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Abstract Asymptotic cumulants of the distributions of the sample singular vectors
and values of cross covariance and correlation matrices are obtained under nonnorma-
lity. The asymptotic cumulants are used to have the approximations of the distributions
of the estimators by the Edgeworth expansions up to order O(1/n) and Hall’s method
with variable transformation. The cases of Studentized estimators are also considered.
As an application of the method, the distributions of the parameter estimators in the
model of inter-battery factor analysis are expanded. Interpreting the singular vectors
and values in the context of the factor model with distributional conditions, the asymp-
totic robustness of some lower-order normal-theory cumulants of the distributions of
the sample singular vectors and values under nonnormality is shown.

Keywords Singular value decomposition · Edgeworth expansion · Studentized
estimators · Asymptotic robustness · Nonnormality · Inter-battery factor analysis

1 Introduction

The singular value decomposition (SVD) is a basic tool in multivariate data analysis
to extract dominant information from the associations of sets of variables. A typical
example using the SVD is found in canonical correlation analysis. Let x and y be p×1
and q × 1 vector variables, respectively, with p ≤ q without loss of generality. Let
v∗ = (x′, y′)′ and

Cov(v∗) = � =
[

�X X �XY

�Y X �Y Y

]
. (1)
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996 H. Ogasawara

Then, it is known that the population canonical correlation coefficients φ∗
1 ≥ · · · ≥

φ∗
p ≥ 0 are the singular values of �

−1/2
X X �XY �

−1/2
Y Y , where �

−1/2
X X and �

−1/2
Y Y are

the symmetric square roots of �−1
X X and �−1

Y Y , respectively, with the assumption of
their existence. The estimators φ̂∗

1 , . . . , φ̂
∗
p are given from the singular values of

S−1/2
X X SXY S−1/2

Y Y with

S =
[

SX X SXY

SY X SY Y

]
, (2)

which is a usual (p + q) × (p + q) unbiased sample covariance matrix based on
N = n + 1 independent observations.

The exact and approximate distributions of φ̂∗
1 (φ̂

∗2
1 ) and associated estimators have

been extensively investigated. In earlier stages, the distributions were given under
normality (Hotelling 1936; Hsu 1941; Anderson 1958; Lawley 1959; Constantine
1963; Sugiura 1976; Fujikoshi 1978; Konishi 1981; Anderson 1999). Subsequently,
the corresponding results have been given under arbitrary or nonnormal distributions
(Muirhead and Waternaux 1980; Fang and Krishnaiah 1982; Steiger and Browne
1984; Hayakawa 1987; Eaton and Tyler 1994; Boik 1998; Ogasawara 2007b). The
asymptotic distribution of the likelihood ratio statistic for uncorrelatedness between
sets of variables has also been derived under normality (Bartlett 1938; Fujikoshi 1977)
and under nonnormality (Muirhead and Waternaux 1980; Bai and He 2004; Ogasawara
2007b).

It is known that the canonical correlation coefficients are scale-free in that they are
invariant with respect to the multiplication of a possibly different nonzero constant
to each element of v∗. Consequently, the same canonical correlation coefficients are
obtained when (1) and (2) are replaced by the population and sample correlation
matrices:

P =
[

PX X PXY

PY X PY Y

]
, R =

[
RX X RXY

RY X RY Y

]
, (3)

respectively. In this paper, the SVDs of �XY and PXY with their sample counterparts
SXY and RXY are dealt with. Note that the scale-freeness of the singular values in
canonical correlation analysis does not hold in this case. The SVDs of the asymmetric
matrices are closely related to the model of inter-battery factor analysis first given by
Tucker (1958). The inter-battery factor model is also functionally related to the cova-
riance structure model given by canonical correlation analysis (Rao 1973, Sect. 8f.3;
1979; Browne 1979; Wegelin et al. 2002; see also Wegelin et al. 2001, 2006). A similar
problem for asymmetric matrices is the SVDs of say, N × p data matrices with or
without centering for columns, which are often used in bioinformatics (e.g., Liu et al.
2003; Hu and He 2007). However, the problem is not dealt with in this paper.

In the following sections the asymptotic expansions of the distributions of the
estimators in the SVDs of �XY and PXY , and the associated parameter estimators
in the inter-battery factor model will be derived under nonnormality. Some of the
results are given in the references addressed earlier. Eaton and Tyler (1994) derived the
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Asymptotic expansions for cross covariance 997

limiting (normal) distributions of the sample singular values of asymmetric matrices
under nonnormality. Boik (1998) provided general models and the method to have
the asymptotic variances and biases of the estimators in the SVDs of asymmetric
matrices with adaptation to some of the estimators in inter-battery factor analysis
under nonnormality. In this paper, these results will be extended by using the two-
term Edgeworth expansion up to order O(n−1) and associated methods.

It will be shown that the normal-theory (NT) asymptotic variances and biases of
the elements of the unit-norm sample singular vectors for SXY are robust against the
violation of the normality assumption under some distributional conditions with
the inter-batter factor model. The similar robustness of the NT asymptotic biases
of the sample singular values for SXY and the estimators of the inter-battery and
battery-specific factor variances and covariances will also be shown.

2 The asymptotic expansions using the least squares discrepancy function

In this section, the SVDs of �XY and SXY are dealt with. The corresponding results
for PXY and RXY will be given later. The SVD of an asymmetric matrix is usually
obtained by the spectral resolution of the matrix post or premultiplied by its transpose.
The equivalent result is given by using the following least squares (LS) discrepancy
function in the case of SXY :

FLS = 1

2
tr{(A�B′ − SXY )(A�B′ − SXY )

′}, � = diag(φ1, . . . , φp) (4)

with the restrictions

A′A = B′B = Ip, (5)

where Ip is the p×p identity matrix. The matrices A(p×p),�(p×p) and B(q×p) are
mathematical variables in (4). They are also used as population values for simplicity
of notation. The population singular values φi (i = 1, . . . , p) are assumed to be
φ1 > φ2 > · · · > φp > 0. The cases of multiple roots will be treated later in the
discussion section. The estimators of the singular vectors (the columns of Â and B̂)
and the singular values (φ̂i ) are given, in form, by minimizing (4) with respect to
A,� and B under the restrictions (5) with the minor indeterminacy of the sign in each
pair of the singular vectors of Â and B̂. Under the condition that v∗ has a continuous
distribution, we have φ̂1 > φ̂2 > · · · > φ̂p > 0 with probability 1. It is possible to use
other discrepancy functions, e.g., the scaled negative log-likelihood including SX X

and SY Y with unstructured �X X and �Y Y . This gives the same results since A�B′ is
a saturated model for the asymmetric matrix. Arguably, the discrepancy function of
(4) is the simplest one.

Let θ be the Q × 1 vector of parameters with Q = p2 + pq + p as

θ = (vec′A, vec′B, 1′
p�)

′, (6)
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where vec · is the vectorizing operator stacking the columns of an argument matrix
with vec′ · = {vec(·)}′ and 1p is the p × 1 vector of 1’s. The restrictions (5) are
described by using the following (p2 + p)× 1 vector set equal to 0:

h(θ) = (v′(A′A − Ip), v′(B′B − Ip))
′ = 0, (7)

where v(·) is the vectorizing operator taking the nonduplicated elements of a symmetric
matrix with v′(·) = {v(·)}′. Since the restrictions in (5) or (7) can be seen as those for
model identification, the first-order conditions for the vector of the estimators θ̂ are
given by

(
∂FLS

∂ θ ′

∣∣∣∣
θ=θ̂

, ĥ′
)′

= 0 with ĥ = h(θ̂). (8)

The equations in (8) represent implicit functions θ̂(= θ(s)) in terms of s = vec SXY .
Let θ denote an element of θ . Assume that the following Taylor series expansion of
θ̂ about its true value θ0 holds with the existence of the moments of the associated
variables up to a required order:

θ̂ = θ0 + ∂θ

∂ s′

∣∣∣∣
s=σ

(s − σ )+ 1

2

(
∂

∂ s′

)<2>

θ

∣∣∣∣
s=σ

(s − σ )<2>

+1

6

(
∂

∂ s′

)<3>

θ

∣∣∣∣
s=σ

(s − σ )<3> + op(n
−3/2), (9)

where σ = vec �XY ; s is also used as a mathematical vector variable; X<k> =
X ⊗ · · · ⊗ X (k times); ⊗ denotes the Kronecker product. Let w = n1/2(θ̂ − θ0). It is
assumed that the asymptotic cumulants of w up to the fourth order can be written as
follows:

κ1(w) = E(w) = n−1/2α1 + o(n−1/2),

κ2(w) = E[{w − E(w)}2] = α2 + n−1�α2 + o(n−1),
(10)

κ3(w) = E[{w − E(w)}3] = n−1/2α3 + o(n−1/2),

κ4(w) = E[{w − E(w)}4] − 3{κ2(w)}2 = n−1α4 + o(n−1).

Then, from (9) it is known that

α1 = 1

2
tr

(
∂2θ

∂ σ ∂ σ ′ �
)
, α2 = ∂θ

∂ σ ′ �
∂θ

∂ σ
, (11)

where n−1� is the asymptotic covariance matrix of s, i.e., n acov(s) = �; acov(·)
denotes the asymptotic covariance matrix of order O(n−1) for the argument vec-
tor; ∂θ/∂ σ = ∂θ/∂ s|s=σ with the similar expressions for partial derivatives for
simplicity of notation. Ogasawara (2006) gave expressions for�α2, α3 and α4 under
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Asymptotic expansions for cross covariance 999

the condition that eighth-order moments of the observable variables exist. These
expressions require partial derivatives of θ with respect to σ up to the third order.
However, the results are somewhat involved and are not repeated here.

Using the asymptotic cumulants in (11) and employing Cramér’s condition for
the distribution of the associated variables (see, e.g., Hall 1992a, Theorem 2.2), the
Edgeworth expansion of the distribution function of standardized w or θ̂ is given as
follows:

Pr

(
w

α
1/2
2

≤ z

)
= �(z)− n−1/2

{
α1

α
1/2
2

+ α3

6α3/2
2

(z2 − 1)

}

×φ(z)− n−1

{
1

2
(�α2 + α2

1)
z

α2
+
(α4

24
+ α1α3

6

)

× z3 − 3z

α2
2

+α
2
3(z

5 − 10z3 + 15z)

72α3
2

}
φ(z)+ o(n−1), (12)

where φ(z) = (1/
√

2π) exp(−z2/2) and �(z) = ∫ z
−∞ φ(t)dt .

It is known that the approximations to the distribution functions given by Edgeworth
expansions are not necessarily non-decreasing in finite samples. These anomalous
phenomena can be avoided by using Hall’s (1992b) method removing asymptotic
skewness with monotone transformation.

The asymptotic expansions shown above were derived by using population asymp-
totic cumulants, which are not given in practice. On the other hand, we have the
Studentized estimator

t = n1/2(θ̂ − θ)

α̂
1/2
2

= w

α̂
1/2
2

, (13)

whose asymptotic cumulants are

κ1(t) = n−1/2α′
1 + o(n−1/2), κ2(t) = 1 + o(1),

κ3(t) = n−1/2α′
3 + o(n−1/2), (14)

where the expressions for α′
1 and α′

3 were given by Ogasawara (2005a, 2007a).
Let zα̃ = �−1(1 − α̃) (e.g., α̃ = 0.05). Then, the confidence interval for θ with the

asymptotic confidence coefficient 1 − α̃ accurate up to order O(n−1/2) by the usual
Cornish–Fisher expansion is

θ̂ +
[
±zα̃/2 − n−1/2

{
α̂′

1 + (α̂′
3/6)(z

2
α̃/2 − 1)

}]
n−1/2α̂

1/2
2 . (15)
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The corresponding confidence interval given by Hall’s method is

θ̂ − n−1α̂
1/2
2 α̂′

1 + 6α̂1/2
2 (α̂′

3)
−1
[ {

1 − (1/2)α̂′
3(±n−1/2zα̃/2

−(n−1/6)α̂′
3)
}1/3 − 1

]
. (16)

In practice, α̂′
1 and α̂′

3 tend to be unstable since the quantities α̂′
1 and α̂′

3 involve
sample moments up to the sixth order under nonnormality. On the other hand, the NT
estimators or those under normality, denoted by α̂′

NT1 and α̂′
NT3, are relatively stable. A

typical situation encountered in practice is to use the NT Studentized estimator under
nonnormality. The asymptotic cumulants of the NT Studentized estimator under such
a condition are known (Ogasawara 2005a, 2007a). They are denoted by α′′

NT1, α
′′
NT2( �=

1) and α′′
NT3.

3 The partial derivatives

As addressed earlier, the formulas of the asymptotic cumulants of w in (11) involve
the partial derivatives of the parameter estimators with respect to s up to the third
order. They are derived from the partial derivatives in implicit functions given by (8).
Differentiating (8) with respect to s using the chain rule when necessary, we have

⎡
⎢⎢⎢⎣
∂2 FLS

∂ θ ∂ θ ′
∂ h′

∂ θ

∂ h
∂ θ ′ O

⎤
⎥⎥⎥⎦

⎡
⎢⎣
∂ θ

∂ s′

O

⎤
⎥⎦+

⎡
⎢⎢⎣
∂2 FLS

∂ θ ∂ s′

O

⎤
⎥⎥⎦ = O, (17)

which gives the first partial derivatives of θ with respect to s as

⎡
⎢⎣
∂ θ

∂ s′

O

⎤
⎥⎦ = −J−1

LS

⎡
⎢⎢⎣
∂2 FLS

∂ θ ∂ s′

O

⎤
⎥⎥⎦ with JLS =

⎡
⎢⎢⎢⎣
∂2 FLS

∂ θ ∂ θ ′
∂ h′

∂ θ

∂ h
∂ θ ′ O

⎤
⎥⎥⎥⎦ . (18)

In (17) and (18), the actual expressions of the partial derivatives of FLS evaluated
at s = σ with the parameter vector being at its population value (from now on stated
simply as “evaluated at the population values”) are

∂2 FLS

(∂ θ ′)<2>
= vec′ Ipq

(
∂ σ

∂ θ ′
)<2>

,
∂2 FLS

∂ θ ′ ⊗ ∂ s′ = −vec′ ∂ σ

∂ θ ′ , (19)

where

∂ σ

∂ θ ′ = [(B�)⊗ Ip, {Iq ⊗ (A�)}Kqp, (B ⊗ A)Mp], (20)
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Asymptotic expansions for cross covariance 1001

Kqp is the commutation matrix with Kqpvec B = vec B′ (see Magnus and Neudecker
1999, p. 47), and Mp is the p2 × p matrix with Mp�1p = vec �. For the nonzero
partial derivatives of h,

∂ v(A′A − Ip)

∂ vec′A
= Lp{Ip ⊗ A′ + (A′ ⊗ Ip)Kpp},

∂ v(B′B − Ip)

∂ vec′B
= Lp{Ip ⊗ B′ + (B′ ⊗ Ip)Kqp},

(21)

where Lp is the (p2 + p)/2 × p2 elimination matrix with v(A′A) = Lpvec(A′A).
The second partial derivatives of θ with respect to s are given by differentiating

(17) with respect to s′ and solving the equation:

⎡
⎢⎣

∂2θ

(∂ s′)2

O

⎤
⎥⎦=−J−1

LS

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂3 FLS

∂ θ(∂ θ ′)<2>

(
∂ θ

∂ s′

)<2>

+ ∂3 FLS

∂ θ ∂ θ ′@

(
∂ θ

∂ s′ ⊗ @

∂ s′

)

+ ∂3 FLS

∂ θ ∂ θ ′@

(
@

∂ s′ ⊗ ∂ θ

∂ s′

)
+ ∂3 FLS

∂ θ(∂ s′)<2>

∂2h
(∂ θ ′)<2>

(
∂ θ

∂ s′

)<2>

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(22)

where @ denotes the correspondence of variables in differentiation, that is, the column

for sab and scd (a, c = p+1, . . . , p+q; b, d = 1, . . . , p) in
∂3 FLS

∂ θ ∂ θ ′@

(
∂ θ

∂ s′ ⊗ @

∂ s′

)

is
∂3 FLS

∂θ∂θ ′∂scd

∂θ

∂sab
with

∂3 FLS

∂θ ∂θ ′@

(
@

∂s′ ⊗ ∂θ

∂ s′

)
= ∂3 FLS

∂ θ ∂ θ ′@

(
∂ θ

∂ s′ ⊗ @

∂ s′

)
Kpq,pq .

In (22), the nonzero partial derivatives evaluated at the population values are

∂3 FLS

(∂ θ ′)<3>
=

3∑
vec′Ipq

(
∂ σ

∂ θ ′ ⊗ ∂2σ

(∂ θ ′)<2>

)
,

∂3 FLS

(∂ θ ′)<2> ⊗ ∂ s′ = −vec′ ∂2σ

(∂ θ ′)<2>
(23)

where�3 denotes the sum of three similar terms considering the combinations of the
vector variables, i.e.,

vec′Ipq

(
∂ σ

∂ θ ′ ⊗ ∂2σ

(∂ θ ′)<2>
+ ∂2σ

(∂ θ ′)<2>
⊗ ∂ σ

∂ θ ′ + ∂2σ

∂ θ ′@
⊗ ∂ σ

∂ θ ′ ⊗ @

∂ θ ′
)

and the nonzero elements of ∂2σ/(∂ θ ′)<2> are

123
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∂2σ

∂ai j∂bkj
= φ j vecEik,

∂2σ

∂ai j∂φ j
= vec(Ei j B′) = (B ⊗ Ip) vecEi j ,

(24)
∂2σ

∂bi j∂φ j
= vec(AE j i ) = (Iq ⊗ A) vecE j i ,

where a i j and bkj (i, j = 1, . . . , p; k = 1, . . . , q) are the elements of A and B,
respectively, and Eik is the matrix of an appropriate size whose (i, k)th element is 1
with the remaining ones being 0. For the nonzero partial derivatives of h,

∂2v(A′A − Ip)

∂ vec′A ∂ ai j
= Lp{Ip ⊗ E j i + (E j i ⊗ Ip)Kpp},

∂2v(B′B − Ip)

∂ vec′B ∂ bi j
= Lp{Ip ⊗ E j i + (E j i ⊗ Ip)Kqp}.

(25)

Lastly, the third partial derivatives of θ with respect to s′ are given as follows:

⎡
⎢⎣

∂3θ

(∂ s′)3

O

⎤
⎥⎦

= −J−1
LS

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂4 FLS

∂ θ(∂ θ ′)<3>

(
∂ θ

∂ s′

)<3>

+
3∑{

∂3 FLS

∂ θ (∂ θ ′)<2>

(
∂ θ

∂ s′ ⊗ ∂2θ

(∂ s′)2

)

+ ∂4 FLS

∂ θ (∂ θ ′)<2>@

((
∂ θ

∂ s′

)<2>

⊗ @

∂ s′

)

+ ∂3 FLS

∂ θ ∂ θ ′@

(
∂2θ

(∂ s′)<2> ⊗ @

∂ s′

)

+ ∂4 FLS

∂ θ ∂ θ ′@

(
∂ θ

∂ s′ ⊗ @

(∂ s′)<2>

)}
+ ∂4 FLS

∂ θ(∂ s′)<3>

3∑ ∂2h
(∂ θ ′)<2>

(
∂ θ

∂ s′ ⊗ ∂2θ

(∂ s′)<2>

)
+ ∂3h
(∂ θ ′)<3>

(
∂ θ

∂ s′

)<3>

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(26)

In (26), the nonzero partial derivatives of FLS evaluated at the population values
are

∂4 FLS

(∂ θ ′)<4>
= vec′Ipq

{
4∑ ∂ σ

∂ θ ′ ⊗
∂3σ

(∂ θ ′)<3>
+

3∑(
∂2σ

(∂ θ ′)<2>

)<2>
}
,

∂4 FLS

(∂ θ ′)<3> ⊗ ∂ s′ = −vec′ ∂3σ

(∂ θ ′)<3>
,

(27)
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Asymptotic expansions for cross covariance 1003

where the nonzero third partial derivatives of σ with respect to θ are

∂3σ

∂ai j∂bkj∂φ j
= vecEik (28)

In (22) and (26), the vanishing partial derivatives, when evaluated at the population
values, are included for completeness or for later use in similar problems.

4 Inter-battery factor analysis

In this section, we introduce the inter-batter factor analysis model since the model
gives the asymptotic robustness of some lower-order cumulants of the NT estimators
in the SVD against the violation of the normality assumption under some conditions,
which will be shown later. The model of inter-battery factor analysis is written as
follows:

x = A1f + eX , y = B1f + eY , (29)

where A1(B1) is a p × K (q × K ) factor loading matrix; f is a K × 1 vector of inter-
battery factors; eX (eY ) is a p×1(q ×1) vector of battery-specific factors. It is assumed
that

Cov(f) = IK , Cov(eX ) = �X , Cov(eY ) = �Y (30)

and that f, eX and eY are mutually uncorrelated. The number of the inter-battery factors
K may be 1 through p (note p ≤ q). From (29) and (30) with associated assumptions,
it follows that

Cov{(x′, y′)′} = � =
[

A1A′
1 + �X A1B′

1

B1A′
1 B1B′

1 + �Y

]
. (31)

When K < p, the model is not a saturated one for the cross covariance matrix. Conse-
quently, the parameter estimators generally depend on discrepancy functions used for
estimation. However, when (4) with (5) is used, the parameter estimators for A1 and
B1 defined below in (32) are equal to the corresponding ones in the saturated model
while the estimators for �X and �Y tend to become larger in, e.g., Löwner’s sense,
than those in the saturated model. In the following we consider the case K = p.

For simplicity, we use the orthogonal model or uncorrelated inter-battery factors
with conventional unit factor variances without loss of generality. With this restriction,
however, (31) is still unidentified in that A1 and B1 can be replaced by A1T and
B1T′−1, where T is a K × K nonsingular matrix with �X = �X X − A1TT′A′

1 and
�Y = �Y Y −B1(TT′)−1B′

1 to yield the same�. It is to be noted that this indeterminacy
is not restricted to the rotational one found in the usual factor analysis model (see,
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1004 H. Ogasawara

e.g., Ogasawara 1986). In this paper, we consider the following practical estimators
of A1 and B1,

Â1 = (p/q)1/4Â�̂
1/2
, B̂1 = (q/p)1/4B̂�̂

1/2
, (32)

which give the same mean-square loadings per observed variable in each set (battery)
of variables ((pq)−1/2∑K

i=1φ̂ i ).
The asymptotic expansions of the distributions of Â1 and B̂1 are given when their

partial derivatives with respect to SXY up to the third order are given. The partial
derivatives are obtained by using the chain rule and the partial derivatives of A,� and
B. Similarly, the asymptotic expansions of the distributions of �̂X (= SX X − Â1Â′

1)

and �̂Y (= SY Y − B̂1B̂′
1) are given from those of Â1 and B̂1. The partial derivatives

will be provided in the “Appendix”.

5 The estimators for standardized variables

When observed variables are standardized with unit variances, the SVD is carried out
to RXY [see (3)]. In this case (4) with (5) is replaced by

FρLS = 1

2
tr{(Aρ�ρB′

ρ − RXY )(Aρ�ρB′
ρ − RXY )

′},
�ρ = diag(φρ1, . . . , φρp), A′

ρAρ = Ip, B′
ρBρ = Ip,

(33)

where Aρ,Bρ and �ρ are defined similarly to A,B and � in (4). Let θρ = (vec′Aρ,
vec′Bρ, 1′

p�ρ)
′. Then, the asymptotic expansions of the distributions of the LS esti-

mators θ̂ρ optimizing (33) are given in a manner similar to those for θ̂ . We should
note that since RXY is a matrix function of sii (i = 1, . . . , p + q) as well as SXY , θ̂ρ
is a function of these variances and covariances. In order to have the required partial
derivatives for θ̂ρ , it is convenient to consider two steps: the first step for θ̂ρ seen as a
function of RXY followed by the second step of RXY considered as a function of S or
s∗(= v(S)).

In the first step, ∂k FρLS/∂θρ i1 · · · ∂θρ ik (k = 2, 3, 4) evaluated at the population
values are given by replacing �XY and θ in (19)–(21), (23)–(25), (27) and (28) with
PXY and θρ , respectively. The remaining partial derivatives required are

∂k FρLS

(∂ θ ′
ρ )
< j> ⊗ (∂ s′)<k− j>

( j = 1, . . . , k − 1; k = 2, 3, 4). (34)

where the partial derivatives of RXY in the second step with respect to s∗ are required,
but are omitted since they are given straightforwardly [see, e.g., Ogasawara 2006,
Eq. (29)].
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6 Asymptotic robustness of the normal-theory lower-order cumulants
of some estimators

Let u be a r × 1 vector of observed variables given by

u = E(u)+
C∑

i=1

�i fi wi th Cov(fi ) = �i , (35)

where fi is a ci × 1 random vector; �i is the unconstrained covariance matrix of fi ;
fi (i = 1, . . . ,C) are mutually independently distributed; and �i has restrictions to
have an identified covariance structure of u. Then, it is known that the NT asymptotic
standard errors of order O(n−1/2) for unweighted/weighted LS estimators of the unk-
nown parameter estimators in �i (i = 1, . . . ,C) are robust against the violation of the
normality assumption (Browne and Shapiro 1988, p. 197 and Proposition 3.1). Simi-
larly, the NT asymptotic biases of order O(n−1) for the unknown parameter estimators
in �i and �i (i = 1, . . . ,C) have such robustness (Ogasawara 2005b).

Noting Cov(u) =∑C
i=1 �i�i�

′
i , the SVD of �XY is reformulated under (35) with

the model of inter-battery factor analysis:

�i = [a′
i , b′

i ]′, �i = φi (i = 1, . . . , p),
�p+1 = [Ip O]′, �p+1 = �X , �p+2 = [O, Iq ]′, �p+2 = �Y ,

(36)

where ai and bi are the i th singular vectors or the i th columns of A and B corresponding
to the i th largest singular value φi . Note that φi corresponds to the variance of the
i th inter-battery factor, whose restriction with conventional unit value used in Sect. 4
has been relaxed by regarding φi ’s as free parameters to satisfy (35). From (36) with
Browne and Shapiro (1988) and Ogasawara (2005b, Theorem 1), we have

Theorem The NT asymptotic standard errors of order O(n−1/2) for the sample sin-
gular vectors in the SVD of SXY hold under nonnormality irrespective of the violation
of the normality assumption when the corresponding inter-battery factor model holds
with p + 2 sets of factors being mutually independently distributed, where the first p
sets are p inter-battery factors each with unconstrained distinct variance and the last
two are two sets of battery-specific factors with unconstrained covariance matrices.
Under the same conditions, the NT asymptotic biases of order O(n−1) for the sample
singular vectors and the sample singular values are robust under nonnormality.

For �̂X (= SX X − Â1Â′
1) and �̂Y (= SY Y − B̂1B̂′

1), we have from Theorem and (11)
(see also the proof of Corollary 4, Ogasawara 2005a, 2007a)

Corollary 1 When A1 and B1 with �X and �Y are given from the transformation
such that

[
A1
B1

] [
A′

1 B′
1

] = [�1, . . . ,�p
]

diag(φ1, . . . , φp)
[
�1, . . . ,�p

]′
,

�p+1 = [Ip O]′, �p+2 = [O Iq ] ′,
�X = �p+1 = �X X − A1A′

1, �Y = �p+2 = �Y Y − A2A′
2,

(37)
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1006 H. Ogasawara

where �i and �i (i = 1, . . . , p + 2) satisfy (35) with the associated conditions, the
NT asymptotic biases of �̂X and �̂Y are robust under nonnormality.

It is to be noted that while Â1B̂′
1 = Â�̂B̂

′
, �̂X (�̂Y ) is generally different from

SX X − Â�̂Â
′
(SY Y − B̂�̂B̂

′
), which also enjoy the robustness in Corollary 1 under

the conditions in Theorem. Unfortunately, Â1 and B̂1 do not have the robust property
shown in Corollary 1 since the corresponding variances (φi ) are set to be 1 [see the
first equation of (37)].

Using Ogasawara (2005a, 2007a, Corollary 4),

Corollary 2 The asymptotic standard errors of order O (1) and the asymptotic biases
of order O(n−1/2) of the NT Studentized estimators of the singular vectors in Theorem
with the associated conditions are robust under nonnormality.

The obvious results of the unit asymptotic standard errors in Corollary 2 are included
for completeness. More general results are also obtained:

Corollary 3 Let g(A,B) be a differentiable function of A and B with ĝ = g(Â, B̂).
Then, the NT asymptotic standard error of order O(n−1/2) and the NT asymptotic
bias of order O(n−1) for ĝ are robust against the normality assumption under the
conditions of Theorem.

Proof The robustness of the asymptotic standard error is given by the delta method
with the corresponding robustness of Â and B̂. For the remaining result, let θ∗(Q∗ ×
1) = (vec′A, vec′B)′ with Q∗ = p(p + q), then n times the asymptotic bias of ĝ is
given by the formula of (11):

1

2
tr

(
∂2g(θ∗)
∂ σ ∂ σ ′ �

)
= 1

2
tr

⎧⎨
⎩
⎛
⎝ Q∗∑

i=1

∂ g(θ∗)
∂ θ∗

i

∂2θ∗
i

∂ σ ∂ σ ′ + ∂2g(θ∗)
∂ σ ∂ θ∗′

∂ θ∗

∂ σ ′

⎞
⎠�

⎫⎬
⎭

=
Q∗∑
i=1

{
∂ g(θ∗)
∂ θ∗

i
n abis(θ̂∗

i )+ n

2
acov

(
∂ g(θ∗)
∂ θ∗

i

∣∣∣∣
θ∗=θ̂

∗
, θ̂∗

i

)}
,

(38)

where abis(·) and acov( ·, · ) are the asymptotic bias and covariance of order O(n−1)

for the argument estimators, respectively. Since the abis(·) and acov( ·, · ) in (38) are
robust , the whole result of (38) has the robust property. 	


If g(·) is a differentiable function of � as well as A and B, Corollary 3 does not
generally hold (an exception is the linear function of the elements of A , B and �) since
some of the acov( ·, · )’s in (38) have not the robust property although abis(·)’s in
(38) are robust. None of the parameter estimators θ̂ρ have the robust properties shown
above since standardization of observed variables violates the necessary condition of
unconstrained �i .
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7 A numerical example with simulations

A small numerical example with p = 2 and q = 2 is given for illustration:

� =

⎡
⎢⎢⎣

1 sym.
0.4 1
0.3 0.2 1
0.2 0.3 0.4 1

⎤
⎥⎥⎦ , A = B =

[
1 1
1 − 1

]/√
2, � = diag(0.5, 0.1),

A1 = B1 = A�1/2 =
[

5
√

5
5 − √

5

]
/10, �X = �Y =

[
0.7 0.2
0.2 0.7

]
,

(39)

where the transformation of (32) is used. Simulations were performed to see the
accuracy of the asymptotic results in finite samples under normality and nonnormality.
Nonnormal observations were generated to satisfy (35), where the two inter-battery
factors were independently chi-square distributed with 1 df followed by scaling. The
two sets of battery-specific factors were given by eX = �∗

X fX and eY = �∗
Y fY , where

�∗
X and �∗

Y are the Cholesky-decomposed lower-triangular matrices of �X and �Y ,
respectively, and each element of fX and fY is independently chi-square distributed
with 1 df with scaling to have unit variance.

In the first half of the simulations sample sizes were varied from n = N − 1 =
100–800. From each set of generated observations, the parameters were estimated
using the SVD of SXY with SX X and SY Y for �X and �Y . NT Studentized parameter
estimates were also obtained using estimated NT standard errors. This was replica-
ted 1,000,000 times. Tables 1 and 2 show the simulated and theoretical values of the
cumulants for selected parameter estimators. The simulated cumulants were given by
k-statistics (unbiased estimators of cumulants) based on 1,000,000 estimates for each
parameter with multiplications of appropriate powers of n for ease of comparison. In
Table 2, the theoretical ratio HASE/ASE = √(α2/n)+ (�α2/n2)/

√
α2/n (asympto-

tic standard error, ASE; higher-order ASE, HASE) depends on n. The corresponding
simulated ratio is SD/ASE, where SD is the square root of the usual unbiased variance
based on 1,000,000 estimates.

In the tables an “a” indicates that the corresponding NT value holds due to the
asymptotic robustness. The results of the tables show that the asymptotic values are
reasonably similar to their corresponding simulated ones except for some results with
relatively small sample sizes. The simulated values corresponding to the asymptoti-
cally robust NT cumulants well show the robustness. The results for a11 in Table 2
when n is less than 400 are unstable. The sample size more than 400 may be needed to
have stable results for the Studentized estimators of the singular vectors. It is of interest
to find that Studentization tends to give the reversal of the sign of skewness in these
data. The absolute values of the cumulants in the nonnormal case are mostly larger
than the corresponding NT values, which stems primarily from the large kurtosis of
the nonnormal distribution used in the example.

Table 3 gives the results for standardized observed variables. The simulations were
similarly performed as in Tables 1 and 2 with the SVD of RXY instead of SXY with
�̂Xρ = RX X − Â1ρÂ′

1ρ and �̂Yρ = RY Y − B̂1ρB̂′
1ρ . In the table, the simulated

values are presented only with n = 800. While the asymptotic robustness found in
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1008 H. Ogasawara

Table 1 Simulated and theoretical cumulants of the non-Studentized estimators in unstandardized-variable
data

Parameter n α
1/2
2 (dispersion) α1(bias) α3(skewness) α4(kurtosis)

Nml C1 Nml C1 Nml C1 Nml C1

a11 100 1.54 1.77 −1.68 −2.24 −36.0 −79.5 1,533 5,368

200 1.47 1.62 −1.48 −1.86 −25.0 −53.8 976 4,090

400 1.42 1.49 −1.40 −1.60 −19.2 −29.9 578 2,112

800 1.41 1.44 −1.34 −1.41 −17.1 −21.7 453 1,189

Th. 1.39 a −1.37 a −16.0 −17.3 402 838

φ1 100 1.46 2.26 1.82 1.87 6.0 106 75 5,363

200 1.47 2.26 1.83 1.91 6.6 110 46 5,404

400 1.48 2.27 1.80 1.88 6.4 111 44 5,334

800 1.48 2.28 1.82 1.88 6.6 110 64 5,390

Th. 1.49 2.28 1.77 a 6.1 111 41 5,471

φ2 100 0.56 0.63 −0.19 −0.07 0.9 2.3 0 23

200 0.60 0.68 −0.42 −0.40 0.5 1.7 −4 11

400 0.61 0.69 −0.46 −0.49 0.2 1.3 −1 11

800 0.61 0.70 −0.44 −0.48 0.2 1.2 0 18

Th. 0.61 0.70 −0.45 a 0.2 1.3 1 18

ψX11 100 1.38 2.76 −0.81 −0.88 5.8 235 32 15,828

200 1.39 2.78 −0.70 −0.72 6.1 244 39 16,892

400 1.39 2.79 −0.68 −0.65 5.9 244 32 16,531

800 1.40 2.80 −0.66 −0.54 6.1 241 43 15,909

Th. 1.40 2.80 −0.66 a 6.3 246 37 16,927

n + 1, The sample size in the simulation; Th., theoretical or asymptotic values; Nml, normally distributed
data; C1, chi-square distributed data with df = 1
a Corresponding normal-theory values

unstandardized observed variables is lost in Table 3, some of the large α3 and α4 have
been reduced.

In Table 4, the results of the simulations of confidence intervals for selected parame-
ters are shown under normality with n = 200 for unstandardized observed variables.
The one-sided confidence intervals were constructed in three ways: the usual normal
approximation, the Cornish–Fisher expansion and Hall’s (1992b) method by variable
transformation each based on a data set randomly generated as before. The number
of replications was reduced to 100,000 due to the excessive computation time requi-
red. Table 4 shows the proportions of true values below the endpoints of the 100,000
confidence intervals for each parameter. We find that the proportions given by the
Cornish–Fisher expansion and Hall’s method give values more similar to nominal
ones than the usual normal approximation. The results of Table 4 are encouraging in
that in Table 2, the simulated third cumulant under normality corresponding to α′

NT3
was unstable with n = 200 while Table 4 gives reasonable values, which suggests that

123



Asymptotic expansions for cross covariance 1009

Ta
bl

e
2

Si
m

ul
at

ed
an

d
th

eo
re

tic
al

H
A

SE
s

of
th

e
no

n-
St

ud
en

tiz
ed

es
tim

at
or

s
an

d
cu

m
ul

an
ts

of
th

e
St

ud
en

tiz
ed

es
tim

at
or

s
in

un
st

an
da

rd
iz

ed
-v

ar
ia

bl
e

da
ta

Pa
ra

m
et

er
n

SD A
SE

H
A

SE
A

SE
SD A
SE

H
A

SE
A

SE
α

1/
2′

N
T

2
α

1/
2′′

N
T

2
α

′ N
T

1
α

′′ N
T

1
α

′ N
T

3
α

′′ N
T

3

N
m

l
C

1
N

m
l

C
1

N
m

l
C

1
N

m
l

C
1

a 1
1

10
0

1.
10

7
1.

08
1

1.
26

9
1.

21
9

55
.2

58
8.

5
3.

49
11
.5

9
1.

3
×1

09
2.

0
×

10
12

20
0

1.
05

2
1.

04
1

1.
16

3
1.

11
5

3.
5

6.
6

1.
33

1.
83

4.
2
×1

05
2.

1
×

10
6

40
0

1.
02

2
1.

02
1

1.
07

1
1.

05
9

1.
02

6
1.

18
9

1.
08

1.
12

8.
0

3.
9

×
10

3

80
0

1.
01

0
1.

01
0

1.
03

3
1.

03
0

1.
01

1
1.

01
5

1.
06

1.
07

6.
6

6.
2

T
h.

1
a

0.
98

a
5.

9
5.

4

φ
1

10
0

0.
98

0
0.

97
7

0.
99

0
0.

98
2

1.
00

9
1.

53
1

0.
19

−1
.6

1
−5
.7

−1
6.

8

20
0

0.
98

8
0.

98
8

0.
99

1
0.

99
1

0.
99

5
1.

50
6

0.
26

−1
.4

5
−4
.0

−1
0.

1

40
0

0.
99

4
0.

99
4

0.
99

5
0.

99
6

0.
99

6
1.

51
2

0.
26

−1
.4

1
−3
.7

−6
.0

80
0

0.
99

8
0.

99
7

0.
99

7
0.

99
8

0.
99

9
1.

52
0

0.
28

−1
.3

9
− 3
.6

−4
.9

T
h.

1
1.

53
5

0.
26

−1
.4

8
−3
.7

−4
.0

φ
2

10
0

0.
92

7
0.

99
4

0.
90

6
0.

94
5

0.
88

6
0.

98
6

−0
.7

3
−0
.9

2
1.

3
2.

6

20
0

0.
98

2
0.

99
7

0.
95

4
0.

97
3

0.
96

5
1.

07
5

−1
.1

4
−1
.4

7
−0
.3

1.
2

40
0

0.
99

9
0.

99
9

0.
98

5
0.

98
7

0.
99

1
1.

12
2

−1
.2

2
−1
.6

3
−1
.7

−0
.8

80
0

1.
00

0
0.

99
9

0.
99

4
0.

99
3

0.
99

6
1.

13
8

−1
.2

0
−1
. 6

4
−1
.9

−1
.3

T
h.

1
1.

15
1

−1
.2

3
−1
.6

0
−1
.9

−1
.2

ψ
X

11
10

0
0.

98
4

0.
98

9
0.

98
5

0.
98

7
1.

02
9

2.
01

3
−1
.7

6
−5
.5

7
−5
.0

−4
1.

6

20
0

0.
99

3
0.

99
5

0.
99

4
0.

99
4

1.
01

4
1.

99
9

−1
.6

6
−5
.5

7
−4
.8

−4
0.

3

40
0

0.
99

6
0.

99
7

0.
99

7
0.

99
7

1.
00

6
1.

99
6

−1
.6

4
−5
.6

1
−4
.8

−3
8.

6

80
0

0.
99

7
0.

99
9

0.
99

9
0.

99
8

1.
00

2
1.

99
8

− 1
.6

3
−5
.5

8
−4
.7

−3
9.

3

T
h.

1
2.

00
0

−1
.6

2
−5
.7

2
−4
.6

−3
6.

1

n
+

1,
T

he
sa

m
pl

e
si

ze
in

th
e

si
m

ul
at

io
n

an
d

th
e

th
eo

re
tic

al
ra

tio
(H

A
SE

/A
SE

);
T

h.
,t

he
or

et
ic

al
or

as
ym

pt
ot

ic
va

lu
es

;S
D

,s
ta

nd
ar

d
de

vi
at

io
n

fr
om

th
e

si
m

ul
at

io
n;

A
SE

=
√ α

2
/

n;
H

A
SE

=
√ (
α

2
/

n)
+
(�
α

2
/

n2
);

N
m

l,
no

rm
al

ly
di

st
ri

bu
te

d
da

ta
;C

1,
ch

i-
sq

ua
re

di
st

ri
bu

te
d

da
ta

w
ith

df
=

1
a

C
or

re
sp

on
di

ng
no

rm
al

-t
he

or
y

va
lu

es

123



1010 H. Ogasawara

Table 3 Simulated and theoretical cumulants of the non-Studentized and Studentized estimators, and
HASEs of the non-Studentized estimators in standardized-variable data

Parameter N α
1/2
2 (dispersion) α1(bias) α3(skewness) α4(kurtosis)

Nml C1 Nml C1 Nml C1 Nml C1

a11 800 1.29 1.47 −1.13 −1.40 −12.6 −23.0 431 1, 341

Th. 1.28 1.43 −1.15 −1.33 −11.3 −17.8 359 961

φ1 800 1.29 1.91 1.31 2.59 −2.1 19.8 7 190

Th. 1.29 1.93 1.28 2.57 −2.3 22.0 −4 287

φ2 800 0.60 0.70 −0.29 −0.11 0.1 1.1 −1 14

Th. 0.60 0.70 −0.29 −0.06 0.2 1.2 1 14

ψX11 800 1.00 1.28 −0.54 −1.35 0.9 −4.0 −5 −46

Th. 1.00 1.29 −0.49 −1.35 0.9 −4.2 −4 −38

SE ratio α
1/2′
NT2 α

1/2′′
NT2 α′

NT1 α′′
NT1 α′

NT3 α′′
NT3

Nml C1 Nml C1 Nml C1 Nml C1

a11 800 1.014 1.029 1.001 1.124 0.96 1.21 5.6 8.3

Th. 1.014 1.026 1 1.121 0.90 1.15 5.4 7.9

φ1 800 0.996 0.988 1.003 1.496 1.25 2.34 0.4 14.1

Th. 0.995 0.989 1 1.495 1.24 2.33 0.4 14.8

φ2 800 1.002 0.997 0.997 1.154 −0.81 −0.84 −1.4 −0.2

Th. 1.001 0.996 1 1.165 −0.84 −0.78 −1.4 −0.1

ψX11 800 0.997 0.992 1.004 1.301 −0.84 −1.91 −0.9 −9.9

Th. 0.997 0.992 1 1.293 −0.80 −1.90 −0.9 −9.7

n+1, The sample size in the simulation and the theoretical SE ratio; HASE/ASE=
√
(α2/n)+(�α2/n2)/√

α2/n
The simulated SE ratio is SD/ASE, where SD is the standard deviation from the simulation. Th., theoretical
or asymptotic values; Nml, normally distributed data; C1, chi-square distributed data with df = 1

most of the estimated α′
NT3 used in the confidence intervals with n = 200 are stable

in practical sense.
Table 5 gives the simulated and theoretical cumulants of the selected estimators

Studentized by the asymptotically distribution (ADF) theory. In the simulations the
sample cumulants were given from the corresponding sample moments up to the
sixth order with the number of replications 100,000, where the results of the normally
distributed data were included for comparison to those of the nonnormal data generated
as before. Note that for the normal data Studentized estimators were given by the ADF
theory. The sample sizes n = 200 – 1,600 were used considering the relatively unstable
results expected. As in Table 2 given by the normal-theory Studentized estimators, the
simulated results of α1/2′

2 and α′
3 for a11 in Table 5 are unstable while the remaining

simulated results are reasonably similar to the corresponding asymptotic values.
In Table 6, the results of the confidence intervals based on the ADF theory using

the same nonnormal data in Table 5 are represented, where the number of replications
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Table 4 Simulated proportions below the lower endpoints of the confidence intervals based on the normal-
theory Studentized estimators under normality in unstandardized-variable data (n = 200)

Parameter Method Nominal values

0.0050 0.0250 0.1000 0.5000 0.9000 0.9750 0.9950

a11 N* 0.0202 0.0490 0.1257 0.5023 0.9182 0.9858 0.9983

C-F 0.0067 0.0290 0.1057 0.5020 0.8930 0.9679 0.9899

Hall 0.0028 0.0217 0.1040 0.5017 0.8941 0.9712 0.9929

φ1 N* 0.0018 0.0168 0.0952 0.5265 0.8986 0.9693 0.9912

C-F 0.0066 0.0283 0.1044 0.5025 0.8928 0.9699 0.9922

Hall 0.0056 0.0266 0.1040 0.5025 0.8931 0.9707 0.9928

φ2 N* 0.0017 0.0143 0.0779 0.4736 0.8861 0.9718 0.9990

C-F 0.0073 0.0298 0.1064 0.4990 0.8944 0.9735 0.9991

Hall 0.0068 0.0290 0.1062 0.4990 0.8944 0.9735 0.9991

ψX11 N* 0.0012 0.0114 0.0731 0.4768 0.8720 0.9558 0.9868

C-F 0.0071 0.0291 0.1039 0.5016 0.8946 0.9712 0.9934

Hall 0.0058 0.0274 0.1034 0.5016 0.8951 0.9727 0.9941

n +1, The sample size in the simulation; N*, normal approximation; C–F, Cornish–Fisher expansion; Hall,
Hall’s method by variable transformation

was 100,000 with n = 200 and 800. The results by the Cornish–Fisher expansion are
omitted since they are slightly poorer than those by Hall’s method. The results by Hall
are better than those by the usual normal approximation especially when the sample
size is relatively large with some exceptions (e.g., n = 200, a11, the nominal value =
0.9950).

Table 7 shows the overall sizes of the errors of the approximations of the cumulative
distribution functions for selected parameter estimators which are standardized with
the population asymptotic standard errors. The approximations were given by four
methods shown in the table using the population asymptotic cumulants: N*, E1, E2 and
Hall in the table stand for the usual normal approximation, the single-term Edgeworth
expansion, the two-term Edgeworth expansion and Hall’s method, respectively. The
true values were given from the simulations used in Tables 1, 2 and 3. The root mean
square error was obtained from the square root of the mean of the squared errors
over the 40 points of a standardized parameter estimator (i.e.,−3.8,−3.6, . . . , 4.0),
where the error was defined as an approximated value minus the corresponding true
or simulated proportion. From the table, we see that E1 and Hall have considerably
reduced the errors of N*, and that E2 has further reduced the errors of E1 and Hall
with some exceptions (normal unstandardized-variable data, n = 800, φ2; normal
standardized-variable data, n = 200, φ2). The sizes of the errors of E1 and Hall seem
to be similar.

8 Discussion

In the SVD of �XY , distinct nonzero singular values have been assumed. When some
of them are equal, the singular vectors become unidentified. Let � = diag(φ11′

p1
, . . . ,
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Table 5 Simulated and theoretical cumulants of the Studentized estimators in unstandardized-variable data

Parameter n α
1/2′
2 α′

1 α′
3

Nml C1 Nml C1 Nml C1

a11 200 1.254 28.3 1.37 1.88 533.5 3.2×104

400 1.040 1.051 1.10 1.25 7.7 11.8

800 1.021 1.027 1.20 1.23 6.9 7.6

1,600 1.011 1.011 1.16 1.24 6.2 7.3

Th. 1 1 0.98 1.23 5.9 6.9

φ1 200 1.022 1.177 0.24 −3.19 −4.8 −22.2

400 1.007 1.100 0.30 −3.35 −3.8 −18.6

800 1.008 1.059 0.21 −3.45 −3.4 −17.8

1,600 1.006 1.037 0.34 −3.43 −4.1 −18.7

Th. 1 1 0.26 −3.97 −3.7 −19.2

φ2 200 0.983 1.020 −1.18 −2.15 −0.3 −2.9

400 1.001 1.028 −1.29 −2.34 −1.7 −5.4

800 1.002 1.017 −1.25 −2.38 −2.2 −6.5

1,600 1.004 1.010 −1.21 −2.25 −2.1 −7.1

Th. 1 1 −1.23 −2.53 −1.9 −7.6

ψX11 200 1.040 1.280 −1.68 −5.47 −5.3 −30.5

400 1.019 1.174 −1.62 −5.54 −5.1 −27.6

800 1.010 1.101 −1.64 −5.56 −4.4 −24.3

1,600 1.007 1.062 −1.67 −5.69 −4.9 −24.4

Th. 1 1 −1.62 −5.98 −4.6 −23.2

n + 1, The sample size in the simulation; Th., theoretical or asymptotic values; Nml = normally distributed
data; C1 = chi-square distributed data with df = 1

φM 1′
pM
), where p1, . . . , pM

(
p =∑M

i=1 pi ;φ1 > · · · > φM > 0
)

denote multiplici-

ties of M distinct singular values. Let A[i] and B[i] be the p × pi and q × pi matrices
whose columns are the unit-norm orthogonal singular vectors corresponding to the sin-
gular value φi with multiplicity pi (i = 1, . . . ,M). Then, A[i] and B[i] are identified
up to the post-multiplication of an orthogonal matrix say T i . For instance appropriate
(p2

i
− pi )/2 elements of A[i] or B[i] can be set to zero, e.g., to have an echelon form

with variable reordering if necessary. A similar method is used by Boik (1998, p.
247). When the multiplicities are known, the non-fixed parameters in A[i],B[i] and
φi (i = 1, . . . ,M) are estimated by LS based on SXY or RXY using some numerical
methods. Since the model with multiple singular values is not a saturated one, the
estimators depend on discrepancy functions used. The asymptotic expansions of the
distributions of these estimators can be similarly given from the first-order conditions
as in (8).

In this paper, the SVDs of asymmetric matrices have been dealt with. The correspon-
ding results for symmetric cases reduce to the eigenvalue and eigenvector problems of
sample covariance/correlation matrices, which have been well investigated. It is known
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Table 6 Simulated proportions below the lower endpoints of the confidence intervals based on the ADF-
theory Studentized estimators under nonnormality (χ2, d f = 1) in unstandardized-variable data (n = 200)

Parameter Method Nominal values

0.0050 0.0250 0.1000 0.5000 0.9000 0.9750 0.9950

n = 200

a11 N* 0.0253 0.0577 0.1368 0.5005 0.9137 0.9835 0.9970

Hall 0.0134 0.0394 0.1207 0.4979 0.8729 0.9564 0.9851

φ1 N* 0.0002 0.0053 0.0620 0.4823 0.8303 0.9176 0.9598

Hall 0.0057 0.0321 0.1164 0.4832 0.8453 0.9390 0.9769

φ2 N* 0.0010 0.0107 0.0725 0.4620 0.8548 0.9547 0.9906

Hall 0.0125 0.0421 0.1268 0.4933 0.8624 0.9533 0.9881

ψX11 N* 0.0001 0.0033 0.0482 0.4434 0.7910 0.8855 0.9368

Hall 0.0054 0.0312 0.1157 0.4733 0.8299 0.9288 0.9705

n = 800

a11 N* 0.0112 0.0374 0.1164 0.5007 0.9078 0.9816 0.9972

Hall 0.0080 0.0318 0.1086 0.4992 0.8914 0.9693 0.9922

φ1 N* 0.0006 0.0098 0.0739 0.4916 0.8614 0.9456 0.9798

Hall 0.0060 0.0287 0.1096 0.4960 0.8782 0.9619 0.9891

φ2 N* 0.0018 0.0153 0.0837 0.4829 0.8761 0.9609 0.9898

Hall 0.0077 0.0313 0.1114 0.4987 0.8847 0.9637 0.9896

ψX11 N* 0.0004 0.0072 0.0662 0.4729 0.8417 0.9314 0.9711

Hall 0.0058 0.0300 0.1097 0.4942 0.8712 0.9578 0.9880

n + 1, The sample size in the simulation; N*, normal approximation; Expansion; Hall; Hall’s method by
variable transformation

that the asymptotic robustness similar to that in this paper is found for unit-norm eigen-
vectors and eigenvalues of sample covariance matrices (see Ogasawara 2005b). It is
of interest to see that in the case of (36), 2p + q latent variables are required to have
the asymptotic robustness while in the case of the eigenvalue and eigenvector pro-
blem, independently distributed full components in principal component analysis are
required whose number is equal to that of the observed variables. Note that 2p + q is
greater than the number of observed variables by p.

Appendix A: The partial derivatives of A1 and B1 evaluated at the population
values

Let k∗ = (p/q)1/4. Then,

1

k∗
∂A1

∂σp+c,d
= ∂A
∂σp+c,d

�1/2 + 1

2
A�−1/2 ∂ �

∂σp+c,d
,

1

k∗
∂2A1

∂σp+c,d∂σp+e, f
= ∂2A
∂σp+c,d∂σp+e, f

�1/2
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Table 7 105×Root mean square errors of the asymptotic distribution functions of the standardized esti-
mators

Parameter Normal Chi-square (df = 1)

N* E1 E2 Hall N* E1 E2 Hall

Unstandardized-variable data

n = 200

a11 1,185 338 117 241 1612 1,034 350 936

φ1 1,458 181 43 190 1,478 751 330 691

φ2 1,169 209 205 218 1,635 647 325 706

ψX11 983 105 50 132 2,198 680 358 846

n = 800

a11 553 79 33 57 634 257 46 238

φ1 721 43 22 43 727 215 66 191

φ2 531 33 35 32 725 139 27 154

ψX11 474 43 27 50 1,107 195 90 216

Standardized-variable data

n = 200

a11 1,134 457 150 362 1,467 880 337 764

φ1 1,517 214 66 262 1,695 588 210 585

φ2 812 200 211 198 1,025 519 340 534

ψX11 842 146 75 159 1311 331 103 344

n = 800

a11 513 110 33 85 599 215 45 189

φ1 735 49 21 61 789 170 37 169

φ2 350 40 31 38 395 106 41 108

ψX11 415 41 31 44 614 82 13 85

n + 1, The sample size in the simulation; N*, normal approximation, E1, the single-term Edgeworth
expansion; E2, the two-term Edgeworth expansion; Hall, Hall’s method by variable transformation

+1

2

(
∂A

∂σp+c,d

∂ �

∂σp+e, f
+ ∂A
∂σp+e, f

∂ �

∂σp+c,d

)
�−1/2

−1

4
A�−3/2 ∂ �

∂σp+c,d

∂ �

∂σp+e, f

+1

2
A�−1/2 ∂2�

∂σp+c,d∂σp+e, f
,

1

k∗
∂3A1

∂σp+c,d∂σp+e, f ∂σp+g,h
= ∂3A
∂σp+c,d∂σp+e, f ∂σp+g,h

�1/2

+
3∑

(U,V,W )

{
1

2

(
∂2A

∂σU∂σV

∂ �

∂σW
+ ∂A
∂σU

∂2�

∂σV ∂σW

)
�−1/2
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− 1

4

(
∂A
∂σU

∂ �

∂σV

∂ �

∂σW
+ A

∂2�

∂σU∂σV

∂ �

∂σW

)
�−3/2

}

+3

8
A�−5/2 ∂ �

∂σp+c,d

∂ �

∂σp+e, f

∂ �

∂σp+g,h

+1

2
A�−1/2 ∂3�

∂σp+c,d∂σp+e, f ∂σp+g,h

(c, e, g = 1, . . . , q; d, f, h = 1, . . . , p), (40)

where
∑3
(U,V,W ) denotes a summation over the range:

(U, V,W ) ∈ {(p + c, d; p + e, f ; p + g, h), (p + e, f ; p + g, h; p + c, d),

(p + g, h; p + c, d; p + e, f )}.
The partial derivatives of B1 can be obtained by replacing A,A1 and 1/k∗ in (40) with
B,B1 and k∗, respectively.

Appendix B: The partial derivatives of �X and �Y evaluated at the population
values

The nonzero partial derivatives are as follows:

∂ �X

∂σcd
= 2 − δcd

2
(Ecd + Edc) (p ≥ c ≥ d ≥ 1),

∂ �X

∂σp+c,d
= − ∂A1

∂σp+c,d
A′

1 − A1
∂A′

1

∂σp+c,d
(c = 1, . . . , q; d = 1, . . . , p),

∂2�X

∂σp+c,d∂σp+e, f
= − ∂2A1

∂σp+c,d∂σp+e, f
A′

1 − ∂A1

∂σp+c,d

∂A′
1

∂σp+e, f

− ∂A1

∂σp+e, f

∂A′
1

∂σp+c,d
− A1

∂2A′
1

∂σp+c,d∂σp+e, f
(c, e = 1, . . . , q; d, f = 1, . . . , p),

∂3�X

∂σp+c,d∂σp+e, f ∂σp+g,h
= − ∂3A1

∂σp+c,d∂σp+e, f ∂σp+g,h
A′

1

−
3∑

(U,V,W )

(
∂2A1

∂σU∂σV

∂A′
1

∂σW
+ ∂A1

∂σU

∂2A′
1

∂σV ∂σW

)

−A1
∂3A′

1

∂σp+c,d∂σp+e, f ∂σp+g,h
(c, e, g = 1, . . . , q; d, f, h = 1, . . . , p).

(41)

The partial derivatives for �Y are given by replacing �X , A1, σcd and p ≥ c ≥
d ≥ 1 in (41) with �Y , B1, σp+c,p+d and q ≥ c ≥ d ≥ 1, respectively.
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