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Abstract Conditional density estimation in a parametric regression setting, where
the problem is to estimate a parametric density of the response given the predictor,
is a classical and prominent topic in regression analysis. This article explores this
problem in a nonparametric setting where no assumption about shape of an underlying
conditional density is made. For the first time in the literature, it is proved that there
exists a nonparametric data-driven estimator that matches performance of an oracle
which: (i) knows the underlying conditional density, (ii) adapts to an unknown design of
predictors, (iii) performs a dimension reduction if the response does not depend on the
predictor, (iv) is minimax over a vast set of anisotropic bivariate function classes. All
these results are established via an oracle inequality which is on par with ones known
in the univariate density estimation literature. Further, the asymptotically optimal
estimator is tested on an interesting actuarial example which explores a relationship
between credit scoring and premium for basic auto-insurance for 54 undergraduate
college students.
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250 S. Efromovich

1 Introduction

Suppose that observations are n independent pairs (Yl , Xl), l = 1, . . . , n, and the pro-
blem is to estimate the conditional density (c.d.) of the response Y given the predictor
X . Two classical regression designs will be considered simultaneously. The former
design is random where pairs of observations are independent samples from a pair
of two random variables Y and X . Under this design, suppose that the joint density
f (y, x) exists and the marginal density p(x) := ∫∞

−∞ f (y, x) dy of the predictor is po-

sitive on its support, then we are estimating the conditional density f (y|x) := f (y,x)
p(x) .

In what follows we shall assume that the support of p(x) is [0, 1]. The latter design
is where predictors are a permutation of deterministic X(1), . . . , X(n) with X(0) = 0,

X(n+1) = 1,
∫ X(l+1)

X(l)
p(x) dx = (n + 1)−1, l = 0, 1, . . . , n and p(x) being a positive

probability density supported on [0, 1]. From now on, p(x) will be referred to as the
design density regardless of an underlying regression design. A discussion of these
two designs can be found in Neter et al. (1996) and Eubank (1999); an interesting
probabilistic point of view is presented in Arnold et al. (1999).

The considered statistical problem is to estimate the c.d. f (y|x), as a bivariate func-
tion, under the Mean Integrated Squared Error (MISE) criterion. Neither the type of
design, nor the design density, nor the shape/smoothness of an underlying conditional
density are supposed to be known, and thus a suggested estimator should adapt to
an underlying design and smoothness of the c.d.; see an interesting discussion about
design and smoothness adaptive estimation in Fan (1992) and Efromovich (1999).
Another desirable feature of a conditional density estimator is to perform as well as a
univariate marginal density estimator under a traditional null hypothesis “the response
does not depend on the predictor.” This hypothesis implies that f (y|x) ≡ f (y), and
then the familiar curse of multidimensionality can be overcome. Note that the latter
issue can be also referred to as a dimension–reduction property.

To satisfy the last property, the following expansion of the c.d. can be suggested:

f (y|x) = f (y)+ ψ(y, x), (1)

whereψ(y, x)vanishes when the response does not depend on the predictor. Expansion
(1) also explains how to choose an oracle which can be a benchmark for any c.d.
estimator: this oracle should know both f (y) and ψ(y, x).

The literature on nonparametric c.d. estimation is not vast and it is primarily devoted
to developing ad hoc estimators with the main theoretical emphasis on the bias–
variance analysis. The interested reader can find a discussion and nice examples in
the books by Prakasa Rao (1983), Fan and Gijbels (1996), Efromovich (1999) and
Fan and Yao (2003), some possible extensions in Abramovich and Sapatinis (1999)
and Koul and Sakhanenko (2005), as well as in Efromovich (2007) where a set of
plausible conjectures about c.d. estimation is outlined. This article proves one of those
conjectures: it is possible to develop a data-driven estimator that matches performance
of an oracle which has all of the above–outlined wished statistical properties.

The content of this article is as follows. Section 2 defines an oracle to match and
describes its statistical properties. A data–driven c.d. estimator, which mimics the
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oracle, is presented in Sect. 3. This section also contains an oracle inequality which
shows how well the estimator matches performance of the oracle under the MISE cri-
terion. Further, the suggested asymptotically optimal estimator is tested on an actuarial
example with just 54 observations. Proofs can be found in Sect. 4.

It will benefit the reader if we finish the Introduction by presenting notation used
in all sections of this article. Namely: i always denotes the complex unit, that is,
i2 = −1; Re{·} is the real part; o(1)’s are generic sequences in n such that o(1) → 0
as n → ∞; C’s are generic positive constants; (x)+ := max(0, x); �x� is the integer
part of x ; I (·) is the indicator; the cosine basis on [0, 1] is denoted as ϕ0(x) :=
1, ϕ j := 21/2 cos(π j x), j = 1, 2, . . . Two given arrays of nonnegative numbers
{0 = b1 < b2 < . . .} and integers {b′

1 = 0, b′
2 = 1 + �ln3/4(n + 3)�, b′

s+1 =
b′

s + �b′
2(1 + 1/ ln ln(n + 3))s−2�; s = 2, 3, . . .} will be used to define blocks, and

two given arrays of positive numbers {t1, t2, . . .} and {tkτ := 1/2 ln ln((k + 3)(τ +
3)); k, τ = 1, 2, . . .} will denote thresholds. Two different arrays of blocks are used for
estimation of the univariate f (y) and bivariateψ(y, x) components of the c.d. f (y|x);
remember (1). The former is Bk := [bk, bk+1), and the latter is Bkτ := {(u, r) : u ∈
[b′

k, b′
k+1), r ∈ {b′

τ + 1, . . . , b′
τ+1}. The corresponding lengths/cardinality of these

blocks are Lk := bk+1 − bk and Lkτ := (b′
k+1 − b′

k)(b
′
τ+1 − b′

τ ). We shall also use
adjusted lengths

L∗
kτ : = Lkτ

/[ ∞∑

r=1

∫ ∞

0
I ((u, r) ∈ Bkτ )

[ ∣
∣
∣
∣

∫ 1

0
p−1(x)ϕ2r (x) dx

∣
∣
∣
∣

+
∫ 1

0

∣
∣
∣
∣

∫ ∞

−∞
eiuy f (y|x) dy

∣
∣
∣
∣

2

dx

]

du

]

. (2)

2 Oracle for conditional density estimation

The primary aim of this section is to suggest an oracle, based on both data and under-
lying conditional and design densities (note that these densities are unknown to the
statistician), which has three wished properties: (i) It can be considered as a bench-
mark for any estimator due its good statistical properties; (ii) It should be relatively
simple for mimicking by a data-driven estimator; (iii) If the response is independent
of the predictor and f (y|x) ≡ f (y), then the bivariate oracle becomes a univariate
one (performs a dimension reduction).

To incorporate the third property, expansion (1) will be used where the terms are
defined via corresponding characteristic functions. Namely, write

f (y) = (2π)−1
∫ ∞

−∞
h0(u)e

−iuy dy, (3)

and the second term as

ψ(y, x) =
∞∑

r=1

(2π)−1
∫ ∞

−∞
hr (u)e

−iuy duϕr (x). (4)
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252 S. Efromovich

Here, given a particular u ∈ (−∞,∞),

hr (u) :=
∫ 1

0
h(u|x)ϕr (x) dx, r = 0, 1, . . . (5)

is the r th Fourier coefficient of the conditional characteristic function

h(u|x) :=
∫ ∞

−∞
f (y|x)eiuy dy. (6)

Note that (3) and (4) are valid for both random and fixed regression designs.
The underlying idea of using representations (3) and (4) is that the original problem

of c.d. estimation is converted into the problem of characteristic function estimation.
Then it is possible to employ Efromovich–Pinsker (EP) oracle methodology motivated
by the Wiener filter; the interested reader can find a comprehensive discussion of this
oracle methodology in Efromovich (1999, 2000, 2005).

Let us define EP oracles f̃ ∗(y) and ψ̃∗(y, x) for estimation of the components f (y)
and ψ(y, x), respectively. Write

f̃ ∗(y) := π−1
∫ ∞

0
Re{h̃0(u)e

−iuy} du, (7)

where

h̃0(u) :=
K∑

k=1

µk ĥ0(u)I (u ∈ Bk), u ≥ 0. (8)

Here and in what follows ĥr (u) is a statistic

ĥr (u) := n−1
n∑

l=1

eiuYlϕr (Xl) p̂
−1(Xl), r = 0, 1, . . . . (9)

At the same time, the oracle employs shrinkage coefficientsµk depending on unknown
to the statistician functions f (y) and p(x):

µk := �k

�k + d(p)n−1 , (10)

where

d(p) :=
∫ 1

0
p−1(x) dx (11)

and �k is a Sobolev functional

�k := L−1
k

∫

Bk

|h0(u)|2 du. (12)
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The cutoff K , used in (8), is the minimal integer such that bK+1 > max(b3, n1/3 ln
ln(n + 3)). It is chosen from a minimax consideration explained below.

Finally we need to define the design density estimator p̂(x) used in (9). (Let us
note that the oracle knows p but uses it only in the shrinkage procedure; this approach
simplifies mimicking of the oracle.) Set

p̂(x) := max(1/ ln ln(n + 3), p̃(x)), (13)

where the pivotal design density estimator p̃(x) is an orthogonal series one:

p̃(x) := 1 + n−1
n1/3
∑

r=1

n∑

l=1

ϕr (Xl)ϕr (x). (14)

Note that this estimator is universal for the fixed and random regression designs.
Now, we are in a position to describe an oracle for the bivariate componentψ(y, x).

Here, we are following the methodology of Efromovich (2000), developed for the
setting of multivariate densities, and set:

ψ̃∗(y, x) :=π−1
T∑

k,τ=1

µkτ

∞∑

r=1

∫ ∞

0
I ((u, r)∈ Bkτ )Re{ĥr (u)e

−iuy} duϕr (x), (15)

where ĥr is defined in (9),

µkτ := �kτ

�kτ + d(p)n−1 , (16)

�kτ := L−1
kτ

∞∑

r=1

∫ ∞

0
I ((u, r) ∈ Bkτ )|hr (u)|2 du, (17)

and T is the minimal integer such that b′
T +1 > max(b′

3, (n
1/4 ln ln(n + 3)).

Then EP oracle is defined as

f̃ ∗(y|x) := f̃ ∗(y)+ ψ̃∗(y, x). (18)

We shall see shortly that it is easy to evaluate the oracle’s MISE. But first we need
to introduce two assumptions.
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Assumption 1 An estimated conditional density f (y|x) belongs to a Sobolev class
of differentiable bivariate functions:

S(1, 1, Q) :=
{

f (y|x) : f (y|x) =
∞∑

r=0

(2π)−1
∫ ∞

−∞
hr (u)e

−iuy duϕr (x),

f (y|x) ≥ 0,
∫ ∞

−∞
f (y|x) dy ≡ 1, (y, x) ∈ (−∞,∞)× [0, 1],

∞∑

r=0

π−1
∫ ∞

0
[u2 + (πr)2]|hr (u)|2 du ≤ Q < ∞

}

. (19)

Assumption 2 The design density p(x), x ∈ [0, 1] is supported and bounded below
from zero on [0, 1], and its first derivative p(1)(x) exists and is bounded on [0, 1].
Theorem 1 The cases of random and fixed designs of predictors are considered
simultaneously. Consider a particular sample size n and the pair ( f (y|x), p(x)) of
conditional and design densities satisfying Assumptions 1 and 2. Then the MISE of
the oracle (18) satisfies

E( f (y|x),p(x))
∫ 1

0

∫ ∞

−∞
( f̃ ∗(y|x)− f (y|x))2 dy dx

= π−1n−1d(p)

⎡

⎣
K∑

k=1

Lkµk +
T∑

k,τ=1

Lkτµkτ

⎤

⎦

+π−1

⎡

⎣
∑

k>K

Lk�k +
∞∑

k,τ=1

I ((k, τ ) �∈ [1, T ]2)Lkτ�kτ

⎤

⎦+ δ∗n , (20)

where for any two arrays {νk ∈ (0, 1); k = 1, 2, . . .} and {νkτ ∈ (0, 1); k, τ =
1, 2, . . .}

|δ∗n | ≤ π−1d(p)n−1
K∑

k=1

Lkµk

[
νk + Cν−1

k µk

(
L−1

k + n−1/4
)]

+π−1d(p)n−1
T∑

k,τ=1

Lkτµkτ

[
νkτ + Cν−1

kτ µkτ (L
∗
kτ )

−1
]
. (21)

Note that in (20) the notation E( f (y|x),p(x))(·) emphasizes the fact that the expec-
tation is taken given the design, the conditional density and the design density.

The following technical result will help us to analyze the oracle’s MISE.

Lemma 1 The adjusted lengths satisfy the inequality

(L∗
kτ )

−2 ≤ C[ln−9/4(n + 3)+ ln−3/2(n + 3)(I (τ = 1)+ I (k = 1))], (22)
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and the cutoff T satisfies the inequality T ≤ C ln(n + 3) ln ln(n + 3).

Theorem 1 is the main tool in establishing minimax properties of the oracle (recall
that this is one of the main criteria in choosing a benchmark). Because smoothness of
f (y|x) in y and x may be different, it is reasonable to consider anisotropic bivariate
conditional density classes; here classes introduced in Efromovich (2007) will be
studied.

We begin with a Sobolev anisotropic class of conditional densities

S(mY ,m X , Q) :=
{

f (y|x) : f (y|x) =
∞∑

r=0

(2π)−1
∫ ∞

−∞
hr (u)e

−iuy duϕr (x),

f (y|x) ≥ 0,
∫ ∞

−∞
f (y|x) dy ≡ 1, (y, x) ∈ (−∞,∞)× [0, 1],

∞∑

r=0

π−1
∫ ∞

0
[u2mY +(πr)2m X ]|hr (u)|2 du≤Q < ∞, mY ≥ 1,m X ≥ 1

}

. (23)

Another anisotropic class to consider is an analytic–Sobolev one,

AS(γ,m X , Q) :=
{

f (y|x) : f (y|x) =
∞∑

r=0

(2π)−1
∫ ∞

−∞
hr (u)e

−iuy duϕr (x),

f (y|x) ≥ 0,
∫ ∞

−∞
f (y|x) dy ≡ 1, (y, x) ∈ (−∞,∞)× [0, 1],

∞∑

r=0

π−1
∫ ∞

0
[eγ u + (πr)2m X ]|hr (u)|2 du ≤ Q < ∞, m X ≥ 1, γ > 0

}

. (24)

Note that this class includes, among others, classical normal, Student and Cauchy
conditional densities as well as their mixtures and one-to-one transformations which
are typical in the additive regression; see a discussion in Efromovich (1999, 2007).

Finally, we are considering an anisotropic analytic class

A(γ1, γ2, Q) :=
{

f (y|x) : f (y|x) =
∞∑

r=0

(2π)−1
∫ ∞

−∞
hr (u)e

−iuy duϕr (x),

f (y|x) ≥ 0,
∫ ∞

−∞
f (y|x) dy ≡ 1, (y, x) ∈ (−∞,∞)× [0, 1],

∞∑

r=0

π−1
∫ ∞

0
[eγ1u + eγ2r ]|hr (u)|2 du ≤ Q < ∞, γ1 > 0, γ2 > 0

}

. (25)

A direct calculation implies the following technical result.
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256 S. Efromovich

Lemma 2 Suppose that Lk → ∞ and Lk+1/Lk → 1 as k → ∞. Then for F being
one of the above–specified anisotropic bivariate c.d. classes,

sup
f (y|x)∈F

π−1n−1d(p)

⎡

⎣
K∑

k=1

Lkµk +
T∑

k,τ=1

Lkτµkτ

⎤

⎦= Rn(p,F)(1 + o(1)), (26)

and cutoffs K and T are such that

sup
f (y|x)∈F

⎡

⎣
∑

k>K

Lk�k +
∞∑

k,τ=1

I ((k, τ ) �∈ [1, T ]2)Lkτ�kτ

⎤

⎦=o(1)Rn(p,F). (27)

Here:

(a) For an anisotropic Sobolev class F = S(mY ,m X , Q)

Rn(p,S) = [P(α, β)Q1/(2τ+1)][d(p)n−1]2τ/(2τ+1), (28)

where α = mY , β = m X , 1/(2τ) := 1/(2α)+ 1/(2β),

P(α, β) := π−4τ/(2τ+1)[J1(α, β)]−1/(2τ+1) J2(α, β), (29)

and

J1(α, β) :=
∫

{(u,v): u2α+v2β≤1; u,v≥0}

(
[u2α+v2β ]1/2−[u2α+v2β ]

)
dv du,

(30)

J2(α, β) :=
∫

{(u,v): u2α+v2β≤1; u,v≥0}
(1 − [u2α + v2β ]1/2) dv du. (31)

(b) For an analytic–Sobolev class F = AS(γ,m X , Q)

Rn(p,AS) = P(m X )Q
1/(2m X +1)(d(p)/n)2m X /(2m X +1)

× [2m X ln(n)/((2m X + 1)πγ )]2m X /(2m X +1), (32)

where

P(m) = (2m + 1)1/(2m+1)[m/(π(m + 1))]2m/(2m+1). (33)

(c) For an anisotropic analytic class F = A(γ1, γ2, Q)

Rn(p,A) = (πγ1γ2)
−1d(p)n−1 ln2(n). (34)

It is proved in Efromovich (2007) that, for the considered anisotropic bivariate c.d.
classes, R(p,F) is an asymptotically sharp lower bound for the minimax MISE where
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the maximum is taken over all possible c.d. estimators. Further, it is plain to see that
if Lk → ∞ as k → ∞ then, according to (21) and Lemma 1, we can always find νk

and νkτ such that

sup
f (y|x)∈F

|δ∗n | = o(1)Rn(p,F). (35)

These two remarks imply the following proposition.

Corollary 1 Let Assumptions 1 and 2 hold, Lk → ∞ and Lk+1/Lk → 1 as k → ∞.
Then the EP oracle (18) is simultaneously sharp minimax over anisotropic Sobolev,
analytic-Sobolev and analytic bivariate function classes defined in (23)–(25), respec-
tively.

Now let us consider the case where f (y|x) ≡ f (y), the case of the response being
independent of the predictor. In this case �kτ = µkτ ≡ 0 for all k, τ ≥ 1. Then the
right side of (20) simplifies into a familiar expression for the MISE of the univariate
EP oracle; see Efromovich (1985, 2005). Further, it is well known that the univariate
EP oracle is sharp minimax over a vast set of density classes. We get the following
result.

Corollary 2 Let the assumption of Corollary 1 hold and f (y|x) ≡ f (y), that is, the
response is independent of the predictor. Then the bivariate EP oracle (18) is rate
minimax over classical univariate Sobolev and analytic function classes introduced
in Efromovich (2005). Moreover, if the design is uniform (p(x) = I (0 ≤ x ≤ 1)) then
the oracle is simultaneously sharp minimax over these two univariate density classes.

This corollary implies that the bivariate EP oracle performs the wished dimension
reduction whenever the response is independent of the predictor.

We have established all the desired statistical properties of EP oracle. As a result, it
can be considered as a benchmark for any c.d. estimator. The next section shows that
performance of the oracle can be matched by a data-driven estimator which mimics
the oracle.

3 Estimator and its oracle inequality

The oracle’s knowledge of conditional and design densities is used “only” for
optimal shrinkage of empirical characteristic functions; recall (10) and (16). This fact
dramatically simplifies mimicking of the oracle: the idea is to use a plug-in shrinkage
procedure. Namely, in place of µk we use

µ̃k := �̃k

�̃k + d̃n−1
I (�̃k > tk d̃n−1), (36)

where

�̃k := L−1
k

∫

Bk

|ĥ0(u)|2 du − d̃n−1 (37)
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258 S. Efromovich

and

d̃ :=
∫ 1

0
p̂−1(x) dx . (38)

In place of µkτ we use

µ̃kτ := �̃kτ

�̃kτ + d̃n−1
I (�̃kτ > tkτ d̃n−1), (39)

where

�̃kτ := L−1
kτ

∞∑

r=1

∫ ∞

0
I ((u, r) ∈ Bkτ )|ĥr (u)|2 du − d̃n−1. (40)

Then

f̃ (y) := π−1
K∑

k=1

µ̃k

∫

Bk

Re{ĥ0(u)e
−iuy} du (41)

estimates f (y) while

ψ̃(y, x) :=π−1
T∑

k,τ=1

µ̃kτ

∞∑

r=1

∫ ∞

0
I ((u, r) ∈ Bkτ )Re

{
ĥr (u)e

−iuy
}

duϕr (x) (42)

estimates ψ(y, x).
Further, the suggested data–driven c.d. estimator is

f̃ (y|x) := f̃ (y)+ ψ̃(y, x). (43)

Note that the estimator does not depend on the type of an underlying design. Further,
all integrals and sums are taken over finite sets and easily calculated, for instance the
estimate (42) can be written as

ψ̃(y, x) = n−1π−1
T∑

k,τ=1

µ̃kτ

n∑

l=1

⎡

⎣
b′
τ+1∑

r=b′
τ+1

ϕr (Xl)ϕr (x)

⎤

⎦

× sin((Yl − y)b′
k+1)− sin((Yl − y)b′

k)

p̂−1(Xl)(Yl − y)
.

Now, we are in a position to show that the MISE of the estimator matches the MISE
of the oracle that knows the conditional and design densities.
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Theorem 2 (Oracle inequality) The cases of random and fixed designs of predictors
are considered simultaneously. Consider a particular sample size n as well as a parti-
cular pair ( f (y|x), p(x)) of conditional and design densities satisfying Assumptions 1
and 2. Then the following oracle inequality holds:

E( f (y|x),p(x))
∫ 1

0

∫ ∞

−∞
( f̃ (y|x)− f (y|x))2 dy dx

≤ E( f (y|x),p(x))
∫ 1

0

∫ ∞

−∞
( f̃ ∗(y|x)− f (y|x))2 dy dx + δn, (44)

where

δn ≤ Cn−1

⎡

⎣
K∑

k=1

[
Lkµk

(
t1/2
k + L−1/2

k t−3/2
k

)
+ L−2

k t−5
k

]

+
T∑

k,τ=1

[
Lkτµkτ

(
t1/2
kτ + (L∗

kτ )
−1/2t−3/2

kτ

)
+ (L∗

kτ )
−2t−5

kτ

]
⎤

⎦ . (45)

Theorem 2 shows how well the estimator matches its benchmark, and δn indicates
the difference. Let us stress that the oracle inequality is not asymptotic and it is valid
for any c.d. and any design satisfying Assumptions 1 and 2. At the same time, the
constant C depends on the design density; to relax this dependence a class of design
densities uniformly satisfying Assumption 2 may be considered.

This oracle inequality is a remarkable technical tool for the analysis of the suggested
data-driven estimator. Suppose that

Lk+1/Lk → 1 and tk → 0 as k → ∞,

∞∑

k=1

L−2
k t−5

k < ∞. (46)

Then the oracle inequality, together with Theorem 1, Lemma 1 and Corollary 1,
immediately establishes sharp minimaxity of the estimator over the bivariate c.d.
classes (23)–(25).

Now let us show that the estimator does perform the wished dimension reduction.
Indeed, if f (y|x) ≡ f (y), x ∈ [0, 1], then

E( f (y|x),p(x))
∫ 1

0

∫ ∞

−∞
( f̃ ∗(y|x)− f (y|x))2 dy dx

= π−1n−1d(p)

[
K∑

k=1

Lkµk +
∑

k>K

Lk�k

]

+ δ∗n , (47)
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where for any array {νk ∈ (0, 1); k = 1, 2, . . .}

|δ∗n | ≤ d(p)n−1
K∑

k=1

Lkµk

[
νk + Cν−1

k µk

(
L−1

k + n−1/4
)]
. (48)

Further, if additionally
∑K

k=1 Lkµk → ∞ as n → ∞ meaning that the density f (y)
is nonparametric in the sense of Efromovich (1985), then (45) yields

δn ≤ o(1)E( f (y|x),p(x))
∫ 1

0

∫ ∞

−∞

(
f̃ ∗(y|x)− f (y|x)

)2
dy dx + Cn−1. (49)

These results match known ones for the univariate density case, discussed in
Efromovich (1985, 1999, 2005), up to the factor d(p) = ∫ 1

0 p−1(x) dx in the MISE
convergence. This allows us to conclude that the bivariate c.d. estimator asymptotically
attains the sharp minimax convergence within the factor-penalty d(p). At the same
time, if the design is uniform then d(p) = 1 and the estimator is sharp minimax not
only over the bivariate c.d. classes but also over univariate density classes whenever
the classical null hypothesis “the response is independent of the predictor” holds.

Let us combine all these results into a proposition.

Corollary 3 Let Assumption 2 and (46) hold. Then:

(a) The data-driven estimator (43) is simultaneously sharp minimax over anisotropic
bivariate Sobolev, analytic-Sobolev and analytic c.d. classes defined in (23)–(25),
respectively.

(b) Suppose that f (y|x) ≡ f (y) (the response is independent of the predictor).
Then the bivariate data-driven c.d. estimator (43) is rate minimax over univariate
Sobolev and analytic density classes introduced in Efromovich (2005). Moreover,
the MISE of the estimator is within the factor d(p) of the sharp minimax MISE.
In particular, if the design density is uniform, that is p(x) = I (0 ≤ x ≤ 1), then
d(p) = 1 and the bivariate data-driven estimator (43) is sharp minimax over
those univariate density classes.

Using these results we can conclude that the suggested estimator matches perfor-
mance of the oracle in all wished categories: its MISE is close to the oracle’s MISE, it
is sharp minimax over anisotropic bivariate c.d. classes, and its MISE is within factor
d(p) of the sharp univariate minimax MISE whenever the response is independent of
the predictor (in other words, the estimator performs the wished dimension reduction).

At the same time, it is fair to say that on first glance the estimator (43) looks
formidable. Thus, it is absolutely natural to raise the following question. Can the
suggested asymptotic estimator, as well as its underlying Fourier-approximation idea,
be feasible for small sample sizes? Let us check this using an actuarial example which
explores a relationship between credit score and premium for basic auto-insurance
paid by 54 undergraduate college students taking an introductory statistical course.
The nice feature of this example is that a visualization of the data, as well as its
well-understood nature, will allow the reader to be the judge of the estimator (43). Of
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Fig. 1 Study of relationship between credit score and premium paid for basic auto-insurance. The left
diagram shows the scattergram for 54 observations; data is linearly rescaled onto [0, 1]2. The middle
diagram shows the bivariate conditional density estimate (43). The right diagram shows two univariate
“slices” of the estimate for the lowest and largest credit scores shown by letters “P” and “E”, respectively

course, the sample size n = 54 is considered small even for univariate nonparametric
estimates according to Efromovich (1999). Thus the reader should take into account
two issues: the challenging nature of a small data-set for nonparametric estimation
and the fact that (43) is purely asymptotic in its nature with the parameters chosen to
simplify proofs rather than to be good for small sample sizes.

The data, collected by the author for his work on a project sponsored by the Grant
TAF/CAS-07, is linearly rescaled onto [0, 1]2 and shown in the left diagram in Fig. 1.
The middle diagram shows the bivariate estimate (43) with bk := b′

k and tk := tk,1.
Let us note that in this example K = T = 3 and b1 = 0, b2 = 3, b3 = 6, and b4 = 11.
Finally, the right diagram shows the univariate conditional densities (“slices” of the
surface) for the minimal credit score (which is “poor” according to the industry stan-
dard and thus denoted by letter “P”) and the largest credit score (which is “excellent”
according to the industry standard and thus denoted by letter “E”). In the univariate
“slices” the projection of Efromovich (1999) on the class of densities was used. The bi-
variate conditional density is probably oversmoothed by the large blocks. Nonetheless
the estimate does show the main underlying characteristics of the data. First of all, we
clearly see that the excellent credit score implies the smaller mean payment (which
should be the case because some insurers use credit score to calculate premiums).
Second, the estimate indicates that the poor credit score implies a larger variability
in the paid premiums. This is explained by the fact that an insurer may or may not
take credit score into account, and on the top of this the penalty for a poor credit
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scoring varies dramatically from one insurer to another. Finally, the estimate correctly
shows that premiums can be smaller and larger than the ones paid by the 54 surveyed
students. This is an extra and “free” benefit of the Fourier approach which does not
require the statistician to choose an underlying support of the estimator (43).

Let us stress that the main purpose of this example is to explain that (43) is a feasible
data-driven estimator. A special paper (or a book similar to Efromovich 1999) will be
devoted to creating a good modification of (43) for the practically important case of
small sample sizes.

4 Proofs

Proof of Theorem 1 For the both considered designs we can write

∫ 1

0

∫ ∞

−∞
( f̃ ∗(y|x)− f (y|x))2 dy dx =

∫ ∞

−∞
( f̃ ∗(y)− f (y))2 dy

+
∫ 1

0

∫ ∞

−∞
(ψ̃∗(y, x)−ψ(y, x))2 dy dx . (50)

Using the Plancherel identity we get for the first integral in the right side of (50),

∫ ∞

−∞
( f̃ ∗(y)− f (y))2 dy = π−1

∫ ∞

0
|h̃0(u)− h0(u)|2 du

= π−1
K∑

k=1

∫

Bk

|µk ĥ0(u)− h0(u)|2 du

+ π−1
∫ ∞

bK+1

|h0(u)|2 du. (51)

Similarly, the second integral in the right side of (50) can be written as

∫ 1

0

[∫ ∞

−∞
(ψ̃∗(y, x)− ψ(y, x))2 dy

]

dx

= π−1
T∑

k,τ=1

∞∑

r=1

∫ ∞

0
I ((u, r) ∈ Bkτ )|µkτ ĥr (u)− hr (u)|2 du

+ π−1
∞∑

k,τ=1

I ((k, τ ) �∈ {1, . . . , T }2)

∞∑

r=1

∫ ∞

0
I ((u, r) ∈ Bkτ )|hr (u)|2 du. (52)

To evaluate integrals involving the statistic ĥr (u)we need a technical result describing
its properties. It is convenient to rewrite ĥr (u) as a sum of two parts where the former
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one does not involve the estimate p̂(x) of the design density:

ĥr (u) = n−1
n∑

l=1

eiuYlϕr (Xl) p̂
−1(Xl)

= n−1
n∑

l=1

eiuYlϕr (Xl)p
−1(Xl)+ n−1

n∑

l=1

eiuYlϕr (Xl)( p̂
−1(Xl)− p−1(Xl))

=: ȟr (u)+ δrn(u). (53)

From now on we need to consider random and fixed designs in turn. Let us begin
with the random design.

Lemma 3 Let Assumptions 1 and 2 hold, and consider a random design regression.
Then ȟr (u) and δrn(u), defined in (53), satisfy

E{ȟr (u)} = hr (u), (54)

E |ȟr (u)− hr (u)|2 = n−1[d − |hr (u)|2 + 2−1/2π ′
2r I (r > 0)], (55)

where d : = ∫ 1
0 p−1(x) dx and π ′

r : = ∫ 1
0 ϕr (x)p−1(x) dx, and for r < (1−ν1)n1/3,

ν1 ∈ (0, 1)

E |δrn(u)|2 ≤ Cn−4/3
[

ln6(n)+
∫ 1

0
|∂h(u|x)/∂x |2 dx

]

+Cn−1
∫ 1

0
|h(u|x)|2 dx . (56)

Proof of Lemma 3 Write

E{ȟr (u)} = E{eiuYϕr (X)p
−1(X)} =

∫ 1

0

[

ϕr (x)
∫ ∞

−∞
f (y|x)eiuy dy

]

dx

=
∫ 1

0
h(u|x)ϕr (x) dx = hr (u).

This verifies (54). Using an elementary trigonometric formula ϕ2
r (x) = 1 + 2−1/2

ϕ2r (x)I (r > 0), we get

E |ȟr (u)− hr (u)|2 = E

{

|n−1
n∑

l=1

eiuYlϕr (Xl)p
−1(Xl)− hr (u)|2

}

= n−1 E |eiuYlϕr (Xl)p
−1(Xl)− hr (u)|2

= n−1
[∫ 1

0
ϕ2

r (x)p
−1(x) dx − |hr (u)|2

]

= n−1
[
d − |hr (u)|2 + 2−1/2π ′

2r I (r > 0)
]
.
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This verifies (55). To check (56) we write,

δrn(u) = n−1
n∑

l=1

eiuYlϕr (Xl)(p(Xl)− p̂(Xl)) p̂
−1(Xl)p

−1(Xl)

= n−1
n∑

l=1

eiuYlϕr (Xl)(p(Xl)− p̃(Xl))p
−2(Xl)

+ n−1
n∑

l=1

eiuYlϕr (Xl)( p̃(Xl)− p̂(Xl))p
−2(Xl)

+ n−1
n∑

l=1

eiuYlϕr (Xl)( p̂(Xl)− p(Xl))
2 p̂−1(Xl)p

−2(Xl)

=: A1(u)+ A2(u)+ A3(u). (57)

Plainly

E |A1(u)|2 = n−2 E

⎧
⎨

⎩

n∑

l,m=1

eiu(Yl−Ym )ϕr (Xl)ϕr (Xm)( p̃(Xl)

− p(Xl))( p̃(Xm)− p(Xm))p
−2(Xl)p

−2(Xm)
}

= n−1 E
{
( p̃(Xn)− p(Xn))

2 p−4(Xn)ϕ
2
r (Xn)

}

+ n−2n(n − 1)E
{
h(u|X1)h̄(u|X2)ϕr (X1)ϕr (X2)

× ( p̃(X1)− p(X1))( p̃(X2)− p(X2))p
−2(X1)p

−2(X2)
}

=: A11(u)+ A12(u).

To evaluate A11(u) we first recall a familiar inequality which holds for any natural
k (see, for instance, Efromovich 2005)

max
x∈[0,1] max

(
E |p(x)− p̃(x)|2k, E |p(x)− p̂(x)|2k

)

≤ Ck ln2k+1(n)n−2k/3, Ck < ∞. (58)

Second, let p̃n(x) be another notation, apart of p̃(x), for the density estimator (14)
which stresses the fact that the estimator is based on n observations (X1, . . . , Xn).
Then we can write

p̃n(x) = n−1
n1/3
∑

j=1

ϕ j (Xn)ϕ j (x)+
⎡

⎣1 + n−1
n1/3
∑

j=1

n−1∑

l=1

ϕ j (Xl)ϕ j (x)

⎤

⎦

= n−1
n1/3
∑

j=1

[ϕ j (Xn)− (n − 1)−1
n−1∑

l=1

ϕ j (Xl)]ϕ j (x)+ p̃n−1(x).
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This immediately yields that

| p̃n(x)− p̃n−1(x)| < 4n−2/3.

Combining these two results we conclude that A11(u) ≤ Cn−1n−1/2. To evaluate
A12(u) we need some preliminary calculations. Write

p̃(x) = 1 + n−1
n1/3
∑

j=1

[ϕ j (X1)+ ϕ j (X2)]ϕ j (x)+
n1/3
∑

j=1

π̌ jϕ j (x)

where π̌ j := n−1 ∑n
l=3 ϕ j (Xl). Note that the π̌ j ’s do not depend on (X1, X2), and

we can write,

A12(u) = n−1(n − 1)E
{

h(u|X1)h̄(u|X2)p
−2(X1)p

−2(X2)ϕr (X1)ϕr (X2)

×
2∏

l=1

⎡

⎣n−1
n1/3
∑

j=1

(ϕ j (X1)+ ϕ j (X2))ϕ j (Xl)

+
n1/3
∑

j=1

(π̌ j − π j )ϕ j (Xl)−
∑

j>n1/3

π jϕ j (Xl)

⎤

⎦

⎫
⎬

⎭
.

Plainly |n−1 ∑n1/3

j=1(ϕ j (X1) + ϕ j (X2))ϕ j (Xl)| ≤ 4n−2/3, and also ϕr (x)ϕ j (x) =
2−1/2[ϕr− j (x)+ ϕr+ j (x)] for j, r ≥ 1. Denote κr (u) := ∫ 1

0 h(u|x)p−1(x)ϕr (x) dx ,
and let us make several preliminary remarks. First, E{π̌ j } = (n − 2)n−1 E{ϕ j (X)} =
π j − 2n−1π j . Second, for any natural j and t

E(π̌ j−π j )(π̌t−πt ) = E(π̌ j−(n − 2)n−1π j−2n−1π j )(π̌t−(n − 2)n−1πt−2n−1πt )

= E(π̌ j − (n − 2)n−1π j )(π̌t − (n − 2)n−1πt )+ 4n−2π jπt .

Third,

E(π̌ j − (n − 2)n−1π j )(π̌t − (n − 2)n−1πt )

= n−2 E
n∑

l,m=3

(ϕ j (Xl)− π j )(ϕt (Xm)− πt )

= n−2(n − 2)E(ϕ j (X)− π j )(ϕt (X)− πt )

= n−2(n − 2)[2−1/2(π j−t + π j+t )− π jπt ].

Fourth, we note that
∫ 1

0 h(u|x)p−1(x)ϕ j (x)ϕr (x) dx = 2−1/2[κ j−r (u) + κ j+r (u)].
Our fifth remark is that for the considered r < (1 − ν1)n1/3 and under Assumption 2
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we can write

⎡

⎣
∑

j>n1/3

π j (κ j−r (u)+ κ j+r (u))

⎤

⎦

2

≤ 2
∑

j>n1/3

π2
j

∑

j>n1/3

[
κ2

j−r (u)+ κ2
j+r (u)

]

≤ Cn−4/3
∫ 1

0

[
p(1)(x)

]2
dx

×
∫ 1

0
|∂(h(u|x)p−1(x))/∂x |2 dx

≤ Cn−4/3
∫ 1

0
(|∂h(u|x)/∂x |2 + |h(u|x)|2) dx .

Also, using the first, second and third remarks we get

∣
∣
∣
∣
∣
∣
E

n1/3
∑

j,t=1

(π̌ j − π j )(π̌t − πt )2
−1(κ j−r (u)+ κ j+r (u))(κt−r (u)+ κt+r (u))

∣
∣
∣
∣
∣
∣

≤ C

∣
∣
∣
∣
∣
∣

n1/3
∑

j,t=1

{
n−1

[
2−1/2(π j−t + π j+t )− π jπt

]
+ 4n−2π jπt

}
(κ j−r (u)

+ κ j+r (u))(κt−r (u)+ κt+r (u))

∣
∣
∣
∣
∣
∣

≤ Cn−1
∞∑

j=0

κ2
j (u) ≤ Cn−1

∫ 1

0
|h(u|x)|2 dx .

In the last two inequalities we used the Cauchy inequality, the Parseval identity and∑∞
j=0 |π j | ≤ C . We conclude that

A12(u) ≤ Cn−4/3
[

1 +
∫ 1

0
|∂h(u|x)/∂x |2 dx

]

+ Cn−1
∫ 1

0
|h(u|x)|2 dx .

Combining the obtained results verifies (56) with δrn being replaced by A1(u) [that
is, by its first component on the right side of (57)]. Evaluation of A2(u) is based on a
direct application of (58) and a remark that 0 ≤ p̂(x)− p̃(x) ≤ 1/ ln ln(n+3) and that
for all sufficiently large n the event p̂(x) �= p̃(x) implies | p̃(x)− p(x)| > c for some
positive constant c. This together with the Chebyshev inequality yields (4.7) with δrn

being replaced by A2(u). Finally, using (58) together with p̂(x) ≥ 1/ ln ln(n + 3) and
p(x) > C > 0 implies E |A3(u)|2 ≤ C ln6(n)n−4/3. Lemma 3 is proved.

Now we have a tool to evaluate integrals in (51) and (52). To make the evaluation
shorter, from now on we may skip subscripts whenever no confusion occurs. Consider
an interval D ⊂ [0,∞) and a nonnegative integer r . Using Lemma 3 we can write for
ȟr (u) used in place of ĥr (u),
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E
∫

D
|µȟr (u)− hr (u)|2 du = E

∫

D
µ2|ȟr (u)−hr (u)|2 du + (µ−1)2

∫

D
|hr (u)|2 du

= µ2n−1
∫

D

[
d − |hr (u)|2 + 21/2π ′

2r I (r > 0)
]

du

+(µ− 1)2
∫

D
|hr (u)|2 du.

This allows us to write,

E
∞∑

r=0

∫ ∞

0
I ((u, r) ∈ B)|µȟr (u)− hr (u)|2 du

=
[

µ2n−1Ld + (dn−1)2L�

(�+ dn−1)2

]

+µ2n−1
∞∑

r=0

∫ ∞

0
I ((u, r) ∈ B)

[
−|hr (u)|2 + 21/2π ′

2r I (r > 0)
]

du

= Lµn−1d + µn−1

[

−µ
∞∑

r=0

∫ ∞

0
I ((u, r) ∈ B)|hr (u)|2 du

+µ
∞∑

r=0

∫ ∞

0
I ((u, r) ∈ B)21/2π ′

2r I (r > 0) du

]

.

Also, Assumption 1 together with (56) yields

µ2
∞∑

r=0

∫ ∞

0
I ((u, r) ∈ B)E |δrn(u)|2 du

≤ CµLn−1

[

µn−1/3 ln6(n)+µ
∞∑

r=0

∫ ∞

0
I ((u, r) ∈ B)

∫ 1

0
|h(u|x)|2 dx duL−1

]

.

Combining obtained results we conclude that

E

{ ∞∑

r=0

∫ ∞

0
I ((u, r) ∈ B)|µĥr (u)− hr (u)|2 du

}

= Lµdn−1 + δ∗n(B), (59)

and

|δ∗n(B)| ≤ Lµdn−1[ν + Cν−1µ(n−1/3 ln6(n)+ 1/L∗)]. (60)

Here L∗ denotes either L∗
kτ or Lk for the double-index or single-index blocks, respec-

tively.
Then (51), (52), (59) and (60), together with a simple calculation, prove Theorem 1

for the case of random design. Now let us consider the case of fixed design. The
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main difference here is in the analysis of ĥr . The next lemma, which is an analog of
Lemma 3, presents necessary technical results for the fixed–design case.

Lemma 4 Let Assumptions 1 and 2 hold and consider a fixed design regression. Then
ȟr (u) and δrn(u), r = 0, 1, . . . , �n1/4 ln ln(n)� defined in (53), satisfy

E{ȟr (u)} = hr (u)+ γr (u) (61)

where

|γr (u)| ≤ Cn−1
[

1 + r
∫ 1

0
|h(u|x)| dx +

∫ 1

0
|∂h(u|x)/∂x | dx

]

, (62)

E |ȟr (u)− hr (u)|2 =n−1[d−|hr (u)|2 + 21/2π ′
2r I (r > 0)] + n−2γ1r (u), (63)

where d := ∫ 1
0 p−1(x) dx, π ′

r := ∫ 1
0 ϕr (x)p−1(x) dx,

|γ1r (u)| ≤ C

(

1 + r +
∫ 1

0
|∂h(u|x)/∂x | dx

)

, (64)

and

E |δrn(u)|2 ≤ Cn−1
[∫ 1

0
|h(u|x)|2 dx + n−1/3

(

1 +
∫ 1

0
|∂h(u|x)/∂x |2 dx

)]

.(65)

Proof of Lemma 4 Without any loss of generality it is possible to assume that X1 <

X2 < · · · < Xn < Xn+1 := 1. Recall that
∫ Xl+1

Xl
p(x) dx = (n + 1)−1 and write,

E{ȟr (u)} = n−1
n∑

l=1

h(u|Xl)ϕr (Xl)p
−1(Xl)

= n−1(n + 1)
n∑

l=1

h(u|Xl)ϕr (Xl)p
−1(Xl)

∫ Xl+1

Xl

p(x) dx

= n−1(n + 1)
n∑

l=1

∫ Xl+1

Xl

h(u|x)ϕr (x) dx + n−1(n + 1)

×
n∑

l=1

∫ Xl+1

Xl

[
h(u|Xl)ϕr (Xl)p

−1(Xl)− h(u|x)ϕr (x)p
−1(x)

]
p(x) dx

=:
∫ 1

0
h(u|x)ϕr (x) dx + γr (u) = hr (u)+ γr (u).
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Using |h(u|x)ϕr (x)p−1(x)| ≤ C together with the fact that for a differentiable ψ(x)

∣
∣
∣
∣

∫ Xl+1

Xl

[ψ(Xl)− ψ(x)]p(x) dx

∣
∣
∣
∣ =

∣
∣
∣
∣

∫ Xl+1

Xl

[∫ x

Xl

ψ(1)(z) dz

]

p(x) dx

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ Xl+1

Xl

ψ(1)(z)

[∫ Xl+1

z
p(x) dx

]

dz

∣
∣
∣
∣

≤ n−1
∫ Xl+1

Xl

|ψ(1)(x)| dx, (66)

we verify (61) and (62). Now let us recall that h̄ denotes the conjugate of h, and
ϕ2

r (x) = 1 + 21/2ϕ2r (x)I (r > 0). Write,

E |ȟr (u)− hr (u)|2 = E

⎧
⎨

⎩

∣
∣
∣
∣
∣
n−1

n∑

l=1

[eiuYlϕr (Xl)p
−1(Xl)− hr (u)]

∣
∣
∣
∣
∣

2
⎫
⎬

⎭

= n−2
n∑

l=1

E |eiuYlϕr (Xl)p
−1(Xl)− hr (u)|2

+ n−2
n∑

l,m=1

I (l �= m)[h(u|Xl)ϕr (Xl)p
−1(Xl)

−hr (u)][h̄(u|Xm)ϕr (Xm)p
−1(Xm)− h̄r (u)]

= n−2
n∑

l=1

[ϕ2
r (Xl)p

−2(Xl)− 2Re{h(u|Xl)

× ϕr (Xl)h̄r (u)p
−1(Xl)} + |hr (u)|2]

= n−2
n∑

l=1

|h(u|Xl)ϕr (Xl)p
−1(Xl)− hr (u)|2

+n−2

∣
∣
∣
∣
∣

n∑

l=1

[
h(u|Xl)ϕr (Xl)p

−1(Xl)− hr (u)
]
∣
∣
∣
∣
∣

2

= n−2(n + 1)
n∑

l=1

[ϕ2
r (Xl)p

−2(Xl)− 2Re{h(u|Xl)h̄r (u)}

× ϕr (Xl)p
−1(Xl)]

∫ Xl+1

Xl

p(x) dx+n−1|hr (u)|2−n−2(n+1)

×
n∑

l=1

|h(u|Xl)ϕr (Xl)p
−1(Xl)−hr (u)|2

∫ Xl+1

Xl

p(x)dx+n−2(n+1)

×
∣
∣
∣
∣
∣

n∑

l=1

[h(u|Xl)ϕr (Xl)p
−1(Xl)−hr (u)]

∫ Xl+1

Xl

p(x) dx

∣
∣
∣
∣
∣

2
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=: n−1
[∫ 1

0
(1 + 21/2ϕ2r (x)I (r > 0))p−1(x) dx

− 2
∫ 1

0
Re{h(u|x)h̄r (u)}ϕr (x) dx

]

+ n−1|hr (u)|2

− n−1[
∫ 1

0
[|h(u|x)|2ϕ2

r (x)p
−1(x) dx−|hr (u)|2] dx+n−2γ1r (u)

= n−1[d − |hr (u)|2 + 21/2π ′
2r I (r > 0)] + n−2γ1r (u),

where γ1r (u) satisfies (64). Now let us check (65). Using (57), δrn(u) can be evaluated
via estimation of 3 terms A1(u), A2(u) and A3(u) in turn with the following simplifi-
cation. For the considered fixed design case the estimate p̃(x) is no longer a random
function, and it will be verified shortly that

max
x∈[0,1] | p̃(x)− p(x)| ≤ Cn−1/3. (67)

The last inequality immediately implies that p̂(x) ≡ p̃(x), x ∈ [0, 1] for all sufficiently

large n. To verify (67) we recall that p̃(x) := 1 +∑n1/3

j=1 π̃ jϕ j (x),

π̃ j := n−1
n∑

l=1

ϕ j (Xl) = n−1(n + 1)
n∑

l=1

ϕ j (Xl)

∫ Xl+1

Xl

p(x) dx =: π j + γ j (68)

where π j := ∫ 1
0 ϕ j (x)p(x) dx and

|γ j | ≤ Cn−1(1 + j) ≤ Cn−1n1/3. (69)

Then using |∑ j>n1/3 π j | ≤ Cn−1/3 verifies (67). Now we can evaluate A1(u). Write,

E |A1(u)|2 = n−2 E

⎧
⎨

⎩

n∑

l,m=1

eiu(Yl−Ym )ϕr (Xl)ϕr (Xm)( p̃(Xl)− p(Xl))( p̃(Xm)

− p(Xm))p
−2(Xl)p

−2(Xm)

⎫
⎬

⎭

= n−2
n∑

l=1

( p̃(Xl)− p(Xl))
2 p−4(Xl)ϕ

2
r (Xl)+ n−2

×
n∑

l,m=1

I (l �= m)h(u|Xl)h̄(u|Xm)ϕr (Xl)ϕr (Xm)( p̃(Xl)

− p(Xl))( p̃(Xm)− p(Xm))p
−2(Xl)p

−2(Xm)}
=: A11(u)+ A12(u).
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The term A11(u) is at most Cn−5/3, and also
∣
∣
∣
∣
∣
∣
A12(u)− n−2

∣
∣
∣
∣
∣

n∑

l=1

h(u|Xl)ϕr (Xl)( p̃(Xl)− p(Xl))p
−1(Xl)

∣
∣
∣
∣
∣

2
∣
∣
∣
∣
∣
∣
≤ Cn−5/3.

Using (66) and a straightforward calculation we get

n−2|
n∑

l=1

h(u|Xl)ϕr (Xl)( p̃(Xl)− p(Xl))p
−1(Xl)|2

≤ 2

∣
∣
∣
∣

∫ 1

0
h(u|x)ϕr (x)( p̃(x)−p(x))p−1(x) dx

∣
∣
∣
∣

2

+ Cn−2
[

1 +
∫ 1

0
|∂h(u|x)/∂x | dx

]2

.

The first integral is evaluated using (67) and (68), namely we can write

∣
∣
∣
∣

∫ 1

0
h(u|x)ϕr (x)( p̃(x)− p(x))p−1(x) dx

∣
∣
∣
∣

2

=
∣
∣
∣
∣
∣
∣
2−1/2

∫ 1

0
h(u|x)

⎡

⎣
n1/2
∑

j=1

(π̃ j − π j )(ϕ j−r (x)+ ϕ j+r (x))

+
∑

j>n1/3

π j (ϕ j−r (x)+ ϕ j+r (x))

⎤

⎦ p−1(x) dx

∣
∣
∣
∣
∣
∣

2

= 2

∣
∣
∣
∣
∣
∣

n1/3
∑

j=1

(π̃ j − π j )(κ j−r (u)+ κ j+r (u))+
∑

j>n1/3

π j (κ j−r (u)+ κ j+r (u))

∣
∣
∣
∣
∣
∣

2

≤ Cn−1
n1/3
∑

j=1

|κ j−r (u)+ κ j+r (u)|2 +
∑

j>n1/3

π2
j

∑

j>n1/3

|κ j−r (u)+ κ j+r (u)|2

≤ C

[

n−1
∫ 1

0
|h(u|x)|2 dx + n−4/3

∫ 1

0
|∂h(u|x)/∂x |2 dx

]

,

where we used notation κ j (u) := ∫ 1
0 h(u|x)p−1(x)ϕ j (x) dx . We conclude that

A12(u) ≤ Cn−4/3
[

n−1/3 +
∫ 1

0
|∂h(u|x)/∂x |2 dx

]

,

and then we note that the same upper bound holds for E |A1(u)|2. The term A2(u) ≡ 0
for all sufficiently large n. Using (67) we establish that |A3(u)|2 ≤ Cn−4/3, and this
finishes the proof of Lemma 4.
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The rest of the proof of Theorem 1 for the fixed design case is identical to the
above-presented proof for the random design case. Theorem 1 is proved.

Proof of Lemma 1 Set π ′
2r := ∫ 1

0 p−1(x)ϕ2r (x) dx and note that, due to Assump-
tion 2,

∑∞
r=1 r2(π ′

2r )
2 < C . Using this and Cauchy–Schwarz inequality we get

∞∑

r=1

∫ ∞

0
I ((u, r) ∈ Bkτ )

∣
∣
∣
∣

∫ 1

0
p−1(x)ϕ2r (x) dx

∣
∣
∣
∣ du

≤ C(b′
k+1−b′

k)

⎡

⎣
b′
τ+1∑

r=b′
τ+1

r−2

⎤

⎦

1/2

≤ C(b′
k+1−b′

k)min((b′
τ+1−b′

τ )
1/2(b′

τ+1)−1, 1).

Similarly, using Assumption 1, we write,

∞∑

r=1

∫ ∞

0
I ((u, r) ∈ Bkτ )

∫ 1

0

∣
∣
∣
∣

∫ ∞

−∞
eiuy f (y|x) dy

∣
∣
∣
∣

2

dx du

=
∞∑

r=1

∫ ∞

0
I ((u, r) ∈ Bkτ )

∞∑

s=0

π−1|hs(u)|2 du ≤ C(b′
τ+1 − b′

τ )(b
′
k + 1)−2.

These inequalities, together with an elementary calculation, prove Lemma 1.

Proof of Lemma 2 The assertion is established by a direct calculation similarly to
Efromovich (1985, 2005); it is straightforward and thus skipped here.

Proof of Theorem 2 We begin with the random design case. Write,

∫ 1

0

∫ ∞

−∞
( f̃ (y|x)− f (y|x))2 dy dx

=
∫ ∞

−∞
( f̃ (y)− f (y))2 dy +

∫ 1

0

∫ ∞

−∞
(ψ̃(y, x)− ψ(y, x))2 dy dx . (70)

Using the Plancherel identity we get

∫ ∞

−∞
( f̃ (y)− f (y))2 dy = π−1

∫ ∞

0
|h̃0(u)− h0(u)|2 du

= π−1
K∑

k=1

∫

Bk

|µ̃k ĥ0(u)− h0(u)|2 du

+ π−1
∫ ∞

bK+1

|h0(u)|2 du, (71)
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and
∫ 1

0

[∫ ∞

−∞
(ψ̃(y, x)− ψ(y, x))2 dy

]

dx

=
∞∑

r=1

π−1
∫ ∞

0
|h̃r (u)− hr (u)|2 du

= π−1
T∑

k,τ=1

∞∑

r=1

∫ ∞

0
I ((u, r) ∈ Bkτ )|µ̃kτ ĥr (u)− hr (u)|2 du

+ π−1
∞∑

k,τ=1

I ((k, τ ) �∈ {1, . . . , T }2)

∞∑

r=1

∫ ∞

0
I ((u, r) ∈ Bkτ )|hr (u)|2 du. (72)

From now on we may skip subscripts whenever no confusion occurs. Consider a
particular ν ∈ (0, 1), an interval D ⊂ [0,∞), and a nonnegative integer r . Using the
inequality

∫

D
|µ̃ĥr (u)− hr (u)|2 du ≤ (1 + ν)

∫

D
|µĥr (u)− hr (u)|2 du

+ (1 + ν−1)

∫

D
|(µ̃− µ)ĥr (u)|2 du, (73)

we can evaluate integrals in (71) and (72). The first integral in the right side of (73)
was estimated in (59). For the second integral we can write,

∞∑

r=1

∫ ∞

0
I ((u, r) ∈ B)|(µ̃− µ)ĥr (u)|2 du

= (µ̃− µ)2L(�̃+ d̃n−1)[I (�̃ > t d̃n−1)+ I (�̃ ≤ t d̃n−1)] =: ρ1 + ρ2. (74)

The terms ρ1 and ρ2 will be evaluated in turn. For ρ1 we can write,

ρ1 =
[

�̃

�̃+ d̃n−1
− �

�+ dn−1

]2

L(�̃+ d̃n−1)I (�̃ > t d̃n−1)

= n−2(d�̃− d̃�)2L I (�̃ > t d̃n−1)

(�̃+ d̃n−1)(�+ dn−1)2
.

Note that d�̃− d̃� = d(�̃−�)+ (d − d̃)�, and then

ρ1 ≤ 2n−2d2(�̃−�)2L I (�̃ > t d̃n−1)

(�̃+ d̃n−1)(�+ dn−1)2

+2n−2�2(d − d̃)2L I (�̃ > t d̃n−1)

(�̃+ d̃n−1)(�+ dn−1)2
=: ρ11 + ρ12. (75)

We need a technical result.
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Lemma 5 Let Assumptions 1 and 2 hold and L ≤ n1/2 ln ln(n). Then

E(d̃ − d)8 ≤ C ln10(n)n−8/3, (76)

E(�̃−�)6 ≤ C(L∗)−3n−3(�+ n−1)3. (77)

Proof of Lemma 5 The Hölder inequality implies that

|d̃ − d|8 =
∣
∣
∣
∣

∫ 1

0
( p̂−1(x)− p−1(x)) dx

∣
∣
∣
∣

8

=
∣
∣
∣
∣

∫ 1

0
(p(x)− p̂(x))[ p̂(x)p(x)]−1 dx

∣
∣
∣
∣

8

≤ C(ln ln(n))8
∫ 1

0

∣
∣p(x)− p̂(x)

∣
∣8 dx .

Then using (58) verifies (76). To check (77) we note that

�̃ = L−1
∞∑

r=1

∫ 1

0
I ((u, r) ∈ B)|ĥr (u)|2 du − d̃n−1

=
[

L−1
∫

B
|ĥr (u)|2 du − dn−1

]

+ (d − d̃)n−1.

Then (76) implies that the term (d̃ −d)n−1 is sufficiently small, and this together with
a direct calculation, similar to the proof of Lemma 3 in Efromovich (1985), verifies
(77). Lemma 5 is proved.

Now we can continue evaluation of terms ρ11 and ρ12 defined in (75). Write,

ρ11 = ρ11 I (|d̃ − d| > d/2)+ ρ11 I (|d̃ − d| ≤ d/2) =: ρ111 + ρ112.

Lemma 5 and the Cauchy–Schwarz inequality imply

E{ρ111} ≤ Cn−2(L∗)−1n−1(�+ dn−1)L ln5(n)n−4/3[n−1(�+ dn−1)2]−1

≤ Cn−2n−1/4(L/L∗).

Using line (5.10) from Efromovich (1985) together with Lemma 5 yields

(1 + t−1/2)E{ρ112} ≤ Cn−1[Lµ((L∗)−1t−3/2)+ (L∗)−2t−5].

Also, a plain calculation based on (76) implies E{ρ12} ≤ C Lµn−1n−2/3 ln2(n).
Combining the results and using L ≤ n1/2 ln ln(n) we get

(1 + t−1/2)E{ρ1} ≤ Cn−1[Lµ((L∗)−1t−3/2)+ (L∗)−2t−5]. (78)

Now we are considering ρ2 defined in (74). Write,

ρ2 = ρ2 I (|d̃ − d| > d/2)+ ρ2 I (|d̃ − d| ≤ d/2) =: ρ21 + ρ22.
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Lemma 2 together with plain d̃ ≤ ln ln(n) allows us to write

E{ρ21} = µ2 L E{(�̃+ d̃n−1)I (�̃ ≤ t d̃n−1)I (|d̃ − d| > d/2)} ≤ µLn−1(Cn−2).

Using line (5.11) from Efromovich (1985) together with Lemma 5 implies

(1 + t−1/2)E{ρ22} ≤ Cn−1Lµ[t1/2 + (L∗)−1/2t−3/2],

and thus for the considered blocks

(1 + t−1/2)E{ρ2} ≤ Cn−1µL[t1/2 + (L∗)−1/2t−3/2].

Combining the obtained results in (73), choosing a particular ν = t1/2, and then using
(70)–(72) proves Theorem 2 for the considered case of random design. The fixed-
design case is considered absolutely similarly with the help of Lemma 4. Theorem 2
is proved.
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