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Abstract This paper proposes an inferential method for the semiparametric propor-
tional hazards model for progressively Type-II censored data. We establish martingale
properties of counting processes based on progressively Type-II censored data that
allow to derive the asymptotic behavior of estimators of the regression parameter, the
conditional cumulative hazard rate functions, and the conditional reliability functions.
A Monte Carlo study and an example are provided to illustrate the behavior of our
estimators and to compare progressive Type-II censoring sampling plans with classical
Type-II right censoring sampling plan.

Keywords Counting processes · Martingales · Order statistics ·
Progressive censoring · Proportional hazards model · Reliability · Semiparametric

1 Introduction

Using counting processes approach, Bordes (2004) discussed the estimation of the
cumulative hazard rate function and then the reliability/survival function based on
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a progressively Type-II censored sample. For the cumulative hazard rate function,
a Nelson-Aalen type estimator was derived while for the survival function a
Kaplan-Meier estimator was proposed. In this paper, we propose inference proce-
dures for progressively censored non-homogeneous data arising from the proportional
hazards model (see Cox 1972, 1975). That is, we develop inference based on a pro-
gressively censored sample of lifetime data observed along with covariate vectors.
Progressively censored sampling plans are applied to a real data set in the last section
of the paper.

A general account of theoretical developments and applications concerning progres-
sive censoring is given in the book by Balakrishnan and Aggarwala (2000). Recently,
many inferential results have been developed based on progressively censored data;
see, for example, the works of Viveros and Balakrishnan (1994), Alvarez-Andrade and
Bordes (2004), Balakrishnan and Bordes (2004), Balakrishnan et al. (2003, 2004a,b),
Balasooriya and Balakrishnan (2000), Balasooriya et al. (2000), Basak and Balakr-
ishnan (2003), Guilbaud (2001, 2004), and Ng et al. (2002, 2004). However, most of
these methods in the context of progressive censoring are based on parametric mod-
els. Moreover, all these works are based on homogeneous data in the sense that a
progressively censored sample is obtained from independent and identically distrib-
uted random variables.

The progressive censoring is of great importance in planning duration experiments
in reliability studies. In many industrial experiments involving lifetimes of machines
or units, experiments have to be terminated early and also the number of failures must
be limited for various reasons (for example, when expensive items must be destroyed,
when experiments are time-consuming and expensive, etc.). In addition, some lifetests
require removal of functioning test specimens to collect degradation related informa-
tion to failure time data. The samples that arise from such experiments are called
censored samples. The planning of experiments with the aim of reducing the number
of failures and the total duration of the experiment leads naturally to the well-known
Type-II and Type-I right censoring schemes. For many references and historical notes
on this subject, we refer the interested reader to Balakrishnan and Aggarwala (2000).
The progressive censoring scheme described below has the same objectives, but it is
constructed with the aim of moderating the loss of information by reducing the number
of failures with respect to the full sample approach. Montanari and Cacciari (1988)
reported results of progressively censored data aging tests on XLPE-insulated cable
models under combined thermal-electrical stresses (covariates). In this experiment,
live specimens were removed at selected times and/or at the time of breakdowns.
The progressive censored reliability sampling plans were discussed by Balasooriya
et al. (2000) and Balasooriya and Balakrishnan (2000), while Ng et al. (2004) dis-
cussed optimal sampling plans under Weibull lifetime distribution. Another potential
application of our work deals with carcinogenicity studies. Indeed, in such studies,
animals, usually rats or mice, are divided into two or more groups by randomization
and a chemical is administrated at a constant daily dose rate for a major portion of
the lifetime of the test animals. Because such an experiment is expensive and time
consuming (till 2 years for one study) it is important to propose efficient design with
reduced sample size and/or shortened study duration (see Ahn et al. 1998). More-
over, carcinogenicity studies involve sacrifice experiments leading to right censored
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Cox regression under progressive censoring 889

lifetimes for some animals. Type-II progressively censored data could be obtained by
scheduling sacrifice experiments at some observed times of death. There is also a more
theoretical potential application of progressive censoring schemes. It could be used as
an alternative sampling way in bootstrap methods with respect to the usual sampling
with or without replacement. Especially when the bootstrapped subsamples have to
be of small size (in order to reduce computational times).

Let T be a random lifetime and Z be a vector of covariates in R
p. The proportional

hazards model assumes that, conditional on Z , the hazard rate function of T is given
by

λ(t; Z) = exp(βT
0 Z)λ0(t), t ∈ R

+, (1.1)

where β0 ∈ R
p is an unknown regression parameter vector and λ0 is an unknown

baseline hazard rate function. Let (T1, Z1), . . . , (Tn, Zn) be n independent copies of
(T, Z). A progressively Type-II censored sample is obtained in the following man-
ner. First, suppose that we are given integers r1, . . . , rm , chosen a priori, such that
r1 + · · · + rm + m = n. Consider the lifetimes T1, . . . , Tn as the failure times of
n units that are placed on test at time zero. We denote by X(1) the first failure time
and by i1 the number of the unit that failed. Immediately following the first fail-
ure, r1 units numbered i2, . . . , ir1+1 are removed from the test at random (by sam-
pling without replacement) and we denote I1 = {i1, . . . , ir1+1}. Then, we denote by
X(2) the second observed failure time, ir1+2 the number of the corresponding unit,
and r2 surviving units numbered ir1+3, . . . , ir1+r2+2 are removed from the the test at
random. We then denote I2 = {ir1+2, . . . , ir1+r2+2}. This process continues until, at
the time X(m) of the m-th observed failure of unit number ir1+···+rm−1+m , the surviv-
ing units ir1+···+rm−1+m+1, . . . , in are all removed from the experiment and we denote
Im = {ir1+···+rm−1+m, . . . , in}. Note that this censoring scheme leads to a subsample
X(1) < · · · < X(m) of the order statistics T(1) < · · · < T(n) obtained from T1, . . . , Tn .
Note also that the sets of unit numbers I1, . . . , Im satisfy

m⋃

k=1

Ik = {1, . . . , n} and Ik ∩ Il = ∅ for 1 ≤ k < l ≤ m.

For simplicity, we introduce the notations α1 = 1 and αk = ∑k−1
j=1 r j + k for 2 ≤ k ≤

m + 1. With this notation, we can then write for 1 ≤ k ≤ m

Ik = {iαk , . . . , iαk+1−1}.

Note that if all the ri are equal to zero, then we observe the complete set of order
statistics T(1), . . . , T(n), whereas if r1 = · · · = rm−1 = 0, we observe only the first
m order statistics T(1), . . . , T(m). The latter case corresponds to the classical Type-II
right censoring scheme which is thus generalized by the progressive Type-II censor-
ing scheme. It is worth to note that order statistics resulting from a progressive Type-
II censoring scheme are a special case of generalized order statistics introduced by
Kamps (1995).
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2 Basic properties of progressively censored samples

2.1 Joint law and spacings

First, note that conditional on I1, . . . , Im , the joint density of (X(1), . . . , X(m)) is given
by

fX(1),...,X(m)
(x1, . . . , xm |I1, . . . , Im)

= c(I1, . . . , Im)

m∏

i=1

λ0(xi ) [S0(xi )]
∑

j∈Ii
W j 1(x1 ≤ · · · ≤ xm), (2.1)

where, for simplicity, we denote W j = exp(βT
0 Z j ) and with a normalizing constant

c(I1, . . . , Im) defined by

c(I1, . . . , Im) =
m∏

i=1

⎛

⎝
∑

j∈I m
i

W j

⎞

⎠;

here I m
i = Ii ∪ Ii+1 ∪ · · · ∪ Im for 1 ≤ i ≤ m.

Proposition 1 Denoting �0 for the cumulative baseline hazard rate function, condi-
tional on I1, . . . , Im, the spacings E1, . . . , Em defined by

Ei =
⎛

⎝
∑

j∈I m
i

W j

⎞

⎠{�0(X(i)) − �0(X(i−1))
}
, 1 ≤ i ≤ m,

where X(0) = 0, are independent and identically distributed as standard exponential.

Proof Because �0 is an increasing function, applying the same progressive Type-II
censoring scheme to (Ti , Zi )1≤i≤n and to (�0(Ti ), Zi )1≤i≤n , we get respectively the
progressively censored samples (X(i), Ii )1≤i≤m and (�0(X(i)), Ii )1≤i≤m . Since, con-
ditional on Zi , �0(Ti ) is model (1.1) with a constant baseline hazard rate function
equal to 1, it follows by (2.1) that, conditional on I1, . . . , Im , the joint density of(
�0(X(1)), . . . , �0(X(m)

)
is equal to

f�0(X(1)),...,�0(X(m))(x1, . . . , xm |I1, . . . , Im)

= c(I1, . . . , Im) exp

⎛

⎝−
m∑

i=1

∑

j∈I m
i

W j xi

⎞

⎠ 1(x1 ≤ · · · ≤ xm).

Now, inverting the C1-diffeomorphism that links (E1, . . . , Em) to (�0(X(1)), . . . ,

�0(X(m)), we obtain
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Cox regression under progressive censoring 891

�0(X(i)) =
i∑

j=1

E j∑
k∈I m

j
Wk

for 1 ≤ i ≤ m.

Then it follows that conditional on I1, . . . , Im , the joint density of (E1, . . . , Em) is
equal to

fE1,...,Em (x1, . . . , xm |I1, . . . , Im) = exp

(
−

m∑

i=1

xi

)
1(x1 ≥ 0, . . . , xm ≥ 0),

which completes the proof. ��
Proposition 2 Assume that t is a real number such that �0(t) < +∞, ω =
supn≥1 Wn < +∞, andr = supn≥1 rn < +∞. Then, we have P(X(m) ≤ t |I1, . . . , Im)

→ 0 as n → +∞.

Proof Note that n → +∞ implies that m → +∞. Moreover, we have

P(X(m) ≤ t |I1, . . . , Im) = P(�0(X(m)) ≤ �0(t)|I1, . . . , Im)

= P

⎛

⎝
m∑

j=1

E j∑
k∈I m

j
Wk

≤ �0(t)

∣∣∣∣∣∣
I1, . . . , Im

⎞

⎠

≤ P

⎛

⎝
m∑

j=1

E j∑m
k= j (rk + 1)

≤ ω�0(t)

∣∣∣∣∣∣
I1, . . . , Im

⎞

⎠

≤ P

⎛

⎝
m∑

j=1

E j

m − j + 1
≤ (r + 1)ω�0(t)

∣∣∣∣∣∣
I1, . . . , Im

⎞

⎠ .

Now, since

E

⎛

⎝
m∑

j=1

E j

m − j + 1

∣∣∣∣∣∣
I1, . . . , Im

⎞

⎠ =
m∑

j=1

1

m − j + 1
→ +∞ as n → +∞,

we obtain the desired result. ��

2.2 Counting processes considerations

Let us consider the filtration F = (F t ; t ≥ 0) defined by

Ft = σ {(X(i), Ii ); 1 ≤ i ≤ m and X(i) ≤ t}, t ≥ 0,

and the counting processes Ni , F-adapted, defined by

Ni (t) = 1(X(i) ≤ t), t ≥ 0,
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where 1(·) is the set characteristic function. Let us denote N = ∑m
i=1 Ni .

Now, let us define for 1 ≤ i ≤ n the random variables (Yi , δi ) as

{
Yi = X(k) if i ∈ Ik,

δi = 1 (i ∈ {iα1 , . . . , iαm }) .

Then for i = 1, . . . , n, we define counting processes N̄i by

N̄i (t) = 1(Yi ≤ t; δi = 1), t ≥ 0.

Clearly, counting processes N̄1, . . . , N̄n are F-adapted and the following obvious rela-
tions hold:

Ni =
∑

j∈Ii

N̄ j , ∀i ∈ {1, . . . , m}.

Proposition 3 Processes M̄i and M j defined for 1 ≤ i ≤ n, 1 ≤ j ≤ m and t ≥ 0 by

M̄i (t) = N̄i (t) −
∫ t

0
1(Yi ≥ s) exp(βT

0 Zi )λ0(s)ds

and

Mi (t) = Ni (t) −
∫ t

0

∑

j∈Ii

exp(βT
0 Z j )1(X(i) ≥ s)λ0(s)ds,

are F-martingales.

Proof By standard results on counting processes (see, for example, Aven and Jensen
1999; Andersen et al. 1993), it is sufficient to find the F-intensity λ̄i of the N̄i ’s to
derive the martingale property of M̄i . Then the martingale property of Mi follows by
summation. Recall that for t > 0, we have

λ̄i (t) = lim
h↘0

E
[
N̄i (t + h) − N̄i (t)|Ft−

]
/h. (2.2)

Let h > 0 be a real number. Then, because 1(Yi ≥ t) is F-predictable, we have

E
[
N̄i (t + h) − N̄i (t)|Ft−

]

= E
[
(N̄i (t + h) − N̄i (t))1(Yi < t)|Ft−

]+E
[
(N̄i (t + h) − N̄i (t))1(Yi ≥ t)|Ft−

]

= 1(Yi ≥ t)E
[
N̄i (t + h) − N̄i (t)|Ft−

]

= 1(Yi ≥ t)P(Yi ∈ (t, t + h], δi = 1|Ft−)

= 1(Yi ≥ t)
m−1∑

k=0

P(Yi ∈ (t, t + h], δi = 1, X(k) < t ≤ X(k+1)|Ft−)
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Cox regression under progressive censoring 893

= 1(Yi ≥ t)
m−1∑

k=0

P(X(k+1) ∈ (t, t + h], iαk+1 = i |FX(k)
, X(k) < t ≤ X(k+1))

×P(X(k) < t ≤ X(k+1)|Ft−)

= 1(Yi ≥ t)
m−1∑

k=0

P(X(k+1) ∈ [t, t + h], iαk+1 = i |FX(k)
)

P(X(k+1) ≥ t |FX(k)
)

P(X(k) < t≤X(k+1)|Ft−).

The right, hand side of the last equality, along with (2.2), yields

λ̄i (t) = 1(Yi ≥ t)
m−1∑

k=0

fX(k+1),iαk+1
(t, i |FX(k)

)
∫ +∞

t fX(k+1)
(u|FX(k)

)du
P(X(k) < t ≤ X(k+1)|Ft−). (2.3)

Denoting by fX(1),...,X(k+1),iαk+1
(x1, . . . , xk+1, i |I k

1 ) the joint distribution function of

the random vector (X(1), . . . , X(k+1), iαk+1) conditionally on I k
1 , we have

fX(1),...,X(k+1),iαk+1
(x1, . . . , xk+1, i |I k

1 )

= c
k∏

i=1

Wαi λ0(xi )[S0(xi )]
∑

j∈Ii
W j

×Wiλ0(xk+1)[S0(xk+1)]
∑

j∈I m
k+1

W j
1(x1 < · · · < xk+1, i ∈ I m

k+1),

where c is a normalizing constant. Then, we have

fX(1),...,X(k)
(x1, . . . , xk |I k

1 )

=
n∑

i=1

∫ +∞

xk

fX(1),...,X(k+1),iαk+1
(x1, . . . , xk+1, i |I k

1 )dxk+1

= c
k∏

i=1

Wαi λ0(xi )[S0(xi )]
∑

j∈Ii
W j

⎛

⎝
∑

j∈I m
k+1

W j

⎞

⎠ [S0(xk)]
∑

j∈I m
k+1

W j 1(x1 ≤· · ·≤ xk).

Since FX(k)
= σ {X(1), . . . , X(k), I k

1 }, we have
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fX(k+1),iαk+1
(t, i |FX(k)

) = fX(1),...,X(k+1),iαk+1
(x1, . . . , xk+1, i |I k

1 )

fX(1),...,X(k)
(x1, . . . , xk |I k

1 )

= Wi∑
j∈I m

k+1
W j

λ0(t)

[
S0(t)

S0(xk)

]∑
j∈I m

k+1
W j

1(t ≥ xk, i ∈ I m
k+1),

fX(k+1)
(t |FX(k)

) =
n∑

i=1

fX(k+1),iαk+1
(t, i |FX(k)

) (2.4)

= λ0(t)

[
S0(t)

S0(xk)

]∑
j∈I m

k+1
W j

1(t ≥ xk),

and

∫ +∞

t
fX(k+1)

(u|FX(k)
)du = 1∑

j∈I m
k+1

W j

[
S0(t)

S0(xk)

]∑
j∈I m

k+1
W j

. (2.5)

Finally, Eqs. (2.3), (2.4) and (2.5) yield

λ̄i (t) = Wiλ0(t)1(Yi ≥ t), t ≥ 0.

With the above intensity process for N̄i , we obtain the desired result. ��

3 Estimators and their properties

3.1 Estimators of unknown parameters

Earlier in the Introduction section, we remarked that the progressive Type-II censoring
scheme leads to a random partition I1, . . . ,Im of {1, . . . , n}, such that Card(Ii ) =
ri + 1 for 1 ≤ i ≤ m. We denoted by I1, . . . , Im the observed partition once the
experiment is finished. Then we are able to calculate the probability of observing the
partition I1, . . . , Im as

P(I1 = I1, . . . ,Im = Im)

=
∫ +∞

0
Wα1λ0(x1)[S0(x1)]

∑
j∈I1

W j

∫ +∞

x1

Wα2λ0(x2)[S0(x2)]
∑

j∈I2
W j · · ·

· · ·
∫ +∞

xm−1

Wαm λ0(xm)[S0(xm)]
∑

j∈Im W j dx1dx2 · · · dxm

=
m∏

i=1

Wαi∑
j∈I m

i
W j

=
m∏

i=1

exp(βT
0 Zαi )∑

j∈I m
i

exp(βT
0 Z j )

.

Hence it is natural to estimate the unknown regression parameter β0 by the value of
β that makes the above probability to observe the partition I1, . . . , Im maximal since
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Cox regression under progressive censoring 895

this probability depends no longer on the unknown functional parameter λ0. Taking
the logarithm of this probability, it follows that the estimator β̂n of β0 is then given by

β̂n = arg max
β∈Rp

Cn(β), (3.1)

where

Cn(β) =
m∑

i=1

⎧
⎨

⎩βT Zαi − log

⎛

⎝
∑

j∈I m
i

exp(βT Z j )

⎞

⎠

⎫
⎬

⎭ .

Remark 1 It is easy to see that the above estimator coincides with the Cox (1972) esti-
mator when there is no censoring, i.e., when all the ri are fixed as 0 in the progressive
censoring scheme.

Using the martingale property of Proposition 3, we have

m∑

i=1

dMi (s) =
m∑

i=1

dNi (s) −
m∑

i=1

⎛

⎝
∑

j∈Ii

exp(βT
0 Z j )

⎞

⎠ 1(X(i) ≥ s)ds

which, upon neglecting the martingale part, leads to a pseudo-estimator �̂0(t;β0) of
�0 defined by

�̂0(t;β0) =
∫ t

0

dN (s)

S(0)(s;β0)
∀t ≥ 0,

where S(0)(s;β0) = ∑m
i=1

∑
j∈Ii

exp(βT
0 Z j )1(X(i) ≥ s). Finally, we estimate �0 by

replacing β0 by β̂n in �̂0(t;β0), and then, �0 is estimated by a Breslow-type estimator
�̂0 defined by

�̂0(t) =
∑

1≤i≤m;X(i)≤t

1
∑

j∈I m
i

exp(β̂T
n Z j )

, t ≥ 0. (3.2)

Remark 2 An estimating function for β0 can also be derived using the likelihood
function of the counting process N (see Andersen et al. 1993). We show that such an
estimating function depends on λ0(X(i)) which are, therefore, replaced by the jumps
of the �̂0 at points X(i). The estimating function so obtained is, up to an additive term
that does not depend on unknown parameters, the same as Cn .

Then, the cumulative hazard rate function �(t; Z) of a duration T conditionally on
Z that satisfies model (1.1) is naturally estimated by �̂(·; Z) defined by

�̂(t; Z) = exp(β̂T
n Z)�̂0(t), t ≥ 0. (3.3)
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896 S. Alvarez-Andrade et al.

Finally, we need to estimate the survival function S(·; Z) of T conditionally on Z .
Because the natural link between �(·; Z) and S(·; Z) is the integral-product, the esti-
mator, denoted by Ŝ(·; Z), is defined by

Ŝ(t; Z) =
∏

1≤i≤m;X(i)≤t

⎛

⎝1 − exp(β̂T
n Z)

∑
j∈I m

i
exp(β̂T

n Z j )

⎞

⎠ , t ≥ 0. (3.4)

3.2 Asymptotic properties of the estimators

First, we introduce notation and conditions under which we are able to obtain asymp-
totic results. For any R

p-valued column vector Z , we define Z⊗k equal to 1, Z and Z Z T

for k equal to 0, 1 and 2, respectively. For 0 ≤ k ≤ 2, we define for (t, β) ∈ R
+ ×R

p,
random functions

S(k)(t, β) =
m∑

i=1

⎛

⎝
∑

j∈Ii

Z⊗k
j exp(βT Z j )

⎞

⎠ 1(X(i) ≥ t).

We also define, for (t, β) ∈ R
+ × R

p, quantities

E(s, β) = S(1)(t, β)

S(0)(t, β)
and V (s, β) = S(2)(t, β)

S(0)(t, β)
− E⊗2(s, β).

Condition 1 (a) τ is a real number such that
∫ τ

0 λ0(s)ds < +∞.
(b) The sequence (ri )i≥1 is uniformly bounded.
(c) There exists a neighborhood B of β0 and scalar, p-vector and p × p-matrix

functions s(0), s(1) and s(2), respectively, defined on B × [0, τ ] such that for
k ∈ {0, 1, 2}:

sup
(t,β)∈[0,τ ]×B

∥∥∥∥
1

n
S(k)(t, β) − s(k)(t, β)

∥∥∥∥
P−→ 0 as n → +∞,

where ‖ · ‖ denotes the Euclidean-norm.
(d) For k ∈ {0, 1, 2}, β �→ s(k)(t, β) is a continuous function on B uniformly in

t ∈ [0, τ ].
(e) s(1)(t, β) = ∂s(0)

∂β
(t, β) and s(2)(t, β) = ∂2s(0)

∂β∂βT
(t, β) for (t, β) ∈ [0, τ ] × B.

(f) t �→ s(0)(s, β0) is bounded away from 0 on [0, τ ].
(g) The matrix 
(τ) defined by


(τ) =
∫ τ

0
v(s, β0)s

(0)(s, β0)λ0(s)ds,
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Cox regression under progressive censoring 897

where

v(s, β0) = s(2)(s, β0)

s(0)(s, β0)
− e⊗2(s, β0) and e(s, β0) = s(1)(s, β0)

s(0)(s, β0)
,

is positive definite.
(h) supn≥1 ‖Zn‖ < +∞.

Remark 3 The boundedness of functions s(k)(t, β) on [0, τ ] × B follows from Con-
dition 1 (h).

Theorem 1 Under Condition 1, as m → +∞, we have

(i) β̂n converges in probability to β0.
(ii)

√
n(β̂n − β0) converges in distribution to a centered Gaussian random vector

with variance-covariance matrix 
−1(τ ).
(iii) 
(τ) is consistently (in probability) estimated by


̂(τ ) = 1

n

m∑

i=1

V (X(i), β̂n).

The proof of this theorem is adapted from the proof of Andersen and Gill (1982)
(see also Andersen et al. 1993). As a consequence, we only sketch the proof pointing
out what makes the difference from the proof of Andersen and Gill.

Proof Because of the following obvious identity

m∑

i=1

∫ t

0
Zαi dNi (s) −

n∑

i=1

∫ t

0
Zi dN̄i (s) = 0, t ∈ [0, τ ],

we can remark that

Cn(β) = Cn(τ, β) =
m∑

i=1

∫ τ

0

(
βT Zαi − log(S(0)(s, β))

)
dNi (s),

=
n∑

i=1

∫ τ

0

(
βT Zi − log(S(0)(s, β))

)
dN̄i (s).

We then write

Un(τ, β) = ∂Cn

∂β
(τ, β) =

n∑

i=1

∫ τ

0
(Zi − E(s, β)) dN̄i (s),

and

In(τ, β) = ∂2Cn

∂β∂βT
(t, β) = −

∫ τ

0
V (s, β)dN (s).
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So, the proof of (i) follows the proof of Theorem VII.2.1 of Andersen et al. (1993,
p. 497) and is therefore omitted. To obtain result (ii), we remark that

1√
n
Un(τ, β̂n) − Un(τ, β0) = − 1√

n
Un(τ, β0) = √

n(β̂n − β0)In(τ, β̄n)/n, (3.5)

where β̄n lies in the line segment with extremities β0 and β̂n . Because β̂n converges
in probability to β0, β̄n converges in probability to β0 too. Following the proof of
Theorem VII.2.2 in Andersen et al. (1993, pp. 498–500), we show that the process
(n−1/2Un(t, β0); t ∈ [0, τ ]) converges in distribution to a Gaussian martingale G with
variance–covariance matrix 
(t) in (D[0, τ ])p and that n−1In(τ, β̄n) converges in
probability to 
(τ) as n tends to infinity. This proves results (ii) and (iii). ��
Theorem 2 Under Condition 1,

√
n
(
�̂(·, Z) − �(·, Z)

)
converges weakly to a cen-

tered Gaussian process in D[0, τ ] with variance function σ 2 defined, for t ∈ [0, τ ],
as

σ 2(t, Z) = exp(2βT
0 Z)

(∫ t

0

λ0(s)

s(0)(s, β0)
ds

+
∫ t

0
(Z − e(s, β0))

T λ0(s)ds × 
−1(τ ) ×
∫ t

0
(Z − e(s, β0))λ0(s)ds

)
,

and uniformly consistently estimated on [0, τ ] by

σ̂ 2(t, Z) = exp(2β̂T
n Z)

⎛

⎝
∫ t

0

dN (s)

(S(0)(s, β̂n))2
+
∫ t

0

(
Z − E(s, β̂n)

S(0)(s, β̂n)

)T

dN (s)

×
̂−1(τ ) ×
∫ t

0

(
Z − E(s, β̂n)

S(0)(s, β̂n)

)
dN (s)

⎞

⎠ .

Proof Following the proof of Theorem VII.2.3 of Andersen et al. (1993, p. 503), we
first show that Yn , defined for t ∈ [0, τ ], by

Yn(t) = √
n
(
�̂0(t) − �0(t)

)
+ √

n
(
β̂n − β0

) ∫ t

0
e(s, β0)λ0(s)ds

and
√

n
(
β̂n − β0

)
, are asymptotically independent. Indeed, we have

√
n
(
�̂0(t) − �0(t)

)
= √

n
∫ t

0

(
1

S(0)(s, β̂n)
− 1

S(0)(s, β0)

)
dN (s) (3.6)

+√
n
∫ t

0

1(S(0)(s, β0) > 0)

S(0)(s, β0)
dM(s) (3.7)

−√
n
∫ t

0
1(S(0)(s, β0) = 0)λ0(s)ds. (3.8)
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By a Taylor expansion around β0 of the right-hand side of (3.6) and using the consis-
tency of β̂n , Conditions 1 (c)–(f) and the Lenglart inequality, we show that this term is

asymptotically equivalent, uniformly in t ∈ [0, τ ], to −√
n
(
β̂n − β0

) ∫ t
0 e(s, β0)λ0

(s)ds. On the other hand, it is easy to show that for all ε > 0 we have

P

(√
n
∫ t

0
1(S(0)(s, β0) = 0)λ0(s)ds > ε

)
≤ P(X(m) < t).

Since Conditions 1 (a)–(b) and (h) imply that assumptions of Proposition 2 are ful-
filled, we get that term (3.8) converges in probability to 0, uniformly in t ∈ [0, τ ].
Finally, writing Ỹn(t) the term in (3.7), we obtain that Yn and Ỹn are asymptotically
equivalent uniformly on [0, τ ]. Applying the Rebolledo theorem (see Andersen et al.
1993), we show that Ỹn converges weakly to a Gaussian martingale with variance
function η2 defined for t ∈ [0, τ ] by

η2(t) =
∫ t

0

λ0(s)

s(0)(s, β0)
ds.

Moreover, it is straightforward to show that for all n ≥ 1 we have

〈
n−1/2Un(·, β0), Ỹn(·)

〉
= 0.

It then follows that Ỹn and Un(τ, β0) are asymptotically independent. Using (3.5)

and Conditions 1 (a) and (c)–(g), we show that
√

n
(
β̂n − β0

)
and 
−1(τ )Un(τ, β0)

are asymptotically equivalent. Therefore, Yn and
√

n
(
β̂n − β0

)
are asymptotically

independent. Now, by a Taylor expansion, we have

√
n
(
�̂(t, Z) − �(t, Z)

)

= exp(β̂T
n Z)

√
n
(
�̂0(t) − �0(t)

)
+ �0(t)Z T exp(β̄T

n Z)
√

n
(
β̂n − β0

)
,

where β̄n belongs to the line segment with extremities β0 and β̂n . Because both β̂n

and β̄n are
√

n-consistent estimators of β0, we obtain that uniformly in t ∈ [0, τ ]
√

n
(
�̂(t, Z) − �(t, Z)

)

= exp(βT
0 Z)

[
Yn(t) +

∫ t

0
(Z − e(s, β0))

T λ0(s)ds × √
n
(
β̂n − β0

)]
+ oP (1)

= exp(βT
0 Z)

[
Ỹn(t) +

∫ t

0
(Z − e(s, β0))

T λ0(s)ds × √
n
(
β̂n − β0

)]
+ oP (1).

From the last equality, it follows that
√

n
(
�̂(·, Z) − �(·, Z)

)
converges weakly to a

Gaussian process with variance function σ 2(·, Z). The estimator σ̂ 2(·, Z) is obtained
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by replacing all the unknown quantities β0, s(0)(·, β0), e(·, β0), 
(τ) and d�0 in
σ 2(·, Z) by β̂n , S(0)(·, β̂n), E(·, β̂n), 
̂(τ ) and d�̂0 respectively. Its uniform consis-
tency is obtained using the Lenglart inequality and Conditions 1 (a) and (c)–(g). ��
Corollary 1 Under Condition 1,

√
n(Ŝ(·, Z) − S(·, Z)) converges weakly in D[0, τ ]

to a Gaussian process with variance function θ2 defined for t ∈ [0, τ ] as θ2(t, Z) =
S2(t, Z)σ 2(t, Z). Moreover, θ2(·, Z) is consistently estimated by θ̂2(t, Z) = Ŝ2(t, Z)

σ̂ 2(t, Z) uniformly on [0, τ ].
Proof This is an immediate consequence of compact differentiability of the prod-
uct-integral, the functional delta-method (see Gill 1989 or Andersen et al. 1993) and
Theorem 2. ��

4 Numerical study and an example

4.1 A Monte Carlo study

In this section, we present the results of a Monte Carlo study based on K = 500
simulated samples of size n. These samples are progressively Type-II censored, Type-
II censored, and uncensored. The covariates are random variables having Bernoulli
distribution with parameter 1/2. The distribution of a random lifetime T , conditional
on a covariate Z , is defined by the hazard rate function λ(t; Z) = exp(β0 Z)(t/3)2 for
t ≥ 0, where the regression parameter β0 ∈ {−2, 0, 2} has to be estimated. For each set
of simulated samples (see Table 1), we calculate the empirical mean and the empirical
standard deviation (within parentheses) of the K estimates of β0, and in addition we
calculate the empirical mean of the standard deviation estimates (within brackets). We
consider, for two sample sizes (n = 99 and n = 300), the three following sampling
schemes:

(A) Progressive Type-II censoring sampling plan: m = n/3 and all the ri ’s equal to
2.

(B) Type-II censoring sampling plan: m = n/3.
(C) Complete data.

Note that the two censored sampling plans lead to 66% of censoring. In general,
we see from Table 1 that in the case of censored sampling plans (A) and (B), there

Table 1 Statistical analysis of 500 estimates of β0 for two sample size and three sampling schemes

Sample size Scheme β0 = −2 β0 = 0 β0 = 2

(A) −2.064 (0.514) [0.479] −0.005 (0.354) [0.354] 2.039 (0.476) [0.471]

n = 99 (B) −2.062 (0.503) [0.506] −0.015 (0.380) [0.355] 2.069 (0.521) [0.510]

(C) −2.031 (0.301) [0.290] −0.003 (0.219) [0.206] 2.032 (0.279) [0.289]

(A) −2.010 (0.261) [0.262] 0.004 (0.206) [0.201] 1.984 (0.261) [0.261]

n = 300 (B) −2.017 (0.283) [0.279] 0.002 (0.195) [0.201] 2.019 (0.286) [0.280]

(C) −2.008 (0.171) [0.162] 0.008 (0.122) [0.117] 2.007 (0.168) [0.162]
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is a loss of efficiency in estimators due to the loss of information that occurs due to
censoring.

However, comparing the censoring schemes (A) and (B), which have the same
number of failures, we can see that the standard deviations corresponding to the pro-
gressively Type-II censored data are generally less than (or at least comparable) the
standard deviations corresponding to the usual Type-II censored sample. We can also
observe that results for progressively Type-II right censored sampling plans yield bet-
ter results for the mean and the standard deviation of the estimators than those based on
the usual Type-II censored sampling plans which facilitates in identifying significant
effect of covariates (i.e., for β0 �= 0). Furthermore, as the sample size increases, the
gain in efficiency of the estimates become quite evident.

These simulations also show that the mean of K estimated standard deviations
(values within parentheses) are close to the empirical standard deviation of the K
estimates of β0 (values within brackets), for all the sample size, sampling plan, and
values of β0.

Finally, we recall that the progressive Type-II censored sampling plan adopted in
Table 1 have not been defined in order to optimize the efficiency of the regression
parameter estimator. The determination of such optimal progressive Type-II censored
sampling plans in the semiparametric framework remains as an open problem.

4.2 A practical example

We consider a data set of times to breakdown (in Minutes) of insulated fluids tested
under high test voltages given by Nelson (1990, Table 3.1, p. 129). Insulated fluids
were tested at seven high voltages: 26, 28, . . . , 38 kV, which are the values of the
unique covariate in this case. For each voltage level, several times to breakdown were
measured resulting in n = 76 failure times from 0.09′ to 2323.7′. These data were
analyzed with the R software. The test for proportional hazards assumption in these
data resulted in a p-value of 0.93, whereas testing that the covariate is statistically not
significant via the likelihood ratio test produced a p-value of 10−14. Other standard
graphical methods also reveal that these data are correctly fitted by the proportional
hazards model.

Now, we compare several progressive Type-II censoring schemes on these data. We
set m = 30, and consider the following four sampling plans:

(I) r1 = r2 = r3 = 12, r4 = 10 and r5 = · · · = r30 = 0;
(II) r1 = · · · = r23 = 2 and r24 = · · · = r30 = 0;

(III) r1 = · · · = r26 = 0, r27 = 10 and r28 = r29 = r30 = 12;
(IV) r1 = · · · = r29 = 0 and r30 = 46.

Note that Scheme (IV) corresponds to the usual Type-II censoring scheme, and so
the data set resulting from this scheme simply corresponds to the smallest 30 order
statistics. Censoring schemes (I)–(III) lead to random samples. In these cases, for each
censoring scheme, we computed the average of N = 1000 estimates of the regression
parameter β and its standard deviation obtained by applying N times the censoring
scheme on the complete data. The results so obtained are summarized in Table 2.
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Table 2 Insulated fluid data:
comparison of several censoring
schemes

Censoring scheme β̂ SD of β̂

Complete data 0.401 0.058

(I) 0.398 0.092

(II) 0.411 0.091

(III) 0.467 0.094

(IV) 0.481 0.095

Results in Table 2 reveal first of all that there is a gain in using a Type-II progressive
censoring scheme as compared to the usual Type-II censoring scheme. We see that
Schemes (I)–(III) yield better results than Scheme (IV) especially for the estimate of
the regression parameter (providing in general estimates close to the complete sample
results). Also, there is a reduction in the standard error for Schemes (I)–(II) as com-
pared to (IV), although the reduction is only marginal. It is also clear from Table 2 that
the censoring scheme introduces some variations in the results of the estimates. Yet
again, we need to emphasise here that we have not investigated the problem of choosing
an optimal progressively censored sampling plan in this semiparametric setup.
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