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Abstract A new computation method of frequentist p values and Bayesian posterior
probabilities based on the bootstrap probability is discussed for the multivariate normal
model with unknown expectation parameter vector. The null hypothesis is represented
as an arbitrary-shaped region of the parameter vector. We introduce new functional
forms for the scaling-law of bootstrap probability so that the multiscale bootstrap
method, which was designed for a one-sided test, can also compute confidence mea-
sures of a two-sided test, extending applicability to a wider class of hypotheses. Param-
eter estimation for the scaling-law is improved by the two-step multiscale bootstrap
and also by including higher order terms. Model selection is important not only as
a motivating application of our method, but also as an essential ingredient in the
method. A compromise between frequentist and Bayesian is attempted by showing
that the Bayesian posterior probability with a noninformative prior is interpreted as a
frequentist p value of “zero-sided” test.

Keywords Approximately unbiased tests · Bootstrap probability · Bias correction ·
Hypothesis testing · Model selection · Probability matching priors · Problem of
regions · Scaling-law

1 Introduction

Let Y = (Y1, . . . ,Ym+1) be a random vector of dimension m + 1 for some integer
m ≥ 1, and y = (y1, . . . , ym+1) ∈ R

m+1 be its observed value. Our argument is based
on the multivariate normal model with unknown mean vector µ = (µ1, . . . , µm+1) ∈
R

m+1 and covariance identity Im+1,

H. Shimodaira (B)
Department of Mathematical and Computing Sciences, Tokyo Institute of Technology,
2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
e-mail: shimo@is.titech.ac.jp

123



190 H. Shimodaira

Y ∼ Nm+1(µ, Im+1), (1)

where the probability with respect to (1) will be denoted as P(·|µ). Let H0 ⊂ R
m+1

be an arbitrary-shaped region. The subject of this paper is to compute measures of
confidence for testing the null hypothesis µ ∈ H0. Observing y, we compute a frequ-
entist p value, denoted p(H0|y), and also a Bayesian posterior probability π(H0|y)
with a noninformative prior density π(µ) of µ.

This is the problem of regions discussed in literature (Efron et al. 1996; Efron and
Tibshirani 1998; Shimodaira 2002, 2004, 2008). The confidence measures were cal-
culated by the bootstrap methods for complicated application problems such as the
variable selection of regression analysis and phylogenetic tree selection of molec-
ular evolution. These model selection problems are motivating applications for the
issues discussed in this paper, and the normal model of (1) is a simplification of
reality. Let X = {x1, . . . , xn} be a sample of size n in application problems. We
assume there exists a transformation, depending on n, from X to y so that Y is
approximately normalized. We assume only the existence of such a transformation,
and do not have to consider its details. Since we work only on the transformed
variable Y in this paper for developing the theory, readers may refer to the liter-
ature above for the examples of applications. Before the problem formulation is
given in Sect. 2, our methodology is illustrated in simple examples below in this
section.

The simplest example of H0 would be the half space of R
m+1,

H ′
0 : µm+1 ≤ 0, (2)

where the notation H ′
0, instead of H0, is used to distinguish this case from another

example given in (3). Only µm+1 is involved in this H ′
0, and one-dimensional normal

model Ym+1 ∼ N (µm+1, 1) is considered. Takingµm+1 > 0 as an alternative hypoth-
esis and denoting the cumulative distribution function of the standard normal as �(·)
with density φ(·), the unbiased frequentist p value is given as p(H ′

0|y) = �(−ym+1).
A slightly complex example of H0 is

H0 : −d ≤ µm+1 ≤ 0 (3)

for d > 0. The rejection regions are ym+1 > c and ym+1< − d − c with a critical
constant c, which is obtained as a solution of the equation

�(−c)+�(−d − c) = α (4)

for a specified significance level 0 < α < 1. The left hand side of (4) is the rejection
probability P(Ym+1 > c ∨ Ym+1 < −d − c|µ) when µ is on the boundary of H0, i.e.,
µm+1 = 0 or µm+1 = −d. The frequentist p value is defined as the infimum of α
such that H0 can be rejected. This becomes p(H0|y) = �(−ym+1)+�(−d − ym+1)

for ym+1 ≥ −d/2 and p(H0|y) = �(ym+1)+�(d + ym+1) for ym+1 ≤ −d/2. For
a numerical example

d = 1, ym+1 = −0.1, (5)

we obtain p(H ′
0|y) = 0.540 and p(H0|y) = 0.724.
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Confidence measures via multiscale bootstrap 191

These two simple cases of H0 and H ′
0 exhibit what Efron and Tibshirani (1998)

called paradox of frequentist p values. Our simple examples of (2) and (3) suffice for
this purpose, although they had actually used the spherical shell example explained
later in Sect. 4. Efron and Tibshirani (1998) indicated that a confidence measure should
be monotonically increasing in the order of set inclusion of the hypothesis. Noting
H0 ⊂ H ′

0, therefore, it should be p(H0|y) ≤ p(H ′
0|y), but it is not. This kind of “par-

adox” cannot occur with Bayesian methods, and π(H0|y) ≤ π(H ′
0|y) holds always.

Considering the flat prior π(µ) = const, say, the posterior distribution of µ given y
becomes

µ|y ∼ Nm+1(y, Im+1), (6)

and the posterior probabilities for the case (5) are π(H ′
0|y) = �(−ym+1) = 0.540 and

π(H0|y) = �(−ym+1) − �(−d − ym+1) = 0.356. The “paradox” of frequentist p
values may be nothing surprise for a frequentist statistician, but a natural consequence
of the fact that p(H ′

0|y) is for a one-sided test and p(H0|y) is for a two-sided test.
The power of testing is higher, i.e., p values are smaller, for an appropriately formu-
lated one-sided test than a two-sided test. In this paper, we do not intend to argue the
philosophical question of whether to be frequentist or to be Bayesian, but discuss only
computation of these two confidence measures.

Computation of the confidence measures is made by the bootstrap resampling of
Efron (1979). Let X ∗ = {x∗

1 , . . . , x∗
n′ } be a bootstrap sample of size n′ obtained by

resampling with replacement from X . The idea of bootstrap probability, which is intro-
duced first by Felsenstein (1985) to phylogenetic inference, is to generate X ∗ many
times, say B, and count the frequency C that a hypothesis of interest is supported by
the bootstrap samples. The bootstrap probability is computed as C/B. Recalling the
transformation to get y from X , we get Y ∗ by applying the same transformation to X ∗.
For typical problems, the variance of Y ∗ is approximately proportional to the factor

σ 2 = n

n′

as mentioned in Shimodaira (2008). Although we generate X ∗ in practice, we only
work on Y ∗ in this paper. More specifically, we formally consider the parametric
bootstrap

Y ∗|y ∼ Nm+1(y, σ
2 Im+1), (7)

which is analogous to (1) but the scale σ is introduced for multiscale bootstrap. The
bootstrap probability is defined as

ασ 2(H0|y) = Pσ 2(Y ∗ ∈ H0|y), (8)

where Pσ 2(·|y) denotes the probability with respect to (7). For computing a crude
confidence measure, we set σ = 1, or n′ = n in terms of X ∗, so that the distribution
(7) for Y ∗ is equivalent to the posterior (6) for µ. Thus the bootstrap probability is
interpreted as α1(H0|y) = π(H0|y) for any H0 under the flat prior. In the multiscale
bootstrap of Shimodaira (2002, 2004, 2008), however, we may intentionally alter the
scale from σ = 1, or to change n′ from n, for computing p(H0|y). Let σ1, . . . , σM be
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Fig. 1 Region H0 ⊂ R
m+1 is the shaded area between surfaces ∂H1 and ∂H2

M different values of scale, which we specify in advance. In our numerical examples,
M = 13 scales are equally spaced in log-scale between σ1 = 1/3 and σ13 = 3.
For each i = 1, . . . ,M , we generate X ∗ with scale σi for Bi times, and observe the
frequency Ci . The observed bootstrap probability is α̂σ 2

i
= Ci/Bi .

How can we use the observed α̂σ 2
1
, . . . , α̂σ 2

M
for computing p(H0|y)? Let us assume

that H0 can be expressed as (3) but we are unable to observe the values of ym+1 and d.
Nevertheless, by fitting the model ασ 2(H0|y) = �(−ym+1/σ)−�(−(d + ym+1)/σ )

to the observed α̂σ 2
1
, . . . , α̂σ 2

M
, we may compute an estimate ϕ̂ of the parameter vector

ϕ = (ym+1, d) with constraints d > 0 and ym+1 > −d/2. The confidence mea-
sures are then computed as p(H0|y) = �(−ŷm+1)+�(−d̂ − ŷm+1) and π(H0|y) =
�(−ŷm+1)−�(−d̂ − ŷm+1). In case we are not sure which of (2) and (3) is the reality,
we may also fit ασ 2(H ′

0|y) = �(−ym+1/σ) to the observed α̂σ 2
i

’s and compare the
AIC values (Akaike 1974) for model selection. In practice, we prepare collection of
such models describing the scaling-law of bootstrap probability, and choose the model
which minimizes the AIC value.

2 Formulation of the problem

The examples in Sect. 1 were very simple because the boundary surfaces of the regions
are flat. In the following sections, we work on generalizations of (2) and (3) by
allowing curved boundary surfaces. For convenience, we denote y = (u, v) with
u = (y1, . . . , ym) and v = ym+1. Similarly, we denote µ = (θ, µm+1) with θ =
(µ1, . . . , µm) ∈ R

m . As shown in Fig. 1, we consider the region of the form H0 =
{(θ, µm+1) | −d − h2(θ) ≤ µm+1 ≤ −h1(θ), θ ∈ R

m}, where h1(θ) and h2(θ) are
arbitrary functions of θ . This region will reduce to (3) if h1(θ) = h2(θ) = 0 for all θ .
The region may be abbreviated as

H0 : −d − h2(θ) ≤ µm+1 ≤ −h1(θ). (9)

Two other regions H1 : µm+1 ≥ −h1(θ) and H2 : µm+1 ≤ −d − h2(θ) as well as
two boundary surfaces ∂H1 : µm+1 = −h1(θ) and ∂H2 : µm+1 = −d − h2(θ) are
also shown in Fig. 1. We define H ′

0 = H0 ∪ H2, or equivalently as

H ′
0 : µm+1 ≤ −h1(θ). (10)
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Confidence measures via multiscale bootstrap 193

The boundary surfaces of the hypotheses are ∂H0 = ∂H1 ∪ ∂H2 for the region H0,
and ∂H ′

0 = ∂H1 for the region H ′
0.

We do not have to specify the functional forms of h1 and h2 for our theory, but
assume that the magnitude of h1 and h2 is very small. Technically speaking, h1 and h2
are nearly flat in the sense of Shimodaira (2008). Introducing an artificial parameter λ,
a function h is called nearly flat when supθ∈Rm |h(θ)| = O(λ) and L1-norms of h and
its Fourier transform are bounded. We develop asymptotic theory as λ → 0, which is
analogous to n → ∞ with the relation λ = 1/

√
n.

The whole parameter space is partitioned into two regions as H ′
0 ∪ H1 = R

m+1 or
three regions as H0 ∪ H1 ∪ H2 = R

m+1. These partitions are treated as disjoint in
this paper by ignoring measure-zero sets such as H ′

0 ∩ H1 = ∂H1. Bootstrap methods
for computing frequentist confidence measures in the case of two regions are well
developed in the literature as reviewed in Sect. 3. The main contribution of our paper
is then given in Sect. 4 for the case of three regions. In Sect. 5, this new computation
method is used also for Bayesian measures of Efron and Tibshirani (1998). Note that
the flat prior π(µ) = const in the previous section was in fact carefully chosen so that
π(H ′

0|y) = p(H ′
0|y) for (2). This same π(µ) led to π(H0|y) �= p(H0|y) for (3). Our

definition of H0 given in (9) is a simplest formulation, yet with a reasonable generality
for applications, to observe such an interesting difference between the frequentist and
Bayesian confidence measures.

Multiscale bootstrap computation of the confidence measures for the three regions
case is described in Sect. 6. Simulation study and some discussions are given in Sects. 7
and 8, respectively. Mathematical proofs are mostly given in Appendix.

3 Frequentist measures of confidence for testing two regions

In this section, we review the multiscale bootstrap of Shimodaira (2008) for com-
puting a frequentist p value of “one-sided” test of H ′

0. Let z = −�−1(α) be the
inverse function of α = �(−z). The bootstrap z value of H ′

0, defined as zσ 2(H ′
0|y) =

−�−1(ασ 2(H ′
0|y)), is convenient to work with. By multiplying σ to it, σ zσ 2(H ′

0|y)
is called the normalized bootstrap z value. Theorem 1 of Shimodaira (2008), as repro-
duced below, states that the z value of p(H ′

0|y) is obtained by extrapolating the nor-
malized bootstrap z value to σ 2 = −1, or equivalently n′ = −n in terms of X ∗.

Theorem 1 Let H ′
0 be a region of (10) with nearly flat h1. Given H ′

0 and y, con-
sider the normalized bootstrap z value as a function of σ 2; We denote it by ψ(σ 2) =
−σ�−1(ασ 2(H ′

0|y)). Let us define a frequentist p value as

p(H ′
0|y) = �(−ψ(−1)), (11)

and assume that the right hand side exists. Then for µ ∈ ∂H ′
0 and 0 < α < 1,

P(p(H ′
0|Y ) < α|µ) = α + O(λ3), (12)
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194 H. Shimodaira

meaning that the coverage error, i.e., the difference between the rejection probability
and α, vanishes asymptotically as λ → 0, and that the p value, or the associated
hypothesis testing, is “similar on the boundary” asymptotically.

Proof Here we show only an outline of the proof by allowing the coverage error of
O(λ2), instead of O(λ3), in (12). This is a brief summary of the argument given in
Shimodaira (2008). First define the expectation operator Eσ 2 for a nearly flat function
h as

(Eσ 2 h)(u) := Eσ 2(h(U∗)|u),

where Eσ 2(·) on the right hand side denotes the expectation with respect to (7), that
is, for Y ∗ = (U∗, V ∗) with

U∗|u ∼ Nm(u, σ
2 Im), V ∗|v ∼ N (v, σ 2).

Using the expectation operator, we next define two quantities

z1 = −v + Eσ 2 h1(u)

σ
, ε1 = −h1(U∗)− Eσ 2 h1(u)

σ
,

and work on the bootstrap probability as

ασ 2(H ′
0|y) = Pσ 2(V ∗ ≤ −h1(U

∗)|y)
= Eσ 2 (�(z1 + ε1)|u)
= Eσ 2 (�(z1)+ φ(z1)ε1|u)+ O(λ2)

= �(z1)+ O(λ2). (13)

The third equation is obtained by the Taylor series around z1, and the last equation
is obtained by Eσ 2(ε1|u) = 0. Rearranging (13), we then get the scaling-law of the
normalized bootstrap z value as

ψ(σ 2) = v + Eσ 2 h1(u)+ O(λ2). (14)

On the other hand, Eq. (5.10) of Shimodaira (2008) shows, by utilizing Fourier trans-
forms of surfaces, that (12) holds with coverage error O(λ2) for a p value defined
as

p(H ′
0|y) = �(−v − E−1h1(u))+ O(λ2). (15)

The proof completes by combining (14) and (15). ��
A hypothesis testing is to reject H ′

0 when observing p(H ′
0|y) < α for a specified

significance level, say, α = 0.05, and otherwise not to reject H ′
0. The left hand side of

(12) is the rejection probability, which should be ≤ α for µ ∈ H ′
0 and ≥ α for µ �∈ H ′

0
to claim the unbiasedness of the test. On the other hand, the test is called similar on the
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Confidence measures via multiscale bootstrap 195

boundary when the rejection probability is equal to α for µ ∈ ∂H ′
0. In this paper, we

implicitly assume that p(H ′
0|y) is decreasing as y moves away from H ′

0. The rejec-
tion probability increases continuously as µ moves away from H ′

0. This assumption
is justified when λ is sufficiently small so that the behavior of p(H ′

0|y) is not very
different from that for (2). Therefore, (12) implies that the p value is approximately
unbiased asymptotically as λ → 0.

We can think of a procedure for calculating p(H ′
0|y) based on (11). In the pro-

cedure, the functional form of ψ(σ 2) should be estimated from the observed α̂σ 2
i

’s
using parametric models. Then an approximately unbiased p value is computed by
extrapolating ψ(σ 2) to σ 2 = −1. Our procedure works fine for the particular H ′

0 of
(2), because ψ(σ 2) = ym+1 and p(H ′

0|y) = �(−ym+1) = �(−ψ(−1)). Our proce-
dure works fine also for any H ′

0 of (10) when the boundary surface ∂H ′
0 is smooth.

The model is given as ψ(σ 2) = β0 + β1σ
2 + β2σ

4 + β3σ
6 + · · · using parameters

ϕ = (β0, β1, . . .), and thus an approximately unbiased p value can be computed by
p(H ′

0|y) = �(−β̂0 + β̂1 − β̂2 + β̂3 − · · · ). It may be interesting to know that the
parameters are interpreted as geometric quantities; β0 is the distance from y to the
surface ∂H ′

0, β1 is the mean curvature of the surface, and β j , j ≥ 2, is related to 2 j th
derivatives of h1.

However, the series expansion above does not converge, i.e., ψ(−1) does not
exist, when ∂H ′

0 is nonsmooth. For example, ψ(σ 2) = β0 + β1
√
σ 2 serves as a

good approximating model for cone-shaped H ′
0, for which ψ(−1) does not take

a value of R. This observation agrees with the fact that an unbiased test does not
exist for cone-shaped H ′

0 as indicated in the argument of Lehmann (1952). Instead
of (11), the modified procedure of Shimodaira (2008) calculates a p value defined
as

pk(H
′
0|y) = �

⎧
⎨

⎩
−

k−1∑

j=0

(−1 − σ 2
0 )

j

j !
∂ jψ(σ 2)

∂(σ 2) j

∣
∣
∣
σ 2

0

⎫
⎬

⎭
(16)

for an integer k > 0 and a real number σ 2
0 > 0. This is to extrapolate ψ(σ 2)

back to σ 2 = −1 by using the first k terms of the Taylor series around σ 2
0 . The

coverage error in (12) should reduce as k increases, but then the rejection region
violates the desired property called monotonicity in the sense of Lehmann (1952)
and Perlman and Wu (1999, 2003). For taking the balance, we chose k = 3 and
σ 2

0 = 1 for numerical examples in this paper.

4 Frequentist measures of confidence for testing three regions

The following theorem is our main result for computing a frequentist p value of
“two-sided” test of H0. The proof is given in Appendix A.1.

Theorem 2 Let H0 be a region of (9) with nearly flat h1 and h2. Given H0 and y,
consider the approximately unbiased p value p(Hi |y) by applying Theorem 1 to Hi

for i = 1, 2. Assuming these two p values exist, let us define a frequentist p value
of H0 as
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(a) (b)

Fig. 2 a Spherical shell region. b Cone-shaped region (Sect. 7)

p(H0|y) = 1 − |p(H1|y)− p(H2|y)|. (17)

For example, (17) holds for the exact p value of (3) defined in Sect. 1. Then for
µ ∈ ∂H0 = ∂H1 ∪ ∂H2 and 0 < α < 1,

P(p(H0|Y ) < α|µ) = α + O(λ2), (18)

meaning that p(H0|y) is approximately unbiased asymptotically as λ → 0.

For illustrating the methodology, let us work on the spherical shell example of Efron
and Tibshirani (1998), for which we can still compute the exact p values to verify our
methods. The region of interest is H0 : a2 ≤ ‖µ‖ ≤ a1 as shown in Fig. 2a. We
consider the case, say,

m + 1 = 4, a1 = 6, a2 = 5, ‖y‖ = 5.9,

so that this region is analogous to (5) except for the curvature. The exact p value for H1 :
‖µ‖ ≥ a1 is easily calculated knowing that ‖Y‖2 is distributed as the chi-square distri-
bution with degrees of freedom m+1 and noncentrality ‖µ‖2. Writing this random var-
iable as χ2

m+1(‖µ‖2), the exact p value is p(H1|y) = P(χ2
m+1(a

2
1) ≤ ‖y‖2) = 0.362,

that is, the probability of observing ‖Y‖ ≤ ‖y‖ for ‖µ‖ = a1. On the other hand,
the exact p value for H2 : ‖µ‖ ≤ a2 is p(H2|y) = P(χ2

m+1(a
2
2) ≥ ‖y‖2) = 0.267.

In a similar way as for (3), the exact p value for H0 is computed numerically as
p(H0|y) = 0.907, although the procedure is a bit complicated as explained below. We
first consider the critical constants c1 and c2 for the rejection regions R1 = {y | ‖y‖ <
a1 − c1} and R2 = {y | ‖y‖ > a2 + c2}. By equating the rejection probability to α
for µ ∈ ∂H0, that is, P(χ2

m+1(a
2
i ) < (a1 − c1)

2)+ P(χ2
m+1(a

2
i ) > (a2 + c2)

2) = α

for i = 1, 2, we may get the solution numerically as c1 = 1.331 and c2 = 1.903 for
α = 0.05, say. The p value is defined as the infimum of α such that H0 can be rejected.

We first check if Theorem 2 is ever usable by computing (17) with the exact values
of p(H1|y) and p(H2|y). This gives p(H0|y) = 1 − (0.362 − 0.267) = 0.905, which
agrees extremely well to the exact p(H0|y) = 0.907. The spherical shell is approxi-
mated by (9) only locally in a neighborhood of y. Nevertheless, Theorem 2 worked
fine.
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Confidence measures via multiscale bootstrap 197

We next think of the situation that bootstrap probabilities of H1 and H2 are avail-
able but not their exact p values. We apply the procedure of Sect. 3 separately to
the two regions for calculating the approximately unbiased p values. A simple model
ψ(σ 2) = β0 + β1σ

2 with parameters ϕ = (β0, β1) is considered for

ασ 2(H ′
0|y) = �(−ψ(σ 2)/σ ). (19)

Let ψi (σ
2) be the normalized bootstrap z value of Hi for i = 1, 2. By assuming

the simple model for ψi (σ
2), we fit ασ 2(Hi |y) = �(−ψi (σ

2)/σ ) to the observed
multiscale bootstrap probabilities of Hi for estimating the parameters. The actual
estimation was done using the method described in Sect. 6.3, but we would like
to forget the details for the moment. We get β̂0 = 0.101, β̂1 = −0.258 for H1,
and similarly β̂0 = 0.889, β̂1 = 0.286 for H2. β0’s are interpreted as the dis-
tances from y to the boundary surfaces, and the estimates agree well to the exact
values β0 = 0.1 for H1 and β0 = 0.9 for H2. Using these estimated values, the
approximately unbiased p values are computed by (11) as p(H1|y) = �(−0.101 −
0.258) = 0.360 and p(H2|y) = �(−0.889 + 0.286) = 0.273, and thus (17) gives
p(H0|y) = 1 − (0.360 − 0.273) = 0.913, which again agrees well to the exact
p(H0|y) = 0.907.

We finally think of a more practical situation, where the bootstrap probabilities are
not available for H1 and H2, but only for H0. This situation is plausible in applications
where many regions are involved and we are not sure which of them can be treated as
H1 or H2 in a neighborhood of y (see Efron et al. 1996) for an illustration. We consider
a simple model ψ1(σ

2) = β0 + β1σ
2, ψ2(σ

2) = d − β0 − β1σ
2 with parameters

ϕ = (β0, β1, d) for

ασ 2(H0|y) = 1 − (�(−ψ1(σ
2)/σ )+�(−ψ2(σ

2)/σ )) (20)

by assuming that the two surfaces are curved in the same direction with the same
magnitude of curvature |β1|. For estimating ϕ, (20) is fitted to the observed mul-
tiscale bootstrap probabilities of H0 with constraints β0 < d/2 and d > 0, and
ϕ̂ is obtained as β̂0 = 0.089, β̂1 = − 0.199, d̂ = 0.995. Using these estimated
values, the approximately unbiased p values are computed by (11) as p(H1|y) =
�(−0.089 − 0.199) = 0.387 and p(H2|y) = �(−0.995 + 0.089 + 0.199) = 0.240
and thus (17) gives p(H0|y) = 1 − (0.387 − 0.240) = 0.853. This is not very close
to the exact p(H0|y) = 0.907, partly because the model is too simple. However, it is
a great improvement over α1(H0|y) = P(a2

1 ≤ χ2
m+1(‖y‖2) ≤ a2

2) = 0.320.

5 Bayesian measures of confidence

Choosing a good prior density is essential for Bayesian inference. We consider a
version of noninformative prior with which the posterior probability behaves simi-
larly as a frequentist p value.

First note that the sum of bootstrap probabilities of disjoint partitions of the whole
parameter space is always 1. For the two regions case, ασ 2(H ′

0|y)+ ασ 2(H1|y) = 1,
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198 H. Shimodaira

and thus σ zσ 2(H ′
0|y)+ σ zσ 2(H1|y) = 0. Therefore p(H ′

0|y)+ p(H1|y) = 1 for the
approximately unbiased p values computed by (11), suggesting that we may think of
a prior so that p(H ′

0|y) = π(H ′
0|y). This was the idea of Efron and Tibshirani (1998)

to define a Bayesian measure of confidence of H0. Since each of H1 and H2 can be
treated as H ′

0 by changing the coordinates, we may assume a prior satisfying

π(Hi |y) = p(Hi |y), i = 1, 2. (21)

It follows from
∑2

i=0 π(Hi |y) = 1 that

π(H0|y) = 1 − (p(H1|y)+ p(H2|y)). (22)

Priors satisfying (21) are called probability matching priors. The theory has been
developed in literature (Peers 1965; Tibshirani 1989; Datta and Mukerjee 2004) for
posterior quantiles of a single parameter of interest. The examples are the flat prior
π(µ) = const for the flat boundary case in Sect. 1, and π(µ) ∝ ‖µ‖−m for the
spherical shell case in Sect. 4.

Our multiscale bootstrap method provides a new computation to π(H0|y). We may
simply compute (22) with the p(H1|y) and p(H2|y) used for computing p(H0|y) of
(17). Although we implicitly assumed the matching prior, we do not have to know the
functional form ofπ(µ). For the spherical shell example, we may use the exact p(H1|y)
and p(H2|y) to get p(H0|y) = 1 − (0.362 + 0.267) = 0.371, or more practically, use
only bootstrap probabilities of H0 to get p(H0|y) = 1 − (0.387 + 0.240) = 0.373.

6 Estimating parametric models for the scaling-law of bootstrap probabilities

6.1 One-step multiscale bootstrap

We first recall the estimation procedure of Shimodaira (2002, 2008) before describing
our new proposals for improving the estimation accuracy in the following sections.

Let f (σ 2|ϕ) be a parametric model of bootstrap probability such as (19) for H ′
0 or

(20) for H0. As already mentioned in Sect. 1, the model is fitted to the observed Ci/Bi ,
i = 1, . . . ,M . Since Ci is distributed as binomial with probability f (σ 2

i |ϕ) and Bi tri-

als, the log-likelihood function is �(ϕ) = ∑M
i=1{Ci log f (σ 2

i |ϕ)+ (Bi − Ci ) log(1 −
f (σ 2

i |ϕ))}. The maximum likelihood estimate ϕ̂ is computed numerically for each
model. Let dim ϕ denote the number of parameters. Then AI C = −2�(ϕ̂)+ 2 dim ϕ

may be compared for selecting a best model among several candidate models.

6.2 Two-step multiscale bootstrap

Shimodaira (2004) has devised a generalization of the multiscale bootstrap. This is
called multistep-multiscale bootstrap, and the usual multiscale bootstrap is called one-
step multiscale bootstrap. Our new proposal here is to utilize the two-step multiscale
bootstrap for improving the estimation accuracy of ϕ, although the two-step method
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was originally used for replacing the normal model of (1) with the exponential family
of distributions.

Recalling that X ∗ is obtained by resampling from X , we may resample again from
X ∗, instead of X , to get a bootstrap sample of size n′′, and denote it as X ∗∗ =
{x∗∗

1 , . . . , x∗∗
n′′ }. We formally consider the parametric bootstrap

Y ∗∗|y∗ ∼ Nm+1(y
∗, (τ 2 − σ 2)Im+1),

where τ is a new scale defined by τ 2 − σ 2 = n/n′′. We denote the probability and
the expectation by Pσ 2,τ 2(·|y) and Eσ 2,τ 2(·|y), respectively. In Shimodaira (2004),
only the marginal distribution Y ∗∗|y ∼ Nm+1(y, τ 2 Im+1) is considered to detect the
nonnormality, utilizing the fact that Pσ 2,τ 2(Y ∗∗ ∈ H0|y) = ατ 2(H0|y) should have
the same functional form as Pσ 2,τ 2(Y ∗ ∈ H0|y) = ασ 2(H0|y) for the normal model.
Here we also consider the joint distribution of (Y ∗,Y ∗∗) given y. It is 2m + 2-dimen-
sional multivariate normal with Cov(Y ∗,Y ∗∗|y) = σ 2 Im+1. Then, the joint bootstrap
probability is defined as

ασ 2,τ 2(H0|y) = Pσ 2,τ 2(Y ∗ ∈ H0 ∧ Y ∗∗ ∈ H0|y).

Note that only one Y ∗∗ is generated from each Y ∗ here, whereas thousands of Y ∗∗’s
may be generated from each Y ∗ in the double bootstrap method.

Let g(σ 2, τ 2|ϕ) be a parametric model of ασ 2,τ 2(H ′
0|y) or ασ 2,τ 2(H0|y). To work

on specific forms of g(σ 2, τ 2|ϕ), we need some notations. Let (X ′, X ′′) be distributed
as bivariate normal with mean (0, 0), variance V (X ′) = V (X ′′) = 1, and covariance
Cov(X ′, X ′′) = ρ. The distribution function is denoted as �ρ(a1, b1) = P(X ′ ≤
a1 ∧ X ′′ ≤ b1), where the joint density is explicitly given as φρ(a1, b1) = (1 −
ρ2)−1/2φ((1−ρ2)−1/2(b1−ρa1))φ(a1). We also define�ρ(a1, b1; a2, b2) = P(a2 ≤
X ′ ≤ a1 ∧ b2 ≤ X ′′ ≤ b1) = �ρ(a1, b1) − �ρ(a2, b1) − �ρ(a1, b2) + �(a2, b2).
Then a generalization of (14) is given as follows. The proof is in Appendix A.2.

Lemma 1 For sufficiently small λ, the joint bootstrap probabilities for H ′
0 and H0

are expressed asymptotically as

ασ 2,τ 2(H ′
0|y) = �ρ(z1, w1)+ O(λ2), (23)

ασ 2,τ 2(H0|y) = �ρ(z1, w1; z2, w2)+ O(λ2), (24)

where z1 = −(v + Eσ 2 h1(u))/σ , w1 = −(v + Eτ 2 h1(u))/τ , z2 = −(v + d +
Eσ 2 h2(u))/σ , w2 = −(v + d + Eτ 2 h2(u))/τ , and ρ = σ/τ .

Thus g(σ 2, τ 2|ϕ) is specified for H ′
0 as (23) with z1 = −ψ(σ 2)/σ , w1 = −ψ(τ 2)/τ

using the ψ function of (19). Similarly, g(σ 2, τ 2|ϕ) is specified for H0 as (24) with
z1 = ψ1(σ

2)/σ , w1 = ψ1(τ
2)/τ , z2 = −ψ2(σ

2)/σ , w2 = −ψ2(τ
2)/τ using ψ1 and

ψ2 functions of (20).
We may specify M sets of (σ, τ ), denoted as (σ1, τ1), . . . , (σM , τM ). In our numer-

ical examples, σ1, . . . , σ13 are specified as mentioned in Sect. 1 and τi ’s are specified
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so that τ 2
i −σ 2

i = 1 holds always, meaning n′′ = n. For each i = 1, . . . ,M , we gener-
ate (Y ∗,Y ∗∗) with (σi , τi ) many times, say Bi =10,000, and observe the frequencies
Ci = #(Y ∗ ∈ H0), Di = #(Y ∗∗ ∈ H0), and Ei = #(Y ∗ ∈ H0 ∧ Y ∗∗ ∈ H0). The log-
likelihood function becomes �(ϕ) = ∑M

i=1{Ei log g(σ 2
i , τ

2
i |ϕ) + (Ci − Ei ) log

( f (σ 2
i |ϕ) − g(σ 2

i , τ
2
i |ϕ)) + (Di − Ei ) log( f (τ 2

i |ϕ) − g(σ 2
i , τ

2
i |ϕ)) + (Bi − Ci −

Di + Ei ) log(1 − f (σ 2
i |ϕ) − f (τ 2

i |ϕ) + g(σ 2
i , τ

2
i |ϕ))}. We have used this two-step

multiscale bootstrap, instead of the one-step method, in all the numerical examples.
The one-step method had difficulty in distinguishing H0 with very small d from H0
with moderate d but heavily curved ∂H1. The two-step method avoids this identifi-
ability issue because a small value of Ei indicates that d is small.

6.3 Higher-order terms of bootstrap probabilities for testing two regions

The asymptotic errors of the scaling law of the bootstrap probabilities in (13) and (23)
are of order O(λ2). As shown in the following lemma, the errors can be reduced to
O(λ3) by introducing correction terms of order O(λ2) for improving the parametric
model g(σ 2, τ 2|ϕ) of H ′

0. The proof is given in Appendix A.3.

Lemma 2 For sufficiently small λ, the bootstrap probabilities for H ′
0 are expressed

asymptotically as

ασ 2(H ′
0|y) = �(z1 +�z1)+ O(λ3) (25)

ατ 2(H ′
0|y) = �(w1 +�w1)+ O(λ3) (26)

ασ 2,τ 2(H ′
0|y) = �ρ+�ρ(z1 +�z1, w1 +�w1)+ O(λ3), (27)

where z1, w1, and ρ are those defined in Lemma 1, and the higher order correction
terms are defined as �z1 = − 1

2 z1 Eσ 2,τ 2(ε2
1 |u), �w1 = − 1

2w1 Eσ 2,τ 2(δ2
1 |u), and

�ρ = − 1
2

(
ρEσ 2,τ 2(ε2

1 |u)+ ρEσ 2,τ 2(δ2
1 |u)− 2Eσ 2,τ 2(ε1δ1|u)

)
using

ε1 = −h1(U∗)− Eσ 2 h1(u)

σ
, δ1 = −h1(U∗∗)− Eτ 2 h1(u)

τ
. (28)

For deriving a very simple model for �ρ, we think of a situation h(u) = (A/
√

m)
‖u‖+ (B/m)‖u‖2 and θ = 0, and consider asymptotics as m → ∞. This formulation
is only for convenience of derivation. The two values A and B will be specified later by
looking at the functional form of f (σ 2|ϕ). A straightforward, yet tedious, calculation
(the details are not shown) gives ψ(σ 2) = const + Aσ + Bσ 2 + O(m−1) and

�ρ = − 1

2m

(
A2ρ(1 − ρ)+ 2B2ρ(τ 2 − σ 2)+ 2ABσ(1 − ρ2)

)
+ O(m−3/2).

This correction term was in fact already used for the simple model ψ(σ 2) = β0 +
β1σ

2 of the spherical shell example in Sect. 4, where the parameter was actually
ϕ = (β0, β1,m) instead of ϕ = (β0, β1). We did not change the ψ(σ 2) for adjusting
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�z1 and �w1, meaning that z1 + �z1, instead of z1, was modeled as −ψ(σ 2)/σ .
Comparing the coefficients of ψ(σ 2), we get A = 0 and B = β1, and thus �ρ =
−(β1)

2(σ/τ)(τ 2 − σ 2)/m. When (19) was fitted to H1, the estimated parameter m̂ =
2.83 was close to the true value m = 3.

For the numerical example mentioned above, we have also fitted the same model
but�ρ = 0 being fixed. The estimated parameters are β̂0 = 0.101, β̂1 = −0.256, and
the p value is p(H1|y) = �(−0.101 − 0.256) = 0.361. These values are not much
different from those shown in Sect. 4. However, the AIC value improved greatly by the
introduction of�ρ, and the AIC difference was 96.67, mostly because improved fitting
for the joint bootstrap probability of (27). My experience suggests that consideration
of the �ρ term is useful for choosing a reasonable model of ψ(σ 2).

7 Simulation study

7.1 Overview and results

Let us consider a cone-shaped region H0 in R
2 with the angle at the vertex being

2π/10 as shown in Fig. 2b. This cone can be interpreted, locally in a neighborhood of
y with appropriate coordinates, as H0 of (9) when y is close to one of the edges but
far from the vertex. The same cone can also be interpreted as H ′

0 of (10) when y is
close to the vertex. In this section, the cone is labeled either by H0 or H ′

0 depending
on which view we are taking.

Cones in R
2 appear in the problem of multiple comparisons of three elements

X0, X1, X2, say, and Hi corresponds to the hypothesis that the mean of Xi is the larg-
est among the three (DuPreez et al. 1985; Perlman and Wu 2003; Shimodaira 2008).
The angle at the vertex is related to the covariance structure of the elements. Although
an unbiased test does not exist for this region, we would like to see how our methods
work for reducing the coverage error.

Contour lines at the levels 0.05 and 0.95 are drawn in Fig. 3 for several types of
confidence measures. We use symbol p(y) in general for the value of a confidence
measure at y. The rejection region of the cone and that of the complement of the cone
are R = {y|p(y) < 0.05} and R′ = {y|p(y) > 0.95}, respectively, at α = 0.05. We
observe that p(y) decreases as y moves away from the cone in Fig. 3a–c. On the other
hand, Figs. 4 and 5 show the rejection probability. For an unbiased test, it should be
5% for all µ ∈ ∂H0 so that the coverage error is zero.

In Fig. 3a, p(y) = α1(H0|y) is computed by the bootstrap samples of σ 2 = 1. This
bootstrap probability, labeled as BP in Fig. 4, is heavily biased near the vertex, and
this tendency is enhanced when the angle becomes 2π/20 in Fig. 5.

In Fig. 3b, p(y) = p(H ′
0|y) is computed by regarding the cone as H ′

0 of (10). The
dent of R and the bump of R′ become larger than those of Fig. 3a near the vertex,
confirming what we observed in Fig. 4 of Shimodaira (2008). As seen in Figs. 4 and 5,
the coverage error of p(H ′

0|y), labeled as “one sided” there, is smaller than that of BP.
In Fig. 3c, p(H0|y) is also computed by regarding the cone as H0 of (9), and then one

of p(H ′
0|y) and p(H0|y) is selected as p(y) by comparing the AIC values at each y.

This p(y), labeled as “two sided Freq” in Figs. 4 and 5, improves greatly on the
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(b)

(c)

(a)

Fig. 3 Contour lines p(y) = 0.05 and p(y) = 0.95. The cone-shaped region H0 is rotated so that one of
the edges is placed along the x-axis. Solid curves are drawn for a the bootstrap probability with σ 2 = 1,
and for b the frequentist p value for “one-sided” test. In c, p(y) is switched to the frequentist p value for
“two-sided” test when appropriate. The dotted curve in c is for the Bayesian posterior probability
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Fig. 4 a Rejection probability of the cone and b that of the complement of the cone. The angle at the vertex
is 2π/10
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Fig. 5 a Rejection probability of the cone and b that of the complement of the cone. The angle at the vertex
is 2π/20

one-sided p value. The coverage error is almost zero except for small ‖µ‖’s, verifying
what we attempted in this paper. The corresponding Bayesian posterior probability,
labeled as “two sided Bayes,” performs similarly.

The coverage error was further reduced near the vertex by setting simply p(y) =
p(H0|y) without the model selection (the result is not shown here). However, this
p(y) increases as y moves away from the cone in some area, and then the shapes of
R and R′ are rather unreasonable in the sense of monotonicity mentioned at the last
paragraph of Sect. 3.

123



204 H. Shimodaira

7.2 Details of data generation

The contour lines in Fig. 3 are drawn by computing p values at all grid points (300 ×
180) of step size 0.05 in the rectangle area. This huge computation was made possible
by parallel processing using up to 700 cpus. The computation takes a few minutes per
each grid point per cpu. Our algorithm is implemented in an experimental version of
the scaleboot package of Shimodaira (2006) available from CRAN.

The rejection probabilities in Figs. 4 and 5 are computed by generating y according
to (1) for 10,000 times, and then counting how many times p(y) < 0.05 or p(y) > 0.95
is observed. This computation is done for each µ ∈ ∂H0 with the distance from the
vertex ‖µ‖ = 0, 1, . . . , 16, i.e., µ = (0, 0), (1, 0), . . . , (16, 0) in the coordinates of
Fig. 3.

For computing p(H ′
0|y) and p(H0|y), the two-step multiscale bootstrap described

in Sect. 6.2 was performed with the M = 13 sets of scales (σi , τi ), i = 1, . . . , 13,
specified there. The parametric bootstrap, instead of the resampling, was used for the
simulation. For drawing smooth contour lines, the number of bootstrap samples has
increased to Bi = 105, whereas it was Bi = 104 in all the other results.

For p(H ′
0|y), we have considered the singular model of Shimodaira (2008) defined

asψ(σ 2) = β0+β1/(1+β2(σ−1)) for cones, and performed the model fitting method
described in Sect. 6.3. From the Taylor series of this ψ(σ 2) around σ = 1, we get
A = β1β2(3−2β2), B = β1(β2 −1)2 for computing the higher order correction term
�ρ. We have also considered submodels by restricting some of ϕ = (β0, β1, β2,m)
to specified values, and the minimum AIC model is chosen at each y. The frequentist
p value is computed by (16) with k = 3 and σ 2

0 = 1.
For p(H0|y), we have considered the same singular model for the two surfaces

by assuming they are curved in the opposite directions with the same magnitude of
curvature. More specifically, the two ψ functions in (20) are defined as ψ1(σ

2) =
β0 +β1/(1+β2(σ −1)) andψ2(σ

2) = d −β0 +β1/(1+β2(σ −1)). The parameters
ϕ = (β0, β1, β2, d) are estimated by the model fitting method described in Sect. 6.2.
Submodels are also considered and model selection is performed using AIC. The
frequentist p value is computed by (17), and the Bayesian posterior probability is
computed by (22).

The rejection probabilities of other two commonly used measures (MC and z-test)
are shown only for reference purposes. See Shimodaira (2008) for the details of these
two measures. The rejection probability of the multiple comparisons, denoted MC
here, is always below 5% in Figs. 4a and 5a, and the coverage error becomes zero at
the vertex. On the other hand, the rejection probability of the z test is always below
5% in Figs. 4b and 5b, and the coverage error reduces to zero as ‖µ‖ → ∞.

8 Concluding remarks

In this paper, we have discussed frequentist and Bayesian measures of confidence for
the three regions case, and have proposed a new computation method using the multi-
scale bootstrap technique. In this method, AIC played an important role for choosing
appropriate parametric models of the scaling-law of bootstrap probability. Simulation

123



Confidence measures via multiscale bootstrap 205

study showed that the proposed frequentist measure performs better for controlling
the coverage error than the previously proposed multiscale bootstrap designed only
for the two regions case.

A generalization of the confidence measures gives a frequentist interpretation
of the Bayesian posterior probability as follows. Let us consider the situation of
Theorem 2. If we strongly believe that µ �∈ H2, we could use the one-sided p value
p(H ′

0|y) = 1 − p(H1|y), instead of the two sided p(H0|y). Similarly, we might use
1 − p(H2|y) if we believe that µ �∈ H1. By making the choice “adaptively,” someone
may want to use p(1)(H0|y) = 1−max(p(H1|y), p(H2|y)), although it is not justified
in terms of coverage error. By connecting p(1)(H0|y) and p(H0|y) linearly using an
index s for the number of “sides,” we get

p(s)(H0|y) = π(H0|y)+ s min(p(H1|y), p(H2|y)).

It is easily verified that p(H0|y) = p(2)(H0|y) and π(H0|y) = p(0)(H0|y), indicating
that the Bayesian posterior probability defined in Sect. 5 can be interpreted, interest-
ingly, as a frequentist p value of “zero-sided” test of H0. This kind of argument might
lead to yet another compromise between frequentist and Bayesian.

Our formulation is rather restrictive. We have considered only the three regions
case by introducing the surface h2 in addition to the surface h1 of the two regions
case. Also these two surfaces are assumed to be nearly parallel to each other. It is
worth to elaborate on generalizations of this formulation in future work, but too much
of complication may result in unstable computation for estimating the scaling-law of
bootstrap probability. AIC will be useful again in such a situation.
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Institute of Technology with support of Global COE: Computationism as a Foundation for the Sciences
(CompView). This work was supported by Grant KAKENHI-20500254 from MEXT of Japan.

Appendix A

A.1 Proof of Theorem 2

First we consider rejection regions of testing H0 for a specified α by modifying the
two rejection regions of (3). Since h1 and h2 are nearly flat, the modified regions
should be expressed as R1 = {(u, v) | v > c − r1(u), u ∈ R

m} and R2 = {(u, v) |
v < −d − c − r2(u), u ∈ R

m} using nearly flat functions r1 and r2. The constant c is
the same one as defined in (4). Write a = φ(c), b = φ(c + d) for brevity sake. We
evaluate the rejection probability for µ ∈ ∂H1 ∪ ∂H2. Let µ ∈ ∂H1 for a moment,
and put µ = (θ,−h1(θ)). By applying the argument of (13) to R1 but (7) is replaced
by (1), we get P(Y ∈ R1|µ) = 1 − �(c − E1r1(θ) + h1(θ)) + O(λ2) = �(−c) +
a(E1r1(θ)−h1(θ))+ O(λ2). The same argument applied to R2 gives P(Y ∈ R2|µ) =
�(−d −c−E1r2(θ)+h1(θ))+ O(λ2) = �(−d −c)+b(−E1r2(θ)+h1(θ))+ O(λ2).
Rearranging these two formula with the identity

P(Y ∈ R1|µ)+ P(Y ∈ R2|µ) = α (29)
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for an unbiased test, we get an equation a(E1r1(θ)−h1(θ))+b(−E1r2(θ)+h1(θ)) =
O(λ2). By exchanging the roles of r1 and r2, the equation becomes b(E1r1(θ) −
h2(θ)) + a(−E1r2(θ) + h2(θ)) = O(λ2) for µ ∈ ∂H2 with µ = (θ,−d − h2(θ)).
These two equations are expressed as

(
a −b

−b a

)(
E1r1(θ)

E1r2(θ)

)

= (a − b)

(
h1(θ)

h2(θ)

)

+ O(λ2). (30)

For solving this equation with respect to r1 and r2, first apply the inverse matrix of the
2 × 2 matrix from the left in (30), and then apply the inverse operator of E1 so that

(
r1(u)

r2(u)

)

= 1

a + b

(
a b

b a

) (
E−1h1(u)

E−1h2(u)

)

+ O(λ2). (31)

Next we obtain an expression of p value corresponding to the rejection regions.
p(H0|y) is defined as the value of α for which either of y ∈ ∂R1 and y ∈ ∂R2 holds.
Note that r1, r2, and c depend on α. Let us assume y ∈ ∂R1 and thus c = v + r1(u)
for a moment. Write a′ = φ(v) = a + O(λ), b′ = φ(v + d) = b + O(λ) for brevity
sake. Recalling (4), p(H0|y) = �(−c)+�(−d − c) = �(−v − r1(u))+�(−d −
v − r1(u)) = �(−v) + �(−d − v) − (a′ + b′)r1(u) + O(λ2), where r1(u) in (31)
can be expressed as

r1(u) = a′

a′ + b′ E−1h1(u)+ b′

a′ + b′ E−1h2(u)+ O(λ2).

Therefore, p(H0|y) = �(−v)+�(−d − v)− a′E−1h1(u)− b′E−1h2(u)+ O(λ2) =
�(−v−E−1h1(u))+�(−d−v−E−1h2(u))+O(λ2). By applying (15) to H1 and H2,
respectively, we get p(H1|y) = �(v+E−1h1(u))+O(λ2) and p(H2|y) = �(−v−d−
E−1h2(u))+O(λ2), and thus p(H0|y) = 1−p(H1|y)+p(H2|y)+O(λ2). By exchang-
ing the roles of H1 and H2, we have p(H0|y) = 1 − p(H2|y) + p(H1|y) + O(λ2)

for y ∈ ∂R2. By taking the minimum of these two expressions of p(H0|y), we finally
obtain (17). This p value satisfies (29) with error O(λ2), and thus (18) holds.

A.2 Proof of Lemma 1

The argument is very similar to the proof of Theorem 1. Given v, u∗, u∗∗, the joint
distribution of X ′ = (V ∗ − v)/σ and X ′′ = (V ∗∗ − v)/τ is �ρ . Therefore, Pσ 2,τ 2

(V ∗ ≤ −h1(u∗) ∧ V ∗∗ ≤ −h1(u∗∗)|v, u∗, u∗∗) = Pσ 2,τ 2(X ′ ≤ z1 + ε1 ∧ X ′′ ≤
w1 + δ1|v, u∗, u∗∗) = �ρ(z1 + ε1, w1 + δ1), where ε1 and δ1 are defined in (28).
Taking the expectation with respect to (U∗,U∗∗), we have ασ 2,τ 2(H ′

0|y) = Pσ 2,τ 2

(V ∗ ≤ −h1(U∗) ∧ V ∗∗ ≤ −h1(U∗∗)|y) = Eσ 2,τ 2(�ρ(z1 + ε1, w1 + δ1)|u). For
proving (23), considering the Taylor series around (z1, w1), we obtain

Eσ 2,τ 2

(

�ρ(z1, w1)+ ∂�ρ

∂z1
ε1 + ∂�ρ

∂w1
δ1

∣
∣u

)

+ O(λ2) (32)

with Eσ 2,τ 2(ε1|u) = Eσ 2,τ 2(δ1|u) = 0 for completing the proof.
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Next we show (24). The conditional probability given v, u∗, u∗∗ is Pσ 2,τ 2(−d −
h2(u∗) ≤ V ∗ ≤ −h1(u∗) ∧ −d − h2(u∗∗) ≤ V ∗∗ ≤ −h1(u∗∗)|v, u∗, u∗∗) =
Pσ 2,τ 2(z2 + ε2 ≤ X ′ ≤ z1 + ε1 ∧ w2 + δ2 ≤ X ′′ ≤ w1 + δ1|v, u∗, u∗∗) =
�ρ(z1 + ε1, w1 + δ1; z2 + ε2, w2 + δ2), where

ε2 = −h2(U∗)− Eσ 2 h2(u)

σ
, δ2 = −h2(U∗∗)− Eτ 2 h2(u)

τ
.

Taking the expectation with respect to (U∗,U∗∗), we have ασ 2,τ 2(H0|y) = Pσ 2,τ 2

(−d − h2(U∗) ≤ V ∗ ≤ −h1(U∗) ∧ −d − h2(U∗∗) ≤ V ∗∗ ≤ −h1(U∗∗)|y) =
Eσ 2,τ 2(�ρ(z1 + ε1, w1 + δ1; z2 + ε2, w2 + δ2)|u). We only have to consider the
Taylor series

Eσ 2,τ 2

(

�ρ(z1, w1; z2, w2)+ ∂�ρ

∂z1
ε1 + ∂�ρ

∂w1
δ1 + ∂�ρ

∂z2
ε2 + ∂�ρ

∂w2
δ2

∣
∣u

)

+ O(λ2)

with Eσ 2,τ 2(εi |u) = Eσ 2,τ 2(δi |u) = 0, i = 1, 2 for completing the proof.

A.3 Proof of Lemma 2

By considering a higher-order term of the Taylor series in (13), we obtainασ 2 (H ′
0|y) =

Eσ 2(�(z1)+ φ(z1)ε1 − φ(z1)z1ε
2
1/2|u)+ O(λ3) = �(z1)+ φ(z1)�z1 + O(λ3) =

�(z1 +�z1)+ O(λ3), proving (25) as well as (26). On the other hand, (27) is shown
by considering higher-order terms of the Taylor series in (32) as

Eσ 2,τ 2

(

�ρ(z1, w1)+ ∂�ρ

∂z1
ε1 + ∂�ρ

∂w1
δ1

+ 1

2

(
∂2�ρ

∂z2
1

ε2
1 + 2

∂2�ρ

∂z1∂w1
ε1δ1 + ∂2�ρ

∂w2
1

δ2
1

)
∣
∣u

)

+ O(λ3).

The proof completes by rearranging the above formula with

∂2�ρ

∂z2
1

= −z1
∂�ρ

∂z1
− ρφρ(z1, w1),

∂2�ρ

∂z1∂w1
= φρ(z1, w1),

∂�ρ

∂ρ
= φρ(z1, w1).
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