-Pérez and González-Manteiga (1999),
Corollary 3 In this manner, we obtain that

I I =
((

nh5
)1/2

)
1

2

(∫
u2 K (u) du

)

× (
2�′(x)m∗′ (x)+�′′(x)m∗ (x)

) + o

((
nh5

)1/2
)

where

�(u) = E

[
δ

w(Z)

(
1{Z≤y} − Fx (y)

) | X = u, T ≤ Z

]
= µ−1

Fu
[Fu (y)− Fx (y)] .

And I = ∑n
i=1 ηi,n (y, x), where for each n, ηi,n (y, x) are zero-mean iid random

variables. The application of Central Limit Theorem for triangular arrays [Theorem 7.2
in Billingsley 1968] gives the asymptotic normality of I. (It is used that the functions
K and ξi (y, x) = δi

w(Zi )

(
1{Zi ≤y} − Fx (y)

)
are bounded for x ∈ I and y ≥ a). We

point out that

n∑

i=1

Var
[
ηi,n (y, x)

] =
(∫

K 2 (z) dz

)
V (x)m∗ (x)+ o (1) < ∞
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and

V (x) = Var

[
δ

w(Z)

(
1{Z≤y} − Fx (y)

) | X = x, T ≤ Z

]

= (1 − 2Fx (y))
∫ y

0

dH1∗
x (s)

w(s)2
+ F2

x (y)
∫ ∞

0

dH1∗
x (s)

w(s)2

= µ−1
Fx

[
(1 − 2Fx (y))

∫ y

0

dFx (s)

w(s)
+ F2

x (y)
∫ ∞

0

dFx (s)

w(s)

]
.

All the previous reasonings complete the proof. �	
As mentioned, the length-bias assumption allows for the construction of more effi-

cient estimators, when compared to those based on the truncation times (of product-
limit type). In de Uña-Álvarez (2004), a comparison between the (limit) variances
pertaining to both approaches was performed in order to illustrate this fact. In the
following Theorem, we extend this result to the conditional setup. Introduce

s2
x (y) = (1 − Fx (y))2

m∗(x)

(∫
K 2(z)dz

)(∫ y

0

dH1∗
x (s)

C∗
x (s)

2

)
,

the limit variance of the conditional product-limit estimator for left-truncated, right-
censored data in Iglesias-Pérez and González-Manteiga (1999), where

C∗
x (s) = P (T ≤ s ≤ Z | T ≤ Z , X = x) .

Theorem 3 Under (i)–(vi), for each x ∈ I and y ≥ a we have σ 2
x (y) ≤ s2

x (y) .

Proof Under our model assumptions it is easily seen that

C∗
x (s) = µ−1

Fx
w(s)

(
1 − Fx

(
s−)) .

Use (1) to conclude

∫ y

0

dH1∗
x (s)

C∗
x (s)

2 = µFx

∫ y

0

dFx (s)

w(s)
[
1 − Fx

(
s−)]2 .

So, in order to show s2
x (y)− σ 2

x (y) ≥ 0 it suffices to prove that

(1 − Fx (y))
2
∫ y

0

dFx (s)

w(s)
[
1 − Fx

(
s−)]2

−
[
(1 − Fx (y))

2
∫ y

0

dFx (s)

w(s)
+ F2

x (y)
∫ ∞

y

dFx (s)

w(s)

]
≥ 0.

But this inequality follows by arguments similar to those in de Uña-Álvarez (2004),
by noting that w(y) is a nondecreasing function. �	

123



Conditional distribution under length-bias 333

An issue of much practical interest is that of the selection of the estimate’s smoothing
parameter. Typically, the smoothing degree is chosen in order to minimize the mean
integrated squared error (MISE), defined as

MISEρ
[

F̂x

]
= E

∫ [
F̂x (y)− Fx (y)

]2
ρ(y)dy

where the weighting function ρ(y) is used to mitigate endpoint effects. Note that, from
Theorem 2, the asymptotic MISE is given by

AMISEρ
[

F̂x

]
= h4

∫
bx (y)

2ρ(y)dy + (nh)−1
∫
σ 2

x (y) ρ(y)dy,

where

bx (y) = µFx

2m∗ (x)

(∫
u2 K (u) du

) (
2�′(x)m∗′ (x)+�′′(x)m∗ (x)

)
.

The AMISE is minimized by the bandwidth

hAMISE =
[ ∫

σ 2
x (y) ρ(y)dy

4n
∫

bx (y)2ρ(y)dy

]1/5

.

This bandwidth depends on unknown quantities. A possible approach for bandwidth
selection is to compute hAMISE by plugging-in some empirical (e.g. kernel smoothing)
counterparts for these unknowns. However, in principle there is no optimal candi-
date for the estimation of this bandwidth, and preliminary simulations of our own
have reveal that the unknowns (particularly that involving bx (y)) are not always well
approximated by their kernel analogues. We propose instead some cross-validation
criterion in the spirit of Bowman et al. (1998). Specifically, introduce

CV(h) =
n∑

i=1

δi Bni (x)

w(Zi )

∫ [
1{Zi ≤y} − F̂x,−i (y)

]2
ρ(y)dy

⎛

⎝
n∑

j=1

δ j Bnj (x)

w(Z j )

⎞

⎠

−1

(7)

where F̂x,−i (y) is the leave-one-out version of F̂x (y) computed from the sample
when deleting the datum (Xi , Zi , δi ). Note that this is the cross-validation function
in Bowman et al. (1998) with the ordinary weights n−1 replaced by those associated
to (4). These authors establish, in a setup different although somehow related to ours,
that their cross-validation function is a particularly good approximation to MISE. In
order to see how (7) is motivated, put

(
X0

i ,Y 0
i

)
for a random variable independent
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of
(
X j , Tj , Z j , δ j

)
, j �= i , such that, given X0

i = x , Y 0
i follows the conditional

distribution Fx , and note that

MISEρ,n−1
[
F̂x

] ≡
∫

E
[
F̂x,−i (y)− Fx (y)

]2
ρ(y)dy

=
∫

E

{[
1{Y 0

i ≤y
} − F̂x,−i (y)

]2 | X0
i = x

}
ρ(y)dy

−
∫

E

{[
1{Y 0

i ≤y
} − Fx (y)

]2 | X0
i = x

}
ρ(y)dy

where the first integral can be rewritten as
∫ ∞

0

∫
E
[
1{s≤y}− F̂x,−i (y)

]2
ρ(y)dyd Fx (s),

and where the second integral is free of h. Then, it is reasonable to choose h to mini-
mize an estimator of the first integral. Now, by using arguments similar to those in
Theorem 2, it is seen that the expected value of (7) satisfies

E [CV(h)]

� µFx

m∗(x)
E

[
n∑

i=1

1

nh
K

(
x − Xi

h

)
δi

w(Zi )

∫ [
1{Zi ≤y} − F̂x,−i (y)

]2
ρ(y)dy

]

= µFx

m∗(x)
E

[
1

h
K

(
x − X1

h

)
δ1

w(Z1)

∫ [
1{Z1≤y} − F̂x,−1(y)

]2
ρ(y)dy

]

�
∫ ∞

0

∫
E
[
1{s≤y} − F̂x,−1(y)

]2
ρ(y)dyd Fx (s) as h → 0,

which is just what we want to estimate. This motivates the function CV (h) as a
smoothing criterion.

Remark 2 The (asymptotically) optimal MISE bandwidth is of the form h AM I SE =
cn−1/5, giving an optimal rate of convergence for the MISE of n−4/5. As in the
iid setup, faster convergence rates for the MISE can be obtained by using higher-
order kernels, according to the degree of smooth of the conditional distribution to be
estimated. Specifically, assume that K is a k th-order kernel (see e.g. Wand and Jones
1995, p. 33) and that the function ψ(u) = �(u)m∗(u) (see the proof to Theorem 2
for notation) has k derivatives. Then, the bias term in Theorem 2 equals

µFx

m∗(x)

((
nh2k+1

)1/2
)
(−1)k

1

k!
(∫

uk K (u) du

)
ψ(k)(x)+ o

((
nh2k+1

)1/2
)
.

From this, we get h AM I SE = O(n−1/(2k+1)) and the optimal MISE is a O(n−2k/(2k+1)).

4 Simulation study

In this section we explore the practical performance of the proposed estimator through
simulations. Basically, we are concerned with two major objectives. First, our Theo-
rem 3 reveals that, asymptotically, the model information on the truncation distribution
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results in less variance in estimation. Our simulations will analyze this issue for finite
sample sizes, as long as the impact of the smoothing level on the estimate’s mean
integrated squarred error (MISE). Secondly, it remains the question of how to choose
the smoothing level given the sampled information. The performance of the bandwidth
which minimizes a cross-validation criterion will be briefly discussed.

For the design of the simulation study we followed de Uña-Álvarez and Rodríguez-
Casal (2006), after proper adaptation to the conditional setup. Explicitly, we simulated
the following conditional model:

Step 1. Draw X according to a Uniform model on the unit interval: X ∼ U (0, 1)
Step 2. Given X = x , draw Y according to the conditional distribution Fx (y) =

yα(x), 0 < y < 1, where α(x) = 0.75 + x2

Step 3. Draw T ∼ U (0, 1). If T > Y then reject the datum (X,Y, T ) and go to Step
1. Otherwise,

Step 4. Compute C = T + τ (for a positive constant τ to be indicated below),
Z = min(Y,C) and δ = 1{Y≤C}

Steps 1 and 2 define a model under which the X and the Y are positively correlated.
We will consider the problem of recovering Fx from the sampled data, for the special
x values 0.25, 0.50, and 0.75, with corresponding α(x) values 0.8125, 1, and 1.3125.
These values result in a concave, uniform, and convex conditional distribution function,
respectively.

As values for τ , we considered 0.3, 0.5, and 0.7, corresponding to censoring levels
(in the observable, truncated population) of 49.9, 25.8, and 9.4%, so the impact of
the censoring degree on the estimate’s performance could be evaluated. As sample
sizes we took n = 50 and 100. Since we took three different values for the fixed x (as
mentioned), three degrees of censoring, and two sample sizes, up to eighteen different
cases are included in our simulations.

For each case, we computed a Monte Carlo approximation of the MISE function,
based on M=1000 trials. Specifically, we computed

MISEρ(h | F̂x ) ≡ MISEρ
[

F̂x

]
= 1

M

M∑

m=1

∫ [
F̂x,m(y)− Fx (y)

]2
ρ(y)dy

for a grid of bandwidths h (ranging from 0.3 to 1.8 with step 0.05), where F̂x,m(y)
denotes the estimator (4) based on the m -th sample, and ρ(y) is a weighting function
which role is to eliminate the endpoint effects (we tookρ(y)=1{

y∈
[

F−1
x (0.05),F−1

x (0.95)
]}

in our computations). In Table 1 we provide, for each situation, the bandwidth h∗(F̂x )

for which MISEρ(h | F̂x ) is minimum, as long as the MISEρ(h∗(F̂x ) | F̂x ) value. For
comparison purposes, the results pertaining to the conditional product-limit estima-
tor in Iglesias-Pérez and González-Manteiga (1999), say F̃x , are also reported. The
estimator F̃x was proposed as an extension of Dabrowska (1989)’s to cope with the
problem of left-truncation, so it provides a consistent estimator of Fx (alternative to
F̂x ) in our scope. Table 1 includes the efficiency of F̃x relative to F̂x , defined as the
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Table 1 Optimal MISE bandwidth and minimum MISE value for the estimators F̂x and F̃x , together with
their relative efficiency, along the 1,000 simulated samples

x τ MISE(F̂x ) h∗(F̂x ) MISE(F̃x ) h∗(F̃x ) RE(F̃x , F̂x )

n = 50

0.25 0.3 0.0171 0.85 0.0207 0.95 0.8268

0.5 0.0160 0.80 0.0197 0.95 0.8135

0.7 0.0157 0.75 0.0195 0.95 0.8050

0.50 0.3 0.0114 0.90 0.0153 1.25 0.7499

0.5 0.0102 0.85 0.0143 1.25 0.7175

0.7 0.0098 0.80 0.0140 1.25 0.7283

0.75 0.3 0.0107 0.75 0.0148 0.70 0.6233

0.5 0.0090 0.70 0.0136 0.70 0.6561

0.7 0.0083 0.70 0.0134 0.70 0.7183

n = 100

0.25 0.3 0.0108 0.70 0.0137 0.90 0.7870

0.5 0.0101 0.65 0.0132 0.90 0.7638

0.7 0.0099 0.65 0.0131 0.90 0.7550

0.50 0.3 0.0067 0.80 0.0091 1.20 0.7405

0.5 0.0061 0.75 0.0086 1.15 0.7061

0.7 0.0059 0.75 0.0085 1.15 0.6925

0.75 0.3 0.0066 0.65 0.0089 0.50 0.7383

0.5 0.0056 0.65 0.0082 0.50 0.6830

0.7 0.0053 0.65 0.0081 0.50 0.6627

quotient between their respective minimum MISE values:

RE(F̃x , F̂x ) = MISEρ(h∗(F̂x ) | F̂x )

MISEρ(h∗(F̃x ) | F̃x )
.

That is, the relative efficiency RE(F̃x , F̂x ) measures how good is the estimate
based on the observed truncation times when compared to that based on the length-
bias model, assuming that both of them are computed with their respective optimal
smoothing levels.

In Table 1 we see that all the MISE values decrease with an increasing sample
size and a decreasing censoring level. Of course, this was expected. The difficulty
when estimating the three undelying models Fx (x = 0.25, 0.50, 0.75) can be judged
from the achieved minimum MISE values. There is an agreement between the two
considered estimators in that the hardest distribution to estimate is the concave one
(x = 0.25). On the other hand, it is clearly seen in Table 1 that the proposed estimator
ourperforms that based on the observed truncation times. Hence, as announced by our
Theorem 3, there is important information contained in the uniform truncation model
when estimating the conditional lifetime df. The relative efficiency of F̃x may be as
small as 62.3%, and it takes values below one in all the considered situations.
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Fig. 1 MISE of F̂x , normalized by the minimum MISE of F̃x , for x = 0.5 and n = 100, and three different
censoring levels: 9% (thin line), 26% (medium), and 50% (thick line)

Figure 1 shows the curve h �→ MISEρ(h | F̂x ) for x = 0.50 and n = 100 when
normalized by using MISEρ(h∗(F̃x ) | F̃x ) as a denominator (results for n = 50 and
other x values are similar and they are not displayed here). Hence, the shape of each
curve reveals the impact that choosing a wrong bandwidth has in the performance of
F̂x , while the achieved values of the curve represent the relative performance of F̃x

(based on its optimal smoothing level) when compared to F̂x . We see that there is a
serious risk when undersmoothing the estimator, the impact of oversmoothing being
less important otherwise. Interestingly, Fig. 1 shows that the proposed estimator F̂x

outperforms F̃x even in the unfair situation in which the latter uses optimal smoothing
and the former not. This is a new argument for choosing the estimate pertaining to the
lengh-bias model (whenever is true) instead of that based on the observed truncation
times.

As mentioned, the second goal in our simulations is to explore the performance of
the bandwidth which minimizes the cross-validation function (7), hCV say. This can
be measured in two different “scales”: (a) in the sense of the bandwidth’s closeness
to the optimal smoothing degree h∗(F̂x ), and (b) (more importantly) in the sense of
the MISE value corresponding to the selected bandwidth. The function CV(h) was
minimized over a grid of h values, ranging from 0.1 to 1.5 with a step of 0.02, and we
took the bandwidth hCV as the largest local minimum. We computed hCV along 1,000
simulated samples for the three models (x =0.25, 0.50 and 0.75), sample sizes n = 50
and 100, and τ = 0.7. In Table 2 we report the mean, the median and the standard
deviation of the cross-validation bandwidth in each situation. In many cases (about
one third), the bandwidth was larger than the distance from the particular x to the
interval endpoints (these situations corresponding to cross-validation functions with
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Table 2 Mean, median and
standard deviation of the
cross-validation bandwidth
along 1,000 simulated samples,
for the case τ = 0.7

x n Mean(hcv) Median(hcv) SD(hcv)

0.25 50 0.52 0.62 0.2426

100 0.53 0.63 0.2354

0.50 50 0.38 0.44 0.1426

100 0.37 0.42 0.1415

0.75 50 0.51 0.56 0.2327

100 0.51 0.53 0.2178

a global minimum at h = 1.5). In such cases, the bandwidth was redefined as such a
distance (van Keilegom et al. (2001)); the median bandwidths are unaffected by this
issue otherwise. From Table 2 it can be seen that the variance of hCV reduces for an
increasing sample size; besides, the cross-validation criterion seems to undersmooth
the conditional distribution, although the distance between hCV and the optimal MISE
bandwidth (see Table 1) gets smaller for n = 100 . Regarding the MISE of the final
estimator, we have computed the increase of the estimate’s error (relative to that based
on h∗(F̂x ) ) when using the cross-validation smoothing degree (taken in median).
This increase was always below 8%, except for the case x = 0.50 (14.3–23.7%
depending on n). These results are not that bad if we consider the high risk associated
to undersmoothing for x = 0.50, see Fig. 1.

5 Application

In this section, we illustrate the proposed estimation method through unemployment
data analysis in the Spanish case. Our data source is the survey Encuesta de Población
Activa (Labour Force Survey) of the Spanish Institute for Statistics, between 1987 and
1997. This survey collects information on about 60,000 homes in Spain, each three
months. Each home is followed for the next 18 months. The available information
corresponds to those unemployment spells of married women being unemployed at
the time of inquiry (1,009 spells in the case of Galicia). The unemployment origin
is known for these subjects, because they are asked to provide the date they started
searching for a job. The main variable in our application (the Y ) is defined as total time
(in months) on unemployment. Then, the final event is the first occurrence between
the events “finding a job” or “stop searching for a job”. Unfortunately, some spells
(56% of the sample size) are right-censored at the end of the follow-up period. Right-
censored unemployment times correspond to those women still searching for a job
18 months after the first inquiry took place.

Besides censoring effects, some length-bias is present in this data set. The length-
bias comes from the fact that observation is restricted to those individuals being in the
unemployed stock at the inquiry time. The truncation time T is defined as time from
origin to the inquiry date. For these data, the length-bias assumption was informally
checked through a graphical comparison between the empirical truncation df (Wang
1991) and the uniform model, showing a good fit. Then, estimation of Fx through
(4) was performed, where the covariate X represents age (in years) when entering the
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Fig. 2 Nonparametric estimators for the unemployment time distribution conditionally on age: 30 (thick
line), 35 (thin line), and 40 years old (dashed line), with common bandwidth h = 3

unemployed stock. The value for τ was 18 months (the follow-up period duration),
the function K was chosen as the Epanechnikov kernel and (from some preliminary
investigation) the bandwidth h was chosen to be 3 years. In practice, a large bandwidth
would mask the covariate effects (since all the observations would contribute to the
final estimate, regardless the X value), while a too small bandwidth would result in
undesirable wiggly estimator for Fx .

Estimators F̂x for x =30, 35 and 40 years are displayed in Fig. 2. From this figure, it
is seen that young unemployed people get out of the unemployment stock earlier. The
influence of age on unemployment can be simply measured through the conditional
median, defined as

M̂ (x) = F̂−1
x (0.5) = inf

{
y : F̂x (y) ≥ 0.5

}
.

Median unemployment times computed from these curves report values about 16
(x = 30), 17 (x = 35) and 20 (x = 40) months.

In Fig. 3 we show a pointwise confidence band with asymptotic nominal level of
95% for the 35 years old unemployment group. The confidence limits were computed
from the asymptotic variance given in Theorem 2. Note that a plug-in estimator of
σ 2

x (y) is given by

σ̂ 2
x (y)=

µ̂Fx

m̂∗ (x)

(∫
K 2 (z) dz

)[(
1−2F̂x (y)

) ∫ y

0

dF̂x (s)

w(s)
+ F̂2

x (y)
∫ ∞

0

dF̂x (s)

w(s)

]
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Fig. 3 Proposed nonparametric estimator for the unemployment time distribution conditionally on age:
35 years old (thick line), and pointwise 95% confidence band (thin lines). For comparison, Dabrowska
estimator is included (dashed line)

where

µ̂Fx =
(∫ ∞

0

dĤ1∗
x (s)

w(s)

)−1

.

Then, the displayed confidence limits are

F̂x (y)± 1.96
σ̂x (y)√

nh
.

Note that the band is wider at the left tail of the distribution; this is a consequence
of the length-bias issue, under which small times are less probably observed.

A major mistake that has occurred several times by users of statistics is to naively
ignore the length-bias factor. From Fig. 3, one can compare both the estimator for the
unbiased survival function (F̂x , solid thick line) and the generalized Kaplan–Meier
estimator (Dabrowska 1989, dashed line), for x = 35. Note that the latter estimate does
not cope with the length-bias issue. Hence, the Kaplan–Meier curve severely underesti-
mates the conditional distribution on the entire range of unemployment durations. This
figure illustrates in a practical framework how misleading a naive statistical analysis
can be.
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