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Abstract We develop the results on polynomial ergodicity of Markov chains and
apply to the Metropolis–Hastings algorithms based on a Langevin diffusion. When a
prescribed distribution p has heavy tails, the Metropolis–Hastings algorithms based
on a Langevin diffusion do not converge to p at any geometric rate. However, those
Langevin based algorithms behave like the diffusion itself in the tail area, and using
this fact, we provide sufficient conditions of a polynomial rate convergence. By the
feature in the tail area, our results can be applied to a large class of distributions to
which p belongs. Then, we show that the convergence rate can be improved by a
transformation. We also prove central limit theorems for those algorithms.

Keywords Metropolis–Hastings algorithm · Polynomial ergodicity · Langevin
diffusion · Metropolis adjusted Langevin algorithm

1 Introduction

Various forms of Markov chain Monte Carlo methods are widely used for simulation of
a probability density p(x)dx on (Rd ,B(Rd)), and the Metropolis–Hastings algorithms
form a popular sub-class of those.

In order to describe the Metropolis–Hastings algorithms for the target distribution
p, we first consider a candidate transition kernel Q which generates potential transition
for a discrete time Markov chain. In this paper, we will assume that there exists a
measurable (in both variables) function q(x, y) such that Q(x, dy) = q(x, y)dy.
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950 K. Kamatani

In the Metropolis–Hastings algorithm, a candidate transition is accepted with
probability α(x, y) = min{1, p(y)q(y, x)/(p(x)q(x, y))}, otherwise, the jump is
rejected and the chain remains its original state. Thus the actual Metropolis–Hastings
chain (Mx

n ; n ∈ N0) starting from Mx
0 = x is defined as follows:

⎧
⎪⎨

⎪⎩

Y x
n ∼ q(Mx

n−1, y)dy (n ∈ N)

Mx
n =

{
Y x

n with probability α(Mx
n−1, Y x

n )

Mx
n−1 with probability 1 − α(Mx

n−1, Y x
n ).

(1)

In this paper, we mainly consider two classes of the Metropolis–Hastings algo-
rithms. One is called “random-walk based”, in which

q(x, y) = q∗(x − y), (2)

where the q∗ is a probability density on Rd . The other is called Metropolis adjusted
Langevin algorithm or simply, Langevin algorithm whose candidate transition kernel
is

Q(x, dy) ∼ N

(

x + 1

2
h∇ log p(x), h

)

, (3)

where h is a positive constant, and ∇ denotes the gradient operator. This class is
motivated by the Langevin diffusion satisfied by

dXt = dBt + 1

2
∇ log p(Xt )dt; X0 = x, (4)

for a Brownian motion (Bt ; t ∈ R+). The Langevin algorithm and other Langevin
diffusion based algorithms are studied in, for example, Grenander and Miller (1994),
Roberts and Tweedie (1996b), Stramer and Tweedie (1999a,b) and Roberts and
Stramer (2002).

We are concerned with the rate of convergence of these algorithms for a probability
density p(x)dx . It is known that the rate of convergence depends on the tail of the
distribution p(x)dx (cf. Mengersen and Tweedie 1996; Roberts and Tweedie 1996a).
For example, the tail of p needs to be uniformly exponential for geometric ergodicity
for the Metropolis–Hastings algorithms based on random-walk candidate distributions
(Theorem 3.3 of Mengersen and Tweedie 1996). The similar statement was proved in
Roberts and Tweedie (1996b) for the Langevin algorithm.

In this paper, we assume that p has heavy tails. The Metropolis–Hastings algorithms
when p has heavy tails were studied in, for example, Douc et al. (2004) and Fort and
Roberts (2005). A significant step in this direction was made by Jarner and Roberts
(2002a), which served as a basis of the present study. They showed that the random-
walk with Gaussian increment based algorithm and the Langevin algorithm converge
at the same polynomial rate to p with heavy tails. Moreover, they showed that the
convergence rate of a random-walk based algorithm is improved by using a distribution
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MH algorithm with high acceptance ratios 951

with heavier tails. Their results can be validated for a certain class of probability
distribution p. The class of functions they considered consists of p that satisfying

p(x) = l(|x |)
|x |η (|x | → ∞), (5)

with η>d where | · | denotes the Euclidean norm and l is a normalized slowly varying
function such that l(x) → a > 0 (x → ∞). Therefore, p should be a symmetric
function in the limit. It is not easy to relax the condition. The difficulty comes from
the fact that if the target is not symmetric, then the acceptance ratio is difficult to treat.

We show that when p has heavy tails, the behavior of the Langevin algorithm in
the tail area in Rd is similar to that of the Langevin diffusion itself. For this fact,
almost all proposal is accepted in the tail area and polynomial rate of convergence
of the Langevin algorithm follows from ergodicity of the Langevin diffusion. We do
not have to assume technical conditions for p. We only assume that the probability
density p is C2 and

lim|x |→∞ |∇ log p(x)| = 0, lim|x |→∞ ‖∇T ∇ log p(x)‖ = 0,

where ‖(ai, j )i, j=1,...,d‖ =
(∑d

i, j=1 a2
i, j

)1/2
and ∇T f (x) denotes the Jacobi matrix

for the vector f (x). Then, we propose an algorithm with transformation, which trans-
form heavy tails of p into lighter tails, and by using that we can improve the conver-
gence rate. The convergence rate is the same for the random-walk based algorithm
with heavier increment distribution, which is proposed in Jarner and Roberts (2002a),
though this convergence for the new algorithm is validated for a wider class of target
distributions.

In Sect. 2, we formulate central limit theorems for Markov chains with polynomial
ergodicity. Those results are used for concrete examples in Sect. 4. In Sect. 3, which
is the main part of this paper, we prove generalized version of a polynomial rate of
convergence for the Langevin algorithm. Then we propose an improved algorithm and
prove its convergence. In Sect. 4, we demonstrate the efficiency of our methods by
numerical calculations.

2 Markov chain and its polynomial ergodicity

Let (Ω,F , P) be a probability space and (E, E) a measurable space where E is a
countably generated σ -algebra. Let (Xn; n ∈ N0) be a discrete time Markov chain
having state space (E, E). The transition kernel of (Xn; n ∈ N0) is denoted by P:

P(Xn ∈ A|Xn−1) = P(Xn−1, A) a.s.

This transition kernel P can be interpreted as a linear operator on a function space
by defining P f (x) = ∫

P(x, dy) f (y). If P1, P2 are two kernels, their product P1 P2
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is defined by (P1 P2)(x, A) = ∫
P1(x, dy)P2(y, A). The iterates Pn is defined by

P1 = P and Pn = Pn−1 P .
Markov chain will be assumed to be irreducible, aperiodic and positive Harris

recurrent; for definitions, see Meyn and Tweedie (1993). Note that for the Metropolis–
Hastings algorithms (1), if p(x) and q(x, y) > 0 are continuous in both variables, then
the Markov chain is p(x)dx-irreducible, aperiodic and any compact set of positive
Lebesgue measure is a small set [Lemma 1.2 of Mengersen and Tweedie (1996)].
Hitting time τA of a set A ∈ E is defined by τA = inf{n ≥ 1; Xn ∈ A}. Hitting times
of a petite set play an important role in the ergodicity of Markov chain. A subset E+ of E
is defined by E+ = {A ∈ E; A has a positive measure by an irreducibility measure}.

Let V : E → R+ be an E-measurable function. Let ‖ · ‖V be a norm over the space
of signed measures on (E, E) to R defined by

‖ν‖V := sup
| f |≤V

|ν( f )| (ν : signed measure).

When V ≡ 1, the norm corresponds to the total variation.
Sub-geometric rate of convergence is studied in, for example, by Tuominen and

Tweedie (1994), Fort and Moulines (2000), Jarner and Roberts (2002a,b) and Douc
et al. (2004). In Jarner and Roberts (2002b), they proved the following theorem.

Theorem 1 (Jarner and Roberts) Suppose a Markov chain (Xn; n ∈ N0) with tran-
sition kernel P is irreducible and aperiodic. Suppose that there exist an E-measurable
function V : E → [1,∞), constants c, b > 0, 0 ≤ γ < 1, and a small set C, such
that

PV (x) ≤ V (x) − cV (x)γ + b1C (x). (6)

Then there exists a probability measure Π and the following polynomial convergence
property holds for any x ∈ E where 1 ≤ β ≤ 1/(1 − γ ) and Vβ(x) = V (x)1−β(1−γ ):

(n + 1)β−1‖Pn(x, ·) − Π‖Vβ → 0. (7)

In particular, γ /(1 − γ ) is the polynomial order of convergence in total variation
norm.

A central limit theorem is said to hold for f if Π(| f |) < ∞ and there exists
0 < σ 2 < ∞ such that

Sn( f̄ )√
n

d→ N (0, σ 2) (n → ∞),

where f̄ = f −Π( f ) and Sn( f ) = ∑n
i=1 f (Xi ). We need some lemmas to prove cen-

tral limit theorems. These lemmas are closely related to Theorem 11.3.9 of Meyn and
Tweedie (1993), Proposition 3.1 of Tuominen and Tweedie (1994) and Theorem 3.2
of Jarner and Roberts (2002b). First, lemma is merely a modification of Theorem 3.2
of Jarner and Roberts (2002b).
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Lemma 1 Let A, C ∈ E , Wi : E → [1,∞) (i = 0, 1, . . .) and PWi − Wi ≤
Wi+1 + βi 1C , i = 0, 1, 2, . . . , k. Then for any l = 0, 1, 2, . . . , k,

Ex

[
τA−1∑

n=0

(n + l)!
n! Wl+1(Xn)

]

≤ l!W0(x) +
l∑

m=0

(n + m)!
n! βmEx

[
τA−1∑

n=0

1C (Xn)

]

.

(8)

In particular, if A, C ∈ E+ and C is a petite set, then there exists a constant c < ∞
such that for any l = 0, 1, 2, . . . , k,

Ex

[
τA−1∑

n=0

(n + l)!
n! Wl+1(Xn)

]

≤ l!W0(x) + c
l∑

m=0

(n + m)!
n! βm . (9)

Proof At the first step, from the assumption PW0 − Wi ≤ W1 + β01C and using
Theorem 11.3.2 of Meyn and Tweedie (1993), we obtain

Ex

[
τA−1∑

n=0

W1(Xn)

]

≤ W0(x) + β0Ex

[
τA−1∑

n=0

1C (Xn)

]

. (10)

At the lth step, we have

(n + l)!
n! PW l − (n + l − 1)!

(n − 1)! W l

≤ − (n + l)!
n! W l+1 + l

(n + l − 1)!
(n − 1)! W l + (n + l)!

n! βl1C .

Then using Theorem 11.3.2 of Meyn and Tweedie (1993), we obtain

Ex

[
τA−1∑

n=0

(n + l)!
n! Wl+1(Xn)

]

≤ lEx

[
τA−1∑

n=0

(n + l − 1)!
(n − 1)! Wl(Xn)

]

+ (n + l)!
n! βlEx

[
τA−1∑

n=0

1C (Xn)

]

. (11)

From this fact, the first claim of the lemma can be obtained easily by using
induction. The second claim is supx Ex

[∑τA−1
n=0 1C (Xn)

]
< ∞, which is stated in

Theorem 11.3.11 of Meyn and Tweedie (1993). �
Lemma 2 Let (P, V, γ, C, b, c) satisfy the drift condition (6), A, C ∈ E+ and C be
a petite set. Then for any η ∈ (0, 1], there exist constants c1, c2 such that for any (not
necessarily integer) l ∈ [0, η/(1 − γ ) − 1],

Ex

[
τA−1∑

n=0

(n + 1)l V η−(l+1)(1−γ )(Xn)

]

≤ c1V η(x) + c2. (12)
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In particular, if we take l = η/(1 − γ ) − 1, then we have

Ex

[
τ l+1

A

]
≤ (l + 1)(c1V η(x) + c2). (13)

Proof From Lemma 3.5 of Jarner and Roberts (2002b), for any integer k ∈ [0, η/

(1 − γ )), there exist constants ck, bk such that PV η−k(1−γ ) − V η−k(1−γ ) ≤
−ck V η−(k+1)(1−γ ) + bk1C . Then from the previous lemma, we have for any integer
l ∈ [0, η/(1 − γ )),

Ex

[
τA−1∑

n=0

(n + l)!
n! V η−(l+1)(1−γ )(Xn)

l∏

k=0

ck

]

≤ l!V η(x) + c
l∑

m=0

(n + m)!
n! bm−1

m−1∏

k=0

ck .

Since (n+1)l ≤ (n+l)!/n! we obtain (12) for any integer l ∈ [0, η/(1−γ )). Next, we
consider the equation for any real number l ∈ [0, η/(1−γ )−1]. For any t ∈ [l −1, l),
we know

(
n + 1

V (x)(1−γ )

)l−1

+
(

n + 1

V (x)(1−γ )

)l

≥
(

n + 1

V (x)(1−γ )

)t

, (14)

hence the claim follows. �

In the following theorem, L p = L p(E, E,Π) denotes the space of p-power inte-
grable functions f ,

∫ | f (x)|pΠ(dx) < ∞.

Theorem 2 Let (P, V, γ, C, b, c) satisfy the drift condition (6), and A, C ∈ E+
and C is a petite set. Then for any η ≥ 1/2 such that Π(V γ+2η−1) < ∞, for any
ε > (1 − γ )/(η − (1 − γ )), a central limit theorem for the Markov chain holds for
any f which is in L2+ε or | f | ≤ d V γ+η−1 where d is a positive constant.

Proof First, we show the measure λ(dx)=(Π I| f |)(dx)=| f (x)|Π(dx) is | f |-regular
for any f ∈ L2+ε where ε is in the above range. If the claim holds, then using
Theorem 7.6 of Nummelin (1984), this Markov chain has a central limit theorem.

Consider f ∈ L2+ε . For any A ∈ E+, using Hölder’s inequality, and for any
p, q > 1 such that p−1 + q−1 = 1,

Eλ

[
τA−1∑

n=0

| f |(Xn)

]

=
∞∑

n=0

EΠ [| f |(X0)| f |(Xn)1{n<τA}]

≤
∞∑

n=0

‖ f ‖L p (EΠ [| f |(X0)
q1{n<τA}])

1
q .
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Since 1{n<τA} ≤ (τA/n)r for any r > 1 and β ∈ (0, 1], we have

EΠ [| f |(X0)
q1{n<τA}] ≤ EΠ [| f |(X0)

qEΠ [1{n<τA}|F0]]

≤ EΠ

[

| f |(X0)
qEΠ

[
(τA

n

) β
1−γ |F0

]]

≤ βn− β
1−γ EΠ [| f |(X0)

q(c1V β(X0) + c2)].

Then for any p′, q ′ > 1 such that p′−1 + q ′−1 = 1,

EΠ [| f |(X0)
q V β(X0)] ≤ ‖ f ‖L p′q (EΠ [V βq ′

(X0))])
1

qq′ .

Sufficient conditions for Eλ[∑τA−1
n=0 | f |(Xn)] < ∞ are f ∈ L p = L p′q , βq

′ =
γ + 2η − 1 and q(1 − γ ) < β. We can find β and p, q, p′, q ′ which satisfy the above
sufficient conditions for any f ∈ L2+ε . Hence the claim follows.

The case of | f | ≤ d V γ+η−1 is quite similar. The only difference is the last
inequality. In this case, we do not have to use Hölder’s inequality but the inequality
| f | ≤ d V γ+η−1. �

If a Markov chain is geometrically ergodic, then integrability condition of the drift
function like the above is not necessary. However, in sub-geometric case, we need
it. Since, we know Π(V γ ) < ∞ from the drift condition, η = 1/2 requires no
assumption for the integrability of V . In the case of η = 1/2, central limit theorems
for the Markov chain are already showed in Theorem 9 of Jones (2004), which uses a
mixing theory. Recently, while editing the galley proof, we found that a result similar
to the latter part of Theorem 2 was noted in Corollary 1 of Jarner and Roberts (2007).

Markov chain is said to be reversible when Π(dx)P(x, dy) = Π(dy)P(y, dx).
Metropolis–Hastings chain is reversible. We can show a slight extension of the above
result when the Markov chain is reversible.

Theorem 3 Let (P, V, γ, C, b, c) satisfy the drift condition (6), and A, C ∈ E+ and
C be a petite set. Further, we assume that the Markov chain is reversible. Then for
any η ≥ 1/2 such that Π(V γ+2η−1) < ∞, and for ε = (1 − γ )/(η − (1 − γ )), the
Markov chain has a central limit theorem for any f ∈ L2+ε .

Proof The proof of the theorem uses the same argument as above. Since the Markov
chain is reversible, we have

Eλ

[
τA−1∑

n=0

| f |(Xn)

]

≤
∞∑

n=0

EΠ [1{n<τA}| f |(X0)
2] 1

2 EΠ [1{n<τA}| f |(Xn)2] 1
2

=
∞∑

n=0

EΠ [1{n<τA}| f |(X0)
2] = EΠ [τA| f |(X0)

2].

Using Lemma 2, and the Schwarzs inequality, the claim follows. �
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3 Algorithm and main theorems

3.1 Langevin algorithms

Let (Ω,F , (Ft )t≥0, P) be a filtered probability space. Let p : Rd → R be a strictly
positive C1 function and consider the stochastic differential equation (4). Under certain
conditions, there exists a unique solution to the stochastic differential equation and the
solution has an invariant measure p(x)dx . Let (Y x

n ; n ∈ N0) be an Euler–Maruyama
discretization of (X x

t ; t ∈ R+), that is

Y x
n = √

hWn + hb(Y x
n−1); Y x

0 = x, (15)

where Wn := h−1/2(Bhn − Bh(n−1)). Roberts and Tweedie (1996b) proved that if
|∇ log p(x)| → 0 (|x | → ∞) then the Langevin algorithm does not converge at geo-
metric rate (Theorem 4.2). We are going to prove its polynomial rate of convergence.
First, we show polynomial ergodicity for this Markov chain, the candidate chain of
the Langevin algorithm.

Theorem 4 Let p : Rd → R be a C1 function. Suppose there exists η > d,

lim sup
|x |→∞

xT · ∇ log p(x) ≤ −η, lim|x |→∞ |∇ log p(x)| = 0. (16)

Then the Euler–Maruyama discretization (Y x
n ; n ∈ N0) satisfies the drift condition

(6) for any h > 0, 2 < s < 2 + η − d, V (x) = (|x |2 + 1)s/2, γ = (s − 2)/s and
a compact set C of positive Lebesgue measure. In particular, the upper bound of the
polynomial convergence rate of the total variation norm is (η − d)/2.

Proof It is enough to show

lim sup
|x |→∞

PV (x) − V (x)

V (x)γ
< 0, (17)

since C = {|x | ≤ N } is a small set for any N > 0. Let (X x
t , t ∈ [0, 1]) be a stochastic

process satisfying d X x
t = d Bt + b(x)dt , where Bt is a standard Brownian motion.

Then L(Xh) = L(Y x
1 ) and

PV (x) − V (x) = E[V (X x
h ) − V (x)]

= E

[∫ h

0

d∑

i=1

∂V

∂xi
(X x

t )dX x,i
t + 1

2

∂2V

∂xi∂x j
(X x

t )d〈X x,i , X x, j 〉t

]

= sh

2
E

[∫ h

0
(|X x

t |2 + 1)
s
2 −1

(

2
d∑

i=1

X x,i
t bi (x) + s − 2 + d

)

− (|X x
t |2 + 1)

s
2 −2dt

]

.
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MH algorithm with high acceptance ratios 957

Since X x
t = x + Bt + tb(x), after some calculations such as lim sup E[(|Xt |2 + 1)n] ·

|x |−2n ≤ 1, we have

lim sup
|x |→∞

PV (x) − V (x)

V (x)γ
= lim sup

|x |→∞
sh

2

(

2
d∑

i=1

xi b
i (x) + s − 2 + d

)

≤ sh

2
(−η + s − 2 + d).

When 2 < s < 2 + η − d, lim sup|x |→∞(PV (x) − V (x))/V (x)γ < 0 by the above
inequality. �

Fort and Roberts (2005) already showed polynomial ergodicity of a tempered
Langevin diffusion. Their results are more general than our results though they consider
continuous stochastic processes but Markov chains. Roughly speaking, our theorem
corresponds to the discretization of Theorem 16 of Fort and Roberts (2005) when a
parameter d = 0 in a sense of the rate of convergence in ‖‖ f -norm.

Next, we show the convergence of the Langevin algorithm. Let (Mx
n ; n ∈ N0) be the

Metropolis–Hastings chain of the Langevin algorithm starting from Mx
0 = x , that is:

⎧
⎪⎪⎨

⎪⎪⎩

Y x
n = Mx

n−1 + √
hWn + hb(Mx

n−1)

Mx
n =

{
Y x

n with probability α(Mx
n−1, Y x

n )

Mx
n−1 with probability 1 − α(Mx

n−1, Y x
n ).

(18)

where b = ∇ log p(x)/2 and q(x, y) is the density of the transition kernel (3), that is:

q(x, y) = 1

(2hπ)
d
2

exp

(

−|y − x − hb(x)|2
2h

)

. (19)

This Langevin algorithm does not have geometrical ergodicity but polynomial
ergodicity.

Theorem 5 Let p : Rd → R be a C2 function satisfying (16) and

lim|x |→∞ ‖∇T ∇ log p(x)‖ = 0. (20)

Then the Metropolis–Hastings chain of the Langevin algorithm (Mx
n ; n ∈ N0) satisfies

the drift condition (6) for 2 < s < 2 + η − d, V (x) = (|x |2 + 1)s/2, γ = (s − 2)/s
and a compact set C. In particular, the upper bound of the polynomial convergence
rate for the total variation norm is (η − d)/2.

Proof We know by Theorem 4, there exist constants c < 1, b > 0 and a compact set
C of positive Lebesgue measure satisfying

PV (x) = E[V (X x
h )α(x, X x

h )] + E[V (x)(1 − α(x, X x
h ))]

= E[V (X x
h )] − E[(V (X x

h ) − V (x))(1 − α(x, X x
h ))]

≤ V (x) − cV (x)γ + b1C (x) − E[(V (X x
h ) − V (x))(1 − α(x, X x

h ))],
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where dX x
t = dBt + b(x)dt . Hence, it is enough to show lim|x |→∞ |E[(V (Y x

1 ) −
V (x))(1−α(x, X x

h ))]|/V (x)γ = 0 when γ = (s −2)/s. By the Schwarzs inequality,

E[(V (X x
h ) − V (x))(1 − α(x, X x

h ))]|
≤ E[(V (X x

h ) − V (x))2] 1
2 E[(1 − α(x, X x

h ))2] 1
2 (21)

Since the first term, lim sup E[(V (X x
h ) − V (x))2] 1

2 V (x)−γ ≤ 1, we will check

lim E[(1 − α(x, X x
h ))2] 1

2 = 0. Let β(x, y) = p(y)q(y, x)/(p(x)q(x, y)), then

E[(1 − α(x, X x
h ))2] ≤ E[(1 − β(x, X x

h ))2] ≤ E[log β(x, X x
h )2]

= E[(log p(X x
h ) − log p(x) + log q(X x

h , x) − log q(x, X x
h ))2]

= E[(log p(X x
h ) − log p(x) − (b(x) + b(X x

h ))T (X x
h − x)

−h

2
(|b(X x

h )|2 − |b(x)|2))2].

It is easy to check lim E[((b(x) − b(X x
h ))T (X x

h − x))2] = 0 and lim E[(|b(X x
h )|2 −

|b(x)|2)2] = 0. The remainder of the above is

E[(log p(X x
h ) − log p(x) − 2b(x)T (X x

h − x))2]

= E

⎡

⎣

(∫ h

0

d∑

i=1

(
∂ log p

∂xi
(X x

t ) − ∂ log p

∂xi
(x)

)

dX x,i
t + 1

2

∂2 log p

∂x2
i

(X x
t )dt

)2⎤

⎦ ,

and the main part of the above equation is

E

⎡

⎣

(∫ h

0

d∑

i=1

(
∂ log p

∂xi
(X x

t )−∂ log p

∂xi
(x)

)

dW i
t

)2⎤

⎦

= E

[∫ h

0

d∑

i=1

(
∂ log p

∂xi
(X x

t )−∂ log p

∂xi
(x)

)2

dt

]

≤ E

[

sup
0≤t≤h

d∑

i=1

(
∂ log p

∂xi
(X x

t )−∂ log p

∂xi
(x)

)2
]

.

We want to show the last term of the above goes to 0 if |x | → ∞. For any ε > 0, there
exist δ1, δ2, δ3 > 0 such that

‖∇T ∇ log p(x)‖2 <
ε

2d3Ch
(|x | ≥ δ1)

h|b(x)| ≤ δ1 ∧ 1 (|x | ≥ δ2)

sup
ξ∈Rd

|∇ log p(ξ)|24dP( sup
0≤t≤h

|Bt | > δ3) <
ε

2
,
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where Ch = E[sup0≤t≤h(|Wt |+1)2]which is a bounded constant by Doob’s inequality.
Let |x | > δ1 + δ2 + δ3, then we divide the term into two parts,

E

[

sup
0≤t≤h

d∑

i=1

(
∂ log p

∂xi
(X x

t ) − ∂ log p

∂xi
(x)

)2(
1{sup0≤t≤h |Bt |>δ3}+1{sup0≤t≤h |Bt |≤δ3}

)
]

.

The first term is bounded above by 4d supξ∈Rd ‖∇ log p(ξ)‖2P(sup0≤t≤h |Bt | > δ3) ≤
ε/2. By Taylor’s expansion, the second term is bounded above by

E

⎡

⎢
⎣ sup

0≤t≤h

d∑

i=1

⎛

⎝
d∑

j=1

sup
|ξ |>δ1

|∂
2 log p

∂xi∂x j
(ξ)||X x

t − x |
⎞

⎠

2
⎤

⎥
⎦ ≤ ε

2Ch
E[ sup

0≤t≤h
|X x

t − x |2]

≤ ε

2Ch
E[ sup

0≤t≤h
(|Wt | + t |b(x)|)2]≤ε

2
.

Hence E[sup0≤t≤h
∑d

i=1(
∂ log p

∂xi
(X x

t ) − ∂ log p
∂xi

(x))2] goes to 0. �

When d = 1 and the target distribution can be written in the form p(x) = C |x |−η

when |x | is large enough, Jarner and Roberts (2002a) have already proved the same
result. Moreover, the proof of Jarner and Roberts (2002a) is the basis of the proof of
Theorem 5, though the assumptions of Theorem 5 is more general.

When d > 1, Jarner and Roberts (2002a) have also proved that the random-walk
based Metropolis–Hastings algorithms have the same order of convergence as the
Langevin algorithm when the increment distributions of the random-walks have light
tails (Proposition 3.5 in Jarner and Roberts 2002a). The random-walk based algorithms
are simpler than the Langevin algorithm in the sense of computer calculation, it is better
to use the former algorithms if the convergence theorem can be validated for a wide
class of target distributions p. However their results for random walk based algorithms
are validated for a smaller class of target distributions. They assumed our assumptions
and a roundness property about A(x) = {y; p(x) ≤ p(y)} and A(x) should be a
convex set when |x | is large enough in their paper. For example, the two-dimensional
probability distribution function p(x, y) ∝ (x4 + y2 + 1)−1 does not satisfy the extra
properties. This distribution function satisfies (16), (20) and η = 2, but A(x) is not
a convex set. In fact, the distribution satisfies lim sup |x | · |∇ log π(x)| < ∞ and
lim sup |x |2 · ‖∇T ∇ log π(x)‖ < ∞.

Many probability distributions which have heavy tails satisfy property (16), (20).
For example, Student’s t distribution satisfies the properties.

Example 1 (Multivariate Student’s t distribution) Consider following d-dimensional
Student’s t distribution with m > 0 degrees of freedom,

p(x) = Γ
(m+d

2

)

Γ (m
2 )(mπ)

d
2

(det Σ)−
1
2

(

1 + (x − µ)T Σ−1(x − µ)

m

)− m+d
2

. (22)
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It satisfies lim sup|x |→∞ |x | · |∇ log p(x)| < ∞, lim sup|x |→∞ xT · ∇ log p(x) ≤
−(m + d) and lim sup|x |→∞ |x |2‖∇T ∇ log p(x)‖ < ∞. The proof uses the fact that
is a positive definite symmetric matrix, there exists λ > 0 such that λ|x |2 ≤ xT Σ−1x .
By Theorem 3, the Langevin algorithm with proposal p has a central limit theorem
for L2+ε with ε > 4/(m − 2).

Example 2 (An example which does not satisfy (16)) Consider the following proba-
bility distribution function:

p(x) ∝
d∏

i=1

1

1 + x2
i

(x = (x1, . . . , xd) ∈ Rd).

This function satisfy the left hand side of (16) but right hand side of it . Since

|∇ log p(x)| =
⎛

⎝
d∑

i=1

(
2xi

1 + x2
i

)2
⎞

⎠

1
2

,

if we take x = (0, t, . . . , t) and t → ∞, then |∇ log p(x)| → 2.

3.2 Transformed Langevin algorithm

We introduce a transformation of a Markov chain (Mx
n ; n ∈ N0) by a function F :

Rd → Rd . Suppose there is a C2 function f : R → R which holds f ′(x) > 0,
f (0) = 0 and limx→0 f (x)/x �= 0 such that

F(x) =
{

f (|x |) x
|x | if x �= 0

0 if x = 0.

Then F is a C2 function with det ∇T F(x) > 0. Under certain conditions, if a Markov
chain (Mx

n ; n ∈ N0) with an invariant measure p∗(x)dx := p(F(x)) det ∇T F(x)dx
satisfies (6), then (F(Mx

n ); n ∈ N0) has an invariant measure p(x)dx and satisfies (6)
(Proposition 1).

Let p be a d-dimensional probability distribution function and and V : Rd →
[0,∞) be a norm-like function, that is for any r > 0, {x; V (x) ≤ r} is a relatively
compact set.

Proposition 1 Let |F−1(x)| be a norm-like function. Let p(x) > 0 be a C1 function
and Q∗(x, dy) = q∗(x, y)dy be a transition kernel where q∗(x, y) > 0 is continuous
in both variables. Let (M∗

n ; n ∈ N0) be a Metropolis–Hastings chain with a candidate
kernel Q∗ and an invariant measure p∗(x)dx. Suppose there exist a compact set C∗
with positive Lebesgue measure, a function V ∗ : Rd → [1,∞) and constants 0 ≤ γ ≤
1, b, c > 0 such that the drift condition (6) holds. Then for (Mn = F(M∗

n ); n ∈ N0),
there exist constants γ, b, c, a compact set C ⊃ C∗ with positive Lebesgue measure
such that the drift condition (6) for C, V = V ∗ ◦ F−1.
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Proof Denote the transition kernel of (M∗
n ; n ∈ N0) by P∗ and that of (Mn; n ∈ N0)

by P . First, we show that (Mn; n ∈ N0) is a Metropolis–Hastings chain with the
candidate kernel

Q(x, dy) = q(x, y)dy := q∗(F−1(x), F−1(y)) det ∇T F−1(y)dy,

and the invariant probability measure p(x)dx . Let (Y ∗
n ; n ∈ N0) be a candidate chain

of (M∗
n ; n ∈ N0) and denote the acceptance ratio for the Metropolis–Hastings chain

by α∗. Let Yn := F(Y ∗
n ), then

P(Yn ∈ A|Yn−1) =
∫

F−1(A)

q∗(Y ∗
n−1, y)dy =

∫

A
q(Yn−1, y)dy,

hence, Q is its transition kernel. Let α(x, y) = 1 ∧ p(y)q(y, x)/(p(x)q(x, y)) then

α∗(x, y) = 1 ∧ p∗(y)q∗(y, x)

p∗(x)q∗(x, y)
= 1 ∧ p(F(y))q(F(y), F(x))

p(F(x))q(F(x), F(y))
= α(F(x), F(y)),

and it proves the first claim. Because q is strictly positive and continuous in both
variables by its definition, (Mn; n ∈ N0) is irreducible and any compact set with
positive Lebesgue measure is a small set by Lemma 1.2 of Mengersen and Tweedie
(1996). By the conditions,

P∗V ∗ − V ∗ ≤ cV ∗γ + b1C∗ ⇒ P(V ◦ F) − V ◦ F ≤ c(V ◦ F)γ + b1C∗

⇒ PV − V ≤ cV γ + b1C∗(F−1(x)) (x ∈ Rd).

Since C∗ is a compact set, there is r > 0 such that C∗ ⊂ {|x | ≤ r}, then {F−1(x) ∈
C∗} ⊂ {|F−1(x)| ≤ r} and if we take C = {|F−1(x)| ≤ r}, then C is a compact
set since |F−1| is a norm-like function. We can take C large enough to have positive
Lebesgue measure, hence C is a small set. Then for C , V , γ, b, c, the drift condition
(6) holds. �

We take f (x) = x2/(2−r) (x > 1) and set properly to satisfy above conditions
when x ≤ 1. When |x | > 1, ∇T F(x) = (Id + r/(2 − r)x · xT /|x |2)|x |r/(2−r) and
det ∇T F(x) = (2/(2 − r))|x |dr/(2−r). When (Mx

n ; n ∈ N0) is from the Langevin
algorithm we call this transform algorithm, the transformed Langevin algorithm.

For practical purpose, it is convenient to take f (x) ≡ x(x ≤ 1) and it is enough to
establish the following conclusion, though it does not a C2 function. We restrict f to
be a C2 function in our proof since it simplifies our proof.

Theorem 6 Let p be a C2 function that satisfies

lim sup
|x |→∞

xT · ∇ log p(x) ≤ −η, (23)

lim|x |→∞ |x | r
2 · |∇ log p(x)| = 0, (24)

lim|x |→∞ |x |r · ‖∇T ∇ log p(x)‖ = 0. (25)
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Consider the Transformed Langevin algorithm by F when 0 ≤ r < 2. Then the drift
condition (6) holds for 2 < s < 2+(η−d)(2/(2−r)), V (x) = (|F−1(x)|2+1)s/2 and
γ = (s − 2)/s. In particular, the upper bound of the polynomial order of convergence
in total variation norm is (η − d)/(2 − r).

Proof If p∗ satisfies the properties (16) and (20), by using Theorem 5 for (Mx
n ; n ∈

N0), the claim follows by Proposition 1. Through the proof, we assume |x | > 1. By the
definition of p∗, ∇ log p∗(x) = (∇T F(x))T · (∇ log p)(F(x)) + ∇ log det ∇T F(x).
Because xT ·∇T F(x) = (2/(2 − r))F(x)T , ∇ log det ∇T F(x) = (dr/(2 − r))x/|x |2
and ‖∇T F(x)‖ · |x | ≤ (d1/2 + r/(2 − r))|F(x)|, we obtain

xT · ∇ log p∗(x) = 2

2 − r
F(x)T · ∇ log p(F(x)) + dr

2 − r
,

|x | · |∇ log p∗(x)| ≤
(

d
1
2 + r

2 − r

)

|F(x)| · |∇ log p(F(x))| + dr

2 − r
.

Let η∗ = (1−r/2)−1(η−rd/2), then the following properties hold since |F(x)|r/2 =
|F(x)|/|x |:

lim sup
|x |→∞

xT · ∇ log p∗(x) ≤ −η∗, lim|x |→∞ |x | r
2 |∇ log p∗(x)| = 0. (26)

Next, we show that ‖∇T ∇ log p∗(x)‖ goes to 0 in the limit. We take some steps to
calculate it. In the following calculations, we sometimes drop the operator “·” and
the state x to simplify the inequalities and equations. First, divide ‖∇T ∇ log p∗(x)‖
into two parts, ‖∇T (∇T F(x))T ∇ log p(F(x))‖ and ‖∇T ∇ log det ∇T F(x)‖. About
the second term, it is easy to see

|x |2‖∇T ∇ log det ∇T F(x)‖ ≤ (dr(2 − r))(d1/2 + 2).

Now consider the first term. We have

∇T ((∇T F(x)T ) · ∇ log p(F(x))) = ∇T (|x | r
2−r ∇ log p(F(x)))

+ r

2 − r
∇T (|x | r

2−r −2x · xT · ∇ log p(F(x))).

(27)

Then the first term in the above is∇ log p(F)∇T |x |r/(2−r)+|x |r/(2−r)∇T (∇ log p(F)).
The norm of the first term of it is smaller than (r/(2−r))|F(x)|·|x |−2 ·|∇ log p(F(x))|
and the second term is

‖|x | r
2−r ∇T (∇ log p(F(x)))‖ ≤ |x | r

2−r ‖∇T ∇ log p(F(x))∇T F(x)‖

≤
(

d
1
2 + r

2 − r

)

|F(x)| r
2 |∇T ∇ log p(F(x))|,
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hence both of them converge to 0. Finally, we show that the norm of the second term
of (27) goes to 0 in the limit. We write

A := ∇T (|x | r
2−r −2xxT ∇ log p(F(x))) = xxT ∇ log p(F(x))∇T |x | r

2−r −2

+|x | r
2−r −2∇T (xxT ∇ log p(F(x))).

Since

∇T (xxT ∇ log p(F(x))) = xxT (∇T (∇ log p(F(x)))

+xT ∇ log p(F(x))Id + ∇ log p(F(x))T x,

we obtain

|x |2‖A‖ ≤ |x |4|∇ log p(F)| · |∇T |x | r
2−r −2|

+|x | r
2−r −2(|x |4‖∇T ∇ log p(F))‖ · ‖∇T F‖ + |x |3|∇ log p(F)|(d1/2+1))

≤
(

r

2 − r
+d

1
2−1

)

|F | · |∇ log p(F)|+
(

d
1
2 + r

2−r

)

|F |2‖∇T ∇ log p(F)‖.

Then by (24) and (25), ‖A‖ converges to 0. �

As we showed in Example 1, the Langevin algorithm with m degree of freedom
Student’s t proposal distribution has a central limit theorem for L2+ε with ε > 4/(m −
2).
On the other hand, transformed chain has a central limit theorem for L2+ε with
ε > 2(2 − r)/(m − (2 − r)).

Jarner and Roberts (2002a) proved the same kind of improvements of the rate of
convergence in another way. We transformed the chain to gain the heaviness of the tail.
On the other hand, they weighted q∗ of the transition kernel Q(x, dy) = q∗(|x−y|)dy.
They took q∗ as a probability distribution function of Student’s t distributions instead of
normal distributions. However they supposed stronger conditions, which is described
in (5).

We can transform the random-walks based Metropolis–Hastings algorithm instead
of the Langevin algorithm as Theorem 6. However, we cannot prove the improvements
like this theorem without some extra conditions, for example, A(x) = {p(y) ≥ p(x)}
should be a convex set. I cannot make out whether these difficulties are avoidable or
are essential problems for the schemes.

4 Calculation

We now check the performance of the Metropolis–Hastings algorithms. In practice,
we should choose good parameters. As stated in the previous section, we use f as
f (x) ≡ x (x ≤ 1).
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Table 1 Example 3,
Random-walk with Gaussian
increment distribution based
algorithm

h = 30 h = 40 h = 50

N = 500 111.70 95.69 90.83

N = 1,000 100.23 101.83 105.98

N = 2,500 159.91 267.78 127.22

Table 2 Example 3, Langevin
algorithm

h = 30 h = 40 h = 50

N = 500 113.62 121.6 123.18

N = 1,000 157.27 120.72 137.58

N = 2,500 165.95 143.11 172.00

Table 3 Example 3,
Random-walk with Student’s t
increment distribution (degree of
freedom is 1) based algorithm

h = 8 h = 10 h = 12

N = 500 138.55 134.16 129.60

N = 1,000 139.53 143.13 144.25

N = 2,500 147.98. 144.21 145.02

Example 3 (Multivariate t distribution) Consider the multivariate t distribution (22)
with the degree of freedom m = 3, mean µ = (2, 2)T and

Σ =
(

2 1
1 3

)

.

Start point X0 = (2, 3). We produced M = 100, 000 parallel Markov chains (Xm
n =

(Xm
1,n, Xm

2,n)T ; n ∈ N0) (m = 1, . . . , M) by four algorithms below for each and
calculated mean squared error

MSEN ,M =
M∑

m=1

(∑N
n=1 g(Xm

n ) − Π(g)
)2

N ∗ M
. (28)

We took N = 500, 1,000, 2,500 for each and g(x, y) = x . We consider the following
algorithms:

− Random-walk with Gaussian increment distribution based algorithm (Table 1).
− Langevin algorithm (Table 2).
− Random-walk with Student’s t increment distribution (degree of freedom is 1)

based algorithm (Table 3).
− Transformed Langevin algorithm (r = 1) (Table 4).
− Transformed Langevin algorithm (r = 1.2) (Table 5).

These algorithms have central limit theorems for L2+ε by Theorem 3, where the
value of ε differs as follows: ε > 4 for the first and second algorithms, ε > 1 for
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Table 4 Example 3,
Transformed Langevin
algorithm by γ = 1

h = 1 h = 2 h = 3 h = 10

N = 500 45.65 33.59 45.93 457.5

N = 1,000 48.24 35.48 48.67 903.19

N = 2,500 49.14 40.15 45.83 2149.07

Table 5 Example 3,
Transformed Langevin
algorithm by γ = 1.2

h = 1 h = 1.2 h = 1.4

N = 500 41.71 41.02 43.61

N = 1,000 42.59 41.87 43.28

N = 2,500 42.91 44.08 42.54

Table 6 Example 4,
Random-walk with Gaussian
increment distribution based
algorithm

h = 0.5 h = 1 h = 1.5

N = 500 2.121 2.024 2.246

N = 1,000 2.109 2.038 2.256

N = 2,500 2.124 2.025 2.258

the third and fourth, and ε > 8/11 for the last one. Therefore in this case, Markov
chain produced by the last algorithm have a central limit theorem, but we cannot say
anything about the others using Theorem 3.

In Tables 1, 2, 3, 4 and 5, transformed algorithm γ = 1.2 works well in this case.
However you should choose good parameters to obtain such an improvement. When
γ = 1.2, the algorithm behaves badly for h = 10.

Example 4 The following example is anti-convex probability distribution:

p(x, y) ∝ 1

(x4 + y2 + 1)3 . (29)

In this example, η = 6.
We consider the following algorithms:

− Random-walk with Gaussian increment distribution based algorithm (Table 6).
− Langevin algorithm (Table 7).
− Random-walk with Student’s t increment distribution (degree of freedom is 1)

based algorithm (Table 8).
− Transformed Langevin algorithm (r = 1) (Table 9).

Some of these algorithms have central limit theorems for L2+ε where the value
of ε differs as follows: ε > 8/5 for the second algorithm, ε > 4/7 for the last one.
Since this probability distribution is not symmetric, we do not know whether other
algorithms have a central limit theorem.
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Table 7 Example 4, Langevin
algorithm

h = 0.25 h = 0.50 h = 0.75

N = 500 1.064 0.569 0.688

N = 1,000 1.070 0.566 0.689

N = 2,500 1.074 0.570 0.688

Table 8 Example 4,
Random-walk with Student’s t
increment distribution (degree of
freedom is 1) based algorithm

h = 0.05 h = 0.1 h = 0.2

N = 500 4.906 4.782 4.817

N = 1,000 4.943 4.821 4.875

N = 2,500 5.018 4.851 4.931

Table 9 Example 4,
Transformed Langevin
algorithm by γ = 1

h = 0.06 h = 0.08 h = 0.10

N = 500 1.309 1.222 1.324

N = 1,000 1.312 1.222 1.325

N = 2,500 1.328 1.226 1.328

In Tables 6, 7, 8 and 9, we used the same starting point X0 and the same number of
parallel Markov chains M as the previous example. The first algorithm is not so bad
and the second algorithm is better than the last one. Transformation does not always
show improvements.

5 Conclusion

The purpose of this paper is to introduce the Metropolis–Hastings algorithms that can
deal with a wide class of heavy-tailed target distributions. We proved the convergence
rate and sufficient conditions for convergence for these algorithms. The transformed
algorithm is of the same rate of convergence as the heavy-tailed proposal random-walk
algorithm, though the latter algorithm needs strong assumptions for the target.

Next, we want to prove the differences between the random-walk with Gaus-
sian increment distribution based algorithm and the Langevin algorithm. Numeri-
cal calculation suggests that the asymptotic variance of the estimator ̂Π( f )N =
N−1∑N

n=1 f (Mx
n ) of the Langevin algorithm is smaller than that of the random-walk

based algorithm when the target distribution is not symmetric. Therefore, symmetri-
city seems to be an important condition for the latter algorithm. However, we could
not prove it in theoretically.
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