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Abstract In this paper a new test for the parametric form of the variance function in
the common nonparametric regression model is proposed which is applicable under
very weak smoothness assumptions. The new test is based on an empirical process
formed from pseudo residuals, for which weak convergence to a Gaussian process
can be established. In the special case of testing for homoscedasticity the limiting
process is essentially a Brownian bridge, such that critical values are easily available.
The new procedure has three main advantages. First, in contrast to many other meth-
ods proposed in the literature, it does not depend directly on a smoothing parameter.
Secondly, it can detect local alternatives converging to the null hypothesis at a rate
n−1/2. Thirdly, in contrast to most of the currently available tests, it does not require
strong smoothness assumptions regarding the regression and variance function. We
also present a simulation study and compare the tests with the procedures that are
currently available for this problem and require the same minimal assumptions.

Keywords Homoscedasticity · Nonparametric regression · Pseudo residuals ·
Empirical process · Goodness-of-fit testing · Bootstrap

1 Introduction

Consider the common nonparametric regression model with a fixed design

Yi,n = m(ti,n) + σ(ti,n)ε(ti,n), i = 1, . . . , n, (1)
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862 H. Dette, B. Hetzler

where 0 ≤ t1,n < t2,n < · · · < tn,n ≤ 1 denote the design points, m is an unknown
mean function and σ 2 an unknown variance function. The errors ε1,n, . . . , εn,n with
εi,n := ε(ti,n) are assumed to form a triangular array of rowwise independent random
variables with expectation E[εi,n] = 0 and variance V [εi,n] = 1. Additional infor-
mation on the variance function σ 2, such as homoscedasticity or a specific parametric
form of σ 2 usually simplifies the analysis of the data substantially. Moreover, statisti-
cal inference incorporating such an additional knowledge is also more efficient. On the
other hand—if the assumption on the variance function (i.e. homoscedasticity) is not
satisfied—data analysis should address for heteroscedasticity in order to obtain reliable
results (Leedan and Meer 2000; Sadray et al. 2003). For these reasons many authors
point out that it is important to check an assumption on the parametric form of the
variance function by means of a goodness-of-fit test (Carroll and Ruppert 1988; Cook
and Weisberg 1983). Most of the available literature for this problem concentrates on
the problem of testing for homoscedasticity. Tests based on a parametrically specified
regression and variance function and the assumption of a normal distribution for the
errors have been studied by Davidan and Caroll (1987) and Carroll and Ruppert (1988)
using likelihood methods. Bickel (1978) and Carroll and Ruppert (1981) propose a
test for homoscedasticity which does not impose a normal distribution for the errors
but the regression function is still assumed to be linear, while Diblasi and Bowman
(1997) consider a linear model with a normal distributed error.

A test for homoscedasticity in a completely nonparametric regression model was
first proposed by Dette and Munk (1998). This test has the nice property that it does
not depend on the subjective choice of a smoothing parameter and requires rather
weak assumptions regarding the smoothness of the regression function. A disadvan-
tage of the method is that it can only detect local alternatives converging to the null
hypothesis at a rate n−1/4. More recently Zhu et al. (2001) (Zhu 2005; Chap. 7], Dette
(2002) and Liero (2003) suggested test procedures, which are based on residuals from
a nonparametric fit. The two last named tests can detect local alternatives converging
to the null hypothesis at a rate (n

√
h)−1/2, where h denotes a bandwidth, while the

rate for the test of Zhu et al. (2001) is n−1/2. A drawback of these methods consists in
the fact that the corresponding tests depend on the subjective choice of a smoothing
parameter, which can affect the results of the statistical analysis.

The present paper has three purposes. First, we are interested in a test which does
not require the specification of a smoothing parameter. Secondly, the new procedure
should be able to detect local alternatives converging to the null hypothesis at a rate
n−1/2. Thirdly, the new test should be applicable under minimal smoothness assump-
tions on the variance and regression function. Moreover, in contrast to most papers
which concentrate on tests for homoscedasticity, we are also interested in a test for
more general hypotheses for the parametric form of the variance function, i.e.

H0 : σ 2(t) = σ 2(t, θ); ∀ t ∈ [0, 1]. (2)

Here the form of the function σ 2(t, θ) ∈ � ⊂ R
d is known except for the d-dimen-

sional parameter θ = (θ1, . . . , θd)T ∈ � ⊂ R
d (note that the hypothesis of homosce-

dasticity is obtained for d = 1 and σ 2(t, θ) = θ).
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Variance function in nonparametric regression 863

In Sect. 2, we consider linear parametric classes for the function σ 2(·, θ) and
propose a stochastic process which vanishes for all t if and only if the null hypothesis
in (2) is satisfied. We prove weak convergence of this process to a Gaussian process,
and as a consequence Kolmogorov-Smirnov or Crámer-von-Mises type statistics can
be constructed. In the special case of testing for homoscedasticity the limit distribution
is particularly simple and given by a scaled Brownian bridge. The test is able to detect
Pitman alternatives converging to the null hypothesis at a rate n−1/2. Moreover, the
asymptotic theory is applicable if the regression and variance function are Lipschitz
continuous of order γ > 1/2, while the alternative procedures of Zhu et al. (2001),
Zhu (2005), Dette (2002) and Liero (2003) require Lipschitz continuity of order 1 or a
two times continuously differentiable regression function, respectively. The extension
of the procedure to general nonlinear hypotheses is briefly mentioned in Sect. 3. In
Sect. 4, we present a small simulation study, compare the new test with the currently
available procedures in the literature and a data example is analyzed in order to illus-
trate the application of the procedure. For the problem of testing homoscedasticity
we use the approximation by a Brownian bridge to obtain critical values, while for
the general hypothesis of a parametric form a bootstrap procedure is proposed. It is
demonstrated by means of a simulation study that in many cases the new tests based on
the Cramér-von-Mises statistic yield a substantial improvement with respect to power.
The case of a random design is briefly discussed in Sect. 5, where we demonstrate that
the corresponding process has a different limit behaviour than in the case of a fixed
design. Finally, some of the technical arguments are deferred to an appendix.

2 An empirical process of pseudo residuals

Consider the nonparametric regression model (1) where the design points ti,n are
defined by

i

n + 1
=

∫ ti,n

0
f (t) dt, i = 1, . . . , n, (3)

(see Sacks and Ylvisaker 1970) and f is a positive density on the interval [0, 1], which
is Lipschitz continuous of order γ > 1

2 , i.e. f ∈ Lipγ [0, 1]. Throughout this paper we

assume the existence of functions m3, m4 : [0, 1] → R such that m j (ti,n) = E[ε j
i,n],

i = 1, . . . , n, j = 3, 4, which satisfy for some γ > 1
2

m, σ 2, m3, m4 ∈ Lipγ [0, 1] . (4)

We further assume for some constant m6 that E[ε6
i,n] ≤ m6 < ∞ uniformly with

respect to i = 1, . . . , n; n ∈ N. For the sake of a transparent presentation we consider
at the moment linear hypotheses of the form

H0 : σ 2(t) =
d∑

j=1

θ jσ
2
j (t), for all t ∈ [0, 1] , (5)
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where θ1, . . . , θd ∈ R are unknown parameters and σ 2
1 , . . . , σ 2

d are given linearly
independent functions satisfying

σ 2
j ∈ Lipγ [0, 1], j = 1, . . . , d. (6)

The general case of testing hypotheses of the form (2) will be briefly discussed in
Sect. 3. In order to construct a test for hypothesis (5) we introduce the function

St =
∫ t

0

⎛
⎝σ 2(x) −

d∑
j=1

α jσ
2
j (x)

⎞
⎠ f (x) dx, (7)

where t ∈ [0, 1] and the vector α = (α1, . . . , αd)T is defined by

α = arg min
β∈IRd

∫ 1

0

⎛
⎝σ 2(x) −

d∑
j=1

β jσ
2
j (x)

⎞
⎠

2

f (x) dx . (8)

Note that the null hypothesis (5) is equivalent to St = 0 for all t ∈ [0, 1] , and
therefore an appropriate estimate of the process St will be the basic tool for the con-
struction of the new test statistic. In order to obtain such an estimate we note that it
follows from standard Hilbert space theory (see Achieser 1956) that

α = A−1C, (9)

where the elements of the matrix A = (
ai j

)
1≤i, j≤d and the vector C = (c1, . . . , cd)T

are defined by

ai j =
∫ 1

0
σ 2

i (x)σ 2
j (x) f (x) dx, 1 ≤ i, j ≤ d,

ci =
∫ 1

0
σ 2(x)σ 2

i (x) f (x) dx, 1 ≤ i ≤ d.

(10)

With the notation

B0
t =

∫ t

0
σ 2(x) f (x) dx, (11)

Bt =
(∫ t

0
σ 2

1 (x) f (x) dx, . . . ,

∫ t

0
σ 2

d (x) f (x) dx

)T

(12)

we therefore obtain St = B0
t − BT

t α = B0
t − BT

t A−1C for the process in (7). The
quantities in this representation are now estimated as follows. Let (d0, . . . , dr )

T denote
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a vector with real components satisfying

r∑
i=0

di = 0,

r∑
i=0

d2
i = 1. (13)

Following Gasser et al. (1986) or Hall et al. (1990) we define pseudo residuals

R j =
r∑

i=0

di Y j−i , j = r + 1, . . . , n, (14)

and an estimate of (9) by α̂ = Â−1Ĉ, where Â = (
âi j

)
1≤i, j≤d , Ĉ = (

ĉ1, . . . , ĉd
)T

and the elements in these matrices are given by

âi j = 1

n

n∑
k=1

σ 2
i

(
tk,n

)
σ 2

j

(
tk,n

)
, ĉi = 1

n − r

n∑
k=r+1

R2
k σ 2

i

(
tk,n

)
. (15)

Finally, the quantities in (11) and (12) are estimated by

B̂0
t = 1

n − r

n∑
j=r+1

1{t j,n≤t} R2
j , B̂i

t = 1

n

n∑
j=1

1{t j,n≤t}σ 2
i

(
t j,n

)
, i = 1, . . . , d (16)

(note that âi j and B̂i
t are not random), and the sample version of the process St is given

by

Ŝt = B̂0
t − B̂T

t Â−1Ĉ, (17)

where B̂t = (B̂1
t , . . . , B̂d

t )T . The following result provides the asymptotic properties
of the process Ŝt for an increasing sample size. The proof is complicated and therefore
deferred to the appendix.

Theorem 1 If the conditions (3), (4) and (6) are satisfied, then the process
{√n(Ŝt − St )}t∈[0,1] converges weakly in D[0, 1] to a centered Gaussian process
with covariance kernel k(t1, t2) given by the non-diagonal elements of the matrix
V2�t1,t2 V T

2 ∈ R
2×2, where the matrices �t1,t2 ∈ R

(d+2)×(d+2) and V2 ∈ R
2×(d+2)

are defined by

�t1,t2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

v11 v12 w11 · · · w1d

v21 v22 w21 · · · w2d

w11 w21 z11 · · · z1d

...
...

...
. . .

...

w1d w2d zd1 · · · zdd

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (18)

V2 = (I2|U ) , U = −
(

BT
t1 A−1

BT
t2 A−1

)
, (19)
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respectively, the elements of the matrix in (18) are given by

vi j =
∫ 1

0
τr (s)σ

4 (s) 1[0,ti ∧t j) (s) f (s) ds, 1 ≤ i, j ≤ 2,

wi j =
∫ 1

0
τr (s)σ

4 (s) σ 2
j (s) 1[0,ti ) (s) f (s) ds, 1 ≤ i ≤ 2, 1 ≤ j ≤ d,

zi j =
∫ 1

0
τr (s)σ

4 (s) σ 2
i (s) σ 2

j (s) f (s) ds, 1 ≤ i, j ≤ d

with τr (s) = m4 (s) − 1 + 4δr , and the quantity δr is defined by

δr =
r∑

m=1

⎛
⎝r−m∑

j=0

d j d j+m

⎞
⎠

2

. (20)

Remark 2 It is easy to see that the matrix �t1,t2 in (18) is given by E[P PT ], where
the (d + 2)-dimensional random vector P is defined by

P = √
τr (U )σ 2(U )

(
1{U≤t1}, 1{U≤t2}, σ 2

1 (U ), . . . , σ 2
d (U )

)T
,

and the random variable U has density f .

Remark 3 The main idea of the proof of Theorem 1 is to use the Lipschitz continuity
of the regression function to derive an asymptotically equivalent representation for the
process {√n(Ŝt − St )}t∈[0,1], i.e.

√
n(Ŝt − St ) = √

n

⎧⎨
⎩

1

n − r

n∑
j=r+1

1{t j,n≤t}Z j,n − t

n − r

n∑
j=r+1

h(t j,n)Z j,n

⎫⎬
⎭ + op(1)

(21)
uniformly with respect to t ∈ [0, 1], where h is a deterministic function and the random
variables {Z j,n | j = 1, . . . , n; n ∈ N} form a triangular array of rowwise (r + 1)-
dependent centered random variables. For the process on the right-hand side of (21)
we then prove tightness and convergence of the finite dimensional distributions. The
technical details can be found in the appendix.

Remark 4 As pointed out previously the null hypothesis (5) is equivalent to St ≡ 0
∀ t ∈ [0, 1] and consequently rejecting (5) for large values of the Kolmogorov-
Smirnov or Cramer-von-Mises statistic

Kn = √
n sup

t∈[0,1]
|Ŝt |, Cn = n

∫ 1

0
|Ŝt |2dFn(t)

yields a consistent test. Here Fn(t) = 1
n

∑n
i=1 1{ti,n≤t} is the empirical distribution

function of the design points. If (A (t))t∈[0,1] denotes the limiting process in Theorem 1
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it follows from the Continuous Mapping Theorem

Kn
D→ sup

t∈[0,1]
|A (t) |, Cn

D→
∫ 1

0
|A(t)|2dF(t).

Remark 5 Define the (n − r) × d matrix

X =
(
σ 2

j (ti,n)
) j=1,...,d

i=1,...,n−r
∈ R

(n−r)×d (22)

and a vector R = (R2
r+1, . . . , R2

n)T of squared pseudo residuals, then it follows that
the estimate α̂ of (9) is essentially the least squares estimate in the linear model
E[R | t] = Xα, that is

α̂ = (X T X)−1 X T R + Op

(
1

n

)
. (23)

Example 6 In general the covariance structure of the limiting process is very compli-
cated as indicated by the following example, which considers the situation for d = 1.
In this case the matrix A in (9) is given by the scalar a11 = ∫ 1

0 σ 4
1 (x) f (x)dx . Defining

st,1 = Bt

a11
=

∫ t
0 σ 2

1 (x) f (x) dx∫ 1
0 σ 4

1 (x) f (x) dx
,

it follows from Theorem 1 that the process {√n(Ŝt − St )}t∈[0,1] converges weakly to
a Gaussian process with covariance kernel

k (t1, t2) =
∫ t1∧t2

0
τr (x)σ 4(x) f (x) dx + st1,1st2,1

∫ 1

0
τr (x)σ 4(x)σ 4

1 (x) f (x) dx

− st2,1

∫ t1

0
τr (x)σ 4(x)σ 2

1 (x) f (x) dx

− st1,1

∫ t2

0
τr (x)σ 4(x)σ 2

1 (x) f (x) dx . (24)

In the case of testing homoscedasticity (i.e. σ 2
1 (t) = 1) we have st,1 = F(t), where

F is the distribution of the design density, and (24) simplifies to

k(t1, t2) =
∫ t1∧t2

0
τr (x)σ 4(x) f (x) dx + F(t1)F(t2)

∫ 1

0
τr (x)σ 4(x) f (x) dx

−F(t2)
∫ t1

0
τr (x)σ 4(x) f (x) dx − F(t1)

∫ t2

0
τr (x)σ 4(x) f (x) dx

The following corollary is now obvious.
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Corollary 7 Assume that the hypothesis of homoscedasticity H0 : σ 2(t) = θ1 has to
be tested (i.e. d = 1, σ 2

1 (t) = 1) and that additionally m4(t) ≡ m4 is constant. If the
conditions (3) and (4) are satisfied, then under the null hypothesis of homoscedasticity
the process {√n(Ŝt − St )}t∈[0,1] converges weakly on D[0, 1] to a scaled Brownian
bridge in time F, where F is the distribution function of the design density, i.e.

{√n(Ŝt − St )}t∈[0,1] ⇒
√

(m4 − 1 + 4δr )θ
2
1 {B ◦ F}t∈[0,1].

3 General hypotheses and local alternatives

3.1 Nonlinear hypotheses for the variance function

In this paragraph we briefly explain how the results have to be adapted if a general
nonlinear hypothesis of the form (2) has to be tested. For this purpose we assume that
the parameter space � is compact and that the infimum

inf
θ∈�

∫ 1

0
{σ 2(t) − σ 2(t, θ)}2 f (t)dt (25)

is attained at a unique point, say θ0 = (θ
(0)
1 , . . . , θ

(0)
d )T , in the interior of �. Observing

the interpretation of the estimate α̂ in Remark 5, we define

θ̂ = arg min
θ∈�

1

n − r

n∑
i=r+1

(
R2

i,n − σ 2(ti,n, θ)
)2

(26)

as the nonlinear least squares estimate. Under some regularity assumptions (Gallant
1987, Chap. 4, or Seber and Wild 1989, pp. 572–574) the sum of squares in (26) can
be approximated by

1

n − r
H T (In−r − X (X T X)−1 X T )H + Op

(
1

n

)
,

where In−r is the (n − r) × (n − r) identity matrix, the components of the vector
H = (Hr+1,n, . . . , Hn,n)T are defined by

Hj,n =
(

r∑
i=0

diσ(t j−i,n)ε j−i,n

)2

− σ 2(t j,n, θ0), j = r + 1, . . . , n,

and the matrix X is given by (22) with σ 2
j (t) = ∂

∂θ j
σ 2(t, θ)|θ=θ0 ( j = 1, . . . , d).

Similarly, the analogue of the process in (17) is given by
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Ŝt = B̂0
t − 1

n

n∑
i=1

1{ti,n≤t}σ 2(ti,n, θ̂ )

= 1

n − r

n∑
i=r+1

1{ti,n≤t}
{

Hi,n − ∂

∂θ
σ 2(ti,n, θ) |θ=θ0 (θ̂−θ)

}
+ op(n

−1/2). (27)

Roughly speaking this means that the nonlinear case can be treated as the linear
case, where the variance function has to be replaced by σ 2(x) − σ 2(x, θ0) and the
functions σ 2

j are given by ∂
∂θ j

σ 2(x, θ) |θ=θ0 ( j = 1, . . . , d). In particular, with the

notation St = ∫ t
0 (σ 2(x) − σ 2(x, θ0))dx , we obtain the representation

√
n(Ŝt −St ) =

√
n

n − r

n∑
i=r+1

1{ti,n≤t}

⎧⎨
⎩Hi,n −E[Hi,n]−

d∑
j=1

∂

∂θ j
σ 2(ti,n, θ) |θ=θ0 α j

⎫⎬
⎭

+ op(1), (28)

where α j = θ̂ j − θ
(0)
j ( j = 1, . . . , d) and the vector α = (α1, . . . , αd)T satisfies

α = θ̂ − θ0 = (X T X)−1 X T H.

From (22) and the condition

0 = ∂

∂θ j

∫ 1

0
(σ 2(x) − σ 2(x, θ))2 f (x)dx

∣∣∣∣
θ=θ0

= −2
∫ 1

0
σ 2

j (x)(σ 2(x) − σ 2(x, θ0)) f (x)dx

it follows that

1

n
X T X − Â = O

(
1

n

)

1

n
X T H − 1

n

(
n∑

i=r+1

∂

∂θ j
σ 2(ti,n, θ) |θ=θ0 (Hi,n − E[Hi,n])

)d

j=1

= O

(
1

n

)
.

Consequently the right-hand side of (28) corresponds to the expression in (21) (see
also the representation (50) in the proof of Theorem 1 in the appendix). This means that
the process {√n(Ŝt − St )}t∈[0,1] exhibits the same asymptotic behaviour as described
in Theorem 1 for the linear case, where the functions σ 2

j have to be replaced by

σ 2
j (t) = ∂

∂θ j
σ 2(t, θ)

∣∣
θ=θ0 , j = 1, . . . , d.
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3.2 Local alternatives

In this paragraph we briefly discuss the asymptotic behaviour of the process
{√n(Ŝt − St )}t∈[0,1] in the case of local alternatives

σ 2
n (t) = σ 2(t, θ0) + 1√

n
h(t)

for a fixed function h : [0, 1] → R, such that σ 2
n (t) is nonnegative for all t ∈ [0, 1].

Denote {A(t)}t∈[0,1] as the limiting process in Theorem 1 and define

γ = (γ1, . . . , γd)T = arg min
β∈IRd

∫ 1

0

⎛
⎝h2(x) −

d∑
j=1

β j
∂

∂θ j
σ 2(t, θ)

∣∣∣∣∣∣
θ=θ0

⎞
⎠

2

f (x) dx,

then it follows from the arguments given in the Appendix that the process
{√n(Ŝt − St )}t∈[0,1] converges weakly to the process

⎧⎨
⎩A(t) +

∫ t

0

⎛
⎝h(x) −

d∑
j=1

γ j
∂

∂θ j
σ 2(x, θ)

∣∣∣∣∣∣
θ=θ0

⎞
⎠ f (x)dx

⎫⎬
⎭

t∈[0,1]
.

This means that tests based on the process {√n(Ŝt − St )}t∈[0,1] can detect local alter-
natives converging to the null hypothesis at a rate n−1/2, whenever

h �∈ span

{
∂

∂θ1
σ 2(·, θ)|θ=θ0 , . . . ,

∂

∂θd
σ 2(·, θ)|θ=θ0

}
.

4 Finite sample properties and a data example

In this section, we illustrate the finite sample properties of the new test by means of
a simulation study and a data example. We first investigate the performance in the
problem of testing for homoscedasticity and also compare the new procedure with
alternative tests for this problem.

4.1 Testing for homoscedasticity

To our knowledge there exists only one test for the hypothesis of homoscedasticity
which does not depend on the subjective choice of a smoothing parameter and requires
the same minimal assumptions regarding the smoothness of the regression and var-
iance functions. This test was proposed by Dette and Munk (1998) and is based on
an estimate of the L2-distance between the variance function under the null hypoth-
esis and alternative. Following these authors we considered the problem of testing
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for homoscedasticity in the nonparametric regression model (1) with regression and
variance function given by

m(t) = 1 + sin(t); σ(t) = σ exp(ct), (29)

m(t) = 1 + t; σ(t) = σ [1 + c sin(10t)]2, (30)

m(t) = 1 + t; σ(t) = σ [1 + ct]2, (31)

where σ = 0.5, c = 0, 0.5, 1 and the case c = 0 corresponds to the null hypothesis of
homoscedasticity (i.e. d = 1, σ 2

1 (t) = θ1). The design is uniform (i.e. f ≡ 1) and the
random variables εi,n have a standard normal distribution. All rejection probabilities
were calculated with 5, 000 simulation runs. As pointed out in Sect. 2 rejecting the null
hypothesis of homoscedasticity for large values of the statistic

∫ 1
0 Ŝ2

t dFn(t) yields a
consistent test (recall that Fn denotes the empirical distribution function of the design
points). It follows from Corollary 7 and the Continuous Mapping Theorem that under
the null hypothesis of homoscedasticity

Cn = n
∫ 1

0
Ŝ2

t dFn(t)
D−→ (m4 − 1 + 4δr ) θ2

1

∫ 1

0
B2(F(t))dF(t)

= (m4 − 1 + 4δr ) θ2
1

∫ 1

0
B2(t)dt,

where B denotes a standard Brownian bridge. Ifwα denotes the 1−α quantile of the dis-
tribution of the random variable

∫ 1
0 B2(t)dt and m̂4 is an estimate of the fourth moment,

then the test, which rejects the hypothesis of homoscedasticity H0 : σ 2(t) = θ1 if

Cn = n
∫ 1

0
Ŝ2

t dFn(t) ≥ wα(m̂4 − 1 + 4δr )θ
2
1 , (32)

has asymptotically level α. Note that the estimate of m4 depends on the choice of the
difference sequence d0, . . . , dr for the calculation of the pseudo residuals Ri,n . For
example, if r = 1 we have d0 = −d1 = 1/

√
2 and it is easy to see that

m̂4 =
⎛
⎝ 2

n − 1

n∑
j=2

R4
j,n

⎞
⎠

⎛
⎝ 1

n − 1

n∑
j=2

R2
j,n

⎞
⎠

−2

− 3

is a consistent estimate of m4. The corresponding estimates for other cases can be
obtained similarly. We first briefly investigate the impact of the choice of the order
of the difference scheme d0, . . . , dr for the calculation of the pseudo residuals. As
pointed out by Dette et al. (1998), the sequence (d0, . . . , dr ) could be chosen such
that the bias E[R2

i,n] − σ 2(ti,n) is diminished or such that the variance of the esti-

mate 1
n−r

∑n
i=r+1 R2

i,n of the integrated variance
∫ 1

0 σ 2(x) f (x)dx is minimal. The
lastnamed choice corresponds to the minimization of δr with respect to the difference
sequence (d0, . . . , dr ) and the optimal weights for various values of r can be found
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Table 1 Simulated rejection probabilities of the test (32) with a difference sequence of the form (33) and
r = 1. The case c = 0 corresponds to the null hypothesis of homoscedasticity

r = 1 c n = 50 n = 100 n = 200

2.5% 5% 10% 2.5% 5% 10% 2.5% 5% 10%

0 0.050 0.080 0.131 0.033 0.061 0.115 0.029 0.057 0.104

(29) 0.5 0.171 0.245 0.357 0.256 0.361 0.490 0.504 0.628 0.743

1 0.413 0.543 0.695 0.743 0.842 0.919 0.980 0.992 0.997

0 0.050 0.078 0.130 0.036 0.061 0.114 0.025 0.051 0.106

(30) 0.5 0.132 0.184 0.271 0.181 0.267 0.419 0.330 0.515 0.748

1 0.138 0.196 0.285 0.207 0.315 0.462 0.390 0.585 0.807

0 0.051 0.077 0.128 0.032 0.062 0.115 0.025 0.051 0.105

(31) 0.5 0.313 0.423 0.564 0.561 0.691 0.804 0.897 0.943 0.975

1 0.588 0.724 0.851 0.910 0.962 0.987 0.999 1.000 1.000

Table 2 Simulated rejection probabilities of the test (32) with a difference sequence of the form (33) with
r = 2. The case c = 0 corresponds to the null hypothesis of homoscedasticity

r = 2 c n = 50 n = 100 n = 200

2.5% 5% 10% 2.5% 5% 10% 2.5% 5% 10%

0 0.029 0.058 0.113 0.025 0.051 0.106 0.030 0.057 0.111

(29) 0.5 0.133 0.219 0.336 0.199 0.297 0.433 0.406 0.523 0.653

1 0.354 0.493 0.651 0.622 0.749 0.859 0.939 0.969 0.987

0 0.027 0.058 0.110 0.024 0.053 0.101 0.024 0.050 0.099

(30) 0.5 0.066 0.109 0.190 0.106 0.180 0.311 0.197 0.344 0.584

1 0.067 0.109 0.200 0.113 0.195 0.327 0.255 0.413 0.673

0 0.032 0.061 0.115 0.027 0.053 0.104 0.028 0.052 0.102

(31) 0.5 0.242 0.365 0.531 0.457 0.595 0.726 0.795 0.880 0.937

1 0.482 0.643 0.802 0.831 0.922 0.968 0.995 0.998 1.000

in Hall et al. (1990). However, it turns out that the bias has a substantial impact on
the approximation of the nominal level of the new test. As a consequence optimal
difference sequences as proposed by Hall et al. (1990) cannot be recommended for
our test procedure (for the sake of brevity these results are not presented). In Tables 1
and 2 we display the level and power of the new test for the difference sequence

d j = (−1) j

(r
j

)
(2r

r

)1/2 , j = 0, . . . , r, (33)

with r = 1 and r = 2, respectively, which was recommended for a uniform design by
Dette et al. (1998) in order to reduce the bias of a nonparametric variance estimator.

We observe that the theoretical level is well approximated for sample sizes larger
than n = 100. If the sample size is smaller the approximation is less precise for
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Fig. 1 The function St defined in (34) for c = 0.5 (solid line) and c = 1 (dotted line)

difference sequences of order r = 1 (see Table 1 with n = 50) but reasonable accurate
for the case r = 2 (see Table 2). On the other hand an increase of the order yields
to some loss in power in the case r = 2. This corresponds to the asymptotic theory,
which indicates that a smaller value of δr yields a more powerful procedure. In par-
ticular, for r = 1, 2 the values corresponding to the sequence (33) are given by
δ1 = 1/4, δ2 = 17/36, respectively. Based on an extensive study we recommend to
use a difference sequence of order r = 1 (in order to increase the power) and to use
the bootstrap (as described in the following section) for sample sizes smaller than 50
(in order to obtain a reasonable approximation of the nominal level.)

It is also of interest to compare these results with the corresponding rejection
probabilities of the test suggested by Dette and Munk (1998) which requires the
same minimal assumptions as the procedure proposed in this paper. The results in
Table 1 are directly comparable with the results of Table 2 in this reference. We
observe that for model (29) and (31) the new test yields substantially larger power
than the test of Dette and Munk (1998). On the other hand, in model (30) the pro-
cedure of Dette and Munk (1998) based on the L2-distance is substantially more
powerful for the sample sizes n = 50 and n = 100, while both tests are com-
parable for the sample size n = 200 (Table 1). Recall once again that Dette and
Munk (1998) test can detect local alternatives converging to the null hypothesis at
a rate n−1/4 while the rate for the procedure proposed in this paper is n−1/2. The
reason for the difference between the asymptotic theory and the empirical results
for small sample sizes in model (30) can be explained by the specific form of the
function

St =
∫ t

0
(σ 2(x) − θ0)dx =

∫ t

0
σ 2(x)dx − t

∫ 1

0
σ 2(x)dx (34)

which is depicted in Fig. 1 for the case c = 0.5 and c = 1. We observe that it is difficult
to distinguish these functions from the line S̄t ≡ 0. As a consequence the asymptotic
advantages of the new test with respect to Pitman alternatives are only visible for a
large sample size as n = 200. This effect is even more visible if the sample size is
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n = 400. For example if c = 0.5 the rejection probabilities of the test of Dette and
Munk (1998) are 0.810, 0.887, 0.951 while the new test yields larger power, namely
0.898, 0.978, 0.997 at level 2.5, 5 and 10%, respectively.

4.2 Testing for a parametric hypothesis

In this paragraph, we consider the general hypothesis (2). We begin with a linear
parametric class of variance functions

H0 : σ 2(t) = 1 + θ t2 (θ ∈ R). (35)

We simulated data according to the model

m(t) = 1 + t, σ 2(t) = 1 + 3t2 + 2.5c sin(2π t), (36)

where the case c = 0 corresponds to the null hypothesis and the choices c = 0.5, 1
to two alternatives. The errors are again standard normal distributed and the design
is uniform. Because the limit distribution provided by Theorem 1 is complicated we
applied a bootstrap procedure to obtain the critical values. More precisely, we calcu-
lated nonparametric residuals ε̂i = (

Yi,n − m̂(ti,n)
)
/σ̂ (ti,n), i = 1, . . . , n, where

m̂(t) =
∑

i

Wi (t, h)Yi , σ̂ 2(t) =
∑

i

Wi (t, h)(Yi − m̂(ti,n))2

and Wi (t, h) are the local linear weights (see Fan and Gijbels 1996). The bandwidth
h in these estimates was chosen by least squares cross validation. In a second step we
defined ε∗

1, . . . , ε∗
n as a sample of i.i.d. observations with distribution function F̂ε and

generated bootstrap data according to the model

Y ∗
i = m̂(ti,n) + σ(ti,n, θ̂ )ε∗

i ,

where σ 2(·, θ̂ ) is the estimate of the variance function under the null hypothesis (35).
Finally, the corresponding Cramér-von-Mises statistic, say C∗

n , was calculated from

the bootstrap data. If B bootstrap replications have been performed and C∗(1)
n < · · · <

C∗(B)
n denote the order statistics of the calculated bootstrap sample, the null hypoth-

esis (35) was rejected if Cn > C∗(�B(1−α)�)
n · B = 1,000 bootstrap replications were

performed to calculate the rejection probabilities and 1,000 simulation runs were used
for each scenario. The results are depicted in the first part of Table 3. We observe a
rather precise approximation of the nominal level and a reasonable power under the
alternatives.

We will conclude this section with an investigation of a nonlinear hypothesis for
the variance function, i.e.

σ 2(t, θ) = eθ t (θ ∈ R). (37)
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Table 3 Simulated rejection probabilities of the bootstrap test for the one-parametric hypotheses (35) and
(37) in the regression models (36) and (38), respectively

c n = 50 n = 100 n = 200

2.5% 5% 10% 2.5% 5% 10% 2.5% 5% 10%

0 0.025 0.049 0.105 0.024 0.038 0.092 0.024 0.055 0.107

(35) 0.5 0.316 0.382 0.481 0.458 0.528 0.613 0.661 0.732 0.811

1 0.655 0.726 0.777 0.855 0.893 0.928 0.975 0.984 0.996

0 0.022 0.057 0.105 0.024 0.052 0.096 0.026 0.053 0.103

(37) 0.5 0.193 0.272 0.368 0.268 0.363 0.463 0.449 0.546 0.632

1 0.382 0.476 0.585 0.465 0.590 0.710 0.930 0.962 0.980

We simulated data according to the model

m(t) = 1 + t, σ 2(t, θ) = (1 + c sin(2π t))eθ t , (38)

where the case c = 0 corresponds to the null hypothesis and the choices c = 0.5, 1
to two alternatives. The errors are again standard normal distributed and the design is
uniform. In the second part of Table 3, we display the corresponding rejection proba-
bilities of the bootstrap test based on the procedure described in Sect. 3.1. We observe
a precise approximation of the nominal level (similar as in the linear case). Moreover,
the alternatives are detected with reasonable power.

4.3 Data example

In this section, we briefly illustrate an application of the new test in an example of
econometrics. For this purpose we reanalyze data of average weakly expenditure on
food and average weakly income in Dollars (Griffiths et al. 1993, p. 182). Table 5.2
in this reference shows the data for 40 households taken from a larger sample. Only
households with at least three family members are investigated and the statistical model
is used to estimate the influence of income on food expenditure. From the scattergram
on page 183 in Griffiths et al. (1993) it is fairly obvious that heteroscedasticity is
present and the hypothesis of homoscedasticity is clearly rejected by our test with a
p-value 0.014.

Based on a visual examination of least squares residuals Griffiths et al. (1993)
proposed a parametric model for the variance function, that is

σ 2(t) = θ t

(p. 185 in this reference). The application of our procedure for testing this hypothesis
yields the p-value 0.267, which supports the assumption made by these authors. It
might be also of interest to test further polynomial hypotheses, that is

H0 : σ 2(t) = θ tk (39)
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Table 4 p-values of the bootstrap test for hypotheses of the form (39)

k 0.0 0.2 0.4 0.6 0.8 1 2 3 4 5

p 0.014 0.018 0.065 0.108 0.177 0.267 0.986 0.414 0.068 0.015

for some fixed k ≥ 0. The p-values of our test are listed in Table 4 for various values
of k. These results indicate that the alternative parametrization σ 2(t) = θ t2 might
be more appropriate, because the test for this hypothesis yields a substantially larger
p-value.

5 Random design

In this section, we briefly discuss the behaviour of a corresponding stochastic process
in the case of a regression model with a random design, which turns out to be different
from the fixed design case. For this purpose consider the model

Yi = m (Xi ) + σ (Xi ) εi , i = 1, . . . , n, (40)

where X1, . . . , Xn are i.i.d. with positive density f on the interval [0, 1] and the
random errors ε1, . . . εn have mean 0, variance 1 and are also i.i.d.. We denote by
m j (x) = E[ε j |X = x] the j th conditional moment of the errors and assume that
m6(x) is bounded by some constant, say m6. We consider the process {Ŝt }t∈[0,1]
defined in (17) with the following modifications. The elements of the matrix Â are
defined as in (15), where the fixed design points ti,n have been replaced by the random
variables Xi . Additionally, the statistics ĉi , B̂0

t , B̂i
t have been replaced by

ĉi = 1

n − r

n∑
j=r+1

R2
j σ

2
i (X( j)) (41)

B̂0
t = 1

n − r

n∑
j=r+1

1{X( j)≤t} R2
j , (42)

B̂i
t = 1

n

n∑
j=1

1{X( j)≤t}σ 2
i

(
X( j)

)
, (43)

respectively, the pseudo residuals are defined by R j = ∑r
i=0 di YA j−i ( j = r +

1, . . . , n), X(1), . . . , X(n) and A1, . . . , An denote the order statistic and the antiranks
of X1, . . . , Xn . It is easy to see that for a fixed design the corresponding estimates
in (41), (42), (43) and in (15) and (16) differ only by a term of order oP (n−1/2), and
as a consequence for a fixed design the process Ŝt with the estimates ĉi , B̂0

t and B̂i
t

defined in (41), (42) and (43), respectively, exhibits the same asymptotic behaviour as
described in Theorem 1. However, the following result shows that in the case of the
random design the stochastic process has a different asymptotic behaviour.
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Theorem 8 Consider the nonparametric regression model (40) with a random design
and the stochastic process Ŝt defined in (17), where ĉi , B̂0

t and B̂i
t are defined in (41),

(42) and (43), respectively. If the conditions (3), (4), (6) and the conditions stated
at the beginning of this section are satisfied, then the process {√n(Ŝt − St )}t∈[0,1]
converges weakly in D[0, 1] to a centered Gaussian process with covariance kernel
k(t1, t2) given by the non-diagonal elements of the matrix V2�̄t1,t2 V T

2 ∈ R
2×2, where

the matrix V2 ∈ R
2×(d+2) is defined in (19), �̄t1,t2 = �t1,t2 + t1,t2 , the matrix �t1,t2

is given in (18),

t1,t2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

v̄11 v̄12 w̄11 · · · w̄1d

v̄21 v̄22 w̄21 · · · w̄2d

w̄11 w̄21 z̄11 · · · z̄1d

...
...

...
. . .

...

w̄1d w̄1d z̄d1 · · · z̄dd .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(44)

and the elements of the matrix t1,t2 are defined by

v̄i j =
∫ 1

0
σ 4 (s) 1[0,ti ∧t j) (s) f (s) ds − B0

ti B0
t j
, 1 ≤ i, j ≤ 2,

w̄i j =
∫ 1

0
σ 4 (s) σ 2

j (s) 1[0,ti ) (s) f (s) ds − B0
ti c j , 1 ≤ i ≤ 2, 1 ≤ j ≤ d, (45)

z̄i j =
∫ 1

0
σ 4 (s) σ 2

i (s) σ 2
j (s) f (s) ds − ci c j , 1 ≤ i, j ≤ d.

Remark 9 It is easy to see that the matrix t1,t2 in (44) is the covariance matrix of
the (d + 2)-dimensional random vector Q = σ 2(U )

(
1{U≤t1}, 1{U≤t2}, σ 2

1 (U ), . . . ,

σ 2
d (U )

)T
), where the random variable U has density f . Observing the definition of

the vector P in Remark 2 we therefore obtain �̄t1,t2 = E[P PT ]+Var[Q]. Comparing
Theorems 1 and 8 we observe that in the case of a random design there appears the
additional term V2t1,t2 V T

2 in the covariance kernel of the limiting process. A similar
phenomenon was observed by Munk (2002) in the context of testing for the parametric
form of the regression function. However, our final result shows that in the context of
testing for homoscedasticity the covariance kernel of the limiting process in the case
of a random design differs only by a factor from the kernel obtained under the fixed
design assumption.

Corollary 10 Consider the nonparametric regression model (40) with a random
design and the stochastic process Ŝt given in (17), where ĉi , B̂0

t and B̂i
t are defined

in (41), (42) and (43), respectively. Assume that the hypothesis of homoscedastic-
ity H0 : σ 2(t) = θ1 has to be tested (i.e. d = 1, σ 2

1 (t) = 1) and that additionally
m4(t) ≡ m4 is constant. If the conditions (3), (4) and the conditions stated at the begin-
ning of this section are satisfied, then under the null hypothesis of homoscedasticity
the process {√n(Ŝt − St )}t∈[0,1] converges weakly on D[0, 1] to a scaled Brownian
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bridge in time F, where F is the distribution function of the random variables Xi , i.e.

{√n(Ŝt − St )}t∈[0,1] ⇒
√

(m4 + 4δr ) θ2
1 {B ◦ F}t∈[0,1].

A Appendix

Proof of Theorem 1. For the sake of a transparent notation we omit the index n in this
section, whenever the dependence on n will be clear from the context. In particular we
write t j and ε j instead of t j,n and ε j,n, respectively. We define the random variables

Lk =
r∑

j=0

d jσ(tk− j )εk− j , k = r + 1, . . . , n,

and analogues of the estimates B̂0
t and ĉi by

B̃0
t = 1

n − r

n∑
j=r+1

1{t j ≤t}L2
j , c̃i = 1

n − r

n∑
j=r+1

L2
jσ

2
i

(
t j
)
.

With the notation C̃ = (c̃1, . . . , c̃d)T we introduce the stochastic process

S̃t = B̃0
t − B̂T

t Â−1C̃ = Ŝt + op(n
−1/2)

uniformly with respect to t ∈ [0, 1], where we used the Lipschitz continutity of
the regression function. Consequently, the processes An(t) = {√n(Ŝt − St )}t∈[0,1]
and { Ãn(t)}t∈[0,1] = {√n(S̃t − St )}t∈[0,1] exhibit the same asymptotic behaviour,
and the assertion of Theorem 1 follows if a corresponding statement for the process
{ Ãn(t)}t∈[0,1] can be established.

For a proof of this property we introduce a further decomposition

Ãn (t) = √
n
(

S̃t − E
[

S̃t

])
+ √

n
(

E
[

S̃t

]
− St

)
= Ān (t) + B̄n (t) ,

where the last equality defines the processes Ān(t) and B̄n(t). A simple calculation
and the Lipschitz continuity of σ 2 show B̄n(t) = o(1), uniformly with respect to
t ∈ [0, 1], and therefore it is sufficient to consider the process Ān in the following
discussion. Thus the assertion of Theorem 1 follows from the weak convergence

{ Ān(t)}t∈[0,1] ⇒ {A(t)}t∈[0,1], (46)

where {A(t)}t∈[0,1] is a Gaussian process with covariance kernel defined in Theorem 1.
For a proof of this statement we first show convergence of the finite dimensional dis-
tributions, i.e.

(
Ān (s1) , . . . , Ān (sk)

)T D→ (A (s1) , . . . , A (sk))
T (47)
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for any vector (s1, . . . , sk) ∈ [0, 1]k . Secondly, we prove that there exists a constant,
say C, such that for all 0 ≤ s < t ≤ 1

E
[∣∣ Ān (t) − Ān (s)

∣∣4] ≤ C (t − s)2 . (48)

The assertion (46) then follows from Theorem 13.5 in Billingsley (1999).
For a proof of (47) we restrict ourselves to the case k = 2 (the general case follows

exactly the same way with an additional amount of notation) and note that the process
Ān can be represented as

Ān(t) = √
n
(

B̄0
t − B̂T

t Â−1C̄
)

,

where C̄ = (c̄1, . . . , c̄d)T ,

B̄0
t = 1

n − r

n∑
j=r+1

1{t j ≤t}Z j , c̄i = 1

n − r

n∑
j=r+1

Z jσ
2
i

(
t j
)
,

and the random variables Z j are defined by Z j = L2
j −E[L2

j ]. From the representation(
Ān (s1) , Ān (s2)

)T = V̂2 Xn, with Xn = √
n
(
B̄0

s1
, B̄0

s2
, c̄1, . . . , c̄d

)T
, Û =

−
(

B̂T
s1

Â−1

B̂T
s2

Â−1

)
, V̂2 = (I2|Û ) and the identity V2 = V̂2 + o(1) it follows that it is

sufficient to establish the weak convergence

Xn
D→ N2+d(0, �s1,s2),

where the matrix �s1,s2 is defined in (18). For a proof of this statement we first calculate
the asymptotic covariance matrix of the random vector Xn . Observing the identity

E
[

Z2
j

]
+ 2

r∑
m=1

E
[
Z j Z j+m

] = (
m4

(
t j
) − 1 + 4δr

)
σ 4 (

t j
) + O

(
n−γ

)

(uniformly with respect to t j , j = 1, . . . , n) we obtain for i = 1, 2

n E

[(
B̄0

si

)2
]

= n E

⎛
⎝ 1

n − r

n∑
j=r+1

1{t j ≤si }Z j

⎞
⎠

2

= 1

n − r

n−r∑
j=r+1

1{t j ≤si }

(
E

[
Z2

j

]
+ 2

r∑
m=1

E
[
Z j Z j+m

]) + O

(
1

n

)

=
∫ si

0
τr (x)σ 4(x) f (x)dx + O

(
n−γ

)
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(uniformly with respect to ti , i = 1, . . . , n), where we have used the Lipschitz-
continuity of the functions σ 2, σ 2

j , f. A similar calculation yields for 1 ≤ i, � ≤ 2;
si ≤ s�

n E
[

B̄0
si

B̄0
s�

]
= n E

⎛
⎝ 1

n − r

n∑
j=r+1

1{t j ≤si }Z j · 1

n − r

n∑
j=r+1

1{t j ≤s�}Z j

⎞
⎠

= 1

n − r

n−r∑
j=r+1

1{t j ≤si }

(
E

[
Z2

j

]
+ 2

r∑
m=1

E
[
Z j Z j+m

]) + O

(
1

n

)

=
∫ si

0
τr (x)σ 4(x) f (x) dx + O(n−γ )

(recall that τr (x) = m4(x) − 1 + 4δr ) and for 1 ≤ i ≤ 2; 1 ≤ k, � ≤ d

n E
[

B̄0
si

c̄�

]
=

∫ si

0
τr (x)σ 4(x)σ 2

� (x) f (x) dx + O
(
n−γ

)
,

n E [c̄k c̄�] =
∫ 1

0
τr (x)σ 4(x)σ 2

k (x)σ 2
� (x) f (x) dx + O

(
n−γ

)
.

Therefore it follows Var(Xn) = �s1,s2 + O(n−γ ), where the matrix �s1,s2 is defined
in Theorem 1.

For a proof of the asymptotic normality we introduce the notation
c = (a1, a2, b1, . . . , bd)T and show with the aid of a central limit theorem for
α-mixing arrays in Liebscher (1996) that

Tn = cT Xn

σ
=

√
n

σ

(
a1 B̄0

s1
+ a2 B̄0

s2
+

d∑
i=1

bi c̄i

)
D→ N (0, 1) , (49)

where σ 2 = cT �s1,s2 c denotes the asymptotic variance of cT Xn . For this we assume
s1 ≤ s2 and note that the statistic Tn can be represented as Tn = ∑n

j=r+1 Cn, j , where

Cn, j =
√

n

σ (n − r)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
a1 + a2 + ∑d

i=1 biσ
2
i

(
t j
))

Z j if t j ≤ s1(
a2 + ∑d

i=1 biσ
2
i

(
t j
))

Z j if s1 < t j ≤ s2

∑d
i=1 biσ

2
i

(
t j
)

Z j if t j > s2

.

Obviously, {Cn, j | j = r +1, . . . , n; n ∈ N} is a triangular array of (r +1)-dependent
random variables and

E
[
|Z j |3

]
≤ E

[
L6

j

]
+ 3 E

[
L4

j

]
E

[
L2

j

]
+ 4(E

[
L2

j

]
)3.

123



Variance function in nonparametric regression 881

Now a straightforward calculation gives E |Z j |3 = O(1) and E |Z j |4 = O(1) uni-
formly with respect to j = r + 1, . . . , n. As a consequence we obtain E |C3

n, j | =
O(n−3/2) and E |C4

n, j | = O(n−2) uniformly with respect to j = r + 1, . . . , n. From

the calculation of the covariance matrix of Xn it follows that limn→∞ E
[
T 2

n

] = 1, and
the assumptions in the central limit theorem of Liebscher (1996) hold with q = 4 and
p = 3, respectively. This theorem now yields the assertion (49), and as a consequence
we obtain

σ Tn = cT Xn
D→ N

(
0, cT �s1,s2 c

)
.

By the Cramér-Wold device the weak convergence of the finite dimensional distribu-
tions and the statement in (47) follows.

In order to prove the remaining assertion (48) we introduce a further decomposition

Ān (t) =
√

n

n − r

n∑
j=r+1

1{t j ≤t}Z j −
√

n

n − r

n∑
j=r+1

Z j

{
ŝt,1σ

2
1

(
t j
) + · · · + ŝt,dσ 2

d

(
t j
)}

= Ā(1)
n (t) − Ā(2)

n (t) ,

where the last equality defines the processes Ā(1)
n and Ā(2)

n , ŝt, j = ∑d
k=1 b̂k j B̂k

t , and
b̂i j denotes the element in the i th row and j th column of the inverse of the matrix Â.
Obviously, the assertion (48) follows from

E
[
| Ā(i)

n (t) − Ā(i)
n (s) |4

]
≤ C (t − s)2 , i = 1, 2 (50)

for some positive constant. For a proof of this property in the case i = 1 we use

the representation Ā(1)
n (t) − Ā(1)

n (s) =
√

n
n−r

∑n
j=r+1 1{s<t j ≤t}Z j and obtain by a

straightforward but tedious calculation

βn = E
[
| Ā(1)

n (t) − Ā(1)
n (s) |4

]

= n2

(n − r)4 E

⎡
⎣
(

n∑
i=r+1

1{s<ti ≤t}Zi

)4
⎤
⎦

= n2

(n − r)4

⎧⎨
⎩

n∑
i=r+1

1{s<ti ≤t} E[Z4
i ] + 6

r∑
k=1

n−k∑
i=r+1

1{s<ti ≤t}1{s<ti+k≤t} E[Z2
i Z2

i+k]

+ 4
r∑

k=1

n−k∑
i=r+1

1{s<ti ≤t}1{s<ti+k≤t} E[Z3
i Zi+k]

+ 4
r∑

k=1

n−k∑
i=r+1

1{s<ti ≤t}1{s<ti+k≤t} E[Zi Z3
i+k]
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+ 12
r∑

k,l=1

n−k−l∑
i=r+1

1{s<ti ≤t}1{s<ti+k≤t}1{s<ti+k+l≤t} E[Z2
i Zi+k Zi+k+l ]

+ 12
r∑

k,l=1

n−k−l∑
i=r+1

1{s<ti ≤t}1{s<ti+k≤t}1{s<ti+k+l≤t} E[Zi Z2
i+k Zi+k+l ]

+ 12
r∑

k,l=1

n−k−l∑
i=r+1

1{s<ti ≤t}1{s<ti+k≤t}1{s<ti+k+l≤t} E[Zi Zi+k Z2
i+k+l ]

+ 24
r∑

k,l,m=1

n−k−l−m∑
i=r+1

1{s<ti ≤t}1{s<ti+k≤t}1{s<ti+k+l≤t}1{s<ti+k+l+m≤t}

× E[Zi Zi+k Zi+k+l Zi+k+l+m]
+ 3

∑
| j−i |≥r+1

1{s<ti ≤t}1{s<t j ≤t} E[Z2
i Z2

j ]

+ 12
r∑

k,l=1

∑
| j−i |≥2r+1

1{s<ti ≤t}1{s<ti+k≤t}1{s<t j ≤t}1{s<t j+l≤t} E[Zi Zi+k Z j Z j+l ]

+ 12
r∑

k=1

∑
| j−i |≥2r+1

1{s<ti ≤t}1{s<ti+k≤t}1{s<t j ≤t} E[Zi Zi+k Z2
j ]
⎫⎬
⎭ . (51)

Consider the first term in this representation and note that E[Z4
i ] = O(1) uniformly

in i = 1, . . . , n. Hence, we readily obtain

n∑
i=r+1

1{s<ti ≤t} E[Z4
i ] ≤ C

n∑
i=r+1

1{s<ti ≤t}

≤ C

(
n∑

i=1

1{s<ti ≤t}

)2

for some constant C > 0. Let i∗ := min{i ∈ {1, . . . , n} : ti > s} and i∗∗ := max{i ∈
{1, . . . , n} : ti ≤ t}. In view of assumption (3), we have

1

n + 1

n∑
i=1

1{s<ti ≤t} = 1

n + 1
(i∗∗ − i∗ + 1) =

∫ ti∗∗

ti∗−1

f (u) du ≤ K (t − s)

for some constant K > 0 and hence

n2

(n − r)4

∑
i

1{s<ti ≤t} E[Z4
i ] ≤ n2(n + 1)2

(n − r)4 O(1)K 2(t − s)2 = C(t − s)2
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for some constant C > 0. The other terms in the decomposition (51) can be treated
similarly, and the estimate (50) in the case i = 1 is now obvious.

In order to derive a similar estimate for the process Ā(2)
n we note that E[| Ā(2)

n (t) −
Ã(2)

n (s)|4] = o(1) uniformly with respect to t ∈ [0, 1], where the process Ã(2)
n is

defined by

Ã(2)
n (t) =

√
n

n − r

n∑
j=r+1

Z j

{
st,1σ

2
1

(
t j
) + · · · + st,dσ 2

d

(
t j
)}

with st, j = ∑d
k=1 bkj Bk

t and bkj denotes the element in the kth row and j th column
of the inverse of the matrix A. Obviously, we have for some constants C1, . . . , Cd

st, j − ss, j =
d∑

k=1

bkj

(∫ t

s
σ 2

k (x) f (x) dx

)
= (t − s)

d∑
k=1

bkj Ck,

and obtain

Ã(2)
n (t) − Ã(2)

n (s) =
√

n

n − r

n∑
j=r+1

Z j

{
(t − s)

d∑
k=1

bk1Ckσ
2
1

(
t j
) + · · · + (t − s)

×
d∑

k=1

bkdCkσ
2
d

(
t j
)}

= (t − s)

√
n

n − r

n∑
j=r+1

µ j Z j ,

where the constants µ j are defined by µ j = ∑d
i=1

(∑d
k=1 bki Ck

)
σ 2

i

(
t j
)
. A similar

calculation as used in the proof of the tightness of the process Ā(1)
n shows that the

inequality (50) also holds in the case i = 2. This establishes the remaining condition
(48) and the proof of Theorem 1 is completed. ��
Proof of Theorem 8. For the sake of brevity we only sketch the main difference in the
proof, which emerges in the different variance of the empirical process in the case of
a random design. Let c̃i and B̃0

t be defined as in (41) and (42), where the random vari-
ables R j are replaced by the variables L j = σ

(
X( j)

)∑r
i=0 diεA j−i . By the Lipschitz

continuity of the regression function the limiting behaviour of the process Ŝt is not
changed by this replacement. For the calculation of the asymptotic covariance we now
use the random variables B̃0

s1
and B̃0

s2
(with 0 ≤ s1 ≤ s2 ≤ 1) and the formula

Cov
(

B̃0
s1

, B̃0
s2

)
= Cov

(
E

[
B̃0

s1
|Fn

]
, E

[
B̃0

s2
|Fn

])
+ E

[
Cov

(
B̃0

s1
, B̃0

s2
|Fn

)]
,

(52)
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where Fn denotes the σ -field generated by the order statistics X(1), . . . , X(n). For the
conditional expectation we have

E[B̃0
t |Fn] = 1

n − r

n∑
j=r+1

1{X( j)≤t}σ 2 (
X( j)

)
E

⎡
⎣
(

r∑
i=0

diεA j−i

)2

|Fn

⎤
⎦

= 1

n

n∑
j=1

σ 2 (
X j

) + op(1),

and an easy calculation gives for s1 ≤ s2

n Cov
(

E
[

B̃0
s1

|Fn

]
, E

[
B̃0

s2
|Fn

])
=

∫ s1

0
σ 4(x) f (x)dx − B0

s1
B0

s2
+ o(1). (53)

For the second term in equation (52) we obtain

Cov
(

B̃0
s1

, B̃0
s2

|Fn

)
= 1

(n − r)2

⎧⎨
⎩

n∑
j=r+1

1{X( j)≤s1}σ 4 (
X( j)

)

×Var

⎛
⎝

(
r∑

i=0

diεA j−i

)2

|Fn

⎞
⎠ + 2

r∑
m=1

n−r∑
j=r+1

1{X( j)≤s1}σ 4

× (
X( j)

)
Cov

⎛
⎝

(
r∑

i=0

diεA j−i

)2

,

(
r∑

i=0

diεAk−i

)2

|Fn

⎞
⎠

⎫⎬
⎭

+op(1).

Observing that

Var

⎛
⎝

(
r∑

i=0

diεA j−i

)2

|Fn

⎞
⎠ + 2

r∑
m=1

Cov

⎛
⎝

(
r∑

i=0

diεA j−i

)2

,

(
r∑

i=0

diεAk−i

)2

|Fn

⎞
⎠

= m4
(
X( j)

) − 1 + 4δr + op(1),

it follows that

n Cov
((

B̃0
s1

, B̃0
s2

)
|Fn

)
= n

(n − r)2

n∑
j=r+1

1{X( j)≤s1}σ 4 (
X( j)

)

× (
m4

(
X( j)

) − 1 + 4δr
) + op(1)

= 1

n

n∑
j=1

1{X j ≤s1}σ 4 (
X j

) (
m4

(
X j

) − 1 + 4δr
) + op(1)
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and

n E
[
Cov

((
B̃0

s1
, B̃0

s2

)
|Fn

)]
=

∫ s1

0
σ 4(x)τr (x) f (x)dx + o(1).

Note that this expression is exactly the same as the asymptotic covariance calculated
in the fixed design case. From (53) we obtain the representation of v̄i j in (45), and for-
mula (52) yields the representation of the corresponding element in the matrix �̄s1,s2 .

The other elements in the matrix �̄s1,s2 are calculated exactly in the same way and the
details are omitted for the sake of brevity. ��
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