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Abstract A new approach for point process diagnostics is presented. The method
is based on extending second-order statistics for point processes by weighting each
point by the inverse of the conditional intensity function at the point’s location. The
result is generalized versions of the spectral density, R/S statistic, correlation integral
and K -function, which can be used to test the fit of a complex point process model
with an arbitrary conditional intensity function, rather than a stationary Poisson model.
Asymptotic properties of these generalized second-order statistics are derived, using
an approach based on martingale theory.

Keywords Residual analysis · Point process · Second-order analysis · Conditional
intensity function

1 Introduction

A major goal in the analysis of spatial-temporal point processes is the description
of the second-order properties of the point process, such as its covariance density,
K -function, spectrum, or measures of self-similarity and long-range dependence.
Many tests have been proposed which are designed to test whether the second-order
properties of an observed point pattern are consistent with the stationary Poisson pro-
cess (Saw 1975; Davies 1977; Liebetrau 1978; Ripley 1977; Albrecht 1982; Sundt
1982; Diggle 1983; Lisek and Lisek 1985; Arsham 1987; Lawson 1988; Heinrich
1991).
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930 G. Adelfio, F. P. Schoenberg

More recently, attention has focused on methods and tests where the null hypothesis
is a more general point process model rather than the stationary Poisson. For instance,
Zhuang (2006) assesses the second-order residuals for various general space-time
branching processes such as the epidemic-type aftershock sequence (ETAS) model.
Another approach is to construct a stationary Poisson residual process by randomly
rescaling (Meyer 1971; Schoenberg 1999) or thinning (Schoenberg 2003), and inves-
tigating whether the second-order properties of the observed residuals are consistent
with those of the stationary Poisson process, as in Ogata (1988) or Schoenberg (2003).
An alternative approach is to construct a weighted second-order statistic, where essen-
tially to each observed point is given a weight inversely proportional to the conditional
intensity at that point. This method was adopted by Veen and Schoenberg (2005) in
constructing a weighted version of the K -function of Ripley (1977); the resulting
weighted statistic is in many cases more powerful than residual methods (Veen 2006).

In this paper, we extend the weighting approach of Veen and Schoenberg (2005) to
a variety of second-order statistics, proving that some weighted second-order statistics
behave as the corresponding ones (not weighted) of a homogeneous Poisson process:
departures suggest the unsuitability of the conditional intensity function used in the
weighting scheme. In particular, results on the asymptotic equivalence of distributions
of these residual and weighted estimates are derived here using martingale techniques.
Investigations of convergence rates and of the sample sizes required to reach the
asymptotic regime are not discussed here, however, and are considered important
issues for future work.

Following a brief introduction of spatial-temporal point processes (Sect. 2) and
some of their second-order characteristics (Sect. 3), the diagnostic method is intro-
duced in Sect. 4 and weighted versions of those statistics are proposed in Sect. 4.1.
This method is defined for general point processes, requiring only the existence of the
conditional intensity at each location in space-time. Section 5 provides some conclu-
ding remarks and directions for future study.

2 Point processes and conditional intensity function

A spatial-temporal point process is a random point pattern defined by time and location
of every single event. Point processes are introduced here by a mathematical approach
that uses the definition of a counting measure on a set X ⊆ R

d , d ≥ 1, with positive
values in Z: for each Borel set B this Z+-valued random measure gives the number
of events falling in B.

This section reviews some basic definitions related to point processes, reported
to introduce the notation used throughout the paper. For further elaboration and
references, please see Daley and Vere-Jones (2003).

Definition 1 (Point process) Let (Ω,A , P) be a probability space and Φ a collection
of locally finite counting measures on X ⊂ R

d . Define X as the Borel σ -algebra
of X and let N be the smallest σ -algebra on Φ, generated by sets of the form {φ ∈
Φ : φ(B) = n} for all B ∈ X . A point process N on X is a measurable mapping of
(Ω,X ) into (Φ,N ). A point process defined over (Ω,A , P) induces a probability
measure ΠN (Y ) = P(N ∈ Y ),∀Y ∈ N (Cressie 1991).
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Residuals for point processes based on weighted second-order statistics 931

Given a point process N defined on the space (X,X ) and a Borel set B, the number
of points N (B) in B is a random variable with first moment defined by:

µN (B) = E[N (B)] =
∫

Φ

φ(B)ΠN (dφ)

that is a measure on (X,X ). The measure µN is called the mean measure or first
moment measure of N (Cressie 1991). The second moment measure of N is given by:

µ
(2)
N (B1 × B2) = E[N (B1)N (Bk)] =

∫
Φ

φ(B1)φ(Bk)ΠN (dφ),

with B1, B2 ∈ X . If it is finite in X (2) the process is second-order.
Let ds and du be small regions located at s and u ∈ X , and let �(x) be the

Lebesgue measure of x . The first-order intensity is defined by:

η(s) = lim
�(ds)→0

µN (ds)

�(ds)
;

the second-order intensity is defined by:

η2(s, u) = lim
�(ds)→0
�(du)→0

µ
(2)
N (ds × du)

�(ds)�(du)
.

Let N be a point process on a spatial-temporal domain X = R
2 × R+; its conditional

intensity function is defined by:

λ(t, x|Ht ) = lim
dt,dx→0

E[N ([t, t + dt) × [x, x + dx)|Ht )]
�(dtdx)

, (1)

where Ht is the space–time occurrence history of the process up to time t , i.e. the σ -
algebra of events occurring at times up to but not including t ; dt, dx are time and space
increments, respectively, and E[N ([t, t+t.)×[x, x+dx)|Ht )] is the history-dependent
expected value of occurrence in the volume {[t, t +dt)×[x, x +dx)}. The conditional
intensity function is a function of the point history and it is itself a stochastic process
depending on the past up to time t . Assuming such a limit exists for each point (t, x)

in the space–time domain and the point process is simple, the conditional intensity
process uniquely characterizes the finite-dimensional distributions of N (Daley and
Vere-Jones 2003). If the conditional intensity function is independent of the past
history, but dependent only on the current time and the spatial locations, (1) identifies
a nonhomogeneous Poisson process. A constant conditional intensity characterizes a
stationary Poisson process.
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2.1 Compensator of point process

The integral of the conditional intensity function is the compensator of the point
process. Indeed, the conditional intensity function of a space-time point process is a
non-negative Ht -predictable process λ(t, x|Ht ), such that for each Borel set B

N (B × [0, t]) −
∫∫

B

∫ t

0
λ(t, x|Ht )d�(t)d�(x) (2)

is a Ht -martingale, where �(·) denotes Lebesgue measure. If N is Ht -measurable for
all t , then it is said to be H -adapted (Daley and Vere-Jones 2003).

An important theorem for the convergence of martingales (Hall and Heyde 1980)
is here introduced and will be used in the following sections.

Theorem 1 (Central limit theorem for martingales) If the martingale difference sto-
chastic process {Xn,Hn}∞n=1, with Hn = σ(X1, X2, . . . , Xn) and E[Xi |Hi−1] =
0, i = 1, 2, . . ., satisfies the following conditions:

1. Lindeberg condition: E[(Xi )
2] < ∞, i = 1, 2, . . . such that for any ε > 0:

lim
n→∞

(
1

S2
n

n∑
i=1

E
[

X2
i I{|Xi |>εSn}

])
= 0,

with S2
n = var

[∑n
i=1 Xi

] → ∞ as n → ∞;
2. E[E[X2

i |Hi−1]] = σ 2
i , i = 1, 2, . . .

then 1
Sn

∑n
i=1 Xi

d→ N (0, 1).

3 Second-order statistics for point processes

Some of the second-order statistics useful to describe observed point patterns are
here listed. Statistics mainly used to describe point processes that exhibit long-range
dependence and self-similarity are given in Sect. 3.1, which also provides theoretical
results developed in subsequent sections.

In Sect. 3.2, the definition of the reduced second measure of a point process and
fractal dimension are given, being useful quantities in the description of attractive and
repulsive features for spatial point processes.

3.1 The R/S statistic

The rescaled range was introduced by Hurst, who monitored the Nile river flow and the
minimum size for the river to not overflow or run dry over a given period of time (Hurst
1951). The R/S statistic was introduced as a graphical technique (Mandelbrot and
Wallis 1969) for the study of long-range dependence properties of temporal processes.
For the R/S analysis in point processes see for instance Ogata and Abe (1991), who
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Residuals for point processes based on weighted second-order statistics 933

used this statistic to investigate the long-range dependence of Japanese earthquakes
occurrence or Daley (1999) who studied long-range dependence for renewal point
processes.

Consider a step function on (t, t + δ) (supposing the time is span in an arbitrary
interval (t, t + δ) of length δ, t + δ ≤ T ) for a sample configuration of a point process
which jumps at each occurrence time, with a size X (u) = Z(t + u) − Z(t). Let Z(t)
be the cumulative of jumps sizes at time t from the time origin and define:

D(u, t, δ) = [Z(u + t) − Z(t)] − u

δ
[Z(t + δ) − Z(t)] (3)

the deviation of the cumulative from the average increase of the step function in the
interval (t, t + δ), assuming the width of the time interval is such that X (t) = 0 if no
event occurs in a neighbor of t and 1 otherwise (i.e. the process is simple). Then, the
rescaled range statistic (R/S statistic) is defined by:

R/S = R(t; δ)

S(t; δ)
,

where R(t; δ) is the range of the data aggregated (by simple summation) over blocks
of length δ, given by:

R(t; δ) = max
0≤u≤δ

D(u, t, δ) − min
0≤u≤δ

D(u, t, δ)

and S2(t; δ) is the sample variance of the data aggregated at the same scale:

S2(t; δ) = Z(t + δ) − Z(t)

δ
−

{
Z(t + δ) − Z(t)

δ

}2

.

The log–log plot of R/S versus δ should have a constant slope H as δ becomes
large and this slope is named H -constant or Hurst’s number (Clegg 2006).

There are several methods for estimating H ; the most used is the R/S plot (Pox
diagram). It is a plot of the rescaled range statistic R/S against d on a log–log scale;
for large d R/S is scattered around a straight line with slope H . To obtain a parametric
estimate of H , the use of an approximate MLE is required, because of the slow chan-
ging of the covariance function in case of long-range dependence and the singularity
of the covariance matrix of the estimates. The large sample theory for the maximum
spectral likelihood has been developed by Whittle (1962).

Under the hypothesis of independence and identical distribution, the R/S statistic
is asymptotically distributed as the range of a Brownian bridge (Mandelbrot 1975). On
the basis of the extended continuous mapping theorem and the Herrnordf’s theorem
(Billingsley 1968; Lo 1991) showed that, 1√

n
R/S, for short-range dependent point

processes (with mixing properties), converges to the range of a Brownian bridge. This
result is easily generalized below for a point process; in the following theorem X j ∀ j,
denotes the multiplicity of the j-th point, i.e. X j = N (dt j ) and let µ = E[N (dt)].
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934 G. Adelfio, F. P. Schoenberg

Theorem 2 (Asymptotic distribution of R/S, for short-dependent process) Let {Xn}
be a stochastic process defined by Xn = µ+ξn, where µ is a fixed arbitrary parameter
and ξn is a zero mean random variable following assumptions of Herrndorf’s theorem;
then, as n increases:

1. max1≤u≤n
1

S
√

n

{∑u
j=1(X j − X̄n)

}
d→ max0≤τ≤1 Bo(τ );

2. min1≤u≤n
1

S
√

n

{∑u
j=1(X j − X̄n)

}
d→ min0≤τ≤1 Bo(τ );

3. 1√
n

R/S
d→ max0≤τ≤1 Bo(τ ) − min0≤τ≤1 Bo(τ ).

(4)

3.2 The correlation integral and the K -function

If the generator process presents self-similarity or scaling behavior, the fractal dimen-
sion provides some information about the scaling parameter or self-similarity index.
Many fractal processes possess a self-similarity property: i.e. a small part of the sur-
face, magnified, resembles a larger part of the surface. In this case, for a random self-
similar fractal process in R

d , the inference about its spatial scale can be carried out on a
smaller scale, keeping in mind that when scaled, point processes are typically only self-
scaling in a statistical sense; i.e. portions of the process resemble scaled versions of the
entire process in distribution. Indeed, fractal processes are classified according to their
degree of self-similarity, distinguishing between three different types of self-similarity
for a fractal set. The strongest type of self-similarity is observed when a fractal pro-
cess appears identical at different scales. A weaker form of self-similarity is yielded
by fractals that appear approximately (but not exactly) identical at different scales.
Finally, the weakest type of self-similarity is observed for fractals with statistical
measures which are preserved across scales (statistical self-similarity). For instance,
fractal dimension itself is a numerical measure which is preserved across scales.

The first definition of fractal was given by Mandelbrot (1977), who defined a fractal
as a set for which the Hausdorff–Besicovitch dimension strictly exceeds its topological
dimension.

Fractals are often characterized by their correlation dimension Dcorr:

Dcorr = lim
δ→0

log C(δ)

log(δ)
,

where C(δ) is the number of points which have a smaller (Euclidean) distance than a
given distance δ. This measure is widely used because it is easy to evaluate for observed
data. The correlation dimension is equivalent to the second-order Rényi point centered
dimension (D2) (Harte 2001). Define the correlation integral:

C2(δ) =
∫
X

µ[Sδ(x)]µ(dx) = Pr{|X1 − X2| ≤ δ},

where X1 and X2 are d-dimensional independent random vectors sampled with respect
to the probability measure µ, and | · | denotes the Euclidean distance.
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Residuals for point processes based on weighted second-order statistics 935

Given a random process X1, X2, . . . , Xn defined on R
d , the estimator of C2

proposed by Grassberger and Procaccia (1983) is:

Ĉ2(δ) = 2

n(n − 1)

n−1∑
i=1

n∑
j=i+1

I (|Xi − X j | ≤ δ),

with I (·) the Bernoulli indicator variable. The correlation dimension is estimated as
the slope of the plot of log δ versus log Ĉ2(δ) for sufficiently small δ. Harte (1998)
used the Hill (1975) estimator to estimate the correlation dimension.

As shown by Denker and Keller (1986), Ĉ2(δ) is a consistent estimator of C2(δ)

provided a general regularity condition is met. They proved the asymptotic normality
of Ĉ (m)

2 (δ) for the i.i.d. case and under mixing conditions by using the U -statistic
estimators properties (Lee 1990).

The asymptotic distribution of the correlation integral can be easily provided also
showing its strict relation with the K -function (Ripley 1976), which is a measure of the
distribution of the inter-point distances and captures the spatial dependence between
different regions of a point process. It is defined as the expected number of further
events within distance δ of any given point divided by the overall rate λ, that is:

K (δ) = λ−1 E[no. of extra events within distance δ of an arbitrary event], δ ≥ 0
(5)

Let N be a point process defined on A ⊆ R
2 and {X1, . . . , Xn} be n realizations of

the process on A. A simple estimator of K (δ) is defined by:

K̂ (δ) = λ̂−1
∑

i

∑
i 
= j

I (|Xi − X j | ≤ δ)/n,

where λ̂ is the estimator of the overall intensity given by n/�(A), i.e. the observed
number of events per unit of the area �(A). Stoyan and Stoyan (2000) used λ̃2 = n(n−1)

�(A)2

as an estimator of the squared intensity function, and then:

K̃ (δ) = 2�(A)

n(n − 1)

n∑
i

n∑
j>i

I (|Xi − X j | ≤ δ). (6)

The properties of the K -function are well understood. Let N be a homogeneous
Poisson process with rate λ with values in the subset A of R

2 with finite area �(A),
and let the distances δ between the

(n
2

)
pairs of points be small compared with �(A),

as the area �(A) tends to infinity:

K̂ (δ)
d→ N

(
πδ2,

2πδ2

λ2�(A)

)

(Cressie 1991, p. 642).
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Therefore for planar process defined on A ⊆ R
2 with finite area �(A), on the basis

of (6), it is possible to write:

Ĉ(δ) ≈ K̂ (δ)

�(A)
(7)

and therefore for a Poisson point process:

Ĉ(δ) ∼
(

πδ2

�(A)
,

2πδ2

�(A)2λ2

)
.

Hence, for a homogeneous Poisson process in R
2 the correlation dimension is 2,

that is the exponent of the power law growth of C(δ).

4 Second-order residuals

When a model is fitted to data, usually second-order statistics estimated for the residual
process (i.e. the result of a thinning or rescaling procedure) are analyzed. Indeed, in the
diagnostic theory of point processes, often two steps are needed: the transformation
of data into residuals [thinning or rescaling Schoenberg 2003] and the use of tests to
assess the consistency of the residuals with the homogeneous Poisson process. For
instance, an estimate of the autocorrelation function of residuals could indicate the
amount of dependence of data which is not described by the fitted model.

To interpret the goodness of fit of models to spatial-temporal point patterns, a new
diagnostic tool is provided here. It is based on the interpretation of a weighted ver-
sion of second-order statistics (such as autocorrelation, K -function, spectrum, fractal
dimension and R/S statistic), calculated after weighting each point by the inverse
of the conditional intensity. Weighted second-order statistics directly apply to data
without assuming homogeneity or transforming data into residuals, eliminating the
sampling variability due to the use of a transforming procedure. The probability used
in the thinning method to retain points are replaced here by weights in order to off-
set the inhomogeneity of the process, with the advantage to include all the observed
points rather than only the ones retained after the application of a random thinning.
Moreover, this method can be applied to processes of any dimension, provided the
statistics discussed here can be computed, and allows such second-order statistics to
play a primary role in the diagnostic procedure, so that features such as clustering and
inhibition can easily be interpreted.

4.1 The weighted process and its second-order properties

Let N be a point process defined on S ∈ R
d , d ≥ 1. For any point s in S, let λ(s|F )

be the conditional intensity function of the process with respect to some filtration F
on S, for simplicity denoted by λ(s). Then:

λ(s)δ ≈ E[N (s, s + δ)|F ].
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Residuals for point processes based on weighted second-order statistics 937

Since λ(s), related to the probability that a point occurs near s, depends on the infor-
mation on which the conditioning is based, it is a random process. In the proofs below
λ is assumed to be positive and bounded away from zero.

Nw is defined as a real-valued random measure such that for any set S, Nw(S) =∫
S

1
λ∗(s)dN holds, with 1

λ∗(s) = λmin
λ(s) and assuming the existence of the positive constant

λmin ≤ inf{λ(s); s ∈ S}.
The main purpose of this paper is to show, by formal proofs, that the main second-

order statistics of Nw(·) behave similarly to those of a homogeneous Poisson process.
For this purpose, first some results relative to the main features of Nw are provided.
These properties will be used in proofs of subsequent results.

For simplicity, let N be a simple space–time process, such that Hi is the history of
the process up to the i th event and with probability 1 all its points are distinct. Then,
since λ(si ) is measurable with respect to Hi :

lim
δ→0

E[Nw(si , si + δ)]
δ

= λmin lim
δ→0

E

⎡
⎣ 1

λ(si )

E
[

N (si , si + δ)

∣∣∣Hi

]

δ

⎤
⎦ = λmin.

Assuming that the original process N is orderly, the second moment of Nw may be
derived similarly:

lim
δ→0

E[Nw(si , si + δ)2]
δ

= λ2
min lim

δ→0
E

[
E

[(
1

λ(si )
N (si , si + δ)

)2 ∣∣∣Hi

]]
1

δ

= λ2
min lim

δ→0
E

⎡
⎣ 1

(λ(si ))2

E
[

N 2(si , si + δ)

∣∣∣Hi

]

δ

⎤
⎦

= λ2
min E

[
1

λ(si )

]
. (8)

Suppose i < j ; since λ(si ) and λ(s j ) are both H j -measurable and λ(si ) is measurable
with respect to Hi , the mixed moment of the process Nw(S) = N (S)

λ∗(s) is:

lim
δ→0

E[Nw(si , si + δ)Nw(s j , s j + δ)]
δ2

= λ2
min lim

δ→0
E

[
E

[
1

λ(si )λ(s j )
N (si , si + δ)N (s j , s j + δ)

∣∣∣H j

]]
1

δ2

= λ2
min lim

δ→0
E

⎡
⎣ 1

λ(si )λ(s j )
N (si , si + δ)

E
[

N (s j , s j + δ)

∣∣∣H j

]

δ

⎤
⎦ 1

δ
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938 G. Adelfio, F. P. Schoenberg

= λ2
min lim

δ→0
E

[
E

[
1

λ(si )
N (si , si + δ)

∣∣∣Hi

]]
1

δ

= λ2
min lim

δ→0
E

⎡
⎣ 1

λ(si )

E
[

N (si , si + δ)

∣∣∣Hi

]

δ

⎤
⎦

= λ2
min

(see also Appendix B in Zhuang (2006)). Thus the covariance is:

cov[Nw(si , si + δ), Nw(s j , s j + δ)]
= E[Nw(si , si + δ)Nw(s j , s j + δ)] − E[Nw(si , si + δ)]E[Nw(s j , s j + δ)]
= 0. (9)

If N is a Poisson process with intensity function λ its power spectrum is:

fN (ω) = 1

2π
λ

(Bartlett 1964). From (9) the spectral density of the weighted process (that is the spec-
tral density calculated on the weighted points by using the inverse of the conditional
intensity function multiplied by its minimum value) reduces to

fNw(ω) = λmin

2π
,

which is the power spectrum of Poisson process with constant rate λmin.
Moreover, from the results above a martingale is obtained by the weighted process

Nw. As expressed by (2), it is known that N (S × [0, t]) − ∫∫
S

∫ t
0 λ(s, t |Ht )dsdt is a

martingale.

Theorem 3 (Martingale characterization of Nw) Let N be a space–time process defi-
ned on S×[0, t] with conditional intensity function λ = λ(·|Ht ) positive and bounded
away from zero, with Ht the past history of the process up to time t and Nw = N λmin

λ
,

with λmin ≤ inf{λ}.
The process defined by:

E[M(S × [0, t + δ])|Ht ] = M(S × [0, t]) (10)

is a H -martingale, for each δ > 0.

4.1.1 Weighted R/S statistic

In this section, the distributional theorem introduced in Sect. 3.1 is generalized for
a weighted version of the R/S statistic. On the basis of Theorem 2 and the results
above, a distributional theorem is derived.
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Residuals for point processes based on weighted second-order statistics 939

Let Nw(t) be the weighted cumulative process at time t from the time origin, with
Nw(t, t + δ) = λmin

λ(t) if N has an event in a neighbor of t and 0 otherwise and:

Dw(u, t, δ) = [Nw(u + t) − Nw(t)] − u

δ
[Nw(t + δ) − Nw(t)]

the weighted version of the deviation from the average in the interval (t, t + δ) [see
(3)]. The weighted rescaled range is:

Rw(t; δ) = max
0≤u≤δ

Dw(u, t, δ) − min
0≤u≤δ

Dw(u, t, δ)

and, for the simple process assumption, the sample variance of the random variable
Nw(t, t + d) = Nw(t + d) − Nw(t) around the sample average is:

S2
w(t; δ) = Nw(t + δ) − Nw(t)

δ
−

{
Nw(t + δ) − Nw(t)

δ

}2

.

Thus, as a diagnostic tool, the weighted (or residual) R/S statistic can be defined:

R/Sw = Rw(t; δ)

Sw(t; δ)
.

To show the consistency of the R/Sw statistic with the R/S statistic of a homogeneous
Poisson process, assumptions of Theorem 1 are proved.

Theorem 4 (Asymptotic distribution of the statistic R/Sw) Let N be a temporal point
process with conditional intensity function λ(t |H ) positive and bounded away from
zero. Assume that E[N 2(δt)|Ht ] = E[N 2(t, t + δ)|Ht ] < ∞ and that there exists
α > 0 such that E[N 2+α(δt)|Ht ] = E[N 2+α(t, t + δ)|Ht ] is bounded.

Then the R/S statistic of the weighted process Nw(t, t +δ) = N (t, t +δ)λmin
λ(t)

, with

λmin ≤ inf{λ(t); t ∈ [0, T ]}, weakly converges to the range of a Brownian bridge.

Proof It has been shown that Nw(t, t + δ) − δλmin is a martingale difference process
[see Theorem 3 and Eq. (10)]. Define increments Xi of the weighted process as:

Xi = Nw(ti , ti + δ) − δλmin,

with Nw(ti , ti + δ) = N (ti , ti + δ) λmin
λ(ti )

. From the previous results relative to the
weighted process Nw, the following holds:

S2
n = var

[
n∑
i

Xi

]
=

n∑
i

var[Xi ] =
n∑
i

E[X2
i ].

Hence εSn → ∞ as n → ∞.
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To prove condition 1 (Lindeberg condition) of Theorem 1, write:

n∑
i=1

E
[

X2
i I{|Xi |>εSn}

]

≤
n∑

i=1

(
E

[
|Xi |2+α

])2/(α+2)

P(|Xi | > εSn)α/(α+2)

≤
(

n∑
i=1

E
[
|Xi |2+α

]2/(α+2)
)(

n∑
i=1

P(|Xi | > εSn)

)α/(α+2)

from the Hölder inequality. Since from the Chebyshev inequality:

n∑
i

P(|Xi | ≥ εSn) ≤ E(Xi )
2

ε2S2
n

= 1

ε2

and E
[

X2+α
i

]
remains bounded (from the assumption about E[N 2+α(δt)|Ht ]), the-

refore
∑n

i=1 E
[
X2

i I{|Xi |>εSn}
]

grows less fast than S2
n and the Lindeberg condition

holds.
Since E[N 2(t, t + δ)|Ht ] is bounded, condition 2 of Theorem 1 is implied by (8).
The asymptotic Normal distribution and, therefore, the independent increments of

the process Nw for each t imply that the sample path obtained posing σ 2 = E[X2
i ]∀i ,

converges to a Wiener process.

Hence, as in Theorem 2, the weak convergence of the weighted R/S statistic to the
range of a Brownian bridge is proved, based on simple assumptions about the second
moments of the point process. These assumptions are not restrictive for a general point
process; indeed they hold for any non-explosive model, such as a Hawkes process with
a branching ratio less than one.

4.1.2 Weighted correlation integral and weighted K -function

Let N be a planar point process defined on A, a subregion of R
2 with Lebesgue measure

�(A), with I (·) the Bernoulli indicator variable, sk, ∀k, points of the state space and
δ > 0.

We define the weighted correlation integral by:

ĈW (δ) = 2

n(n − 1)

n∑
i

1

λ(si )

n∑
j>i

1

λ(s j )
I (|si − s j | ≤ δ),

where λ(s) is the conditional intensity function of the process with respect to some
filtration F on A; note that the weighted correlation integral can be approximated by:
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1

(λmin�(A))2

n∑
i

λmin

λ(si )

n∑
j 
=i

λmin

λ(s j )
I (|si − s j | ≤ δ).

To prove the asymptotic distributional properties of the weighted correlation integral
for inhomogeneous Poisson processes, the analogy with the weighted K -function
(Baddeley et al. 2000) can be considered, as in Sect. 3.2 for the unweighted version
of these statistics. Let λ0(x, y) be the intensity function of the model that under the
null hypothesis describes the observed process on an interval A ⊆ R

2 of area �(A).
Then the weighted K -function is defined by:

K̂W (δ) = 1

λ2
inf�(A)

n∑
i

ω j

n∑
j 
=i

ω j I (|si − s j | ≤ δ),

where λinf = inf{λ0(s); (s) ∈ A} is the minimum of the conditional intensity over
the observed region under the null hypothesis and, for each k, ωk = λinf/λ0(sk), with
λ0(sk) the conditional intensity at the point sk of A under H0 and δ > 0.

Combining the point process residual analysis techniques and the use of the K -
function as a diagnostic tool applied to residual processes, Veen and Schoenberg
(2005) provided theorems on the distributional properties of the K -function and its
weighted variant, considering, as the null hypothesis models, homogeneous and inho-
mogeneous Poisson processes. Formally, let N (m), m = 1, 2, . . . , M be a sequence
of inhomogeneous Poisson processes with intensities λ(m) and K -functions K (m)

W (δ),
defined on the subsets A(m) ∈ R

2 of areas �(A)(m), such that:

– each A(m),∀m, is obtained as the union of disjoint subsets A(m)
1 , . . . , A(m)

M of areas

�(A)
(m)
1 , . . . , �(A)

(m)
M , with M that tends to infinity,

– the conditional intensity within each subset A(m)
k , denoted byλ

(m)
i , is approximately

constant,
– δ is such that supk

πδ2

�(A)
(m)
k

→ 0,

– properties of regularity of A hold.

From the central limit theorem, and from the fixed assumptions, as m → ∞, the
authors provided the following result:

K̂ (m)
W (δ)

d→ N

(
πδ2,

2πδ2

�(A)(m) H((λ(m))2)

)
, (11)

where H((λ(m))2) is the harmonic mean of the squared intensity in the observed region
A(m).

Therefore, from (11) and equation (7), it follows that:

Ĉ (m)
W (δ)

d→ N

(
πδ2

�(A)(m)
,

2πδ2

(�(A)(m))2 H((λ(m))2)

)
.
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Since the previous result can be proved only under some restrictive assumptions, like
the approximate constancy of the conditional intensity on discs of area πδ2, a more
general result is provided below by using martingales theory.

To show the asymptotic normality of ĈW (δ), the martingale theorem is used, first
considering the temporal domain. The weighted correlation integral, for a time point
process N with realizations t1, t2, . . . , tn on [0, T ] ∈ R with Lebesgue measure T ,
can be written as:

ĈW (δ) ≈ 1

(λminT )2

n∑
i

ωi

n∑
j 
=i

ω j I (|ti − t j | ≤ δ), (12)

with ωk = λmin
λ(tk )

,∀k and λ(t) the conditional intensity function of the process with
respect to some filtration Ht on [0, T ].

Define:

I w
uv(δ)|T = 1{0<|u−v|<δ,T }

λ2
min

λ(u)λ(v)
(13)

with 1{0<|u−v|<δ,T } the indicator function that is 1 if the distance between the two
points of the pair {tu, tv}, such that u 
= v and {tu, tv}u 
=v ∈ [0, T ], is both strictly
greater than zero and less than δ, and zero otherwise. The following result holds:

E

[∫
R×R

I w
uv(δ)|T dN (u)dN (v)

]

= E

[∫
R×R

1{0<|u−v|<δ,T }
λ2

min

λ(u)λ(v)
dN (u)dN (v)

]

taking conditional expectations on Hu and on Hv

= E

[∫
R×R

1{0<|u−v|<δ,T }
λ2

min

λ(u)λ(v)
λ(u)λ(v)d�(u)d�(v)

]

= E

[
λ2

min

∫
R×R

1{0<|u−v|<δ,T }d�(u)d�(v)

]

= λ2
minT δ.

Therefore:

E
[
ĈW (δ)

]
= 1

T 2 [T δ] = δ

T
.

Let I w
uv(δ)|ti and I w

uv(δ)|ti −ti−1 be defined as I w
uv(δ)|T , conditioning on the points that

occur before ti and in the interval [ti−1, ti ], for any i = 1, 2, . . . , n, respectively.
Let us define, for any i ,

∫
R×R

I w
uv(δ)|τi dN (u)dN (v) as the number of pairs of points

with elements occurring both up to τi , that is the last point less than or equal to ti such
that no points are in (τi , τi + δ): τi = sup{τ : N (τ ) = 1, N (τ, τ + δ) = 0, τ + δ < ti }
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letting τi = 0 if no such τ exists. In other words, τi is the left end-point of the last gap
prior to ti of size at least δ.

Define Z(ti ) = ∫
R×R

I w
uv(δ)|τi dN (u)dN (v) − λ2

minδτi , for any i , assuming that
such kind of gaps exists. The existence of a gap of size δ corresponding to each ti
guarantees that, conditioning on Z(ti−1), no pair of points within distance δ crosses
ti−1 and therefore the knowledge about the past up to any point ti−1 does not give any
information about ti . Note that for each i, τi is an Hti -stopping time, and thus Z(ti ) is
measurable [see e.g. Corollary A3.4.VIII on p. 430 of Daley and Vere-Jones (2003)].

Theorem 5 (Martingale characterization) Let N be a temporal point process with
conditional intensity function λ(t |H ) positive and bounded away from zero. Let
Z(ti ) = ∫

R×R
I w
uv(δ)|τi dN (u)dN (v) − λ2

minδτi for any i = 1, . . . , n, δ > 0, with∫
R×R

I w
uv(δ)|τi dN (u)dN (v) the number of pairs of points with elements occurring

both up to τi and τi = sup{τ : N (τ ) = 1, N (τ, τ + δ) = 0, τ + δ < ti }.
Then Z(ti ) is a martingale with respect to a filtration Hi , i.e.:

E[Z(ti ) − Z(ti−1)|Z(ti−1)] = 0. (14)

Proof Note that:

E[Z(ti ) − Z(ti−1)|Z(ti−1)]
= E

[(∫
R×R

I w
uv(δ)|τi dN (u)dN (v) −

∫
R×R

I w
uv(δ)|τi−1 dN (u)dN (v)

)

−λ2
minδ (τi − τi−1)

∣∣∣Z(ti−1)
]

= E

[∫
R×R

I w
uv(δ)|(τi −τi−1)dN (u)dN (v) − λ2

minδ (τi − τi−1)

∣∣∣Z(ti−1)

]

= 0.

Theorem 6 (Asymptotic distribution of ĈW (δ)) Let N be a temporal point process
with conditional intensity function λ(t |H ) positive and bounded away from zero,
such that E[N 2(dti )|Hi ] = E[N 2(ti , ti + dti )|Hi ] ∀i is bounded and there exists
an α > 0 such that E[N 2+α(dti )|Hi ] = E[N 2+α(ti , ti + dti )|Hi ] ∀i is bounded.
Moreover, assume that for any i there exists τi = sup{τ : N (τ ) = 1, N (τ, τ + δ) =
0, τ + δ < ti }, δ > 0.

Then the weighted correlation dimension defined as in (12) is asymptotically
normally distributed.

Proof In Theorem 5 we have already proved that Z(ti ) is a martingale and, therefore,
the validity of the assumptions of Theorem 1 are proved.

Define, for any i , the martingale difference process associated to Z by:

Xi =
∫

R×R

I w
uv(δ)|(τi −τi−1)dN (u)dN (v) − λ2

minδ (τi − τi−1) .
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Then E[X2
i ] is obtained:

E

[(∫
R×R

I w
uv(δ)|τi −τi−1 dN (u)dN (v) − λ2

minδ(τi − τi−1)

)2
]

= E

⎡
⎣

(∫
R×R

λ2
min

λ(u)λ(v)
1{0<|u−v|<δ,τi −τi−1}dN (u)dN (v) − λ2

minδ(τi − τi−1)

)2
⎤
⎦

= E

⎡
⎣

(∫
R×R

λ2
min√

λ(u)λ(v)
√

λ(u)λ(v)
1{0<|u−v|<δ,τi −τi−1}dN (u)dN (v)

)2
⎤
⎦

−λ4
minδ

2 (τi − τi−1)
2

for the Cauchy–Schwartz inequality

≤ E

[∫
R×R

λ2
min

λ(u)λ(v)
dN (u)dN (v)

∫
R×R

λ2
min

λ(u)λ(v)
1{0<|u−v|<δ,τi −τi−1}dN (u)dN (v)

]

− λ4
minδ

2(τi − τi−1)
2

≤ E

⎡
⎣

(∫
R×R

λ2
min

λ(u)λ(v)
dN (u)dN (v)

)2
⎤
⎦ − λ4

minδ
2(τi − τi−1)

2

≤ E

⎡
⎣

(∫
R×R

λ2
min

λ(u)λ(v)
dN (u)dN (v)

)2
⎤
⎦

= E

⎡
⎣ n∑

u 
=v

(
λ2

min N (u)N (v)

λ(u)λ(v)

)2
⎤
⎦+ 2E

⎡
⎣ n∑

u 
=v

λ2
min N (u)N (v)

λ(u)λ(v)

n∑
u′ 
=v′

λ2
min N (u′)N (v′)
λ(u′)λ(v′)

⎤
⎦

from the assumptions

= E

⎡
⎣ n∑

u 
=v

(
λ4

min

(λ(u)λ(v))2 E2
u E2

v

)⎤
⎦ + 2λ4

min(τi − τi−1)
2, (15)

with E2
i = E[N 2(dti )|Hi ],∀ i . Since λ is bounded, the summand in (15) is bounded

and, then, the expected number of points is finite.
If the process N is simple, (15) becomes:

E

⎡
⎣ n∑

u 
=v

(
λ4

min

λ(u)λ(v)

)⎤
⎦ + 2λ4

min(τi − τi−1)
2.
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Thus, E[X2
i ] < ∞ ∀i . If N is simple the Lindeberg condition is immediately proved;

indeed, since:

S2
n = var

[
n∑
i

Xi

]
=

n∑
i

var [Xi ]

and εSn → ∞ as n → ∞, for any α > 0 E[N 2+α(dti )|Hi ] = E[N (dti )|Hi ] ≈
λ(ti )dti and E[Xi ]2+α is surely bounded. Therefore:

lim
n→∞

(
1

S2
n

n∑
i=1

E
[

X2
i I{|Xi |>εSn}

])
= 0

If N is not simple, from the made assumptions, then:

n∑
i=1

E
[

X2
i I{|Xi |>εSn}

]

from the Hölder inequality

≤
n∑

i=1

(
E

[
|Xi |2+α

])2/(α+2)

P(|Xi | > εSn)α/(α+2)

≤
(

n∑
i=1

E
[
|Xi |2+α

]2/(α+2)
) (

n∑
i=1

P(|Xi | > εSn)

)α/(α+2)

.

Since from the Chebyshev inequality:

n∑
i

P(|Xi | ≥ εSn) ≤ E(Xi )
2

ε2S2
n

= 1

ε2

and E[N 2+α(dti )|Hi ] is bounded for all i , the Lindeberg condition holds.
Therefore, we have shown that:

1

Sn
Z → N (0, 1) (16)

with Z = ∑n
i=1 Xi .

In order to prove the asymptotic normality for the weighted correlation integral,
the process Y (ti ) is introduced, counting the number of pairs up to time ti . To prove
the same convergence for Y (ti ) as in (16), the following condition is proved:

1

Sn
|Y − Z | p→ 0, (17)
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where the differences |Y (ti ) − Z(ti )|, for each i , consist of all the points occurring
between τi and ti , where τi is the left-side point of the last gap of size not less than δ

before ti . Since E [|Y − Z |] = 0, from (15) then E
[
(Y (ti ) − Z(ti ))2

]
< ∞ (easily

proved replacing τi−1 with τi and τi with ti , respectively); from the made assumptions
and the Chebyshev inequality:

P(|Y − Z | ≥ ε) ≤ var[Y − Z ]
ε2 = E

[
(Y − Z)2

]
ε2 ,

convergence in (17) is proved.

If a two-dimensional space is considered, to define a filtration F on A, some
ordering is necessary. For s′ = (x ′, y′) and s′′ = (x ′′, y′′) ∈ R

2+, say s′ ≤ s′′ if the
Euclidean distance from s′ to the origin (s0) is less than the Euclidean distance from
s′′ to the origin, i.e:

s′ ≤ s′′ ⇔ |s′s0| ≤ |s′′s0|.

For the sake of simplicity, it is assumed that the point process N vanishes on the
axes. Define a filtration F (s) on the complete probability space (Ω,A , P), as the
increasing family of sub-σ -algebras of A such that if s′ ≤ s′′ then F (s′) ⊆ F (s′′).
Let D be the mapping from Ω to the closed subsets of R

2+ such that for s′ < s′′,
s′′ ∈ D(ω) implies s′ ∈ D(ω) and {ω : D(ω) ≤ s} ∈ F (s), ∀s ∈ R

2+.
As in Merzbach and Nualart (1986), let ζ be a random curve (for instance an arc of

circle, the sides of a square of length depending on the maximum coordinate of s) such
that for each pair s′ ≤ s′′ then s′ /∈ ζ(ω) or s′′ /∈ ζ(ω) and {ω : s ∈ ζ(ω)} ∈ F (s).
s′ ≤ ζ implies the existence of a random point s′′ such that s′ ≤ s′′ and s′′ ∈ ζ .
The stopping line C determines the stopping set D(ζ ) = {(ω, s) : s ∈ ζ(ω)}, and
conversely. Therefore, Ds is the random closed subset of A ⊆ R

2 bounded by the axes
and ζs , induced by all the points that are less than s, with measure �(A)s .

Let I w
pq(δ)|A = 1{0<|p−q|<δ,A}

λ(p)λ(q)
with 1{0<|p−q|<δ,A} the indicator function that is 1

if the distance (in terms of the defined order on A) between the two points of the
pair {sp, sq}, such that p 
= q and {sp, sq}p 
=q ∈ A, is both strictly greater than zero
and less than δ, and zero otherwise. Moreover, let I w

pq(δ)|Ah be the same as I w
pq(δ)|A

conditioning on the points that occur in the space area Ah . From the defined ordering,
and assuming N is simple, it is possible to move from the two-dimensional space R

2+
to R, and therefore, to extend the results provided for temporal processes to the spatial
case.

5 Conclusion

The proposed method for residuals analysis in point processes is an useful tool for the
comprehension of point patterns properties, when attraction or dependence features are
present. The method, in comparison with others, has the advantage to analyze features
of data without requiring a random depletion of data or a rescaling along a fixed domain.
As a consequence it eliminates the sampling variability due to a random thinning and
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extends the field of application to point processes of any dimension. Moreover, the
method incorporates the use of the second-order statistics of point processes, allowing
an immediate interpretation of attractive or repulsive characteristics of observed point
patterns.

The diagnostic tool here introduced is the result of an attempt to generalize the
method of defining a residual measure for point processes (Baddeley et al. 2000) as
described in Veen and Schoenberg (2005). While we have focused on second-order
characteristics for purely temporal or planar point processes, it must be emphasi-
zed that these techniques should be applicable for spatial-temporal point processes,
processes in higher dimensions, and processes in more general metric spaces. In par-
ticular, further attention should focus on space–time metrics and statistics useful for
describing attractive or repulsive features in space–time point processes. In addition,
weighted versions could be developed for other statistics aside from those considered
here, including for instance high-order moments and high-order point-centered Renyi
dimensions.

Moreover, although asymptotic distributional results are provided in this paper, we
did not focus on issues related to rates of convergence, which are important in real
applications, especially those where the sample size is small, and therefore would be
an important topic for future work.

Another important direction for future work would be a comparison between the
various residual second-order statistics proposed here as well as comparison with other
methods of residual analysis such as the first-order residuals of Baddeley et al. (2000)
or the second-order statistics of the residual processes such as those in Schoenberg
(2003).

References

Albrecht, P. (1982). Testing the goodness-of-fit of a mixed Poisson process. Insurance: Mathematics and
Economics, 1(1), 27–33.

Arsham, H. (1987). A modified one-sided k-s confidence region narrower in one tail. Communication in
Statistics. Theory and Methods, 16, 17–28.

Baddeley, A., Møller, J., Waagepetersen, R. (2000). Non and semi-parametric estimation of interaction in
inhomogeneous point patterns. Statistica Neerlandica, 54(3), 329–350.

Bartlett, M. S. (1964). The spectral analysis of two dimensional point processes. Biometrika, 51(3/4),
299–311.

Billingsley, P. (1968). Convergence of probability measures. New York: Wiley.
Clegg, R. (2006). A practical guide to measuring the hurst parameter. International Journal of Simulation:

Systems, Science and Technology, 7(2), 3–14.
Cressie, N. (1991). Statistics for spatial data. New York: Wiley series in probability and mathematical

statistics.
Daley, D. J. (1999). The hurst index of long-range dependent renewal processes. Annals of Probability,

27(4), 2035–2041.
Daley, D. J., Vere-Jones, D. (2003). An introduction to the theory of point processes. (2nd ed). New York:

Springer.
Davies, R. (1977). Testing the hypothesis that a point process is Poisson. Advances in Applied Probability,

9, 724–746.
Denker, M., Keller, G. (1986). Rigorous statistical procedures for data from dynamical systems. Journal of

Statistical Physics, 44, 67–94.
Diggle, P. J. (1983). Statistical analysis of spatial point patterns. London: Academic Press.
Grassberger, P., Procaccia, I. (1983). Measuring the strangeness of a strange attractor. Physica D, 9, 189–208.

123



948 G. Adelfio, F. P. Schoenberg

Hall, P., Heyde, C. C. (1980). Martingale limit theory and its application. New York: Academic Press.
Harte, D. S. (1998). Dimension estimates of earthquake epicentres and hypocentres. Journal of Nonlinear

Science, 8, 581–618.
Harte, D. S. (2001). Multifractals: theory and aplications. Boca Raton: Chapman & Hall/CRC.
Heinrich, L. (1991). Goodness-of-fit tests for the second moment function of a stationary multidimensional

Poisson process. Statistics, 22, 245–278.
Hill, B. M. (1975). A simple general approach to inference about the tail of a distribution. Annals of

Statistics, 3, 1163–1174.
Hurst, H. E. (1951). Long term storage capacity of reservoirs. Transactions of the American Society of Civil

Engineers, 116, 770–808.
Lawson, A. B. (1988). On tests for spatial trend in a non-homogeneous Poisson process. Journal of Applied

Statistics, 15(2), 225–234.
Lee, A. J. (1990). U-statistics: theory and practice. New York: Marcel Dekker.
Liebetrau, A. M. (1978). The weak convergence of a class of estimators of the variance function of a

two-dimensional Poisson process. Journal of Applied Probability, 15(2), 433–439.
Lisek, B., Lisek, M. (1985). A new method for testing whether a point process is Poisson. Statistics, 16,

445–450.
Lo, A. (1991). Long-term memory in stock market prices. Econometrica, 59(5), 1279–1313.
Mandelbrot, B. B. (1975). Limit theorems on the self-normalized range for weakly and strongly dependent

processes. Zeitschrift ftr. Wahrscheinlichkeitstheorie. und Verwandte Gebiete, 31, 271–285.
Mandelbrot, B. B. (1977). Fractals; form chance and dimension. San Francisco: W. H. Freeman.
Mandelbrot, B. B., Wallis, J. R. (1969). Robustness of the rescaled range r/s in the measurement in non-cyclic

long run statistical dependence. Water Resources Research, 5, 967–988.
Merzbach, E., Nualart, D. (1986). A characterization of the spatial Poisson process and changing time.

Annals of Probabability, 114, 1380–1390.
Meyer, P. (1971). Démonstration simplifée d’un théorème de knight. Lecture Notes in Mathematics, 191,

191–195.
Ogata, Y. (1988). Statistical models for earthquake occurrences and residual analysis for point processes.

Journal of the American Statistical Association, 83(401), 9–27.
Ogata, Y., Abe, K. (1991). Some statistical features of the long-term variation of the global and regional

seismic activity. International Statistical Review, 59(2), 139–161.
Ripley, B. (1977). Modelling spatial patterns (with discussion). Journal of the Royal Statistical Society,

Series B, 39, 172–212.
Ripley, B. D. (1976). The second-order analysis of stationary point processes. Journal of Applied Probability,

13(2), 255–266.
Saw, J. (1975). Tests on the intensity of a Poisson process. Communication in Statistics, 4, 777–782.
Schoenberg, F. P. (1999). Transforming spatial point processes into Poisson processes. Stochastic Processes

and their Applications, 81(2), 155–164.
Schoenberg, F. P. (2003). Multi-dimensional residual analysis of point process models for earthquake

occurrences. Journal American Statistical Association, 98(464), 789–795.
Stoyan, D., Stoyan, H. (2000). Improving ratio estimators of second-order point process characteristics.

Scandinavian Journal of Statistics, 27, 641–656.
Sundt, B. (1982). On the problem of testing whether a mixed Poisson process is homogeneous. Insurance:

Mathematics and Economics, 1(4), 253–254.
Veen, A. (2006). Some methods of assessing and estimating point processes models for earthquake occur-

rences. Ph.D. thesis, UCLA.
Veen, A., Schoenberg, F. P. (2005). Assessing spatial point process models using weighted k-functions:

Analysis of california earthquakes. UC’s eScholarship Repository.
Whittle, P. (1962). Gaussian estimation in stationary time series. Bulletin of the International Statistical

Institute, 39, 105–129.
Zhuang, J. (2006). Second-order residual anaysis of spatio-timporal point processes and applications in

model evaluation. Journal of the Royal Statistical Society, Series B, 68(4), 635–653.

123


	Point process diagnostics based on weighted second-order statistics and their asymptotic properties
	Abstract
	1 Introduction
	2 Point processes and conditional intensity function
	2.1 Compensator of point process

	3 Second-order statistics for point processes
	3.1 The R/S statistic
	3.2 The correlation integral and the K-function

	4 Second-order residuals
	4.1 The weighted process and its second-order properties

	5 Conclusion
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


