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Abstract In this paper, we consider the model selection problem for discretely
observed ergodic multi-dimensional diffusion processes. In order to evaluate the sta-
tistical models, Akaike’s information criterion (AIC) is a useful tool. Since AIC is
constructed by the maximum log likelihood and the dimension of the parameter space,
it may look easy to get AIC even for discretely observed diffusion processes. How-
ever, there is a serious problem that a transition density of a diffusion process does not
generally have an explicit form. Instead of the exact log-likelihood, we use a contrast
function based on a locally Gaussian approximation of the transition density and we
propose the contrast-based information criterion.

Keywords Akaike’s information criteria · Model selection · Malliavin calculus ·
Maximum contrast estimator · Large deviation inequality · Discrete time observation

1 Introduction

We consider a d-dimensional diffusion process defined by the stochastic differential
equation

dXt = B(Xt )dt + S(Xt )dwt , t ∈ [0, T ], X0 = x0, (1)

where B is an Rd -valued function defined on Rd , S is an Rd ⊗ Rd -valued function
defined on Rd , w is a d-dimensional standard Wiener process and x0 is a determin-
istic initial condition. The data we treat are discrete observations Xn = (Xtn

k
)0≤k≤n

with tn
k = khn , where hn is the discretization step and nhn = T . Based on the
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162 M. Uchida

discrete observations, we consider a model selection problem among the following M
parametric models. For m = 1, . . . , M ,

dXt = bm(Xt , αm)dt + σm(Xt , βm)dwt , t ∈ [0, T ], X0 = x0, (2)

where θm = (αm, βm) ∈ �αm ×�βm = �m , �αm and �βm are, respectively, bounded
domains in Rpm and Rqm with a locally Lipschitz boundary, which means that �αm

and �βm satisfy the strong local Lipschitz condition, see Adams and Fournier (2003).
Furthermore, bm is an Rd -valued function defined on Rd ×�αm and σm is an Rd ⊗Rd -
valued function defined on Rd ×�βm , where the drift bm and the diffusion coefficient
σm are known apart from the parameters αm and βm , respectively. We assume that
the process X is ergodic for every θm with invariant probability measure µθm . For
details of ergodicity and the invariant probability measures for diffusion processes,
see Kutoyants (2004). Moreover, we assume that all the parametric models (2) include
the true model (1), that is, for m = 1, . . . , M , there exists θm,0 = (αm,0, βm,0) ∈
�m such that bm(x, αm,0) = B(x) and �m(x, βm,0) = [SS�](x) for all x , where
�m(x, βm) = [σmσ�

m](x, βm), � means the transpose, αm,0 and βm,0 are true values of
αm and βm , respectively. The type of asymptotics we treat is when hn → 0, nhn → ∞
and nh2

n → 0 as n → ∞. Moreover, we assume that for some ε0 ∈ (0, 1/2), nε0 ≤ nhn

for large n, see Yoshida (2005).
As is well known, Akaike (1973, 1974) proposed Akaike’s information criterion

(AIC) for the problem of choosing a statistical model among the correctly specified
parametric models which include the true model. AIC for the mth model is

AIC(Xn, m) = −2lm,n

(
Xn, θ̂ (ML)

m (Xn)
)

+ 2dim(�m), (3)

where lm,n(Xn, θm) is the log likelihood function for the mth model and θ̂ML
m (Xn)

is the maximum likelihood estimator (MLE) for an unknown parameter of the mth
model. Under some regularity conditions, AIC(Xn, m) is an asymptotically unbiased
estimator for −2×EL(Xn, m), where EL(Xn, m) is the expected log likelihood of the
m-th model defined as EL(Xn, m) = EZn [lm,n(Zn, θ̂

(M L)
m (Xn))], Zn is an independent

copy of Xn and EZn stands for the expectation under the law of Zn . Consequently, we
choose a statistical model which minimizes the value of AIC among a set of compet-
ing models. Needless to say, there are many applications of model selection by means
of information criteria, see, for example, Shibata (1976), Hall (1990), Burman and
Nolan (1995), Hurvich et. al. (1998), Burnham and Anderson (2002), Sei and Komaki
(2007), Konishi and Kitagawa (2008) and references therein. In order to obtain AIC
defined by (3), it is enough to get both the log likelihood function and the MLE. For
this reason, it may seem that there is no difficulty in constructing AIC even for multi-
dimensional diffusion processes. For information criteria of continuously observed
diffusion processes, see Uchida and Yoshida (2001, 2004, 2006). However, since the
transition density pm(t, x, y; θm) of the diffusion process (2) does not generally have
an explicit form, there is a serious problem that we cannot explicitly get the log
likelihood function lm,n(Xn, θm) = ∑n

k=1 log pm(hn, Xtn
k−1

, Xtn
k
; θm) for discretely
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Contrast-based IC for diffusions 163

observed diffusion model. The MLE cannot be also obtained because of it. Therefore,
it is not a trivial problem to construct AIC for discretely observed diffusion models.

In this paper, in order to construct an information criterion for discretely observed
ergodic diffusion models, we consider the contrast function based on a locally
Gaussian approximation instead of the exact log likelihood function and we show
that an information criterion based on the contrast function is an asymptotically unbi-
ased estimator for the expected log likelihood. Asymptotically parametric estimation
for discretely observed ergodic diffusions has been developed, see Prakasa Rao (1983,
1988), Florens-Zmirou (1989), Yoshida (1992b, 2005) and Kessler (1997). In order
to show the asymptotic unbiasedness of the information criterion, however, we need
the large deviation inequality for the normalized maximum contrast estimator and the
estimates of moments for the derivatives of the log likelihood function lm,n(θm) with
respect to parameter θm . By using the similar argument as in Yoshida (2005), the large
deviation inequality is obtained, see Lemma 1 below. In the analogous way as in Gobet
(2001, 2002), the estimates for the derivatives of the log likelihood function are derived
by means of Malliavin calculus, see Lemma 2 below. Moreover, we propose the con-
trast-based information criterion (CIC), and the asymptotic result of the difference
between the contrast-based information criteria (CIC difference) is obtained.

The rest of this paper is organized as follows. In Sect. 2, the notation and assump-
tions are stated, and the asymptotic result of an information criterion constructed by
the contrast function based on a locally Gaussian approximation is presented. Both
CIC and CIC difference for discretely observed multi-dimensional ergodic diffusion
processes are proposed. We also give examples of model selection problem based on
CIC and simulation results. The result presented in Sect. 2 is proved in Sect. 3.

2 Contrast-based information criterion

2.1 Notation and assumptions

We introduce the notation used in this paper and the assumptions. Let m ∈ {1, . . . , M}
for the suffix m in the notation and assumptions.

1. ∂n
x = ∂

n1
x1 · · · ∂nd

xd and ∂ν
θm

= ∂
ν1
θm,1

· · · ∂νpm+qm
θm,pm+qm

, where n = (n1, . . . , nd) and ν =
(ν1, . . . , νpm+qm ) are multi-indices, |n| = n1 +· · ·+nd , |ν| = ν1 +· · ·+νpm+qm ,
∂xi = ∂/∂xi and ∂θm, j = ∂/∂θm, j .

2. Let Ck,l
b (Rd ×�m; Rd ⊗Rd) be the space of functions f satisfying the following

conditions: (i) f (x, θm) is an Rd ⊗Rd -valued function on Rd ×�m which is con-
tinuously differentiable with respect to (w.r.t.) x up to order k for all θm , and for
|n| = 0, 1, . . . , k, ∂n

x f (x, θm) is continuously differentiable w.r.t. θm up to order
l. (ii) For |n| = 0, 1, . . . , k and |ν| = 0, 1, . . . , l, supx,θm

|∂ν
θm

∂n
x f (x, θm)| < ∞.

3. Let C̄k,l
b (Rd × �m; Rd) denote the space of functions f satisfying the following

conditions: (i) f (x, θm) is an Rd -valued function on Rd × �m which is contin-
uously differentiable w.r.t. x up to order k for all θm , and for |n| = 0, 1, . . . , k,
∂n

x f (x, θm) is continuously differentiable w.r.t. θm up to order l. (ii)
supx,θm

|∂n
x f (x, θm)| < ∞ for |n| = 1, . . . , k. (iii) For |ν| = 1, there exists
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a constant C > 0 such that supθm
|∂ν

θm
f (x, θm)| ≤ C(1 + |x |) for all x , and

for |ν| = 2, 3, . . . , l, supx,θm
|∂ν

θm
f (x, θm)| < ∞. (iv) For |n| = 1, . . . , k and

|ν| = 1, . . . , l, supx,θm
|∂ν

θm
∂n

x f (x, θm)| < ∞.
4. Pθ∗ and Pθm denote the laws of the processes defined by the Equations (1) and (2),

respectively. Let Eθ∗ and Eθm be the expectations under Pθ∗ and Pθm , respectively.
Note that Pθ∗ = Pθm,0 and Eθ∗ = Eθm,0 . We make two sets of assumptions as
follows.

A1 (i) bm(x, αm) ∈ C̄5,5
b (Rd ×�αm ; Rd). (ii) σm(x, βm) ∈ C5,5

b (Rd ×�βm ; Rd ⊗Rd).
A2 (i) There exist constants c0 > 0 and K > 0 such that for any (x, αm) ∈ Rd ×�αm ,

x�bm(x, αm) ≤ −c0|x |2 + K .

(ii) σm(x, βm) is symmetric and there exists a constant c1 ≥ 1 such that for any
(x, βm, λ) ∈ Rd × �βm × R,

1

c1
|λ|2 ≤ λ�σm(x, βm)λ ≤ c1|λ|2.

Remark 1 It follows from A1 and A2 that we can show the following results. (i) For
every θm ∈ �m , the process X admits a unique invariant probability measure. We
denote it by µθm . Moreover, for every θm ∈ �m ,

∫
Rd |x |pµθm (dx) < ∞ for all p ≥ 0.

(ii) supt Eθm [|Xt |p] < ∞ for all p ≥ 0. (iii) For every θm ∈ �m , the process X is
ergodic, in special, for every measurable function satisfying | f | ≤ c(1 + |x |)c for

some c > 0, one has 1
T

∫ T
0 f (Xt )dt

p→ ∫
Rd f (x)µθm,0(dx) as T → ∞.

Let Im(θm,0) denote the Fisher information matrix as follows:

Im(θm,0) =
(

((Ib,m(θm,0))i j )i, j=1,...,pm 0
0 ((Iσ,m(θm,0))i j )i, j=1,...,qm

)
,

where

(Ib,m(θm,0))i j =
∫

Rd
(∂αm,i bm)�(x, αm,0)�

−1
m (x, βm,0)∂αm, j bm(x, αm,0)µθm,0(dx),

(Iσ,m(θm,0))i j = 1

2

∫

Rd
tr
[
(∂βm,i �m)�−1

m (∂βm, j �m)�−1
m (x, βm,0)

]
µθm,0(dx).

Moreover, we make the following two assumptions, which are needed to estimate
unknown parameter θm .
A3 Im(θm,0) is positive definite.
A4 If bm(x, αm) = bm(x, αm,0) for µθm,0 a.s. all x , then αm = αm,0. If �m(x, βm) =
�m(x, βm,0) for µθm,0 a.s. all x , then βm = βm,0.
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2.2 Main result

In this section, we consider an information criterion for correctly specified parametric
models under the situation when hn → 0, nhn → ∞ and nh2

n → 0 as n → ∞, and
for some ε0 ∈ (0, 1/2), nε0 ≤ nhn for large n. In order to get the information criterion,
we use the following contrast function based on a locally Gaussian approximation:

gm,n(θm) = −nd

2
log(2πhn) − 1

2

n∑
k=1

log det
(
�m

(
Xtn

k−1
, βm

))

− 1

2hn

n∑
k=1

�−1
m

(
Xtn

k−1
, βm

) [(
Xtn

k
− Xtn

k−1
− hnbm

(
Xtn

k−1
, αm

))⊗2
]

(4)

for m ∈ {1, 2, . . . , M}. The maximum contrast estimator θ̂m,n is defined as gm,n

(θ̂m,n) = supθm
gm,n(θm). Moreover, we set that an information criterion based on the

contrast function IC(Xn, m) and the expected log likelihood EL(Xn, m) are

IC(Xn, m) = gm,n(θ̂m,n(Xn)) − gm,n(θm,0) + EZn

[
lm,n(Zn, θm,0)

]− dim(�m),

EL(Xn, m) = EZn

[
lm,n(Zn, θ̂m,n(Xn))

]
,

where Zn is an independent copy of Xn and EZn means the expectation under the law
of Zn .

The asymptotic result of IC(Xn, m) is as follows.

Theorem 1 Let m ∈ {1, 2, . . . , M}. Suppose that A1–A4 hold true. Then, as n → ∞,

Eθ∗ [IC(Xn, m) − EL(Xn, m)] = o(1).

It follows from Theorem 1 that IC(Xn, m) is an asymptotically unbiased estimator
for EL(Xn, m), and by the similar argument as AIC, the optimal model m∗ among
competing models is selected by IC(Xn, m∗) = maxm=1,...,M IC(Xn, m). However,
IC(Xn, m) is an impracticable criterion since θm,0 is unknown and both gm,n(θm,0)

and EZn [lm,n(Zn, θm,0)] cannot be calculated. Fortunately, one has that for i, j ∈
{1, . . . , M}, gi,n(θi,0) = g j,n(θ j,0) and li,n(θi,0) = l j,n(θ j,0) because we consider the
correctly specified parametric models. Thus, we define the CIC for the mth model as

CIC(Xn, m) = −2gm,n(θ̂m,n(Xn)) + 2dim(�m),

and the optimal model m∗ among competing models is selected by CIC(Xn, m∗)
= minm=1,...,M CIC(Xn, m) since one has that arg minm=1,...,M CIC(Xn, m) = arg
maxm=1,...,M IC(Xn, m).

Let KL(Xn, m) denote the estimated Kullback–Leibler information for the true
model ln(·) and the mth statistical model lm,n(·, θ̂m(Xn)) defined by KL(Xn, m) =
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EZn [ln(Zn)] − EZn [lm,n(Zn, θ̂m(Xn))]. We set that for i, j ∈ {1, 2, . . . , M},

DCIC(Xn, i, j) = CIC(Xn, i) − CIC(Xn, j) = −2(IC(Xn, i) − IC(Xn, j)),

DKL(Xn, i, j) = 2(KL(Xn, i) − KL(Xn, j)) = −2(EL(Xn, i) − EL(Xn, j)).

As a corollary of Theorem 1, we obtain the following result of the CIC difference.

Corollary 1 Let i, j ∈ {1, 2, . . . , M}. Suppose that A1–A4 hold true. Then, as
n → ∞,

Eθ∗ [DCIC(Xn, i, j) − DKL(Xn, i, j)] = o(1).

Remark 2 (i) By the analogous argument as CIC together with Theorem 1, we choose
the statistical model i∗ as the optimal model among the competing models if DCIC
(Xn, i∗, j) < 0 for all j �= i∗. (ii) In the same way as in Inagaki and Ogata (1975),
if some of the competing models do not include a true model, the probability that the
misspecified statistical model is selected by CIC converges to zero as n → ∞, see
Sect. 2.3.

Note that a bounded drift coefficient does not meet A2. Instead of A1–A2, we
assume A1′ and A2′ as follows. A1′: A1–(ii) and bm(x, αm) ∈ C5,5

b (Rd × �αm ; Rd).
A2′: A2–(ii) and there exist constants c0 > 0 and K0 > 0 such that x�bm(x, αm) ≤
−c0|x | for every (x, αm) ∈ Rd × �αm satisfying |x | ≥ K0. Then, using a version of
Lemma 2 below together with the results of Section 5 in Gobet (2002), we can show
that under A1′–A2′ and A3–A4, the assertions of Theorem 1 and Corollary 1 hold
true.

The proposed criterion may be appropriate to be called an AIC-type criterion
because the criterion is constructed by the maximum contrast and the dimension of the
parameter space. However, both TIC (Takeuchi 1976) and GIC (Konishi and Kitagawa
1996), which are general information criteria for misspecified models, are also based
on the exact log likelihood. On the other hand, the proposed information criterion
is based on the contrast function instead of the exact log likelihood, and we call it
the CIC for correctly specified parametric models in order to distinguish the existing
information criteria and the proposed information criterion.

The predictive distribution of the mth diffusion model from discrete observations is
pm(t, x, y; θ̂m,n), where pm(t, x, y; θm) is the transition density of the mth diffusion
model and θ̂m,n is the maximum contrast estimator obtained from the contrast function
gm,n . However, pm(t, x, y; θm) does not generally have an explicit form. Fortunately,
it is possible to choose the optimal diffusion model m∗ in the sense of CIC, which
is based on the minimization of the estimated Kullback–Leibler information. Using a
suitable approximation method, we need to obtain an approximate transition density
of the m∗th diffusion model. For example, Aït-Sahalia (2008) derived closed-form
expansions for the log-transition density and Beskos et al. (2006) provided numerical
approximations of the transition density. The approximation of the transition density
of a diffusion process is a very challenging problem and the validity of the approximate
predictive distribution is a future work.
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Under the assumption that all the parametric models contain the true model, we
proposed CIC whose validity was based on Theorem 1. As seen from the derivation of
CIC, however, it is impossible to extend CIC to an information criterion for misspec-
ified diffusion models such as TIC and GIC. In order to obtain a general information
criterion for misspecified diffusion models, we will need a different approach from
the derivation of CIC. This generalization will be also a future project.

2.3 Examples and simulation results

As an example of a model selection based on CIC, we treat the following setting. The
data Xn = (Xtn

k
)0≤k≤n are obtained from the true model defined by

dXt = −(Xt − 5)dt + 30dwt , t ∈ [0, T ], X0 = 5.

We consider the model selection problem for the following three statistical models:

(Model 1) dXt = −α1(Xt − α2)dt + β1dwt , (5)

(Model 2) dXt = −α1(Xt − α2)dt +
(

β1 + β2 X2
t

1 + X2
t

)
dwt , (6)

(Model 3) dXt = −α1(Xt − α2)dt +
(

β1 + β3 Xt + β2 X2
t

1 + X2
t

)
dwt , (7)

where α1 > 0, α2 > 0, β1 > 0, β2 > 0 and β2
3 < 4β1β2.

It follows from (4) that for the models (5), (6) and (7), we have the contrast functions
g1,n(θ1), g2,n(θ2) and g3,n(θ3), respectively. Thus, CIC of the models (5), (6), (7) are
CIC(Xn, 1) = −2g1,n(Xn, θ̂1,n) + 2 × 3, CIC(Xn, 2) = −2g2,n(Xn, θ̂2,n) + 2 × 4
and CIC(Xn, 3) = −2g3,n(Xn, θ̂3,n)+2 ×5, respectively, where θ̂i,n is the maximum
contrast estimator obtained from the contrast function gi,n for i = 1, 2, 3.

We examine the number of models selected by CIC among the competing models
(5), (6), (7) for 10,000 independent sample paths generated by the Milstein scheme
through simulations. For details of the Milstein scheme, see Kloeden and Platen (1992).
The simulations are done for each T = 10, 30 and hn = 1/50, 1/200.

In Table 1, Model 1 is selected with high frequency as the optimal model for all
cases. However, either Model 2 or Model 3 is selected in a significant probability.
This result implies that CIC does not have consistency for estimating the minimal
model i∗ such that i∗ = arg mini dim(�i ) among the i competing models including
the true model. Note that in this example, the minimal model is Model 1. However,
this inconsistency is not a weak point of CIC. We must note that CIC is a tool to choose
the optimal model among competing models from the aspect of both model-fitting and
prediction.

Next, we consider the situation where the true model is defined by

dXt = −(Xt − 5)dt +
(

30 + 5X2
t

1 + X2
t

)
dwt , t ∈ [0, T ], X0 = 5.
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Table 1 The number of models selected by CIC for 10,000 independent simulated sample paths in the
case that the true model is defined by dXt = −(Xt − 5)dt + 30dwt , t ∈ [0, T ], X0 = 5

T hn Model 1 Model 2 Model 3

10 1/50 7,605 1,435 960

1/200 7,848 1,361 791

30 1/50 7,676 1,366 958

1/200 7,822 1,360 818

Table 2 The number of models selected by CIC for 10,000 independent simulated sample paths in the

case that the true model is defined by dXt = −(Xt − 5)dt +
(

30+5X2
t

1+X2
t

)
dwt , t ∈ [0, T ], X0 = 5.

T hn Model 1 Model 2 Model 3

10 1/50 108 6,305 3,587

1/200 8 7,540 2,452

30 1/50 0 7,086 2,914

1/200 0 7,497 2,503

The competing models, T and hn are the same as the previous example. Note that
Model 1 does not include the true model, which is the misspecified model.

In Table 2, the probability that Model 1 is selected by CIC is very low, while Model
2 is selected with high probability for all cases. This result indicates that if a model
does not include the true model, the probability that the misspecified model is selected
by CIC tends to zero as n → ∞.

3 Proofs

Let θm = (θm,1, . . . , θm,pm+qm )� = (αm,1, . . . , αm,pm , βm,1, . . . , βm,qm )�, ∂m,i =
∂/∂θm,i and

dm,l,n =

⎧⎪⎪⎨
⎪⎪⎩

1√
nhn

if l = 1, . . . , pm,

1√
n

if l = pm + 1, . . . , pm + qm .

Set ûm,l,n = d−1
m,l,n(θ̂m,l,n − θm,l,0), ∂ ĝm,l,n = dm,l,n∂m,l gm,n(θm,0),

ûm,n =
(√

nhn(α̂m,n − αm,0)√
n(β̂m,n − βm,0)

)
= (ûm,1,n, . . . , ûm,pm+qm ,n)�,

∂θm ĝm,n(θm,0) =
( 1√

nhn
∂αm gm,n(θm,0)

1√
n
∂βm gm,n(θm,0)

)
= (∂ ĝm,1,n, . . . , ∂ ĝm,pm+qm ,n)�.
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Furthermore, we define that ∂2
m,l1,l2

= ∂m,l1∂m,l2 , ∂3
m,l1,l2,l3

= ∂m,l1∂m,l2∂m,l3 , d2
m,l1,l2,n

= dm,l1,ndm,l2,n and d3
m,l1,l2,l3,n

= dm,l1,ndm,l2,ndm,l3,n . Let Ck,l
↑ (Rd × �) denote the

space of functions f satisfying the following conditions: (i) f (x, θ) is an
R-valued function on Rd × � which is continuously differentiable with respect to
x up to order k for all θ , and for |n| = 0, 1, . . . , k, ∂n

x f (x, θ) is continuously dif-
ferentiable w.r.t. θ up to order l. (ii) For |n| = 0, . . . , k and for |ν| = 0, . . . , l,
supθ |∂n

x ∂ν
θ f (x, θ)| ≤ C(1 + |x |)C . Let F↑(Rd × �) be the space of R-valued mea-

surable functions f on Rd × � such that supθ | f (x, θ)| is at most polynomial growth
w.r.t. x .

In order to prove Theorem 1, we use the following lemma about large deviation
inequalities.

Lemma 1 Let m ∈ {1, 2, . . . , M}. Suppose that A1–A4 hold true. Then,

(i) for any L > 0, there exists a constant CL > 0 such that

Pθ∗ [|ûm,n| > r ] ≤ CL

r L

for all n ∈ N and r > 0. Moreover, supn E[|ûm,n|µ] < ∞ for all µ > 0.
(ii) for any continuous function f of at most polynomial growth, as n → ∞,

Eθ∗ [ f (ûm,n)] → E[ f (Gm)],

where Gm is the (pm + qm)-dimensional Gaussian random variable with mean
0 and covariance matrix I −1

m (θm,0).
(iii) ûm,n = I −1

m (θm,0)∂θm ĝm,n(θm,0) + Rm,n, where for any E0 ∈ (0, ε2
0/2) and

E1 ≥ 1, as n → ∞,

Pθ∗
[
|Rm,n| > n−E0

]
= O(1/nE1).

Proof For simplicity, we fix m and consider the following stochastic differential
equation

dXt = b(Xt , α)dt + σ(Xt , β)dwt , t ∈ [0, T ], X0 = x0, (8)

where b is an Rd -valued function defined on Rd × �α , σ is an Rd ⊗ Rd -valued
function defined on Rd × �β , w is a d-dimensional standard Wiener process, x0 is a
deterministic initial condition, �α and �β are, respectively, bounded domains in Rp

and Rq with a locally Lipschitz boundary, and θ = (α, β) ∈ �α × �β = �. Let
θ∗ = (α∗, β∗) denote the true value of θ and we assume that θ∗ ∈ �. Here, we note
that for the model (8), A1–A4 are satisfied. Moreover, since m is fixed, for the notation
with m stated above, the suffix m is omitted, for example, gn = gm,n , I (θ∗) = Im(θ∗),
di,n = dm,i,n and ∂i = ∂m,i .

Let ε1 = ε0/2. For stationary ergodic diffusion processes, both (i) and (ii) have
been proved in Section 6 of Yoshida (2005). Even if we do not assume stationarity,
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we can show (i) and (ii) by the analogous argument as the proof of Yoshida (2005).
For the proofs of (i) and (ii), we need to show that for f ∈ C1,1

↑ (Rd × �) and for any
µ > 1,

sup
n

Eθ∗

[(
sup
θ

nε1

∣∣∣∣∣
1

n

n∑
k=1

f (Xtn
k−1

, θ) −
∫

Rd
f (x, θ)µθ∗(dx)

∣∣∣∣∣

)µ]
< ∞. (9)

For the proof of (9), we set that g(x, θ) = f (x, θ)−∫Rd f (x, θ)µθ∗(dx) and Gn(θ) =
1
n

∑n
k=1 g(Xtn

k−1
, θ). By Theorem 1 in Pardoux and Veretennikov (2001), under

A1–A2, there exist G f (x, θ), ∂i G f (x, θ) ∈ F↑(Rd × �) such that Lθ G f (x, θ) =
g(x, θ), where Lθ = ∑d

i, j=1 �(x, β)i j∂xi ∂x j + ∑d
i=1 b(x, α)i∂xi . Since it follows

from Itô’s formula that G f (Xt , θ)−G f (X0, θ) = ∫ t
0 g(Xs, θ)ds+∫ t

0 (∂x G f )
�(Xs, θ)

σ (Xs, β)dwt , noting that nε1 = nε0/2 ≤ (nhn)1/2, one has that for any µ > 1,

Eθ∗
[
nε1µ |Gn(θ)|µ] ≤ C

nε1µ

nhn

n∑
k=1

∫ tn
k

tn
k−1

Eθ∗
[∣∣∣ f (Xs, θ) − f

(
Xtn

k−1
, θ
)∣∣∣

µ]
ds

+ C
nε1µ

(nhn)µ
Eθ∗

[|G f (XT , θ)|µ + |G f (X0, θ)|µ]

+ C
nε1µ

(nhn)µ
T µ/2−1

∫ T

0
Eθ∗

[|(∂x G f )
�(Xs, θ)σ (Xs, β)|µ] ds

≤ C

(
nε1µhµ/2

n + nε1µ

(nhn)µ
+ nε1µ

(nhn)µ/2

)
< ∞.

Thus, supn supθ Eθ∗ [nε1µ|Gn(θ)|µ] < ∞ for any µ > 1. In the same way, supn supθ

Eθ∗ [nε1µ|∂θGn(θ)|µ] < ∞ for any µ > 1. By the Sobolev inequality,

Eθ∗
[

sup
θ

∣∣nε1Gn(θ)
∣∣µ
]

≤ C�

{
sup
θ

Eθ∗
[∣∣nε1Gn(θ)

∣∣µ]+ sup
θ

Eθ∗
[∣∣nε1∂θGn(θ)

∣∣µ]
}

for µ > p + q, and consequently, one has supn Eθ∗
[
supθ |nε1Gn(θ)|µ] < ∞ for

µ > p + q, which completes the proof of (9). Following the proof of Section 6 in
Yoshida (2005) with the estimate (9), we can show (i) and (ii).

(iii) Let Bn = {|θ̂n − θ∗| ≤ n−β0} for β0 ∈ (0, ε0/2). By noting that nhn ≥ nε0 ,
Lemma 1–(i) yields that

Pθ∗
[∣∣θ̂n − θ∗∣∣ > n−β0

]
≤ Pθ∗

[∣∣∣
√

nhn(θ̂n − θ∗)
∣∣∣ >

√
nhnn−β0

]

≤ Pθ∗
[∣∣ûn

∣∣ > nε0/2−β0
]

= O

(
1

n(ε0/2−β0)L

)
. (10)

By an easy computation,
∑p+q

j=1 I (θ∗)i j û j,n1Bn = ∂ ĝi,n1Bn + R(1)
i,n 1Bn + R(2)

i,n 1Bn ,

where Q(1)
i, j,n = (d2

i, j,n∂2
i, j gn(θ

∗) + I (θ∗)i j )û j,n , Q(2)
i, j,l,n = d3

i, j,l,n

∫ 1
0 ∂3

i, j,l gn(θ
∗ +
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t (θ̂n −θ∗))dt û j,nûl,n , R(1)
i,n =∑p+q

j=1 Q(1)
i, j,n and R(2)

i,n =∑p+q
j,l=1 Q(2)

i, j,l,n . First, we esti-

mate R(1)
i,n . Noting that nε0 ≤ nhn , one has that for i = 1, . . . , p and E0 ∈ (0, ε2

0/2),

Pθ∗
[∣∣∣R(1)

i,n 1Bn

∣∣∣ > n−E0
]

≤ Pθ∗

⎡
⎣
∣∣∣∣∣∣

p∑
j=1

(nhn)ε1

(
1

nhn
∂2

i, j gn(θ
∗) + I (θ∗)i j

)
û j,n

∣∣∣∣∣∣
>

nε0ε1−E0

2

⎤
⎦

+Pθ∗

⎡
⎣
∣∣∣∣∣∣

p+q∑
j=p+1

nε1

(
1

n
√

hn
∂2

i, j gn(θ
∗)
)

û j,n

∣∣∣∣∣∣
>

nε1−E0

2

⎤
⎦ .

Lemma 1–(i) together with a version of (9) yields that for any µ > 1 and for i =
1, . . . , p,

sup
n

Eθ∗

⎡
⎣
∣∣∣∣∣∣

p∑
j=1

(nhn)ε1

(
1

nhn
∂2

i, j gn(θ
∗) + I (θ∗)i j

)
û j,n

∣∣∣∣∣∣

µ⎤
⎦ < ∞,

sup
n

Eθ∗

⎡
⎣
∣∣∣∣∣∣

p+q∑
j=p+1

nε1

(
1

n
√

hn
∂2

i, j gn(θ
∗)
)

û j,n

∣∣∣∣∣∣

µ⎤
⎦ < ∞.

Therefore, setting that E1 = (ε0ε1 − E0)µ, one has that for µ ≥ 1/(ε0ε1 − E0),

Pθ∗
[∣∣∣R(1)

i,n 1Bn

∣∣∣ > n−E0
]

= O

(
1

n(ε0ε1−E0)µ

)
= O

(
1

nE1

)

for i = 1, . . . , p. In the same argument as above, we obtain that for i = p + 1, . . . ,

p + q, Pθ∗
[∣∣∣R(1)

i,n 1Bn

∣∣∣ > n−E0

]
= O

(
1

nE1

)
.

Next, in order to estimate R(2)
i,n , note that

Pθ∗
[∣∣∣R(2)

i,n 1Bn

∣∣∣ > n−E0
]

≤ Pθ∗

⎡
⎣

p∑
j,l=1

∣∣∣Q(2)
i, j,l,n1Bn

∣∣∣ > n−E0

4

⎤
⎦+ Pθ∗

⎡
⎣

p∑
j=1

p+q∑
l=p+1

∣∣∣Q(2)
i, j,l,n1Bn

∣∣∣ > n−E0

4

⎤
⎦

+ Pθ∗

⎡
⎣

p+q∑
j=p+1

p∑
l=1

∣∣∣Q(2)
i, j,l,n1Bn

∣∣∣ > n−E0

4

⎤
⎦+ Pθ∗

⎡
⎣

p+q∑
j,l=p+1

∣∣∣Q(2)
i, j,l,n1Bn

∣∣∣ > n−E0

4

⎤
⎦ .
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Using the standard estimates and the Sobolev inequality, it is easy to show that for
µ > p + q,

sup
n

Eθ∗

⎡
⎣
⎛
⎝

p∑
i, j,l=1

1

nhn
sup
θ

∣∣∣∂3
i, j,l gn(θ)

∣∣∣
⎞
⎠

µ⎤
⎦ < ∞,

sup
n

Eθ∗

⎡
⎣
⎛
⎝

p∑
i, j=1

p+q∑
l=p+1

1

n
√

hn
sup
θ

∣∣∣∂3
i, j,l gn(θ)

∣∣∣
⎞
⎠

µ⎤
⎦ < ∞,

sup
n

Eθ∗

⎡
⎣
⎛
⎝

p+q∑
i=1

p+q∑
j,l=p+1

1

n
sup
θ

∣∣∣∂3
i, j,l gn(θ)

∣∣∣
⎞
⎠

µ⎤
⎦ < ∞.

Thus, by the analogous argument as R(1)
i,n , we have that Pθ∗

[∣∣∣R(2)
i,n 1Bn

∣∣∣ > n−E0

]
=

O
(

1
nE1

)
. By Lemma 1–(i), we can take L in (10) satisfying that (ε0/2 − β0)L/2 −

2E0 > 1. By setting E1 = (ε0/2 − β0)L/2 − 2E0,

Pθ∗

⎡
⎣
∣∣∣∣∣∣

p+q∑
j=1

I (θ∗)i j û j,n1Bc
n

∣∣∣∣∣∣
> n−E0

⎤
⎦ = O

(
1

n(ε0/2−β0)L/2−2E0

)
= O

(
1

nE1

)
,

Pθ∗
[∣∣∂ ĝi,n1Bc

n

∣∣ > n−E0
]

= O

(
1

nE1

)
.

Since
∑p+q

j=1 I (θ∗)i j û j,n =∂ ĝi,n+R̃i,n and R̃i,n =∑p+q
j=1 I (θ∗)i j û j,n1Bc

n
−∂ ĝi,n1Bc

n
+

R(1)
i,n 1Bn + R(2)

i,n 1Bn for i = 1, . . . , p + q, one has

ûi,n =
p+q∑
j=1

(I −1(θ∗))i j

(
∂ ĝ j,n + R̃ j,n

)
,

which completes the proof. �

In order to estimate moments for derivatives of log likelihood function w.r.t. θ ,

we will use the Malliavin calculus. For this purpose, we briefly review the Malliavin
calculus and present several basic properties used in the proof of Lemma 2. For details
of the Malliavin calculus, see Malliavin (1997) and Nualart (2006). For the use of
the Malliavin calculus techniques in statistics, we can refer to Yoshida (1992a, 1997,
2004), Gobet (2001, 2002) and Sakamoto and Yoshida (2004).

Fix a filtered probability space (
,F , (Ft ), P) and let (Wt )t≥0 be a d-dimensional
Wiener process. For h(·) ∈ H = L2([0, T ]; Rd), denote by W (h) the Wiener sto-
chastic integral

∫ T
0 h(t) · dWt . Let S be the space of random variables of the form

F = f (W (h1), . . . , W (hN )), where f is a C∞-function with derivatives of at most
polynomial growth, (h1, . . . , hN ) ∈ H N and n ≥ 1. For F ∈ S, we define its

123



Contrast-based IC for diffusions 173

derivative DF = (Dt F)t∈[0,T ] as the H -valued random variable given by Dt F =∑N
i=1 ∂xi f (W (h1), . . . , W (hN ))hi (t). The operator D is closable as an operator from

L p(
) to L p(
; H), for any p ≥ 1. We denote its domain by D1,p, which means the
closure of S with respect to the norm ‖ F ‖1,p= [E(|F |p) + E(‖ DF ‖p

H )]1/p. We
can define the iteration of the operator D in such a way that for F ∈ S, the iterated
derivative Dk F is a random variable with values in H⊗k . Then, the seminorm on S
is defined by ‖ F ‖k,p= [E |F |p +∑k

j=1 E(‖ D j F ‖p
H⊗ j )]1/p for all p ≥ 1 and any

natural number k ≥ 1. As in the case that k = 1, the operator Dk is closable from
S ⊂ L p(
) into L p(
; H⊗k) for p ≥ 1. We define Dk,p as the completion of S with
respect to the norm ‖ · ‖k,p.

δ is the Skorohod integral defined by the adjoint operator of D as follows.

Definition 1 δ is a linear operator on L2([0, T ] × 
; Rd) with values in L2(
) such
that

(i) The domain of δ, denoted by Dom(δ), is the set of processes u ∈ L2([0, T ] ×

; Rd) such that for all F ∈ D1,2, E

[ ∫ T
0 Dt F · ut dt

] ≤ c ‖ F ‖L2 , where c is
some constant depending on u.

(ii) If u belongs to Dom(δ), then δ(u) is the element of L2(
) characterized by
E[Fδ(u)] = E

[ ∫ T
0 Dt F · ut dt

]
for all F ∈ D1,2.

Basic properties of δ used in this paper are as follows. For the proofs, see Nualart
(2006).

Proposition 1 (i) The space of weakly differentiable H-valued variables D1,2(H)

is included in Dom(δ).
(ii) For all k ≥ 1 and p > 1, the operator δ is continuous from Dk,p(H) into Dk−1,p.

In particular, in the case that k = 1, for p > 1,

‖ δ(u) ‖p≤ cp(‖ u ‖L p(
;H) + ‖ Du ‖L p(
;H⊗H)).

(iii) Let F ∈ D1,2. Then, for any u ∈ Dom(δ) such that E
[

F2
∫ T

0 |ut |2dt
]

< ∞,

one has

δ(Fu) = Fδ(u) −
∫ T

0
Dt F · ut dt, (11)

provided the right-hand side of (11) is square integrable.
(iv) Let u be an adapted process in L2([0, T ]×
; Rd). Then, the Skorohod integral

coincides with the Itô integral: δ(u) = ∫ T
0 ut dWt .

(v) For u ∈ D2,2(H), the following commutation relation holds:

Dt (δ(u)) = ut + δ(Dt u).

Next, we state the results on estimates of moments for derivatives of log likelihood
function w.r.t. θ .
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Lemma 2 Let m ∈ {1, 2, . . . , M}. Suppose that A1–A2 hold true. Then,

(i) for i = 1 . . . , pm + qm,

Eθ∗
[
∂m,i lm,n(θm,0)

] = 0.

(ii) for i, j = 1 . . . , pm + qm, as hn → 0, nhn → ∞ and nh2
n → 0,

Eθ∗
[
d2

m,i, j,n∂2
m,i, j lm,n(θm,0)

]
→ −(Im(θm,0))i j .

(iii) for i, j, l = 1 . . . , pm + qm and for any µ > 1, as hn → 0, nhn → ∞ and
nh2

n → 0,

Eθ∗

[
sup
θm

∣∣∣∣d3
m,i, j,l,n∂3

m,i, j,l lm,n(θm)

∣∣∣∣
µ
]

= o(1).

Proof As in the proof of Lemma 1, we fix m and consider the following stochastic
differential equation

dX θ
t = b

(
X θ

t , α
)

dt + σ
(
X θ

t , β
)

dWt , t ∈ [0, T ], X θ
0 = x0, (12)

where W is a d-dimensional standard Wiener process independent of w and the oth-
ers are the same as (8). In what follows, for the process with the true value θ∗, the
suffix θ∗ of the process is omitted, for example, Xt = X θ∗

t . We denote by D j
t F ,

t ∈ [0, T ], j = 1, . . . , d, the derivative of a random variable F as an element of
L2([0, T ]×
; Rd) � L2(
; H). Similarly, we denote by D j1,..., jN

t1,...,tN
F the N th deriva-

tive of F . Under A1, X θ
t is differentiable with respect to x0, α and β, see Kunita (1984)

or Jacod (2006). Let Y θ
t be the Jacobian matrix ∂ Xθ

t
∂x0

. Under A1, for any t ≥ 0, X θ
t , Y θ

t

and (Y θ
t )−1 belong to

⋂
p≥1 D4,p, see Section 2.2 of Nualart (2006). Furthermore, for

any µ > 1 and for N = 1, 2, 3, 4,

Eθ

[
sup

0≤t≤1
‖ Z θ

t ‖µ

∣∣∣∣∣ X0 = x

]

+ sup
r1,...,rN ∈[0,1]

Eθ

[
sup

r1∨...∨rN ≤t≤1
‖ Dr1,...,rN Z θ

t ‖µ

∣∣∣∣∣ X0 = x

]
= R(θ, 1, x) (13)

for Z θ
t = X θ

t , Y θ
t or (Y θ

t )−1, where R(θ, a, x) is a real-valued function on �×(0, 1]×
Rd for which there exists a constant C such that |R(θ, a, x)| ≤ aC(1 + |x |)C for all
θ, a, x . Let i, j, l, m ∈ {1, . . . , p} and i ′, j ′, l ′, m′ ∈ {1, . . . , q}. By using the standard
estimates in Section 3.1 of Jacod (2006), we obtain that for any µ > 1,

Eθ

[
sup

0≤t≤hn

‖ Z (α)
t ‖µ

∣∣∣∣∣ X0 = x

]
= R

(
θ, hµ

n , x
)

(14)

123



Contrast-based IC for diffusions 175

for Z (α)
t = ∂αi X θ

t , ∂αi ∂α j X θ
t , ∂αi ∂α j ∂αl X θ

t or ∂αi ∂α j ∂αl ∂αm X θ
t . Similarly, one has that

for any µ > 1,

Eθ

[
sup

0≤t≤hn

∥∥∥Z (β)
t

∥∥∥
µ

∣∣∣∣∣ X0 = x

]
= R

(
θ, hµ/2

n , x
)

(15)

for Z (β)
t = ∂βi ′ X θ

t , ∂βi ′ ∂β j ′ X θ
t , ∂βi ′ ∂β j ′ ∂βl′ X θ

t or ∂βi ′ ∂β j ′ ∂βl′ ∂βm′ X θ
t , and that for any

µ > 1,

Eθ

[
sup

0≤t≤hn

∥∥∥Z (αβ)
t

∥∥∥
µ

∣∣∣∣∣ X0 = x

]
= R

(
θ, h3µ/2

n , x
)

(16)

for Z (αβ)
t = ∂αi ∂βi ′ X θ

t , ∂αi ∂α j ∂βi ′ X θ
t , ∂αi ∂βi ′ ∂β j ′ X θ

t , ∂αi ∂α j ∂αl ∂βi ′ X θ
t , ∂αi ∂α j ∂βi ′ ∂β j ′

X θ
t or ∂αi ∂βi ′ ∂β j ′ ∂βl′ X θ

t .

(i) By Proposition 2.2 in Gobet (2002),

∂θi p

p
(hn, x, y; θ) = Eθ

⎡
⎣ 1

hn

d∑
l1=1

δ
(
∂θi X θ

hn ,l1 · U θ
l1

)
∣∣∣∣∣∣

X θ
0 = x, X θ

hn
= y

⎤
⎦ , (17)

where U θ
l1

= (U θ
t,l1

)t∈[0,hn ] is the Rd -valued process whose l2-th component is U θ
t,l1,l2

= (σ−1(X θ
t , β)Y θ

t (Y θ
hn

)−1)l2l1 . Let Gk denote the history up to the time tn
k . Since

Eθ∗
[
∂θi p

p

(
hn, Xtn

k−1
, Xtn

k
; θ
)∣∣∣∣Gk−1

]

= Eθ

⎡
⎣ p

(
hn, X θ

0 , X θ
hn

; θ∗
)

p
(

hn, X θ
0 , X θ

hn
; θ
) 1

hn

d∑
l1=1

δ
(
∂θi X θ

hn ,l1 · U θ
l1

)
∣∣∣∣∣∣

X θ
0 = Xtn

k−1

⎤
⎦ (18)

and Eθ∗
[
δ(∂θi Xhn ,l1 · Ul1)

∣∣ X0 = x
] = 0 by the definition of δ, one has that Eθ∗

[ ∂θi p
p (hn, Xtn

k−1
, Xtn

k
; θ∗)] = 0, which completes the proof of (i).

(ii) In the same way as the proof of Proposition 4.1 in Gobet (2001),

∂θi ∂θ j p

p
(hn, x, y; θ) = Eθ

[
1

hn
�θ

1,i, j + 1

h2
n
�θ

2,i, j

∣∣∣∣ X θ
0 = x, X θ

hn
= y

]
, (19)

where �θ
1,i, j = ∑d

l1=1 δ(∂θi ∂θ j X θ
hn ,l1

· U θ
l1
) and �θ

2,i, j = ∑d
l1,l2=1 δ(δ(∂θi X θ

hn ,l1
·

∂θ j X θ
hn ,l2

· U θ
l1
)U θ

l2
). As in (i), one has Eθ∗

[ ∂θi ∂θ j p

p (hn, Xtn
k−1

, Xtn
k
; θ∗)

] = 0. There-
fore, it is enough to show that for any µ > 1,
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d2
i, j,n

n∑
k=1

∂θi p

p

∂θ j p

p

(
hn, Xtn

k−1
, Xtn

k
; θ∗)→p (I (θ∗))i j , (20)

lim sup
n→∞

Eθ∗

[∣∣∣∣∣d
2
i, j,n

n∑
k=1

∂θi p

p

∂θ j p

p

(
hn, Xtn

k−1
, Xtn

k
; θ∗)

∣∣∣∣∣
µ]

< ∞. (21)

For the proof of (20), we note that from (3.23) and (3.29) in Gobet (2002),

δ
(
∂αi X θ

hn ,l1 · U θ
l1

)

= hn[∂αi b(x, α)]l1
[
σ−2(x, β)

(
X θ

hn
− mθ (x)

)]
l1

+ H θ
1,i,l1 , (22)

δ
(
∂β j X θ

hn ,l1 · U θ
l1

)

=
[
(∂β j σ)σ−1(x, β)

(
X θ

hn
− mθ (x)

)]
l1

[
σ−2(x, β)(X θ

hn
− mθ (x))

]
l1

−
[
(∂β j σ)σ−1(x, β)V θ (x)σ−2(x, β)

]
l1l1

+ H θ
2, j,l1 , (23)

where mθ (x) = Eθ [X θ
hn

|X θ
0 = x], V θ (x) = Eθ [(X θ

hn
−mθ (x))(X θ

hn
−mθ (x))�|X θ

0 =
x], and Eθ [|H θ

1,i,l1
|µ|X0 = x]1/µ = R(θ, h2

n, x) and Eθ [|H θ
2, j,l1

|µ|X0 = x]1/µ =
R(θ, h3/2

n , x) for any µ > 1. By (17) and (22),

1

nhn

∂αi p

p

∂α j p

p
(hn, x, y; θ)

= 1

nh3
n

d∑
l1,l2=1

{
h2

nA(1)
i, j,l1,l2

(x, y; θ) + hnA(2)
i, j,l1,l2

(x, y; θ)

+hnA(2)
j,i,l2,l1

(x, y; θ) + A(3)
i, j,l1,l2

(x, y; θ)
}

,

where A(1)
i, j,l1,l2

(x, y; θ) = Ai,l1(x, y; θ)A j,l2(x, y; θ),

A(2)
i, j,l1,l2

(x, y; θ) = Ai,l1(x, y; θ)Eθ

[
H θ

1, j,l2

∣∣∣ X θ
0 = x, X θ

hn
= y

]
,

A(3)
i, j,l1,l2

(x, y; θ) = Eθ

[
H θ

1,i,l1

∣∣ X θ
0 = x, X θ

hn
= y

]
Eθ

[
H θ

1, j,l2

∣∣∣ X θ
0 = x, X θ

hn
= y

]
,

Ai,l1(x, y; θ) = [∂αi b(x, α)]l1
[
σ−2(x, β)(y − mθ (x))

]
l1

.

For any µ > 1,

Eθ∗

[∣∣∣∣∣
1

nh2
n

n∑
k=1

A(2)
i, j,l1,l2

(
Xtn

k−1
, Xtn

k
, θ∗)

∣∣∣∣∣
µ]

≤ C
1

nh2µ
n

n∑
k=1

hµ/2
n h2µ

n → 0, (24)
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Eθ∗

[∣∣∣∣∣
1

nh3
n

n∑
k=1

A(3)
i, j,l1,l2

(
Xtn

k−1
, Xtn

k
, θ∗)

∣∣∣∣∣
µ]

≤ C
1

nh3µ
n

n∑
k=1

h4µ
n → 0. (25)

Hence, one has that 1
nh2

n

∑n
k=1
∑d

l1,l2=1 A(2)
i, j,l1,l2

(
Xtn

k−1
, Xtn

k
, θ∗) = op(1)

and 1
nh3

n

∑n
k=1
∑d

l1,l2=1 A(3)
i, j,l1,l2

(Xtn
k−1

, Xtn
k
, θ∗) = op(1). Moreover,

1

nhn

n∑
k=1

Eθ∗

⎡
⎣

d∑
l1,l2=1

A(1)
i, j,l1,l2

(
Xtn

k−1
, Xtn

k
; θ∗)

∣∣∣∣∣∣
Gk−1

⎤
⎦ →p (Ib(θ

∗))i j ,

1

n2h2
n

n∑
k=1

Eθ∗

⎡
⎢⎣
⎛
⎝

d∑
l1,l2=1

A(1)
i, j,l1,l2

(Xtn
k−1

, Xtn
k
; θ∗)

⎞
⎠

2
∣∣∣∣∣∣∣
Gk−1

⎤
⎥⎦ →p 0.

Lemma 9 of Genon-Catalot and Jacod (1993) yields that

1

nhn

n∑
k=1

∂αi p

p

∂α j p

p

(
hn, Xtn

k−1
, Xtn

k
; θ∗)→p (Ib(θ

∗))i j .

In the same way, we obtain that

1

n

n∑
k=1

∂βi p

p

∂β j p

p

(
hn, Xtn

k−1
, Xtn

k
; θ∗) →p (Iσ (θ∗))i j ,

1

n
√

hn

n∑
k=1

∂αi p

p

∂β j p

p

(
hn, Xtn

k−1
, Xtn

k
; θ∗) →p 0,

and the proof of (20) is complete.
Next, we will show (21). By Proposition 1.2 in Gobet (2002), for any µ > 1, there

exist constants c > 1, K > 1 and r > 1 such that

sup
θ

Eθ∗
[∣∣∣∣

∂αi p

p
(hn, x, Xhn ; θ)

∣∣∣∣
µ∣∣∣∣ X0 = x

]
≤ K hµ/2

n exp
(
chn |x |2) (1 + |x |)r , (26)

sup
θ

Eθ∗
[∣∣∣∣

∂βi ′ p

p
(hn, x, Xhn ; θ)

∣∣∣∣
µ∣∣∣∣ X0 = x

]
≤ K exp

(
chn |x |2) (1 + |x |)r , (27)

for x ∈ Rd , 1 ≤ i ≤ p and 1 ≤ i ′ ≤ q. It follows from (26) that for any µ > 1,

Eθ∗

[∣∣∣∣∣
1

nhn

n∑
k=1

∂αi p

p

∂α j p

p

(
hn, Xtn

k−1
, Xtn

k
; θ∗)

∣∣∣∣∣
µ]

≤ C ′ sup
t

Eθ∗
[
exp
(

C ′hn|Xt |2
)]

.

123



178 M. Uchida

It follows from Proposition 1.1 in Gobet (2002) that for sufficiently large n satisfying
that C ′hn < c0/c2

1, supt Eθ∗ [exp(C ′hn|Xt |2)] < ∞, where c0 and c1 are defined in
A2. Therefore,

lim sup
n→∞

Eθ∗

[∣∣∣∣∣
1

nhn

n∑
k=1

∂αi p

p

∂α j p

p

(
hn, Xtn

k−1
, Xtn

k
; θ∗)

∣∣∣∣∣
µ]

< ∞

for any µ > 1. In the same way, it follows from (26) to (27) that for any µ > 1,

lim sup
n→∞

Eθ∗

[∣∣∣∣∣
1

n
√

hn

n∑
k=1

∂αi p

p

∂β j p

p

(
hn, Xtn

k−1
, Xtn

k
; θ∗)

∣∣∣∣∣
µ]

< ∞,

lim sup
n→∞

Eθ∗

[∣∣∣∣∣
1

n

n∑
k=1

∂βi p

p

∂β j p

p

(
hn, Xtn

k−1
, Xtn

k
; θ∗)

∣∣∣∣∣
µ]

< ∞.

Thus, one has (21), which completes the proof of (ii).
(iii) Let �θ

1,i, j,l = ∑d
l1=1 δ(∂θi ∂θ j ∂θl X θ

hn ,l1
· U θ

l1
), �̃θ

2,i, j,l = �θ
2,i, j,l + �θ

2,i,l, j +
�θ

2, j,l,i , �θ
2,i, j,l = ∑d

l1,l2=1 δ(δ(∂θi ∂θ j X θ
hn ,l1

· ∂θl X θ
hn ,l2

· U θ
l1
)U θ

l2
) and �θ

3,i, j,l =∑d
l1,l2,l3=1 δ(δ(δ(∂θi X θ

hn ,l1
· ∂θ j X θ

hn ,l2
· ∂θl X θ

hn ,l3
· U θ

l1
)U θ

l2
)U θ

l3
). As in (19),

∂θi ∂θ j ∂θl p

p
(hn, x, y; θ)

= Eθ

[
1

hn
�θ

1,i, j,l + 1

h2
n
�̃θ

2,i, j,l + 1

h3
n
�θ

3,i, j,l

∣∣∣∣ X θ
0 = x, X θ

hn
= y

]
. (28)

First, we estimate Eθ [|�θ
1,i, j |µ|X θ

0 = x] for i, j = 1, . . . , p and for any µ > 1,

where �θ
1,i, j is defined in (19). It follows from Proposition 1 that

δ
(
∂θi ∂θ j X θ

hn ,l1 · U θ
l1

) = ∂θi ∂θ j X θ
hn ,l1δ

(
U θ

l1

)−
∫ hn

0
Dr1∂θi ∂θ j X θ

hn ,l1 · U θ
l1,r1

dr1,

and using (13) and the estimate that Eθ

[∣∣∣δ(U θ
l1
)

∣∣∣
µ |X θ

0 = x
]

= R(θ, hµ/2
n , x), one

has that for any µ,µ1 > 1,

Eθ

[∣∣δ (∂θi ∂θ j X θ
hn ,l1 · U θ

l1

)∣∣µ |X θ
0 = x

]

≤ C

{
Eθ

[∣∣∂θi ∂θ j X θ
hn ,l1

∣∣µµ1 |X θ
0 = x

]1/µ1
R
(
θ, hµ/2

n , x
)
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+ hµ−1
n

∫ hn

0
Eθ

[∣∣Dr1∂θi ∂θ j X θ
hn ,l1

∣∣µµ1 |X θ
0 = x

]1/µ1 dr1 R(θ, 1, x)

}

= R
(
θ, h3µ/2

n , x
)

,

where in the last estimate, we used (14) and the following estimate that sup0≤r1≤hn
Eθ

[‖ Dr1∂θi ∂θ j X θ
hn

‖µ |X θ
0 = x] = R(θ, hµ

n , x). Thus, for any µ > 1 and for i, j =
1, . . . , p, Eθ [|�θ

1,i, j |µ|X θ
0 = x] = R(θ, h3µ/2

n , x).

Next, we estimate Eθ [|�θ
2,i, j |µ|X θ

0 = x] for i, j = 1, . . . , p and for any µ > 1.
By Proposition 1–(iii) and (v),

Eθ

[∣∣∣∣δ
(
δ
(
∂θi X θ

hn ,l1 · ∂θ j X θ
hn ,l2 · U θ

l1

)
U θ

l2

) ∣∣∣∣
µ∣∣∣∣X θ

0 = x

]

≤ C

⎧⎨
⎩Eθ

[∣∣∣δ (∂θi X θ
hn ,l1 · ∂θ j X θ

hn ,l2 · U θ
l1

)
δ(U θ

l2)

∣∣∣
µ∣∣∣X θ

0 = x
]

+Eθ

[∣∣∣∣
∫ hn

0
∂θi X θ

hn ,l1 · ∂θ j X θ
hn ,l2 · U θ

l1,r1
· U θ

l2,r1
dr1

∣∣∣∣
µ∣∣∣∣X θ

0 = x

]

+Eθ

[∣∣∣∣
∫ hn

0
δ
(Dr1

(
∂θi X θ

hn ,l1 · ∂θ j X θ
hn ,l2 · U θ

l1

)) · U θ
l2,r1

dr1

∣∣∣∣
µ∣∣∣∣X θ

0 = x

]⎫⎬
⎭ .

It follows from Proposition 1–(ii) that

Eθ

[∣∣δ (Dr1

(
∂θi X θ

hn ,l1 · ∂θ j X θ
hn ,l2 · U θ

l1

))∣∣µ |X θ
0 = x

]
= R

(
θ, h5µ/2

n , x
)

,

where we used (13), (14) and the estimates that supr1∈[0,hn ] Eθ [‖ Dr1∂θi X θ
hn

‖µ

|X0 = x] = R(θ, hµ
n , x) and that supr1,r2∈[0,hn ] Eθ

[‖Dr1,r2∂θi X θ
hn

‖µ
∣∣X0 = x

]= R(θ,

hµ
n , x). Furthermore, by using the previous arguments,

Eθ

[∣∣δ(δ(∂θi X θ
hn ,l1 · ∂θ j X θ

hn ,l2 · U θ
l1)U

θ
l2)
∣∣µ |X θ

0 = x
]

= R(θ, h3µ
n , x)

and Eθ [|�θ
2,i, j |µ|X θ

0 = x] = R(θ, h3µ
n , x) for any µ > 1 and for i, j = 1, . . . , p.

In the similar way as above, we obtain that for i = 1, . . . , p and j, l,= 1, . . . , p+q,
and for any µ > 1,

Eθ

[∣∣∣∣
1

hn
�θ

1,i, j

∣∣∣∣
µ

+
∣∣∣∣

1

h2
n
�θ

2,i, j

∣∣∣∣
µ∣∣∣∣ X θ

0 = x

]
= R

(
θ, hµ/2

n , x
)

,

Eθ

[∣∣∣∣
1

hn
�θ

1,i, j,l

∣∣∣∣
µ

+
∣∣∣∣

1

h2
n
�̃θ

2,i, j,l

∣∣∣∣
µ

+
∣∣∣∣

1

h3
n
�θ

3,i, j,l

∣∣∣∣
µ∣∣∣∣ X θ

0 = x

]
= R

(
θ, hµ/2

n , x
)

.
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Moreover, for i, j, l,= p + 1, . . . , p + q, and for any µ > 1,

Eθ

[∣∣∣∣
1

hn
�θ

1,i, j

∣∣∣∣
µ

+
∣∣∣∣

1

h2
n
�θ

2,i, j

∣∣∣∣
µ∣∣∣∣ X θ

0 = x

]
= R(θ, 1, x),

Eθ

[∣∣∣∣
1

hn
�θ

1,i, j,l

∣∣∣∣
µ

+
∣∣∣∣

1

h2
n
�̃θ

2,i, j,l

∣∣∣∣
µ

+
∣∣∣∣

1

h3
n
�θ

3,i, j,l

∣∣∣∣
µ∣∣∣∣ X θ

0 = x

]
= R(θ, 1, x).

By using the same argument as the proof of Proposition 1.2 in Gobet (2002), for
any µ > 1, there exist constants c > 1, K > 1 and r > 1 such that

sup
θ

Eθ∗
[∣∣∣∣

∂αi ∂θ j p

p
(hn, x, Xhn ; θ)

∣∣∣∣
µ∣∣∣∣ X0 = x

]
≤ K h

µ
2
n exp

(
chn |x |2) (1 + |x |)r , (29)

sup
θ

Eθ∗

[∣∣∣∣
∂βi ′ ∂β j ′ p

p
(hn, x, Xhn ; θ)

∣∣∣∣
µ
∣∣∣∣∣ X0 = x

]
≤ K exp

(
chn |x |2) (1 + |x |)r , (30)

sup
θ

Eθ∗
[∣∣∣∣

∂αi ∂θ j ∂θl p

p
(hn, x, Xhn ; θ)

∣∣∣∣
µ∣∣∣∣ X0 = x

]
≤ K h

µ
2
n exp

(
chn |x |2) (1 + |x |)r , (31)

sup
θ

Eθ∗

[∣∣∣∣
∂βi ′ ∂β j ′ ∂βl′ p

p
(hn, x, Xhn ; θ)

∣∣∣∣
µ
∣∣∣∣∣ X0 = x

]
≤ K exp

(
chn |x |2) (1 + |x |)r (32)

for x ∈ Rd , 1 ≤ i ≤ p, 1 ≤ j, l ≤ p + q and 1 ≤ i ′, j ′, l ′ ≤ q. It follows from (26)
and (29) that for any µ > 1,

lim sup
n→∞

sup
θ

Eθ∗

[∣∣∣∣∣
1

(nhn)3/2

n∑
k=1

∂αi ∂α j p

p

∂αl p

p

(
hn, Xtn

k−1
, Xtn

k
; θ
)∣∣∣∣∣

µ]
= 0.

By the analogous way, for i, j, l = 1, . . . , p + q, and for any µ > 1,

lim sup
n→∞

sup
θ

Eθ∗

[∣∣∣∣∣d
3
i, j,l,n

n∑
k=1

∂θi ∂θ j p

p

∂θl p

p

(
hn, Xtn

k−1
, Xtn

k
; θ
)∣∣∣∣∣

µ]
= 0, (33)

lim sup
n→∞

sup
θ

Eθ∗

[∣∣∣∣∣d
3
i, j,l,n

n∑
k=1

∂θi p

p

∂θ j p

p

∂θl p

p

(
hn, Xtn

k−1
, Xtn

k
; θ
)∣∣∣∣∣

µ]
= 0. (34)

Furthermore, it follows from (31) and (32) that for i, j = 1, . . . , p and for i ′, j ′, l ′ =
1, . . . , q,
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lim sup
n→∞

sup
θ

Eθ∗

[∣∣∣∣∣
1

n3/2hn

n∑
k=1

∂αi ∂α j ∂βi ′ p

p

(
hn, Xtn

k−1
, Xtn

k
; θ
)∣∣∣∣∣

µ]
= 0, (35)

lim sup
n→∞

sup
θ

Eθ∗

[∣∣∣∣∣
1

n3/2h1/2
n

n∑
k=1

∂αi ∂βi ′ ∂β j ′ p

p

(
hn, Xtn

k−1
, Xtn

k
; θ
)∣∣∣∣∣

µ]
= 0, (36)

lim sup
n→∞

sup
θ

Eθ∗

[∣∣∣∣∣
1

n3/2

n∑
k=1

∂βi ′ ∂β j ′ ∂βl′ p

p

(
hn, Xtn

k−1
, Xtn

k
; θ
)∣∣∣∣∣

µ]
= 0 (37)

for any µ > 1. Next, note that

Eθ

[∣∣∂αi ∂α j ∂αl X θ
hn ,l1 − hn[∂αi ∂α j ∂αl b(x, α)]l1

∣∣µ |X θ
0 = x

]
= R

(
θ, h3µ/2

n , x
)

and that by Proposition 1, δ(∂αi ∂α j ∂αl X θ
hn ,l1

· U θ
l1
) = ∂αi ∂α j ∂αl X θ

hn ,l1
δ(U θ

l1
) − ∫ hn

0 Dt

∂αi ∂α j ∂αl X θ
hn ,l1

·U θ
t,l1

dt. Moreover, it follows from the proof of (3.23) in Gobet (2002)

that Eθ [|δ(Ul1 − Ûl1)|µ|X θ
0 = x] = R(θ, hµ

n , x) and

Eθ

[∣∣∣∣δ
(

Û θ
l1

)
−
[
σ−2(x, β)

(
X θ

hn
− mθ (x)

)]
l1

∣∣∣∣
µ

|X θ
0 = x

]
= R

(
θ, hµ

n , x
)
,

where Û θ
l1

= (Û θ
t,l1

)t∈[0,hn ] is the Rd -valued process whose l2-th component is

Û θ
t,l1,l2

= (σ−1(X θ
t , β))l2l1 . Therefore, using (13) and the fact that

sup
0≤t≤hn

Eθ

[‖ Dt∂αi ∂α j ∂αl X θ
hn

‖µ |X θ
0 = x

] = R
(
θ, hµ

n , x
)
,

we obtain that �θ
1,i, j,l = hn M1,i, j,l(x, X θ

hn
; θ) + Hθ

1,i, j,l , where for any µ > 1,

Eθ [|Hθ
1,i, j,l |µ|X θ

0 = x]1/µ = R(θ, h2
n, x) and

M1,i, j,l(x, y; θ) =
d∑

l1=1

[∂αi ∂α j ∂αl b(x, α)]l1 [σ−2(x, β)(y − mθ (x))]l1 .

As in (18), for i, j, l = 1, . . . , p, and for any µ > 1,

Eθ∗

[∣∣∣∣∣
1

nhn

n∑
k=1

{
∂αi ∂α j ∂αl p

p

(
hn, Xtn

k−1
, Xtn

k
; θ
)

− M1,i, j,l

(
Xtn

k−1
, Xtn

k
; θ
)}∣∣∣∣∣

µ]

≤ C

nh4µ
n

n∑
k=1

Eθ∗

⎡
⎣ Eθ

⎡
⎣ p

(
hn, X θ

0 , X θ
hn

; θ∗
)

p
(
hn, X0, Xhn ; θ

)
∣∣∣�θ

3,i, j,l

∣∣∣
µ

∣∣∣∣∣∣
X θ

0 = Xtn
k−1

⎤
⎦
⎤
⎦
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+ C

nh3µ
n

n∑
k=1

Eθ∗

⎡
⎣ Eθ

⎡
⎣ p

(
hn, X θ

0 , X θ
hn

; θ∗
)

p
(
hn, X0, Xhn ; θ

)
∣∣∣�̃θ

2,i, j,l

∣∣∣
µ

∣∣∣∣∣∣
X θ

0 = Xtn
k−1

⎤
⎦
⎤
⎦

+ C

nh2µ
n

n∑
k=1

Eθ∗

⎡
⎣ Eθ

⎡
⎣ p

(
hn, X θ

0 , X θ
hn

; θ∗
)

p
(
hn, X0, Xhn ; θ

)
∣∣∣Hθ

1,i, j,l

∣∣∣
µ

∣∣∣∣∣∣
X θ

0 = Xtn
k−1

⎤
⎦
⎤
⎦ .

From the result in the proofs of (1.8)–(1.9) in Gobet (2002),

sup
θ

Eθ

⎡
⎢⎣
∣∣∣∣∣∣

p
(

hn, x, X θ
hn

; θ∗
)

p
(

hn, x, X θ
hn

; θ
)
∣∣∣∣∣∣

µ1
∣∣∣∣∣∣∣

X θ
0 = x

⎤
⎥⎦ ≤ C exp

(
Chn|x |2

)

for µ1 closed to 1 and for some C > 1. Moreover, we note that for any µ > 1,
Eθ [|�θ

3,i, j,l |µ|X θ
0 = x] = R(θ, h9µ/2

n , x) and Eθ [|�̃θ
2,i, j,l |µ|X θ

0 = x] = R(θ, h3µ
n , x)

for 1 ≤ i, j, l ≤ p. It follows from the Burkholder inequality that lim supn→∞ supθ

Eθ∗ [| 1
nhn

∑n
k=1
∑d

l1=1 M1,i, j,l,l1(Xtn
k−1

, Xtn
k
; θ)|µ] < ∞ for any µ > 1. Therefore,

lim sup
n→∞

sup
θ

Eθ∗

[∣∣∣∣∣
1

nhn

n∑
k=1

∂αi ∂α j ∂αl p

p

(
hn, Xtn

k−1
, Xtn

k
; θ
)∣∣∣∣∣

µ]
< ∞ (38)

for any µ > 1. By (35)–(38), one has that for i, j, l = 1, . . . , p+q and for any µ > 1,

lim sup
n→∞

sup
θ

Eθ∗

[∣∣∣∣∣d
3
i, j,l,n

n∑
k=1

∂θi ∂θ j ∂θl p

p

(
hn, Xtn

k−1
, Xtn

k
; θ
)∣∣∣∣∣

µ]
= 0. (39)

From (33), (34) and (39), lim supn→∞ supθ Eθ∗ [|d3
i, j,l,n∂3

i, j,l ln(θ)|µ] = 0 for i, j, l =
1, . . . , p + q and for any µ > 1. By the analogous techniques with the proofs of
(33)–(38), it follows that for i, j, l, m = 1, . . . , p + q, and for any µ > 1,

lim sup
n→∞

sup
θ

Eθ∗

[∣∣∣∣∣d
3
i, j,l,n

n∑
k=1

∂θm

(
∂θi p

p

∂θ j p

p

∂θl p

p

)(
hn, Xtn

k−1
, Xtn

k
; θ
)∣∣∣∣∣

µ]
= 0.

lim sup
n→∞

sup
θ

Eθ∗

[∣∣∣∣∣d
3
i, j,l,n

n∑
k=1

∂θm

(
∂θi ∂θ j p

p

∂θl p

p

)(
hn, Xtn

k−1
, Xtn

k
; θ
)∣∣∣∣∣

µ]
= 0,

lim sup
n→∞

sup
θ

Eθ∗

[∣∣∣∣∣d
3
i, j,l,n

n∑
k=1

∂θm

(
∂θi ∂θ j ∂θl p

p

)(
hn, Xtn

k−1
, Xtn

k
; θ
)∣∣∣∣∣

µ]
= 0.

Thus, we obtain that lim supn→∞ supθ Eθ∗ [|d3
i, j,l,n∂4

i, j,l,mln(θ)|µ] = 0 for any µ > 1
and for i, j, l, m = 1, . . . , p + q. The Sobolev inequality implies that for µ > p + q,
lim supn→∞ Eθ∗ [supθ |d3

i, j,l,n∂3
i, j,l ln(θ)|µ] = 0. This completes the proof.
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Proof of Theorem 1. It follows from (10) that Pθ∗ [Bc
m,n] = O( 1

n(ε0/2−β0)L ), where

Bm,n = {|θ̂m,n−θm,0| ≤ n−β0} forβ0 ∈ (0, ε0/2). Setting BIAS(m)=gm,n(θ̂m,n(Xn))

−gm,n(θm,0)+EZn [lm,n(Zn, θm,0)]−EZn [lm,n(Zn, θ̂m,n(Xn))], one has that IC(Xn, m)

− EL(Xn, m) = BIAS(m)1Bm,n + BIAS(m)1Bc
m,n

− dim(�m). The Hölder inequality
implies that for µ > 1,

Eθ∗ [|BIAS(m)1Bc
m,n

|]

≤ 2Eθ∗

[
sup
θm

∣∣∣∣gm,n(θm) + nd

2
log(2πhn)

∣∣∣∣
µ
]1/µ

Pθ∗
[
Bc

m,n

]1−1/µ

+2EZn

[
sup
θm

∣∣∣∣lm,n(Zn, θm) + nd

2
log(hn)

∣∣∣∣
µ
]1/µ

Pθ∗
[
Bc

m,n

]1−1/µ
.

From Proposition 1.2 in Gobet (2002), we obtain that for some positive constants K
and c,

sup
θm

∣∣∣∣log pm(hn, x, y; θm) + d

2
log(hn)

∣∣∣∣ ≤ K + c|x − y|2
hn

+ chn|x |2,

and consequently, for sufficiently large L > 0,

EZn

[
sup
θm

∣∣∣∣lm,n(Zn, θm) + nd

2
log(hn)

∣∣∣∣
µ
]1/µ

Pθ∗
[
Bc

m,n

]1−1/µ

= O

(
1

n(ε0/2−β0)L(1−1/µ)−1

)
= o(1)

for µ > 1. In the similar way,

Eθ∗

[
sup
θm

∣∣∣∣gm,n(θm) + nd

2
log(2πhn)

∣∣∣∣
µ
]1/µ

Pθ∗
[
Bc

m,n

]1−1/µ = o(1)

and we obtain that Eθ∗ [|BIAS(m)1Bc
m,n

|] = o(1). Hence,

Eθ∗ [IC(Xn, m) − EL(Xn, m)] = Eθ∗ [ξm,n − ηm,n] − dim(�m) + o(1),

where ξm,n =
(

gm,n(θ̂m,n(Xn)) − gm,n(θm,0)
)

1Bm,n and

ηm,n =
(

EZn [lm,n(Zn, θ̂m,n(Xn))] − EZn [lm,n(Zn, θm,0)]
)

1Bm,n .
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By the Taylor expansion, one has that ξm,n = ξ
(1)
m,n + ξ

(2)
m,n + ξ

(3)
m,n and ηm,n =

η
(1)
m,n + η

(2)
m,n + η

(3)
m,n, where θ̃m,t = θm,0 + t (θ̂m,n − θm,0),

ξ (1)
m,n =

pm+qm∑
l1=1

dm,l1,n(∂m,l1 gm,n)(θm,0)ûm,l1,n1Bm,n ,

ξ (2)
m,n = 1

2

pm+qm∑
l1,l2=1

d2
m,l1,l2,n

(
∂2

m,l1,l2 gm,n

)
(θm,0)

2∏
m=1

ûm,lm ,n1Bm,n ,

ξ (3)
m,n = 1

2

pm+qm∑
l1,l2,l3=1

∫ 1

0
(1 − t)2d3

m,l1,l2,l3,n

(
∂3

m,l1,l2,l3 gm,n

)
(θ̃m,t )dt

3∏
i=1

ûm,li ,n1Bm,n ,

η(1)
m,n =

pm+qm∑
l1=1

EZn [dm,l1,n(∂m,l1ln)(Zn, θm,0)]ûm,l1,n1Bm,n ,

η(2)
m,n = 1

2

pm+qm∑
l1,l2=1

EZn

[
d2

m,l1,l2,n

(
∂2

m,l1,l2lm,n

)
(Zn, θm,0)

] 2∏
i=1

ûm,li ,n1Bm,n ,

η(3)
m,n = 1

2

pm+qm∑
l1,l2,l3=1

EZn

[∫ 1

0
(1 − t)2d3

m,l1,l2,l3,n

(
∂3

m,l1,l2,l3lm,n

)
(Zn, θ̃m,t )dt

]

×
3∏

i=1

ûm,li ,n1Bm,n .

We first estimate the moment of ξ
( j)
m,n for j = 1, 2, 3. Let Am,n = {|Rm,n| ≤ n−E0}

for E0 ∈ (0, ε2
0/2), where Rm,n is defined in Lemma 1–(iii). It then follows that

ξ (1)
m,n1Am,n =

pm+qm∑
l1,l2=1

∂ ĝm,l1,n

(
I −1
m (θm,0)

)
l1l2

∂ ĝm,l2,n1Bm,n 1Am,n

+
pm+qm∑
l1=1

∂ ĝm,l1,n Rm,l1,n1Bm,n 1Am,n ,

where ∂ ĝm,l1,n = dm,l1,n(∂m,l1 gm,n)(θm,0). Note that 1Am,n →p 1, 1Bm,n →p 1, and

we obtain that
∑pm+qm

l1,l2=1 ∂ ĝm,l1,n(I −1
m (θm,0))l1l2∂ ĝm,l2,n →p dim(�m), lim supn→∞

Eθ∗ [|∂ ĝm,l1,n|µ] < ∞, and Eθ∗ [|Rm,l1,n|µ1Am,n ] = O(n−µE0) for any µ > 1. There-

fore, one has that Eθ∗[ξ (1)
m,n1Am,n]→dim(�m). Lemma 1 yields that Eθ∗ [|ξ (1)

m,n1Ac
m,n

|] =
o(1). Thus, Eθ∗ [ξ (1)

m,n] = dim(�m)+o(1). Next, it is easy to show that d2
m,l1,l2,n

(∂2
m,l1,l2

gm,n)(θm,0) + (Im(θm,0))l1l2 = op(1), for µ > 1, lim sup
n→∞

Eθ∗ [|d2
m,l1,l2,n(∂2

m,l1,l2 gm,n)
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(θm,0)|µ] < ∞ and

Eθ∗

⎡
⎣

pm+qm∑
l1,l2=1

(Im(θm,0))l1l2

2∏
i=1

ûm,li ,n1Bm,n

⎤
⎦ = dim(�m) + o(1).

Consequently, Eθ∗ [ξ (2)
m,n] = − 1

2 dim(�m) + o(1). It follows from the standard argu-
ments that lim supn→∞ supθm

Eθ∗ [|d3
m,l1,l2,l3,n

(∂3
m,l1,l2,l3

gm,n)(θm)|µ] = o(1) and

lim supn→∞ supθm
Eθ∗ [|d3

m,l1,l2,l3,n
(∂4

m,l1,l2,l3,l4
gm,n)(θm)|µ] = o(1). Lemma 1 toge-

ther with Sobolev’s inequality yields that Eθ∗ [|ξ (3)
m,n|] = o(1).

Finally, we consider the estimates of Eθ∗ [η( j)
m,n] for j = 1, 2, 3. Lemmas 1 and 2

yield that Eθ∗ [ûm,l1,n1Bm,n ] = o(1) and EZn [dm,l1,n(∂m,l1ln)(Zn, θm,0)] = 0. Thus,

we obtain that Eθ∗ [η(1)
m,n] = o(1). For the estimate of Eθ∗ [η(2)

m,n], Lemma 2 implies that
EZn [d2

m,l1,l2,n
(∂2

m,l1,l2
lm,n)(Zn, θm,0)] → −(Im(θm,0))l1l2 . Moreover, Lemma 1 yields

that Eθ∗
[∏2

m=1 ûm,lm ,n1Bm,n

]→ (I −1
m (θm,0))l1l2 . Thus, Eθ∗

[
η

(2)
m,n
] = − 1

2 dim(�m)+
o(1). Since it follows from Lemmas 1 and 2 that lim supn→∞ Eθ∗

[|∏3
i=1 ûm,li ,n|µ] <

∞ and that

EZn

[(
d3

m,l1,l2,l3,n sup
θm

∣∣∣
(
∂3

m,l1,l2,l3lm,n

)
(Zn, θm)

∣∣∣
)µ]

= o(1),

one has that Eθ∗ [|η(3)
m,n|] = o(1). This completes the proof.
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