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Abstract A goodness of fit test for the drift coefficient of an ergodic diffusion
process is presented. The test is based on the score marked empirical process. The
weak convergence of the proposed test statistic is studied under the null hypothesis
and it is proved that the limit process is a continuous Gaussian process. The structure
of its covariance function allows to calculate the limit distribution and it turns out that
it is a function of a standard Brownian motion and so exact rejection regions can be
constructed. The proposed test is asymptotically distribution free and it is consistent
under any simple fixed alternative.

Keywords Consistent test · Empirical process · Asymptotically distribution
free tests

1 Introduction

Goodness of fit tests play an important role in theoretical and applied statistics. They
allow to verify the correspondence between the proposed theoretical models and real
data. Such kind of tests are really useful if they are distribution free, in the sense that
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their distribution do not depend on the underlying model. This fact is considered their
principal advantage because it permits to construct exact rejection regions. For example
if Xn = (X1, . . . , Xn) are n independent random variables with distribution function
F , to test the simple hypothesis F = F0 against any other alternative we can introduce
the well known Kolmogorov-Smirnov statistic, �n(Xn) = supx

√
T |F̂n(x)− F0(x)|

where F̂n(x) = 1
n

∑n
j=1 1{X j ≤x} and as usual, 1A denote the indicator function on a

set A. This test is asymptotically distribution-free in the sense that the limit distribution
do not depend on F0 and is consistent against any fixed alternative (see, for example,
Durbin 1973).

In this paper we study the similar problem of goodness of fit test when the basic
model is a diffusion process and we present a test statistic that is asymptotic dis-
tribution free. Let X be an ergodic diffusion process on R, solution of a stochastic
differential equation, that is a strong Markov process with continuous sample paths
which satisfies

dXt = S0(Xt )dt + σ(Xt )dWt , for t > 0, (1)

with some random initial value X0, where S0 and σ are some functions and Wt , t > 0
is a Wiener process. Diffusion processes of this type are widely used as models in
many different fields such as biology, physics, economics and finance. Despite the
fact of their importance in applications, few works are devoted to the goodness of fit
test for diffusions. So the construction of goodness of fit tests for such kind of model
is very important and needs very detailed studies.

Kutoyants (2004) discusses some possibilities of the construction of such tests.
In particular, he considers the Kolmogorov–Smirnov statistics �T (X T ) = supx√

T |F̂T (x)− FS0(x)|, based on the continuous observation X T = {Xt : 0 ≤ t ≤ T }
solution of (1). Here FS0 denote the invariant distribution function of the diffusion
process solution of (1) and F̂T (x) = 1

T

∫ T
0 1{Xt ≤x}dt is the empirical distribution

function. The goodness of fit test based on the Kolmogorov–Smirnov statistics is
asymptotically consistent and the asymptotic distribution under the null hypothesis
follows from the weak convergence of the empirical process to a suitable Gaussian
process. Note that the Kolmogorov–Smirnov statistics for ergodic diffusion process
was studied in Fournie (1992), see also Fournie and Kutoyants (1993) for more de-
tails, while the weak convergence of the empirical process was proved in Negri (1998)
(see Van der Vaart and Van Zanten 2005 for further developments). However, due to
the structure of the covariance of the limit process, the Kolmogorov–Smirnov statis-
tics is not asymptotically distribution free in diffusion process models. More recently
Dachian and Kutoyants (2007) have proposed a modification of the Kolmogorov–
Smirnov statistics for diffusion models that became asymptotically distribution free,
but their approach is different from the one presented here. Moreover our test statistics
can discriminate alternative hypotheses which cannot be treated by their approach.

In this work we present a goodness of fit test for a diffusion process model based
on the statistic supx |VT (x)| where

VT (x) = 1√
T

∫ T

0
1
(−∞,x](Xt )

1

σ(Xt )
(dXt − S0(Xt )dt).
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Goodness of fit test for ergodic diffusion processes 921

Following Koul and Stute (1999), we call VT the score marked empirical process. We
prove that the test based on the statistic supx |VT (x)| is asymptotically distribution
free and it is consistent against any alternative S = S1 �= S0.

We study the weak convergence of the score marked empirical process under the
null hypothesis and we prove that the limit process is a continuous Gaussian process.
The structure of its covariance function allows us to calculate the limit distribution of
the proposed statistic. It turns out that it is a functional of a standard Brownian motion
with known distribution and so we can construct exact rejection regions.

Koul and Stute (1999) proposed such kind of statistics based on a class of empirical
process constructed on certain residuals to check some parametric models for time
series. They studied their large sample behavior under the null hypotheses and present
a martingale transformation of the underlying process that makes tests based on it
asymptotically distribution free. Some considerations on consistency have also been
done. For the same model studied here the problem of testing different parametric
forms of the drift coefficient is well developed (see for example Lin’kov 1981 or
Kutoyants 2004 and references therein).

The work is organized as follows. In the next section, we present the model of ergo-
dic diffusion process solution of a stochastic differential equation, its properties and
some general conditions and assumptions. In Sect. 3 we prove the weak convergence
for a general class of regular diffusion processes with finite speed measure. This result
is interesting by itself and include the result on the weak convergence of the proposed
statistic as a particular case. Section 4 is devoted to the presentation of the goodness of
fit test for the model presented in Sect. 2 and to the study of the score marked empirical
process statistics under the null hypothesis. Finally, in Sect. 5 we study the behavior
of the proposed statistics under the alternative hypotheses and we prove that the test
is consistent against any other alternative.

2 Preliminaries

Given a general stochastic basis, that is, a probability space (�,A,P) and a filtra-
tion {At }t≥0 of A, let us consider a one dimensional diffusion process solution of the
following stochastic differential equation

{
dXt = S(Xt )dt + σ(Xt )dWt

X0 = ξ,
(2)

where {Wt : t ≥ 0} is a standard Wiener process, and the initial value X0 = ξ is
independent of Wt , t ≥ 0. The drift coefficient S will be supposed unknown to the
observer and the diffusion coefficient σ 2 will be a known positive function. Let us
introduce the following condition.

ES. The function S is locally bounded, the function σ 2 is continuous and bounded
and for some constant A > 0, the condition x S(x) + σ(x)2 ≤ A(1 + x2), x ∈ R,
holds.

If condition ES holds true, then the equation (2) has an unique weak solution
(see Durrett 1996, p. 210). The scale function of a diffusion process solution of the

123
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stochastic differential equation (2) is defined by

p(x) =
∫ x

0
exp

{

−2
∫ y

0

S(v)

σ 2(v)
dv

}

dy.

The speed measure of the diffusion process (2) is defined by mS(dx) = 1
σ(x)2 p′(x)dx .

Let us introduce the following condition:
RP . The scale function is such that

lim
x→±∞ p(x) = ±∞

and the speed measure mS is finite.
If the condition RP is satisfied then the process {Xt : t ≥ 0}, weak solution of

(2), has the ergodic property (see for example Gikhman and Skorohod 1972 or Durrett
1996), that is, there exists an unique invariant probability measure µS such that for
every measurable function g ∈ L1(µS) we have with probability one,

lim
T →∞

1

T

∫ T

0
g(Xt )dt =

∫

R

g(z)µS(dz).

Moreover the invariant measure µS has a density given by

fS(y) = 1

mS(R)σ (y)2
exp

{

2
∫ y

0

S(v)

σ (v)2
dv

}

,

where

mS(R) =
∫ ∞

−∞
1

σ(x)2
exp

{

2
∫ x

0

S(v)

σ 2(v)
dv

}

dx

is finite.

3 A limit theorem

In this section, we present a theorem on the weak convergence of a stochastic process
that is interesting by itself. Let us consider a diffusion process X = {Xt : t ≥ 0} on
an open interval I ⊆ R, that is a strong Markov process with continuous sample paths
taking values on I , not necessarily solution of a differential stochastic equation of type
(2). Assume that X is regular, which implies that the scale function p and the speed
measure m of the diffusion are well defined (see Rogers and Williams 2000). Under
the assumption that the speed measure m is finite, and denoting by µ the normalized
speed measure, µ = m

m(I ) , it follows that the diffusion process X is positive recurrent
and it has the ergodic property, with µ as invariant measure. For every x ∈ I and
t ≥ 0, the diffusion local time for the diffusion X with respect to the speed measure
(see Van der Vaart and Van Zanten 2005; Itô and McKean 1965) in the point x at time
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Goodness of fit test for ergodic diffusion processes 923

t is denoted as l X
t (x). The random function x → l X

t (x) can be chosen continuos and
has compact support. The main theorem for diffusion local time is the occupation time
formula. For a diffusion process it can be written as

∫ t

0
h(Xs)ds =

∫

I
l X
t (x)h(x)m(dx), (3)

for every measurable function h : I → R (see Rogers and Williams 2000). If the
measure m is finite then it holds that

1

t
sup
x∈I

l X
t (x) = OP(1). (4)

See Theorem 4.2 of Van der Vaart and Van Zanten (2005) and also Van Zanten (2003).
Let a standard Wiener process W be given on the same stochastic basis where X is

defined. Let us consider the process M = {Mt (ψ) : t ≥ 0, ψ ∈ F} defined by

Mt (ψ) =
∫ t

0
ψ(Xs)dWs,

where ψ belongs to a countable class F of elements of L2(I,m(dx)). To measure the
distance between functions in F we use the semimetric ρ

ρ(ψ, ϕ) =
√∫

I
|ψ(y)− ϕ(y)|2m(dy).

For every ψ ∈ F the process M(ψ) = {Mt (ψ) : t ≥ 0} is a continuous local mar-
tingale. Following Nishiyama (1999), Definition 2.1, the quadratic ρ-modulus for the
process V = {Vt (ψ) : t ≥ 0, ψ ∈ F}, where Vt (ψ) = 1√

t
Mt (ψ), is defined as

||V ||ρ,t = sup
ρ(ψ,ϕ)>0

√
1
t 〈M(ψ)− M(ϕ)〉t

ρ(ψ, ϕ)
.

Here 〈M〉 = {〈M〉t : t ≥ 0} denotes the quadratic variation process of a continuous
local martingales M .

Let us denote with N (ε,F , ρ) the smallest number of closed balls, with ρ-radius
ε > 0, which cover the set F .

Theorem 1 Let X be a regular diffusion process on I with finite speed measure. Let
F ⊂ L2(I,m(dx)) be countable. Then for all δ, K and t > 0 it holds that

E sup
ρ(ψ,ϕ)<δ

|Vt (ψ)− Vt (ϕ)|1{ξt ≤K } ≤ cK
∫ δ

0

√
log N (ε,F , ρ)dε,

where c > 0 is an universal constant and {ξt : t > 0} is a stochastic process which
satisfies ξt = OP(1), as t goes to infinity.
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Proof We have

1

t
〈M〉t = 1

t

∫ t

0
ψ(Xs)

2ds

and from the occupation formula (3) for the diffusion local time of a diffusion process
we can write

1

t

∫ t

0
ψ(Xs)

2ds = 1

t

∫

I
ψ(x)2l X

T (x)m(dx).

So we have

‖V ‖ρ,t = sup
ρ(ψ,ϕ)>0

√
1
t

∫
I (ψ(x)− ϕ(x))2l X

T (x)m(dx)

ρ(ψ, ϕ)
≤

√
1

t
sup
x∈I

l X
T (x).

Now recalling (4), the result follows from Theorem 2.3 in Nishiyama (1999) if we

pose ξt =
√

1
t supx∈I l X

t (x). ��

Let us denote with 
∞(F) the space of bounded functions Z : F → R equipped
with the uniform norm ||Z||∞ = supϕ∈F |Z(ϕ)|.

On the space 
∞(F) we introduce the Gaussian process {�(ψ) : ψ ∈ F} with
mean zero and covariance function given by

g(ψ, ϕ) =
∫

I
ψ(z)ϕ(z)µ(dz).

Theorem 2 Let X be a regular diffusion process on I with finite speed measure. Let
F ⊂ L2(I,m(dx)) be countable and

∫ 1
0

√
log N (ε,F , ρ)dε be finite. Then the family

of stochastic maps {Vt (ψ) : ψ ∈ F} weakly converges on the space 
∞(F), as t goes
to infinity, to the Gaussian process {�(ψ) : ψ ∈ F}.
Proof The convergence of the finite dimensional laws (Vt (ψ1), . . . , Vt (ψk)) to the
law of (�(ψ1), . . . , �(ψk)), for every finite k follows from the central limit theorem
for stochastic integrals (see Kutoyants 2004). The tightness follows from Theorem 1,
assuming that

∫ 1
0

√
log N (ε,F , ρ)dε is finite (see also Nishiyama 2000). ��

4 Goodness of fit test

Let us introduce our testing problem. Suppose that we observe the process {Xt : 0 ≤
t ≤ T }, solution of the stochastic differential equation (2) and we wish to test the null
hypothesis

H0 : S = S0
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Goodness of fit test for ergodic diffusion processes 925

against any alternative H1 : S = S1 where S1 satisfies the following condition C: For
some x ∈ R it holds

∫ +∞

−∞
1
(−∞,x](y)(S0(y)− S1(y)) fS1(y)dy �= 0.

We suppose that S0 and S1 belong to the class Sσ defined for a fixed function σ as

Sσ = {S : conditions ES and RP are fulfilled} .

For every x ∈ R, let us introduce the score marked empirical process

VT (x) = 1√
T

∫ T

0
1
(−∞,x](Xt )

1

σ(Xt )
(dXt − S0(Xt )dt)

= 1√
T

∫ T

0
1
(−∞,x](Xt )dWt .

The process {VT (x) : x ∈ R} takes values in CB(R), the space of the continuous
bounded function on R. Let us introduce in this space the σ -algebra of borel set B
generated by the open sets of CB(R) induced by the norm || f || = supx∈R | f (x)| for
every f ∈ CB(R).

Let us introduce our test procedure. Fix a number ε ∈ (0, 1) and let us consider the
class of asymptotic test of level 1 − ε or size ε. Given any statistical decision function
φT = φT (X T ), the expected value of φT (X T ) is the probability to reject H0 having
the observation X T = {Xt : 0 ≤ t ≤ T }. Let us denote by ET

S the mathematical
expectation with respect to the measures PT

S induced by the process {Xt : 0 ≤ t ≤ T }
in the space C[0, T ] (the space of all the continuos functions on [0, T ]). We define
the class of all the tests of asymptotic level 1 − ε as

Kε =
{

φT : lim sup
T →+∞

ET
S0
φT (X

T ) ≤ ε

}

.

The power function of the test based on φT is the probability of the true decision under
H1, and is given by

βt (φT ) = ET
S1
φT (X

T ).

A test procedure is consistent if

lim
T →+∞ ET

S1
φT (X

T ) = 1.

Let us introduce in the space (CB(R),B) the Gaussian process {�(x) : x ∈ R} with
mean zero and covariance function given by

E(�(x)�(y)) =
∫ x∧y

−∞
fS0(y)dy = FS0(x ∧ y).

123



926 I. Negri, Y. Nishiyama

Since the function FS0 is nondecreasing and nonnegative the limit process {�(x) : x ∈
R} admits the following representation in distribution

�(x) = B(FS0(x)) (5)

for every x ∈ R, where B denote a standard Brownian motion on the positive real line.
The weak convergence of the process {VT (x) : x ∈ R} to the process {�(x) : x ∈ R}
in the space (CB(R),B) is immediate if we apply Theorem 2 to the functions ψ(y) =
1(−∞,x](y). Here we remark that the class F in Theorem 2 has to be countable. How-
ever the process {VT (x) : x ∈ R} is continuous in x , so in the current situation we can
consider such class of functions. This result on the weak convergence of process VT

and the continuous mapping theorem gives the following convergence in distribution

sup
x∈R

|VT (x)| ⇒ sup
x∈R

|�(x)|.

Moreover the representation (5) yield the following equality in distribution

sup
x∈R

|�(x)| = sup
0≤t≤1

|B(t)|.

We will consider the following statistical decision function

φ∗
T = 1{supx∈R |VT (x)|>cε},

where the critical value cε is defined by

P

(

sup
0≤t≤1

|B(t)| > cε

)

= ε.

So we have proved that φ∗
T ∈ K and that the test is asymptotically distribution free. In

order to make the introduced statistical procedure useful, we have to study the asymp-
totic properties of the statistics supx |VT (x)| under the alternative hypotheses. This is
done in the next section.

5 Consistency of the test

This section is devoted to the study of the asymptotic beaviour of the test statitistic
supx∈R |VT (x)| under the alternative hypotheses. We have shown in the previous sec-
tion that the proposed statistics is asymptotically distribution free. Now we prove that
the proposed test procedure is also consistent against any alternative S = S1 belonging
to the class

H1 =
{

S1 :
∫ x

−∞
(S0(y)− S1(y)) fS1(y)dy �= 0, for some x ∈ R

}
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Theorem 3 Let S0 and S1 belong to Sσ and the condition C be satisfied. Then the test
based on the statistical decision function

φ∗
T = 1{supx∈R |VT (x)|>cε}

is consistent against any alternative belonging to the class H1.

Proof To prove the consistency it is enough to show that, under H1

P
(

lim
T →+∞ sup

x∈R

|VT (x)| = +∞
)

= 1.

We can write

sup
x∈R

|VT (x)| ≥ √
T sup

x∈R

|AT (x)| − sup
x∈R

|V 1
T (x)|,

where V 1
T (x) and AT (x) are given as follows. Under H1, by Theorem 2 the process

V 1
T (x) = 1√

T

∫ T

0
1
(−∞,x](Xt )

1

σ(Xt )
(dXt − S1(Xt )dt)

weakly converges to the corresponding Gaussian process so the limit process is tight.
On the other hand,

AT (x) = 1

T

∫ T

0
1
(−∞,x](Xt )

1

σ(Xt )
(S0(Xt )− S1(Xt ))dt

converges a.s. to

A(x) =
∫ +∞

−∞
1
(−∞,x](y)

1

σ(y)
(S0(y)− S1(y)) fS1(y)dy.

If the condition C is satisfied we have

lim
T →+∞

√
T sup

x∈R

|AT (x)| = +∞ a.s.

and the test is consistent. ��
Acknowledgments The authors are grateful to Richard D. Gill for some suggestion about the score
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the final version of the work.
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