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Abstract Inferences about the evolutionary history of biological sequence data are
greatly influenced by the presence of recombination, that tends to disrupt the phy-
logenetic signal. Current recombination detection procedures focus on the phyloge-
netic disagreement of the data along the aligned sequences, but only recently the link
between the quantification of this disagreement and the strength of the recombination
was realised. We previously described a hierarchical Bayesian procedure based on the
distance between topologies of neighbouring sites and a Poisson-like prior for these
distances. Here, we confirm the improvement provided by this topology distance and
its prior over existing methods that neglect this information by analysing datasets sim-
ulated under a complex evolutionary model. We also show how to obtain a mosaic
structure representative of the posterior sample based on a newly developed centroid
method.
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1 Introduction

The main assumption of evolutionary theory is that the history of extant species can
be traced back to one common ancestor in the past, through the process of speciation
and extinction. In practice this usually amounts to representing the coalescence of
individuals by a phylogenetic tree where leaves indicate the genotypes of extant taxa
and internal nodes represent the ancestral forms. While this representation is certainly
valid for one site, there are many cases where distinct sites do not share the same
phylogeny. For example, in diploid populations each site came from one of the possi-
ble parents, and by crossing over distant sites may have distinct parents, in a manner
dependent on the distance between the sites. Even haploid populations are subject
to this disruptive force whereby distinct genomic regions support different phyloge-
netic trees. Examples include horizontal gene transfers, gene reassortment and viral
recombination.

When the sequences are subjected to recombination, the amount of recombination
(compared to the contribution of preserved mutations) will dictate if it is possible to
reconstruct the phylogenetic history of the sequences. If recombination is rampant,
then we should assume that each site has an independent evolutionary history, in which
case the population genetic approach is more appropriate to describe the recombina-
tional signal (Posada 2002; Awadalla 2003). Population genetic methods treat the
individual phylogenetic trees as nuisance parameters, estimating population param-
eters that are averaged over all possible histories. The same applies whenever the
recombination rate is higher than the substitution rate. On the other hand, if some
phylogenetic signal is preserved we can detect recombination by a change in the
underlying phylogenies. These phylogenies, nonetheless, have information about the
recombinational process that most methods neglect, namely the minimum number of
recombinations for a given break-point.

In this scenario the number of distinct topologies is not known in advance, and
modelling directly the number of recombination breakpoints—the border between
sequence regions supporting distinct topologies—generates a model with variable
dimension. Previous attempts to infer the location of recombination breakpoints under
a Bayesian framework have employed a reversible-jump MCMC strategy to cope with
the variable number of phylogenetic segments and evolutionary model parameters,
assuming a multiple change-point model (Suchard et al. 2003; Minin et al. 2005). Our
strategy, instead, assumes that each site harbours a potentially distinct topology and
model parameters independent of other sites. The dimensionality of the model (num-
ber of model parameters) is then constant and proportional to the number of sites, even
when several of these parameters share the same value.

However, we employ a prior distribution on the distance between neighbouring
sites that reflects the amount of recombination between neighbouring regions. These
distances are analogous to latent variables, indicative of the homogeneity of the param-
eter values (Gelman 2004)—in our case, the topologies. This distance between the
topologies facilitates the detection of recombination in the sense that fewer recom-
binations on the same break-point are more likely to occur, a priori, than many
recombinations. This information was not given enough importance until recently
(de Oliveira Martins et al. 2008). This same “parsimonious” recombination scenario
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allows us to build an efficient Bayesian hierarchical procedure amenable to MCMC
simulation.

In the present paper we make a systematic comparison between our most com-
plex model and two of its special cases, namely neglecting the topological distance
between segments and assuming a fixed penalty value for the prior over distances. For
this comparison we use more complicated models than before, taking into account
the variability in informativeness of sites. We also develop here a algorithm to sum-
marise the distribution of break-points, in order to elect a centroid representative of
the sample of mosaic structures. This sheds light on the question of how to compare
samples exhibiting not only different break-point locations but also distinct number
of break-points. Furthermore, we describe in detail the mini-sampler strategy adopted
in the MCMC simulation to allow a better exploitation of the topological parameter
space.

2 Methods

In the standard evolutionary likelihood model, the nucleotide substitution process at
a given site is described by a continuous-time Markov chain and a phylogenetic tree
describing the ancestral relations between extant taxa (Felsenstein 1981). We assume
that the infinitesimal substitution probability matrix Q for the Markov chain follows
the Hasegawa-Kishino-Yano (HKY) model (Hasegawa et al. 1985):

Q =

⎛
⎜⎜⎝

T C A G

T 1 − κπC − πR κπC πA πG

C κπT 1 − κπT − πR πA πG

A πT πC 1 − κπG − πY κπG

G πT πC κπA 1 − κπA − πY

⎞
⎟⎟⎠

(1)

where the parameter κ is the transition:transversion ratio between purines and pyrim-
idines, π = (πT , πC , πA, πG) is the vector of equilibrium frequencies of each base
and πY = πC +πT , πR = πA +πG . This matrix satisfies the reversibility condition,
since πi Qi j = π j Q ji . The probability P(y | x, t, κ,π) of going from state x to state
y in time t is given by

P(y | x, t, κ,π) =
4∑

k=1

exp(t�k)Z yk Z−1
kx (2)

where � is the matrix of eigenvalues and Z,Z−1 are the matrices of eigenvectors
(Hasegawa et al. 1985). The matrix Q in Eq. 1 is scaled to an overall rate of one, so
that the time-scale is given in number of substitutions. This means that we work with
Q′ = Q/u, where the overall rate u = −∑

i πi Qii is, for the HKY model,

u = 2 [πRπY + κ(πTπC + πAπG)]
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The probability P(X | T, t, κ,π) of observing a site pattern X for a column of the
alignment given the unrooted phylogenetic tree T with branch lengths vector t under
the HKY evolutionary model is the likelihood of (T, t, κ,π). It can be found by recur-
sion, if we observe that the partial likelihood Lr (z | t, κ,π) of state z = T,C, A,G
for the subtree rooted at an internal node r depends only on the partial likelihoods
La(x | t, κ,π) and Lb(y | t, κ,π) of its descendant nodes a and b, assuming a binary
tree, as

Lr (z | t, κ,π) =
[∑

x

P(x | z, ta, κ,π)La(x | t, κ,π)

]

×
[∑

y

P(y | z, tb, κ,π)Lb(y | t, κ,π)

]
(3)

for a subtree with branch lengths ta, tb ∈ t connecting a and b, respectively, to r .
The states at the terminal nodes should fit to the observed data, and define their cor-
responding partial likelihoods trivially. For an unrooted tree, the likelihood at a site
may then be obtained by choosing arbitrarily an edge connecting nodes r and r0, and
summing over the possible states as (Felsenstein 2004)

P(X | T, t, κ,π)=
∑

x

∑
y

[
πx Lr (x | t, κ,π)P(y | x, tr , κ,π)Lr0(y | t, κ,π)

]
.

(4)

2.1 Segmentation model

We assume that the DNA alignment for L taxa can be divided into K contiguous
segments, such that all sites within a segment share the same evolutionary parameters
and phylogeny, but these are allowed to vary between segments. The alignment X can
then be divided into K segments X = (X1, . . . , X K ), each segment j of arbitrary
size n j such that X j = (X j1, . . . , X jn j ) are the columns of the alignment belonging
to segment j . Since all parameters are shared within a segment, we can write the
likelihood of the segment X j as

P(X j | Tj , t j , κ j ,π j ) =
n j∏

k=1

P(X jk | Tj , t j , κ j ,π j ) (5)

We assume that the equilibrium frequencies are the same across segments, leading to
π j = π . We assume further that the branch lengths t j1, . . . , t j 2L−3 are independent
realisations of an exponential distribution of meanµ j , so that Eq. 2 can be marginalised
over t to generate

P(y | x, µ j , κ j ,π) =
4∑

k=1

Z yk Z−1
kx

1 − ψkµ j
.
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which can then be used for all branches. This allows the model to account for heterot-
achy while avoiding overparametrization (de Oliveira Martins et al. 2008). Since we
assume that the parameters are shared among sites belonging to the same segment,
care should be taken so that rate heterogeneity is properly modelled, with the ideal
case being one site per segment. In our hierarchical setting we assume that the ratios κ j

and average rates µ j follow exponential distributions with exponentially distributed
hyper-priors shared across segments:

P(µ j |µ0) = (1/µ0) e−µ j /µ0 j = (1, . . . , K )

P(µ0 | M) = (1/M) e−µ0/M

P(κ j | κ0) = (1/κ0) e−κ j /κ0 j = (1, . . . , K )

P(κ0 | K) = (1/K) e−κ0/K

In de Oliveira Martins et al. (2008) we described a distance between topologies
d̂SPR(Tj1 , Tj2) that approximates the minimum number of subtree prune-and-regraft
(SPR) moves separating the unrooted topologies Tj1 and Tj2 (Allen and Steel 2001).
The rooted SPR distance equals the minimum number of recombinations between two
rooted (time-directed) topologies, whose unrooted equivalents always have a smaller
distance (Song 2003; Beiko and Hamilton 2006), and thus our d̂SPR is a conservative
quantification of recombination. Our strategy to correlate neighbouring segments j and
j +1 ( j = 1, . . . , K −1) is to incorporate a prior on the distance d j = d̂SPR(Tj , Tj+1)

between their topologies Tj and Tj+1. This prior takes the form of a modified truncated
Poisson:

P(d j | λ j , w j ,m) = e−λ j (w j +1)λ
d j (w j +1)
j

η(λ j , w j ,m)d j !(w j +1)
;

(6)

η(λ j , w j ,m) =
m∑

d=0

e−λ j (w j +1)λ
d(w j +1)
j

d!(w j +1)

with m ≤ L − 3 since the maximum distance between two trees on L taxa is L − 3
(Allen and Steel 2001). We assume that topologies with a distance larger than m are
prohibited, so care should be taken if deciding for m < L − 3. If the number of seg-
ments is much larger than the number of recombination break-points, we expect the
Poisson to be too lax for regions free from recombination. Therefore, this prior differs
from a Poisson by the parameter w j , which accommodates for underdispersion. The
parameters λ j and w j are independent realisations of common gamma-distributed
hyper-priors:

P(λ j |αλ, βλ) = β
αλ
λ

	(αλ)
λ
αλ−1
j e−βλλ j j = (1, . . . , K − 1)
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Fig. 1 Diagram representing the proposal of an addition, removal and location shift of a breakpoint. The
boxes represent the alignment segments, labelled by their topologies (represented by Tx , Ty , etc.). The thick
vertical bars represent the break-points, since the topologies surrounding them are different, and the shaded
boxes indicate the segments that are affected by the proposal. For the addition and removal of a break-point,
the left panel represents the simple proposal mechanism while in the right panel we have the mini-sampler
strategy. Proposing a shift in the location of the break-point is the same for both strategies

P(w j |αw, βw) = β
αw
w

	(αw)
w
αw−1
j e−βww j j = (1, . . . , K − 1)

where 	(α) is the gamma function (Gelman et al. 2003).

2.2 Markov chain Monte Carlo (MCMC) scheme

The posterior distribution is simulated through a Gibbs sampler where each parameter
is independently updated by a Metropolis-Hastings step, and two chains at different
temperatures are run concurrently, with occasional swap of states (de Oliveira Martins
et al. 2008). The continuous parameters θi are updated by a random perturbation where
the new state θ∗

i is sampled through θ∗
i = θi e

ξθi (u−0.5) where u ∼ uniform(0, 1)and
ξθi is an arbitrary constant. The update of topologies is done in blocks of segments
sharing the same topology, and the changes in the number and location of recom-
bination break-points are proposed according to Fig. 1. In order to ensure detailed
balance, it is enough to set up the frequency of a break-point addition f ( f ≤ 0.5)
as being equal to the frequency of break-point removal. With probability (1 − 2 f )
a change in break-point location (shift) is tried (Dimatteo et al. 2001). The topology
distances between segments d j are updated indirectly as a consequence of updating
the topologies. Further details can be found in de Oliveira Martins et al. (2008).

A regular breakpoint addition proposal (displayed in the left panel of Fig. 1) cor-
responds to applying one SPR to the current topology. Thus, by design, the proposed
topology will always have d̂SPR = 1 to one of its neighbouring segments (for example,
Tx and Tz in the left panel of Fig. 1). To avoid favouring this scenario of neighbouring
segments harbouring only similar topologies, we developed a mini-sampler strategy
inspired by the reversible-jump MCMC problem of proposing a change in the number
of dimensions (Al-Awadhi et al. 2004). The proposal is represented in the right panel
of Fig. 1, and consists of running a few iterations where the topologies within a non-
recombinant block are updated according to a heated posterior distribution [P(x)]h

before deciding for the acceptance/rejection of the new state. Here x represents an
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arbitrary state and h > 0 is the temperature (usually smaller than one). When propos-
ing a break-point addition, the mini-sampler under the heated distribution is simulated
after increasing the number of break-points, and when proposing a reduction in the
number of break-points the mini-sampler is run prior to removing the break-point, to
guarantee detailed balance. If we follow the right panel of Fig. 1 in representing the
states before the break-point addition, just after the addition and after the mini-sampler
as x , z1 and zk , respectively, the acceptance probability for the addition proposal will
be given by min(1, A(zk | x)) where

A(zk | x) = P(zk)

P(x)

[
P(z1)

P(zk)

]h q(x | z1)

q(z1 | x)
(7)

The definition of the proposal ratio q(x | z1)/q(z1 | x) is given in de Oliveira Martins
et al. (2008). In the case of proposing a break-point removal, the inverse of Eq. 7
should be used. For a bad choice of h, the typical value of zk will be z1 and we recover
the original acceptance probability, while if h = 1 then the final state zk will always
be accepted—since all intermediate states within the mini-sampler were subjected
already to an acceptance-rejection. We realise that this mini-sampler is equivalent to a
within-chain Metropolis-coupled MCMC (MC-MCMC) by replacing z1 by x in Eq. 7
and noticing that it now reduces to the probability of swap between chains in the
MC-MCMC simulation (Altekar et al. 2004; de Oliveira Martins et al. 2008).

2.3 Posterior samples

All relevant information about the parameters can be retrieved by storing the sampled
values along the MCMC simulation, and the ensemble of sampled points will form the
posterior distribution of each variable. We are mainly interested in the distribution of
d̂SPR distances and sampled topologies for each segment, which can be represented as
matrices of dimension (K − 1)× N for the distances and K × N for the topologies,
where K is the number of segments and N is the number of samples from the posterior
distribution. The matrix of sampled topologies T = {Ti j } has the information about the
topologies Ti j sampled at iteration i (i = 1, . . . , N ) for segment j ( j = 1, . . . , K ),
and the element di j of the matrix of distances d = {di j } holds the d̂SPR between
topologies Ti j and Ti j+1.

We have previously shown (de Oliveira Martins et al. 2008) how we can summarise
these posterior samples to make inferences about the alignment regions more likely
to be the result of recombination by looking at the at the posterior mean distances d. j ,
where the average is over all samples for each segment. Values of d. j larger than one
might indicate a potential hotspot for region j , since the d̂SPR is a lower bound on the
number of recombinations.

On the other hand, more often than not, the researcher is interested in a point
estimate of recombination break-points, the so-called mosaic structure. This is not
trivial since d. j is usually a multimodal distribution. One alternative is to look at the
distribution of the average frequency of recombination Īd. j>0 for each segment, where
Ix is the indicator function. This way, given the number of break-points (number of
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modes, ideally) we can divide the alignment into unimodal regions and obtain a point
estimate for the break-point location for each region. Credible sets can be constructed
based on these posterior mean frequencies, and the number of modes can be estimated
through the distribution of break-points si = ∑K−1

j=1 Idi j>0 over the samples i , or

simply by
∑K−1

j=1 Īd. j>0. A point estimate could also be found by looking at the most
frequent (maximum a posteriori—MAP) topologies map(T. j ) for each segment and
a break-point j∗ inferred whenever map(T. j∗) �= map(T. j∗+1), but it can lead to
overestimates due to random fluctuations (de Oliveira Martins et al. 2008).

Another point estimate can be obtained by finding the centroid mosaic structure
S∗, that minimises its distance to all other mosaic structures Si (i = 1, · · · , N ) (Ding
et al. 2005; Webb-Robertson et al. 2008; Carvalho and Lawrence 2008). The mosaic
structure Si of sample i can be represented by a vector Si = {Si0, . . . , Sisi , Si si +1}
where Sis is the position of the last site of the s-th break-point—that is, the position
of the last site belonging to segment j∗ such that

∑ j∗
j=1 Idi j>0 = s. There are two

special “break-points” in the boundaries of the alignment, the position Si0 = 0 and
the position Si si +1 which equals the sequence length, for all samples. The distance
D(Si1 , Si2) between two mosaics Si1 and Si2 can then be estimated by the ad-hoc
function

D(Si1 , Si2)= D(Si2 , Si1)=
si1∑

s=1

si2 +1

min
k=0

(| Si1s − Si2k |)+
si2∑

s=1

si1+1

min
k=0

(| Si2k − Si1s |).

(8)

This distance is based on a mapping between each break-point in mosaic Si1 and
its closest equivalent in mosaic Si2 , with the property of being less influenced by the
number of break-points than by their locations. Our centroid estimate will then be the
mosaic structure Si∗ such that the total distance

∑N
i=1 D(Si∗ , Si ) from other mosaics

is minimal. Here we make the simplifying assumption that the centroid can be found
among the samples, but there may be other mosaics, not present in the posterior sam-
ples, with a total distance even smaller. Given a point estimate of the mosaic structure,
the underlying topologies can also be found through the modal value of the MAP
topologies map(T. j ) for the segments between the break-points.

3 Results

We simulated 100 alignments with 8 taxa, supporting distinct evolutionary histories
at every 64 base pairs (bp), comprising a total alignment of 256 bp. For each data-
set we ran the MC-MCMC for 105 iterations, sampling at each 500 iterations (200
posterior samples in total), after a burn-in period of 5 × 103 iterations. We assumed
that the alignment could be divided into 128 segments composed of two sites each,
and unless otherwise stated the truncation term m was set to five, and the hyper-
parameters for the penalty w j were set at αw = βw = 1. For all simulations we
further assumed that αλ = 1 and βλ = 128, and the number of steps of the mini-sam-
pler was set at two with a temperature h = 0.6. We call this scenario the “unrestricted
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Fig. 2 Trees used to simulate the recombinant alignment of 256 base pairs. The branch lengths represented
in each tree are proportional to the amount of evolution, with the total branch lengths summing up to one
substitution per site. The labels on the branches are the smallest and largest branch lengths for each tree,
and the branches highlighted in bold represent one possible recombination scenario. On the bottom we have
the alignment regions where each tree was used on the simulation

model”, since we make no further assumptions, and then compare it with two simplified
models.

3.1 Simulation scenario

We simulated alignments evolving under evolutionary scenarios where we had heter-
ogeneity at three levels: of branch lengths, model parameters and evolutionary rates.
The alignment was simulated by making each site evolve according to the topologies
displayed in Fig. 2. In this figure we realise that there are branches were substitutions
are more prone to occur, like for instance the long branch leading to sequence s1 in
the first segment. Since we expect most substitutions to occurs there, we might need
many sites to have information about a particular branch, like for example the branches
around sequences s6 and s9.

The sequences evolved according to a general time reversible (GTR) Markov model
of nucleotide substitution (Yang 1994a; Tavaré 1986) and under a discretized gamma
model of rate heterogeneity between sites. The GTR model can be described by the
rate matrix

Q =

⎛
⎜⎜⎝

T C A G

T · aπC bπA cπG

C aπT · dπA eπG

A bπT dπC · f πG

G cπT eπC f πA ·

⎞
⎟⎟⎠ (9)

where the diagonals are such that the row sums equal zero. In our simulations the rate
ratios were fixed at a = 0.1, b = 0.3, c = 0.5, d = 0.7, e = 0.9 and f = 1, while the
equilibrium frequencies were set at πT = 0.1, πC = 0.2, πA = 0.3 and πG = 0.4.
This is a very heterogeneous model, more complex than the HKY model we include in
our hierarchical procedure which assumes that a = f = κ and b = c = d = e = 1.

123



154 L. de Oliveira Martins, H. Kishino

site

la
m

bd
a

0.
00

75
0.

00
85

0.
00

95
0.

01
05

0 64 128 192 256

site
w

0.
90

0.
95

1.
00

1.
05

1.
10

1.
15

0 64 128 192 256

site

pr
io

r 
di

st
an

ce
0.

00
15

0.
00

20
0.

00
25

0.
00

30

0 64 128 192 256

Fig. 3 Posterior distributions for 100 simulations under the unrestricted model. The dark grey shadows
represent the interquartile range, the light grey lines represent the median and the black lines show the mean
values over the simulated datasets. The left panel shows the distribution of the posterior mean of λ j , while
on the middle panel we have the posterior mean of the penalties w j . On the right panel we have the mean
of the modified Poisson distribution (Eq. 6) calculated through the method of moments

We assumed that the substitution rates are heterogeneous across sites, with the level
of heterogeneity being described by a rate factor r following a gamma distribution
with β = α, such that E[r ] = 1 and V ar [r ] = 1/α (Yang 1993, 1994b). The lower the
value of α the higher the heterogeneity, with most sites having low information (low
average number of substitutions) and a few sites being saturated (too many substitu-
tions). We assumed a gamma distribution with α = 5 discretized into four categories
and an average substitution rate of one. The discretized rates are 0.50, 0.80, 1.06 and
1.61, which means that for 64 bp, on average ten sites will be monomorphic (no sub-
stitutions) and only 16 sites will harbour more than one substitution (Yang 1994b). It
is worth noticing that on real datasets (like HIV-1) α is usually much smaller but the
sequence length is much larger. The software PAML, described in Yang (2007), was
used to simulate the alignments.

3.2 Unrestricted model

We were interested in observing the behaviour of the modified Poisson distribution,
so for each λi j and wi j sampled at iteration i we estimated its mean value oi j as the
first moment around zero:

oi j =
m∑

d=0

dP(d | λi j , wi j ,m) (10)

where P(d | λi j , wi j ,m) is defined in Eq. 6. In Fig. 3 we have the distribution of the
posterior means λ. j , w. j and o. j calculated for each dataset. In this figure we can see
that for regions away from the break-points not only λ j is lower butw j is higher, with
the opposite being observed around the break-points (sites 64, 128 and 192). Their
compound effect amounts to a sharper distinction, when we observe the distribution
of their o. j . The mean value o. j reflects in fact the mean prior for d j .
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Fig. 4 Site-wise distribution of recombination break-points for different prior assumptions, over 100 simu-
lated datasets. The top-left panel represents the unrestricted prior, with maximum topology distance m = 5
and penalty parameter w such that E[w] = V ar [w] = 1. In the left panel at the bottom we assume
that the recombination distance is not taken into account, keeping the hyper-prior on the penalty as in
the unrestricted model. For the panels at the right, we enforce the penalty parameter to a fixed value by
setting V ar [w] = 10−8 (with E[w] = 10−3 for the top panel and E[w] = 1 for the bottom panel), while
maintaining the maximum distance at m = 5. For each panel, we show the mean over 100 simulations of
the posterior recombination distribution using two sample estimates: the black lines represent the site-wise
average, over all samples, of the break-point frequency (d̂SPR > 0), and the grey vertical bars show the
break-points belonging to the centroid sample of each dataset

3.3 Alternative prior: no distance information

To test whether the distance between topologies has any effect on the recombination
detection, we used a modified model where the distance is not taken into account, and
the prior described in Eq. 6 reduces to

P(Tj = Tj+1 | λ j , w j ) = 1

1 + λ(w j +1)
;

(11)

P(Tj �= Tj+1 | λ j , w j ) = λ(w+1)

1 + λ(w j +1)

This equation is similar to Eq. 6 with m = 1, but since we assume that the equality
can be inferred but the similarity can not be quantified we refer to this simplified
model as the m = 0. Its effect can be seen in the left panels of Fig. 4. The plot at the
top shows the original prior with distance information, showing that both the poster-
ior Īd. j>0 and the centroid-estimated mosaic structures can infer the recombination
break-points reasonably well, especially for the first two break-points. On the bot-
tom panel, on the other hand, the information about the break-point locations is more
sparse. The unrestricted analyses detected the correct number of break-points in 56%
of the simulations, while underestimating it in 39% and overestimating it in 5% of the
datasets. The analyses without topology distance information inferred correctly the
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Fig. 5 Frequency, over 100 simulations, where the true trees (described in Fig. 2) were found using differ-
ent methods. On both panels the performance of the unrestricted model is shown by the light gray bars. On
the left panel we have two methods that do not take the topology distance into consideration: our modified
model (black points) and the cBrother software (dark gray points). On the right panel we compare the
original model and the penalty parameter fixed at 0.001 (black points) or fixed at one (dark gray points)

three recombination break-points in only 30% of the cases, while underestimated this
number in 63% of the simulations.

Another Bayesian procedure for recombination detection has been described in
Minin et al. (2005), which is based on a multiple change-point model where the num-
ber of break-points is explicitly taken into account (Suchard et al. 2003). This model
(as most recombination detection procedures widely employed) is not able to quantify
the difference between recombinant regions, and so we compared our procedure with
the implementation of this change-point model developed by Fang et al. (2007) and
present in the software cBrother. The comparison is summarised in the left panel of
Fig. 5, where the performance of each method is measured by its ability in inferring the
original topology, used to simulate the alignment. While the performance of cBrother
is better than our simplified model without distance information, it is less accurate
than the model using Eq. 6. The first 64 bp were the most informative according to
any analysis, while the region between sites 128 and 192 was the less informative,
suggesting that this is not an artefact of the algorithm. The cBrothers software detected
three recombination break-points in 40% of the datasets, and detected less than three
break-points in the other 60% of the simulations.

3.4 Alternative prior: constrained hierarchical model

To further explore the influence of the prior distribution on recombination detection,
we analysed the same datasets by setting w j for all segments at a fixed value. This
was done, in practice, by choosing αw and βw such that the variance is very small
(namely, 10−8). The gamma-distributed prior for λ j is a robust alternative to a Pois-
son distribution, and to compare our results with a prior for the topology distance
closer to the negative-binomial (Poisson marginalised over λ), we set up w j to be
kept at a low value. We fixed E[w j ] = 10−3 by setting αw = 102 and βw = 105,
which is not equivalent to the negative-binomial (we still have the truncation term
and the exponent w j + 1 > 1) but reflects a prior where the penalty parameter w j
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has a smaller influence. We also used a prior where w j was fixed at one by choosing
αw = βw = 108, to compare with the previous settings.

The results are summarised in the right panels of Figs. 4 and 5. As expected (by
looking at Fig. 3, e.g.) the low w j had a poor performance on regions away from the
“real” break-points—the exact location can not be found with arbitrary precision in
general due to stochastic fluctuations—and the stringentw j = 1 performed worse than
the unrestricted model in the recombinant regions. This distinction is more evident on
the borders, where there is no information from neighbouring sites. For w j = 10−3,
the correct number of break-points was found in only 41% of the datasets, while
for w j = 1 in only 35% of the datasets the correct number was found. In 47% of
the simulations the low-penalty setting overestimated the number of recombination
break-points and in 64% of the datasets the high penalty assumption underestimated
it. The topology inference itself was not so much affected, with the low penalty prior
performing even better, on average, than the less informative prior of the unrestricted
model. This might be due to a better exploration of the topology space, at the cost of
inferring spurious recombination.

4 Discussion

Our present work shows that the power to detect recombinations is significantly
improved by introducing a prior on the distance between the topologies of neigh-
bouring segments. The performance of the prior depends on a hierarchical setting
allowing for underdispersion as well as overdispersion of the distribution of distances.
In addition, it was crucial to develop a distance measure which reflects well the num-
ber of recombination events required to explain the difference between the topolo-
gies. Our point estimates for the mosaic structure based on the sample closest to the
centroid structure also reflected well the posterior distribution of break-points, since
our proposed distance between mosaics is more influenced by the closeness between
break-points than by the number of break-points alone.

When the number of parameters necessary to explain the data is not known in
advance a strategy like reversible-jump MCMC can be employed to ensure that
the dimensionality will not increase beyond a desirable level (Dimatteo et al. 2001;
Suchard et al. 2003). Modelling and sampling between different dimensions, however,
can become very complicated. An alternative strategy is to assume that the number
of variables is constant (let us say, at its maximum dimension) and then work with
an augmented data where latent variables will tell us whether there is a change in the
values of other parameters (Mitchell and Beauchamp 1988). The number of “active”
latent variables can be regarded as the number of necessary variables in the non-aug-
mented model, since the block of variables sharing the same value in the augmented
model can be equivalent to one variable in another model. Our model is an extension
of this reasoning, where the latent variables not only indicate the minimum num-
ber of distinct variables (non-recombinant segments in our case) but also quantifies
the difference between them. We believe that this procedure of having a latent vari-
able interpretable as more than an indicator can be used as a replacement to variable

123



158 L. de Oliveira Martins, H. Kishino

models, provided we can quantify the difference between variables and we are able to
model this quantification through an adequate prior.

We have chosen the HKY model since it is the most complex model that can be
solved analytically for arbitrary time intervals, and is a good compromise between
accuracy and simplicity (Yang 1994a). Our model takes account of rate heterogeneity
among sites, which is known to be indispensable for unbiased estimation of phylo-
genetic trees. Additionally, our marginal likelihood over the branch lengths allows
for heterotachy, that is, the variability of the relative lengths of branches of the trees
among sites in each of the segments. It also alleviates the computational burden of
sampling individual branch lengths.

Therefore, the crucial factor that affects the power and the bias of the estimation
of recombination in a phylogenetic context should incorporate the distance between
topologies and the priors on the distances. The AIC (Akaike 1974) is widely used for
the selection of evolutionary models in the inference of phylogenetic trees (Posada and
Buckley 2004). We could have used it, for instance, to quantify the applicability of the
HKY assumption of our model, since the sequences were simulated under a distinct
model. It may be an interesting future study to select the most appropriate form of the
prior based on the MCMC-based criteria like Bayes factor (Kass and Raftery 1995)
or DIC (Spiegelhalter et al. 2002).

Acknowledgments We would like to thank Ziheng Yang and Mahendra Mariadassou for valuable
discussions on our work. The careful comments of an anonymous reviewer are also much appreciated.
This work was supported in part by a Grant-in-Aid for Scientific Research (B-19300094) from the Japan
Society for the Promotion of Science (JSPS).

References

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic
Control, 19(6), 716–723.

Al-Awadhi, F., Hurn, M., Jennison, C. (2004). Improving the acceptance rate of reversible jump MCMC
proposals. Statistics and Probability Letters, 69(2), 189–198.

Allen, B., Steel, M. (2001). Subtree transfer operations and their induced metrics on evolutionary trees.
Annals of Combinatorics, 5(1), 1–15.

Altekar, G., Dwarkadas, S., Huelsenbeck, J. P., Ronquist, F. (2004). Parallel Metropolis coupled Markov
chain Monte Carlo for Bayesian phylogenetic inference. Bioinformatics, 20(3), 407–415.

Awadalla, P. (2003). The evolutionary genomics of pathogen recombination. Nature Reviews Genetics, 4(1),
50–60.

Beiko, R. G., Hamilton, N. (2006). Phylogenetic identification of lateral genetic transfer events. BMC
Evolutionary Biology, 6, 15.

Carvalho, L. E., Lawrence, C. E. (2008). Centroid estimation in discrete high-dimensional spaces with
applications in biology. Proceedings of the National Academy of Sciences USA, 105(9), 3209–3214.

Dimatteo, I., Genovese, C., Kass, R. (2001). Bayesian curve-fitting with free-knot splines. Biometrika,
88(4), 1055–1071.

Ding, Y., Chan, C. Y., Lawrence, C. E. (2005). Rna secondary structure prediction by centroids in a boltzmann
weighted ensemble. RNA, 11(8), 1157–1166.

Fang, F., Ding, J., Minin, V. N., Suchard, M. A., Dorman, K. S. (2007). cBrother: relaxing parental tree
assumptions for Bayesian recombination detection. Bioinformatics, 23(4), 507–508.

Felsenstein, J. (1981). Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal
of Molecular Evolution, 17(6), 368–376.

Felsenstein, J. (2004). Inferring phylogenies. Sunderland, MA: Sinauer Associates.

123



Distribution of topology distances 159

Gelman, A. (2004). Parameterization and Bayesian modeling. Journal of the American Statistical
Association, 99(466), 537–545.

Gelman, A., Carlin, J. B., Stern, H. S., Rubin, D. B. (2003). Bayesian data analysis (2nd ed). Boca Raton,
FL: Chapman & Hall/CRC.

Hasegawa, M., Kishino, H., Yano, T. (1985). Dating of the human-ape splitting by a molecular clock of
mitochondrial DNA. Journal of Molecular Evolution, 22(2), 160–174.

Kass, R. E., Raftery, A. E. (1995). Bayes Factors. Journal of the American Statistical Association, 90(430),
773–795.

Minin, V. N., Dorman, K. S., Fang, F., Suchard, M. A. (2005). Dual multiple change-point model leads to
more accurate recombination detection. Bioinformatics, 21(13), 3034–3042.

Mitchell, T. J., Beauchamp, J. J. (1988). Bayesian variable selection in linear regression. Journal of the
American Statistical Association, 83(404), 1023–1032.

de Oliveira Martins, L., Leal, É., Kishino, H. (2008). Phylogenetic detection of recombination with a
Bayesian prior on the distance between trees. PLoS ONE, 3(7), e2651.

Posada, D. (2002). Evaluation of methods for detecting recombination from dna sequences: empirical data.
Molecular Biology and Evolution, 19, 708–717.

Posada, D., Buckley, T. (2004). Model selection and model averaging in phylogenetics: advantages of Ak-
aike information criterion and Bayesian approaches over likelihood ratio tests. Systematic Biology,
53(5), 793–808.

Song, Y. (2003). On the combinatorics of rooted binary phylogenetic trees. Annals of Combinatorics, 7(3),
365–379.

Spiegelhalter, D., Best, N., Carlin, B., van der Linde, A. (2002). Bayesian measures of model complexity
and fit. Journal of the Royal Statistical Society Series B, 64(4), 583–639.

Suchard, M., Weiss, R., Dorman, K., Sinsheimer, J. (2003). Inferring spatial phylogenetic variation along
nucleotide sequences: a multiple changepoint model. Journal of the American Statistical Association,
98(462), 427–438.

Tavaré, S. (1986). Some probabilistic and statistical problems in the analysis of DNA sequences. In R.M.
Miura (Ed.), Some Mathematical Questions in Biology—DNA Sequence Analysis (pp. 57–86). Provi-
dence: AMS Bookstore.

Webb-Robertson, B. J. M., McCue, L. A., Lawrence, C. E. (2008). Measuring global credibility with
application to local sequence alignment. PLoS Computational Biology, 4(5), e1000077.

Yang, Z. (1993). Maximum-likelihood estimation of phylogeny from dna sequences when substitution rates
differ over sites. Molecular Biology and Evolution, 10(6), 1396–1401.

Yang, Z. (1994a). Estimating the pattern of nucleotide substitution. Journal of Molecular Evolution, 39(1),
105–111.

Yang, Z. (1994b). Maximum likelihood phylogenetic estimation from dna sequences with variable rates
over sites: approximate methods. Journal of Molecular Evolution, 39(3), 306–314.

Yang, Z. (2007). Paml 4: phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution,
24(8), 1586–1591.

123


	Distribution of distances between topologies and its effect on detection of phylogenetic recombination
	Abstract
	1 Introduction
	2 Methods
	2.1 Segmentation model
	2.2 Markov chain Monte Carlo (MCMC) scheme
	2.3 Posterior samples

	3 Results
	3.1 Simulation scenario
	3.2 Unrestricted model
	3.3 Alternative prior: no distance information
	3.4 Alternative prior: constrained hierarchical model

	4 Discussion
	Acknowledgments
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


