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Abstract The following steps are suggested for smoothing the occurrence patterns
in a clustered space–time process, in particular the data from an earthquake catalogue.
First, the original data is fitted by a temporal version of the ETAS model, and the occur-
rence times are transformed by using the cumulative form of the fitted ETAS model.
Then the transformed data (transformed times and original locations) is smoothed
by a space–time kernel with bandwidth obtained by optimizing a naive likelihood
cross-validation. Finally, the estimated intensity for the original data is obtained by
back-transforming the estimated intensity for the transformed data. This technique
is used to estimate the intensity for earthquake occurrence data for associated with
complex sequences of events off the East Coast of Tohoku district, northern Japan.
The intensity so obtained is compared to the conditional intensity estimated from a
full space–time ETAS model for the same data.

Keywords Bandwidths · Shape parameters · Cross-validation · ETAS models ·
Intensity function · Kernel estimates · Space–time point processes ·
Space–time ETAS model · Transformation of time

1 Objective

One of the important functions of the statistical analysis of space–time point process
data is to provide a convenient visualsummary of the original data. In this paper we
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approach this problem by first assuming, if only for this purpose, that the data can be
treated as a non-homogeneous Poisson process, characterized by its space–time inten-
sity function. Direct kernel smoothing can then be used to estimate the intensity of this
presumed Poisson process, and has the advantages of simplicity in computation and
adaptability to the data. However, in fact, it is difficult for such intensity rate changes
estimated by kernels to express very asymmetric, sharp or highly variable features
as seen in Choi and Hall, (1999) and Grillenzoni (2005). These features mainly arise
from the fact that earthquake occurrences are history dependent, as for example when
a large earthquake occurs that is followed by many aftershocks.

In this study, we consider a particular method of space–time intensity estimation
where the time axis is transformed by using the temporal ETAS model (Ogata 1988).
The transformed data is assumed to form an inhomogeneous space–time Poisson pro-
cess, and a kernel method is applied to smooth this data. In order to get an optimal
estmate of the intensity function, we maximize a cross-validated likelihood score.
After back-transforming, the final intensity is compared with that estimated from the
parametric space–time ETAS model (Ogata 1998).

The reason for the time transformation is to simplify the time inhomogeneities
which can be well described by the epidemic type aftershocks-sequences (ETAS)
model (Ogata 1988). Time component of this model, integrating out the spatial vari-
ation, uses the well established and robust Omori–Utsu law (Utsu 1961, 1970; Utsu
et al. 1995). On the other hand, spatial distributions of aftershocks are too complex
(Ogata et al. 2003; Ogata 2004) to be described by a standard function from a paramet-
ric model (Ogata 1998; Ogata and Zhuang 2006); hence they are handled by a form
of non-parametric estimate.

In the following, a brief introduction of space–time point processes describing
earthquake occurrences is provided in Sect. 2, and the dataset of complex seismic
activity in North-Eastern Japan is described in Sect. 3. Then, as a particular class of
space–time processes for earthquake occurrences, the ETAS model (Ogata 1988) is
reviewed in Sect. 4. The hybrid kernel estimation method, together with the com-
putational procedure developed to estimate the intensity function of Poisson point
processes is introduced and applied to the dataset in Sect. 5. Then, in Sect. 6, a full
space–time ETAS model (Ogata 1998) is applied to the dataset to compare with the
hybrid kernel estimates in Sect. 7; specifically, from the data, we take epicenters of
three great earthquakes as the fixed locations and the two days after the occurrence of
each earthquake as the time instants, and we show and discuss the results of the two
approaches from these three episodes. The conclusion is provided in Sect. 8.

2 Point processes for space–time earthquake occurrences

A point process is defined as a collection of randomly located points in some space.
In this study, we are concerned with earthquake occurrences, where each point repre-
sents the time of occurrence and the location of epicenter of a certain earthquake of
magnitude greater than a certain value, in a geophysical region.

To estimate the probability of such a future earthquake occurrence, the condi-
tional intensity function is crucial, and is proportional to the probability that such
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an event above a certain threshold magnitude Mth will occur at time t at a loca-
tion (x, y), conditional on the history of the occurrence times ti , locations (xi , yi ),
and magnitudes Mi of past earthquakes up to time t . Let us denote such a history by
Ht = {(ti , xi , yi , Mi ); ti < t, Mi > Mth} for simplicity. Then, its conditional intensity
function is defined by

λ(t, x, y|Ht )dt dx dy

= Pr{an event in volume [t, t + dt) × [x, x + dx) × [y, y + dy)|Ht } (1)

Assuming such a limit exists for each point (t, x, y) in the space–time domain, the
conditional intensity process uniquely characterizes the finite-dimensional distribu-
tions of the point process (Daley and Vere-Jones 2003). If the conditional intensity
function is independent of the past history and dependent only on the current time
and spatial location, Eq. (1) determines λ(t, x, y) and identifies an inhomogeneous
Poisson process. Furthermore, by normalizing the intensity function by the defined
space–time rectangular volume T × X × Y ,

f (t, x, y) = λ(t, x, y)
/ ∫

T

∫

X

∫

Y
λ(t, x, y)dt dx dy, (2)

becomes a probability density distribution on T × X × Y .

3 Data description

We use the hypocenter data compiled by the Japan Meteorological Agency, and con-
sider one of several datasets discussed in Ogata (1998) and Ogata and Zhuang (2006).
These data cover the area off the east coast of Tohoku District, one of the most active
plate boundary zones in and around Japan; see Fig. 1a. The data consist of earthquakes
of magnitude (M) 4.5 and larger that are chosen from the wide region 36◦ ∼ 42◦N
and 141◦ ∼ 145◦E for depths down to 100 km and for the time span 1926–1995;
see Fig. 1c. In this region, most of large earthquakes occurred on the plate boundary
along the subducting Pacific plate beneath northern Japan. We ignore the depth axis
due to inaccurate solutions, at offshore in particular, and therefore consider only two-
dimensional locations (longitude and latitude) of earthquakes, restricting ourselves to
shallow events. In fact, most of the events in this region are distributed within depths
down to 60 km.

In calculating the distance between earthquake epicenters, the distance in longitude
component is reduced to cos(πy0/180◦) times the distance in latitude (one degree in
latitude corresponds to about 111.11 km), where y0 = 39◦N is the latitude of the
center of the region.

4 Temporal ETAS model and transformation of time

The ETAS model is a temporal self-exciting point process, representing earthquake
occurrences in a region during a period (Ogata 1988). This model is a modification

123



130 G. Adelfio, Y. Ogata

Fig. 1 Earthquakes with M ≥ 4.5 off the coast of Tohoku District, northern Japan, for the period 1926–
1995; left epicenters, middle the background seismicity rate ν(x, y) in Eq. (13) with logarithmically equidis-
tant contours, and right latitude versus time plot. Sizes of circles and plus signs correspond to magnitudes
of earthquakes, and the bold letters a, b, and c indicate hypocenters of the 1968, 1938, and 1933 great
earthquakes, respectively, in this region

of Hawkes’ model (Hawkes 1971; Hawkes and Adamopoulos 1973), customized for
standard seismic activity based on a series of aftershock studies (Utsu 1961, 1970;
Utsu et al. 1995). For a series of earthquakes of magnitude Mth and larger, this model
is defined by

λ(t |Ht )dt = Pr{an event in volume [t, t + dt)|Ht }

=
⎧⎨
⎩µ +

∑
{ j; t j <t}

K0eα(M j −Mth)(t − t j + c)−p

⎫⎬
⎭ dt (3)

where Ht = {(ti , Mi ); ti < t, Mi > Mth} is the history of occurrence times associated
with magnitudes of past earthquakes.

Given a series of events associated with magnitudes {(ti , Mi ), 0 ≤ ti ≤ T, i =
1, 2, . . . , n}, the parameters ϑ = (µ, K0, c, α, p) are estimated by maximizing the
log-likelihood function of point processes (Daley and Vere-Jones 2003)

ln L(ϑ) =
n∑

i=1

ln λϑ(ti |Ht ) −
∫ T

0
λϑ(t |Ht )dt.

The maximum likelihood estimates of the ETAS model for the dataset are listed in
Table 1.

Here, we can see how well or poorly the estimated model fits an earthquake sequence
by comparing the cumulative number of earthquakes with the rate predicted by the
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Table 1 Estimated parameters of the temporal ETAS model.

Model µ K c α p

(3) 0.48032 0.014816 0.029113 1.5500 1.0362

Here, the both dimension unit of µ and K is events/day, and the units of c and α are day and magnitude−1,
respectively, while the coefficient p is dimensionless

estimated model. Suppose that a series of events is generated based on the ETAS
model. Then the integral

�(t |Ht ) =
∫ t

0
λ(s|Hs)dt (4)

defines the theoretical cumulative number of events over the time interval [0, t].
The time transformation τi = �(ti |Hti ) from t to τ , then takes the original occur-

rence time sequence {t1, . . . , tn} to the sequence {τ1, . . . , τn} in the transformed time
interval [0,�(T )]. Assume that the seismicity rate λ(t |Ht ) estimated from the events
in the interval [0, T ] is a good approximation to the real seismicity. Then we can
expect that the function curve �(t) of time t and the empirical cumulative function
N (t) of the events {t1, . . . , tn} overlap each other until time T . This implies that the
transformed events {τ1, . . . , τn} are uniformly distributed in the corresponding time
interval; i.e., the cumulative numbers of events against transformed times, (τi , i), are
aligned on a straight line with unit slope (Ogata 1988; Ogata et al. 2003).

Consider then the space–time coordinates {(τi , xi , yi ); i = 1, 2, . . . , n} of a set of
hypocenter data with the above transformed times {τi }, where (xi , yi ) is the epicenter
of an aftershock. As a first approximation, we assume that the space–time events with
coordinates {(τi , xi , yi ); i = 1, 2, . . . , n} are distributed according to an inhomoge-
neous space–time Poisson process. Thus, we propose to make an optimal space–time
smoothing of the intensity of this set of data by the kernel method. Then the estimated
intensity λ

θ̂
(τ, x, y) is inversely transformed back to the corresponding λ̂(t, x, y) on

the space–time zone of the original regular time t = �−1(τ ).

5 Spatio-temporal kernel intensity estimates and their applications

As presented in Eq. (2), the normalized intensity function is a probability density
function assuming the process is Poissonian. Therefore, a conventional nonparamet-
ric estimation technique could be used in this work to estimate the density function on
the basis of the sample points. To tackle the optimization problem in terms of the least-
square method, one must consider that, as the bandwidth tends to zero, the estimator
variance decreases but its bias increases. For example, Adelfio et al. (2006) discusses
the seismicity off the north coast of Sicilian Island, Italy, in which the bandwidths of
the isotropic kernel are optimized by the minimization principle (Silverman 1986) of
the mean integrated square error of the estimator f̂ (·) around the true density f (·).

For more sensitive estimation, we adopt the cross-validation approach using the log-
likelihood score of Poisson process for the space–time kernel estimation. Consider the
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space–time coordinates {(τi , ξi , ηi ); i = 1, 2, . . . , n}, where the transformed times
{τ } were found using relation (4) based on the estimated ETAS model, as described
in Sect. 3, and (ξ, η) are the epicenter coordinates in azimuth degrees of longitude
and latitude, and 1 degree in latitude covers about 111.11 km. For the spatial isotropy
treatment, we consider the transformation of scale

x = ξ cos(πy0/180◦) and y = η,

where y0 is the central latitude coordinate in the considered seismicity region. Thus,
we consider {(τi , xi , yi ); i = 1, 2, . . . , n}, where 0 ≤ τ ≤ �(T ) and (xi , yi ) ∈ A.
Then, we assume that it is a spatially isotropic but spatio-temporally inhomogeneous
Poisson process according to the intensity function λ(τ, x, y). Thus the space–time
kernel intensity estimator is defined by the superposition of the separable kernel den-
sities such that

λ(τ, x, y) =
n∑

i=1

f (τ − τi ) g(x − xi , y − yi ) , (5)

where f (τ ) and g(x, y) are the one- and two-dimensional probability density func-
tions, respectively. Here, if we assume isotropic kernels in space, the spatial kernel
density g(x, y) is equivalent to the function 2πr · g(r) of distance r from the origin in
polar coordinates. Thus, we consider the following candidates for symmetric kernel
functions for the temporal and spatial components:

f (τ ) =
(√

2πσ
)−1

exp
{
−τ 2/(2σ 2)

}
(6)

f (τ ) = (2 σ)−1 exp{−|τ |/σ } (7)

f (τ ) = (β − 1) σβ−1/
{
2(|τ | + σ)β

}
(8)

g(r) = 1/(2πρ) exp
{
−r2/(2ρ2)

}
(9)

g(r) = (γ − 1) ργ−1/
{
π(r2 + ρ)γ

}
, (10)

where τ represents the transformed time span. The application of this technique
requires the parameter vector ϑ consisting of σ , β, ρ, and γ , which should be opti-
mized to achieve the best compromise, according to certain criteria, between the
surface smoothness and the level of detail in the phenomenal representation. The
log-likelihood function of the kernel intensity is described as

ln L(ϑ) =
n∑

i=1

ln λϑ(τi , xi , yi ) −
∫ T

0

∫∫

A
λϑ(τ, x, y)dtdxdy

=
n∑

i=1

ln λϑ(τi , xi , yi ) − n.

It should be noted again that the maximizing this function leads to the scaling param-
eters converging to zero, which provides degenerate estimates, putting mass only on
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observed points. One way of dealing with this issue so as as to retain good predictive
properties for the estimated intensity function is to make use of the entropy maxi-
mization principle (Akaike et al. 1998). In the present context, this can be done by
considering a penalized log-likelihood function, where the penalty takes the form of a
smoothness constraint, or roughness penalty, on the logarithm of the intensity (Ogata
and Katsura 1988). The optimal weight for the penalty function is objectively deter-
mined by the minimization of the Akaike Bayesian Information Criterion (ABIC)
(Akaike 1998; Akaike et al. 1998).

Here, however, we can use an alternative approach which takes advantage of the
fact that we are treating the transformed data as if it came from a Poisson pro-
cess. Because of the independence properties of the Poisson process, we can adopt
a naive cross-validation procedure, randomly dividing the data into two equal sets
{(τ u

i , xu
i , yu

i ); i = 1, 2, . . . , nu} and {(τ v
i , xv

i , yv
i ); i = 1, 2, . . . , nv}, with n =

nu + nv , and assuming that both data sets have the same intensity function. We use
the first dataset to evaluate the intensity

λu
ϑ(τ, x, y) =

nu∑
i=1

f
(
τ − τ u

i

)
g

(
x − xu

i , y − yu
i

)
,

assuming the parameters ϑ are known, and then use the second data set to evaluate
the predictive performance of this intensity, using the log-likelihood

ln L(ϑ) =
nv∑

i=1

ln λu
ϑ

(
τv

i , xv
i , yv

i

) − nv, (11)

This likelihood is then maximized to get robust optimal estimates of the
parameters ϑ .

Using the data presented in Sect. 3 and processed in Sect. 4, we applied the above
cross-validation procedure. The length of the entire transformed period is �(T ) =
n = 4333 (events), and the center of latitude coordinates is y0 = 39◦N; the distance
in degree of longitude must be reduced by cos(πy0/180◦) = 0.7777. Furthermore,
we have compared the goodness-of-fit of the space–time kernel models with various
combinations of densities in (6)–(10). The estimated parameters of the kernels are
listed in Table 2. According to the cross-validated log-likelihood values, the best fit is
attained by the model P-P, which takes inverse power distributions in both time and
space components.

Then, each obtained intensity estimate λ
ϑ̂
(τ, x, y) is transformed back to the space–

time intensity

λ
ϑ̂
(t, x, y) ∼= λ

ϑ̂
(�(t), x, y) · λ(t |Ht ), (12)

where the estimated parameter values in Table 1 defines the conditional intensity func-
tion λ(t |Ht ) of the temporal ETAS model given in (3) and its integration �(t) given
in (4), respectively.
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Table 2 Estimated parameters of each kernel model and the cross-validated log-likelihood (11), the larger
of which is the better fit

Model f (τ ) g(r) σ̂ β̂ ρ̂ γ̂ ln L̂CV

G-G (6) (9) 54.64 – 0.19864 – −8318.19
G-P (6) (10) 41.83 – 0.02924 1.952 −8161.44
E-G (7) (9) 43.69 – 0.1863 – −8174.80
E-P (7) (10) 36.33 – 0.02443 1.935 −8018.36
P-G (8) (9) 8.111 1.642 0.1544 – −7941.93
P-P (8) (10) 6.471 1.631 0.01873 1.550 −7811.41

The model P-P is considered to be the best fit

6 The space–time ETAS model

In the next section we compare the previously obtained intensity estimates by the
hybrid kernel methods with conditional intensity estimates of a full space–time ETAS
model directly estimated from the dataset in Sect. 3. For this purpose, we here review
the space–time ETAS model.

For a series of earthquakes of magnitude Mth and larger, the space–time ETAS
model is defined by the conditional intensity function

λ(t, x, y|Ht ) = µ · ν(x, y) +
∑

{ j; t j <t}

K0eα(M j −Mth)

(t − t j + c)p
f (x − x j , y − y j |M j )

(13)

of time t and location (x, y), where Ht = {(ti , xi , yi , Mi ); ti < t, Mi > Mth} is
the history of past occurrences, ν(x, y) is the spatial background intensity rate esti-
mated either from properly declustered earthquakes or from a set of sufficiently large
earthquakes, and f (x − x j , y − y j |M j ) is the spatial clustering intensity of trigger-
ing an earthquake of magnitude M j centered at location (x j , y j ). Here, Ogata (1998)
recommends using form

f (x − x j , y − y j |M j ) =
{

(x − x j , y − y j )S j (x − x j , y − y j )
′

eα(M j −Mth)
+ d

}−q

, (14)

where S j is a two dimensional positive definite symmetric matrix, and the primed
form (x, y)′ indicates the transpose of the vector (x, y). The quadratic form within
the brackets indicates that the aftershocks are spatially distributed with ellipsoidal
contours. In fact, Utsu and Seki (1955) and Utsu (1970) used an ellipsoid instead of
a rectangle to measure the area of aftershocks. Such an ellipsoid reflects the simplest
shape of the approximated rupture fault with its dip angle, including location errors
of aftershock hypocenters. The logarithm of the aftershock area is highly correlated
with the main shock’s magnitude, leading to the famous Utsu-Seki law, which is rep-
resented by the denominator and numerator in model (14) for near-field scaling. The
inverse power decay of the aftershock distribution against the distance takes remote
(far-field) triggering phenomena into consideration.
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Table 3 Estimated parameters of the ETAS and space–time ETAS models. Here, the dimension unit of µ

and K is events/day/degree2, where “degree” is the global distance in latitude (i.e., 111.11 km ), and the
unit of d is “degree”

Model µ K c α p d q

(13) 0.1312E-3 0.38156E-4 0.023082 1.6124 1.0426 0.0010128 1.59997

The units of c and α are day and magnitude−1, respectively. The coefficients p and q are dimensionless

Furthermore, it is often the case that the epicenter of a mainshock is located at the
margin of its aftershock area because the epicenter corresponds to the location where
the earthquake rupture initiates. For such a mainshock, the epicenter location in the
catalog is not suitable for the model in (14). Therefore, we replace the mainshock’s
epicenter coordinate with the centroid of aftershocks (the mean of aftershocks’ coor-
dinates) for model (14). Such a centroid of aftershocks could be closely related to the
centroid of the ruptured fault determined in the Harvard CMT catalog of Dziewonski
et al. (1981). In addition, spatial distributions of aftershock epicenters are not usually
isotropic owing to the aforementioned reasons. Ogata (1998) and Ogata and Zhuang
(2006) summarize the compiling procedure for the centroid of clusters and also the
matrices representing the ellipsoid of anisotropic clusters. Such a recompiled dataset
is particularly useful in model (14) for a few large earthquakes; on the other hand, for
most of the remaining events, the centroid can be taken as the epicenter of the original
catalog and as the identity matrix.

Given such a recompiled dataset of origin times and spatial coordinates of earth-
quakes together with their magnitudes and matrices {(ti , xi , yi , Mi ); Mi ≥ Mth, i =
1, . . . , n} during a period [0, T ] and in a region A, we can calculate the log-likelihood
function of the parameter θ = (µ, K0, α, c, p, d, q) characterizing the space–time
point-process model, which is given by

ln L(θ) =
n∑

i=1

ln λθ (ti , xi , yi |Ht ) −
∫ T

0

∫ ∫

A
λθ (t, x, y|Ht )dt dx dy,

Readers are referred to Daley and Vere-Jones (2003, Sect. 7) for the derivation of this
formula and Ogata (1998) for the numerical calculations. The maximum likelihood
estimate (MLE) θ̂ = (µ̂, K̂0, α̂, ĉ, p̂, d̂, q̂)maximizes the function. The recommended
space time model (13) with (14) is selected in Ogata (1998) as the best among the
possible models by using Akaike’s Information Criterion (AIC; Akaike 1974).

The maximum likelihood estimates of the space–time ETAS model for the dataset
are listed in Table 3, where parameter µ in this model (13) is a scalar factor multiplying
the baseline intensity function ν(x, y) which is taken from Ogata (1998) where it is
represented as a bi-cubic spline surface. It is shown in Fig. 1b.

7 Comparison between kernel and parametric estimates

We have obtained the 40 × 60 × 400 voxel images of the intensity values for two
versions of the kernel method, using the Gaussian kernel model G-G and the inverse
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power-law model P-P in Table 2, and for the full space–time ETAS model with parame-
ters shown in Table 3. However, since it is difficult to show such voxel images on paper,
we separately show one-dimensional images of the time at fixed locations and spatial
images (snapshots) of the intensity surface at fixed instants of time. In the following,
we take epicenters of three great earthquakes (cf. a, b and c in Fig. 1) as the fixed
locations and the 2 days after the occurrence of each earthquake as the time instants.
The results from these three episodes are shown and discussed in Sects. 7.1–7.3.

7.1 The 1968 Tokachi-Oki earthquake of M7.9

First we consider data from around the time and place of the Tokachi-Oki great earth-
quake of M7.9 that occurred on May 16, 1968, which corresponds to a time t =
15476.41 days since the beginning of the catalog (1st January 1926). The epicenter
is (xc, yc) = (143.59◦E, 40.73◦N), indicated by the sign “a” in Fig. 1b, at which we
examine the intensity rate change with time. Figure 2e shows the conditional intensity
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Fig. 2 Log-scaled intensity rate changes in time at the location of the 1968 Tokachi-Oki earthquake epi-
center, projected from the space–time Gaussian kernel estimate G-G (panels a and b), inverse-power kernel
estimate P-P (panels c and d), and space–time ETAS model (panels e and f), with respect to the transformed
time (right panels) and the regular time (left panels)

123



Hybrid kernel estimates of space–time earthquakes 137

of the space–time ETAS model λ̂(t, xc, yc|Ht ) in (13) with (14). Figure 2f shows the
corresponding conditional intensity rates of the transformed time τ = �̂(t),

λ̂(τ, xc, yc|Hτ ) = λ̂(t, xc, yc|Ht )

λ̂(t |Ht )

taking the Jacobian coefficient into consideration. Figure 2b and d shows the ker-
nel intensity estimates λ

θ̂
(τ, xc, yc) of models G-G and P-P, respectively, in (5) at the

same fixed location. Finally, Fig. 2a and c is the corresponding kernel intensity estimate
λ

θ̂
(t, xc, yc) of the model G-G and P-P, respectively, where the time is transformed

back to the ordinary time t by means of relation (12).
Figure 3a, b, and c shows the sliced images of the spatial intensity rates of the

kernel intensity λ
θ̂
(ta, x, y) of models G-G, P-P, and the space–time ETAS model

λ̂(ta, x, y|Hτ ), respectively, sliced at the fixed time ta = 15500.87 days (June 9,
1968) since January 1, 1926, which is 24.5 days after the mainshock. The plotted
epicenters of earthquakes in the figures are those that occurred from January 1, 1968
(t = 15338.48 days) through October 15, 1968 (t = 15627.76 days), which roughly
corresponds to cluster “a” in Fig. 1c. The big difference in the images between the
kernel estimates and the space–time ETAS estimate is that the highest peak in the mid-
dle of Fig. 3a and b does not appear in Fig. 3c. This is due to the temporally symmetric
kernel effect by the secondary aftershocks of the M7.5 aftershock that occurred 10
June 1968 (see also Fig. 2a and c), whereas the space–time ETAS intensity at the time
of ta = 15,500.87 days (9 June 1968) does not have such effect from the future as is
also seen in Fig. 2e.
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(c)

Fig. 3 The spatial intensity rates of the kernel intensities G-G (panel a) and P-P (panel b), and the space–
time ETAS model (panel c) sliced at the time of 24.5 days after the 1968 Tokachi-Oki earthquake of M7.9.
The contours and color tables are given equidistantly in logarithmic scale in units of events/degree2/day.
The plotted epicenters are earthquakes (mostly aftershocks) occurring from December 30, 1967 through
October 14, 1968
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7.2 The 1938 Shioya-Oki great swarms

During 1938, the Shioya-Oki great swarm, including several large earthquakes of M7
class, occurred successively off the coast of Fukusima Prefecture. Abe (1977) noted
the unusual features of these earthquakes: the swarm of large earthquakes, the large
energy release comparable to an earthquake of M8.1, and the inferred fact that there
had been no major earthquakes about the focal region for at least the past 800 years,
whereas the ordinary recurrence time of earthquakes of M ≥ 7.5 occurring in other
parts of the same plate boundary is usually less than 100 years.

We examine the intensity rate changes in time at the epicenter of the largest earth-
quake of M7.5 that occurred on November 5, 1938 (t = 4691.74 days), which is
located at (xc, yc) = (142.18◦E, 37.33◦N). Figure 4e shows the space–time ETAS
intensity λ̂(t, xc, yc|Ht ) at the location (xc, yc) indicated by the sign “b” in Fig. 1b.
Figure 2f shows the corresponding intensity rates λ̂(τ, xc, yc|Hτ ) in terms of the
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Fig. 4 Log-scaled intensity rate change in time at the location of the 1938 Shioya-Oki earthquake epicen-
ter, projected from the space–time Gaussian kernel estimate G-G (panels a and b), inverse-power kernel
estimate P-P (panels c and d), and space–time ETAS model (panels e and f), with respect to the transformed
time (right panels) and the regular time (left panels)
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Fig. 5 The spatial intensity rates of the kernel intensities of G-G (left panel) and P-P (middle panel), and
the space–time ETAS model (right panel) sliced at 3.1 days after the 1938 Shioya-Oki earthquake of M7.5.
The contours and color tables are given equidistantly in logarithmic scale in units of events/degree2/day.
The plotted epicenters are earthquakes (mostly aftershocks) occurring from June 12, 1938 through March
31, 1939

transformed time. Figure 4b and d shows the kernel intensity estimates λ
ϑ̂
(τ, xc, yc)

of models G-G and P-P, respectively, in (5) at the same fixed location. Finally, Fig. 4a
and b is the corresponding kernel intensity estimate λ

ϑ̂
(t, xc, yc) of the model G-G

and P-P, respectively, in terms of the regular time.
Figure 5 shows the image of the spatial intensity rates of the kernel intensities and

the space–time ETAS intensity, sliced at the fixed time ta = 4695.85 days (November
9, 1938), which is 3.1 days after the mainshock. The plotted epicenters of earthquake
in the figures are those occurring from June 12, 1938 (t = 4545.43 days) through
March 31, 1939 (t = 4835.84 days), which roughly corresponds to cluster “b” in
Fig. 1c.

7.3 The 1933 Sanriku-Oki great earthquake

The 1933 Sanriku earthquake of M8.1 is unusual since this intraplate earthquake
occurred at the outer rise within the subducting Pacific plate, has the normal fault
type mechanism caused by the extensional force (Kanamori 1971), and caused a great
tsunami disaster; in contrast most of the major earthquakes in this region occur on the
plate boundary and are caused by compressive forces. This earthquake occurred on
March 3, 1933 (t = 2618.10 days), at the epicenter (xc, yc) = (144.51◦E, 39.23◦N)

which is indicated by “c” in Fig. 1b.
We examine the intensity rate change in time at this fixed location. Figure 6e shows

the conditional intensity function λ̂(t, xc, yc|Ht ) of the space–time ETAS model. Fig-
ure 6f shows the corresponding conditional intensity rates λ̂(τ, xc, yc|Hτ ) in term of
the transformed time. Figure 6b and d shows the kernel intensity estimatesλ

ϑ̂
(τ, xc, yc)

of models G-G and P-P, respectively, in (5) at the same fixed location. Finally, Fig. 6a
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Fig. 6 Log-scaled intensity rate change in time at the location of the 1933 Sanriku-Oki earthquake epicen-
ter, projected from the space–time Gaussian kernel estimate G-G (panels a and b), inverse-power kernel
estimate P-P (panels c and d), and the space–time ETAS model (panels e and f), with respect to the
transformed time (right panels) and the regular time (left panels)

and b is the corresponding kernel intensity estimate λ
ϑ̂
(t, xc, yc) of the model G-G

and P-P, respectively, where the time is inversely transformed to the ordinary time t
by means of relation (4).

Figure 7 shows the spatial intensity rates of the kernel intensities and the space–time
ETAS intensity sliced at the fixed time ta = 2621.31 days (March 6, 1933), which is
3.2 days after the mainshock. The plotted epicenters of earthquakes in the figures are
those that occurred from November 26, 1932 (t = 2521.88 days) through August 29,
1933 (t = 2797.90 days), which corresponds roughly to the cluster indicated by “c”
in Fig. 1c.

7.4 Discussion

With the present naive cross-validated evaluation procedure, it is easy to examine
the different distributions for the kernels; therefore, it is worthwhile to compare the
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Fig. 7 The spatial intensity rates of the kernel intensities G-G (left panel), and P-P (middle panel), and the
space–time ETAS model (right panel) sliced at 3.2 days after the 1933 Sanriku-Oki earthquake of M8.1.
The contours and color tables are given equi-distantly in logarithmic scale in units of events/degree2/day.
The plotted epicenters are earthquakes (mostly aftershocks) occurring from November 26, 1932 through
August 29, 1933

goodness-of-fit with different kernel distributions. According to the cross-validated
likelihood scores in Table 2, the Gaussian kernel is not the best, but the inverse-power
kernel is much better fitted to the present data.

From Figs. 3, 5, and 7, we see that the parametric space–time ETAS model rep-
resents the spatial intensity variations as flexibly as the kernel estimate does. This
indicates that the weighted superposition of ellipsoid contoured functions (14) repre-
sents the time evolution of the spatial intensity quite well. From Figs. 2, 4, and 6, we
see that the temporal peaks of the two estimates agree with one another. The highest
peak of the intensity rate in each panel corresponds to the occurrence of the focal
mainshock. On the other hand, the troughs of the temporal intensity variation appear
very different in the two approaches. One of the main reasons is that the space–time
ETAS model cannot adapt to the temporal change in background seismicity, since the
function µ(x, y) is not time dependent, as seen in Eq. (13), while the kernel approach
can adapt to estimate this variation. The background seismicity variations in time
include anomalous geophysical information such as seismic quiescence and the type
of activation, both of which may result from changing tectonic stresses due to slow
seismic slips on nearby faults (Ogata 2007).

Ogata et al. (2003) introduced the hierarchical space–time ETAS (HIST-ETAS)
model, in which parameter values vary depending on the location throughout the
observed spatial region. This model describes observed seismicity better, since it takes
into consideration the individual seismic features that cluster differently from place
to place due to the different geological and tectonic regimes. However, the parameters
of the HIST-ETAS model still do not vary with time. Instead, the study looks at the
residual intensity rates relative to the HIST-ETAS model. In addition, as discussed by
Schoenberg (2003), there is a departure from the separability assumption of clustering
between the response functions in space and time in equation (13) and (5). Additional

123



142 G. Adelfio, Y. Ogata

diagnostic analysis of these features was our main motivation for comparing the para-
metric estimate with the kernel estimates, which should work more realistically and
flexibly with seismic activity.

8 Conclusion

We present a practical method of kernel estimation for realistic description of the
space–time evolution of seismicity rates with spiky, asymmetric, highly variable
changes associated with clusters of earthquakes. This is first implemented by means
of a time transformation using the theoretical cumulative function (4) of the temporal
ETAS model (3). Namely, by the transformation, we use the fact that the space–
time cluster point pattern become closer to an inhomogeneous Poisson process in the
space–time volume. In addition, the time transformation using the ETAS model take
the effect of earthquake magnitudes into consideration indirectly, whereas conven-
tional kernel methods are based only on the locations of points.

Then the parameters of the space and time kernel bases are objectively determined
by means of a naive likelihood cross-validation, for which the events in the dataset are
randomly separated into two datasets of equal size: one for prediction and the other
for validation. Such kernel intensity estimates are then transformed back to the corre-
sponding intensity functions of the original regular time to compare with the intensity
of the parametric space–time ETAS model.
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