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Abstract We investigate the asymptotic behavior of posterior distributions in
nonparametric regression problems when the distribution of noise structure of the
regression model is assumed to be non-Gaussian but symmetric such as the Laplace
distribution. Given prior distributions for the unknown regression function and the
scale parameter of noise distribution, we show that the posterior distribution concen-
trates around the true values of parameters. Following the approach by Choi and
Schervish (Journal of Multivariate Analysis, 98, 1969–1987, 2007) and extending
their results, we prove consistency of the posterior distribution of the parameters for
the nonparametric regression when errors are symmetric non-Gaussian with suitable
assumptions.

Keywords Posterior consistency · Uniformly consistent tests · Kullback-Leibler
divergence · Hellinger metric · Prior positivity · Symmetric density

1 Introduction

This paper presents asymptotic results of posterior distributions in nonparametric
regression problems when the noise is assumed to have a symmetric non-Gaussian
distribution such as the Laplace distribution. Specifically, in this paper, we verify
almost sure consistency of posterior distributions in nonparametric regression pro-
blems with symmetric non Gaussian errors when suitable prior distributions are given
on both the regression function and a scale parameter of noise distribution.

It is often the case that a regression model with Gaussian noises may not provide
reasonable estimates to fit the data if the data contains outliers, due to the light tails
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of the Gaussian noise distribution. A way to overcome this problem is to use a robust
regression model based on a heavy-tailed noise distribution such as the Laplace or
the Student-t distribution. It is also well known that least square estimators under
non-Gaussian errors also perform well and they are robust to non-Gaussian errors. For
example, a regression model using the Laplace noise distribution is frequently used
for such a case (see, e.g. Kotz et al. 2001 and references therein).

Nonparametric regression has been one of the most active research areas in modern
statistical inference, from the methodological development to the theoretical valida-
tion. The seminal work by Stone (1977) initiated the issue of consistent estimation of
nonparametric regression problems, investigating strong consistency with weak condi-
tions imposed on the underlying distribution. So far, much effort has been given to
the theoretical justification of nonparametric regression problems such as consistency,
optimal rate of convergence, in particular, from a frequentist perspective. Bayesian
approach to nonparametric regression problems provides an alternative statistical fra-
mework and needs to be justified in terms of asymptotic points of view, introducing
the concept of posterior consistency and establishing it. Posterior consistency and
the question about the rate of convergence of posterior distribution in nonparametric
regression problems have been mainly studied under Gaussian noise distribution (e.g.
Shen and Wasserman 2001; Huang 2004; Choi and Schervish 2007) and further efforts
are expected to be taken under the general noise distribution.

Specifically, a Bayesian approach in the nonparametric problem using a prior on
the regression function and specifying a Gaussian error distribution has been shown
to be consistent, based on the concept of almost sure posterior consistency in Choi
and Schervish (2007). However, in contrast to the case where we specify the error
as Gaussian, little attention has been paid to asymptotic behavior of Bayesian regres-
sion models with non-Gaussian error. Therefore, studying the asymptotic behavior of
posterior distribution of nonparametric regression model with non-Gaussian error is
an important and interesting problem which we pursue here. In order to answer this
problem, we establish posterior consistency of nonparametric regression model with
non-Gaussian errors. That is, we justify that the posterior distribution concentrates
around true values of the regression function and the scale parameter of the noise
distribution.

The rest of the paper is organized as follows. In Sect. 2, we describe the Bayesian
approach to nonparametric regression model and introduce the concept of posterior
consistency. In Sect. 3, we provide main results by establishing posterior consistency
of nonparametric regression models with non-Gaussian errors. In Sect. 4, we verify
these main results. In Sect. 5, we examine supplementary results that are worth further
consideration. Finally, we make concluding remarks with discussion in Sect. 6.

2 Problem description

2.1 Posterior consistency

In the Bayesian approach to statistical inference, posterior distribution summarizes
information regarding unknown parameters, combined with likelihood and the prior
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distribution. As the sample size increases, the posterior distribution is expected to
concentrate around the true value of parameter, known as the concept of posterior
consistency. Posterior consistency can be thought of as a theoretical justification of
the Bayesian procedure. A systematic discussion of posterior consistency can be found
in Ghosh and Ramamoorthi (2003). The technical description of posterior consistency
will be also presented in the next section. An important result related to posterior
consistency is the Bayesian robustness, i.e., the robustness of the posterior inference
with respect to the choice of prior, which means that given a sufficient number of
observations, the posterior distribution should be insensitive to different choices of
prior distributions as long as each of prior distributions satisfies appropriate conditions.

When the parameter space is finite dimensional, posterior consistency can be achie-
ved easily under fairly general conditions when the true value of the parameter is in the
support of the prior. However, study of asymptotic properties of a Bayesian method
such as posterior consistency is much more difficult in the nonparametric context
where the problem involves infinite-dimensional parameters, compared to parametric
Bayesian method. When it comes to the case of infinite-dimensional parameters, it is
not sufficient to imply consistency at the true value of parameter, merely having posi-
tive probability in all of suitable neighborhoods (see e.g. Freedman 1963; Diaconis and
Freedman 1986). Thus, posterior consistency may fail to hold although natural priors
are used to put the postive mass in every topological neighborhood of the true value
of parameter. For the posterior to be consistent, it is necessary the true value of para-
meter need to be separated from the complements of such neighborhoods, which can
be formalized as an existence of uniformly consistent test (Ghosh and Ramamoorthi,
2003, Definition 4.4.2). In fact, these two conditions have been already considered in
the theorem of Schwartz (1965) for posterior consistency, one for the prior probability
and the other for uniformly consistency. Recently, there have been several extensions
of Schwartz’ Theorem and many results giving general conditions under which fea-
tures of posterior distribution are consistent in infinite-dimensional spaces, particularly
for semiparametric/nonparametric regression problems such as Amewou-Atisso et al.
(2003), Choudhuri et al. (2004), Ghosal and Roy (2006) and Choi and Schervish
(2007).

2.2 Bayesian nonparametric regression with non-gaussian errors

Let us consider a regression model with an additive noise term when the distribu-
tion of noise is assumed to be symmetric non-Gaussian such as the Laplace (double
exponential) distribution. We observe a response Y corresponding to a covariate value
X = x in a bounded interval [0, 1]. Here, two possibilities for the covariate X are
considered; either it is random or fixed. In the first case, we regard the covariates as
random samples from a probability distribution function. That is, let Pθ0 be the joint
distribution of a random vector (X, Y ) satisfying Y = η(X)+ ε. We consider random
samples of (X1, Y1), . . . , (Xn, Yn) that have the same distribution as (X, Y ). In the
second case, we regard the covariates as fixed ahead of time. That is, we consider
fixed design points, x1, . . . , xn , as covariate values and their corresponding response
observations Y1, . . . , Yn satisfying Yi = η(xi ) + εi , i = 1, . . . , n.
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In both cases, the noise distribution ε is assumed to be symmetric around zero with
density φ (·/σ) /σ and, equivalently, the conditional p.d.f. of Y given X = x , p(Y |x)

is expressed as

p(y|x) = 1

σ
φ

(
y − η(x)

σ

)
, (1)

where σ is the unknown scale parameter of noise, the unknown regression function, η
is assumed to be a continuously differentiable function on [0, 1] and φ(·) is a density
function that satisfies

| log φ(z) − log φ(z′)| ≤ c|z − z′| (2)

for some fixed c > 0 and for all z, z′ ∈ R, and φ admits a moment generating function
m(t) = ∫

exp(t y)φ(y)dy in some interval (−T, T ) with T > 0,

m(t) = 1 + at2 + o(t2) (3)

as t → 0 for some a > 0, and
∫ |z|2φ(z)dz < ∞. Note that these conditions are

satisfied by commonly used probability densities, symmetric around zero such as the
Laplace density in addition to the Gaussian density. Under the regression setup of (1),
the parameter is the pair of the unknown scale parameter of noise, σ and the unknown
regression function, η(x).

Bayesian approaches to this problem will begin with specifying prior distributions
on a given class of regression functions and the unknown σ . We assign prior probability
distributions, Πη and Πν for η and σ , respectively. When the covariate X is treated as
a random variable, the probability distribution of X , Q, will be considered. However,
since our interest is the posterior for η and σ and the distribution of X will be integrated
out, we can assume, without loss of generality, that Q is a known distribution.

Several ways of putting a prior for η(x) have been proposed in the statistical litera-
ture and typical examples include orthogonal basis representation, a spline series prior
and a Gaussian process prior. See, e.g. Choi (2005) for a general survey of these three
methods and some key references on the subject. However, the choice of nonparame-
tric prior needs to be made carefully so that it reflects the underlying assumption about
the true regression function. Suppose that the true regression function is completely
unknown with only a few assumptions about the smoothness such as the continuity or
differentiability. In this case, if one chooses a parametric function of known functional
form rather than nonparametric form, by putting a prior one to the parametric function,
we might not be able to achieve posterior consistency. Note that for consistency, the
support of the prior under consideration need to be big enough to include the true
regression function. In other words, the prior under consideration should ensure the
positive probability on every neighborhood of true regression function in order to
achieve posterior consistency. In this regard, assigning a prior based on known func-
tional form to the unknown true regression function cannot be validated in terms of
consistency, and much attention needs to be taken to consider a nonparametric prior
for the unknown function. For instance, when we utilize Gaussian process as a prior of
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the regression function, suitable covariance functions should be considered (see, e.g.
Ghosal and Roy 2006; Tokdar and Ghosh 2007; Choi and Schervish 2007). For a prior
with orthogonal basis representation and a spline series prior, appropriate conditions
for orthogonal basis and corresponding splines need to be considered, with respect
to the true function and its smoothness. (e.g. Shen and Wasserman 2001; Choi and
Schervish 2007; Ghosal and van der Vaart 2007).

For the implementation of Bayesian nonparametric regression and computation
form a given set of data, we follow the fundamental Bayesian formalism: That is, the
implementation will be based on the posterior distribution, combined with likelihood
and prior distribution. When the scale parameter σ is assumed to be known and the
observed data are (Y1, x1), . . . , (Yn, xn), with x1, . . . , xn either fixed or sampled from
a probability distribution, the posterior distribution of {η(xi )}n

i=1 can be calculated in
the following way.

Let η be a vector of values, evaluated at the n points x1, . . . , xn , η = (η(x1), η(x2),

. . . , η(xn))T . Thus, the posterior distribution of η, is proportional to the product of the
likelihood, joint distribution of n observations, Y1, . . . , Yn and the prior distribution
of η:

Π(η|Y, x, σ 2) ∝ P(Y|η, x, σ 2)Π(η, σ 2),

where Y = (Y1, . . . , Yn) and x = (x1, . . . , xn). After identifying posterior distribu-
tion, we can approximate posterior distribution based on computer-intensive methods
such as Gibbs samplings or Markov Chain Monte Carlo (MCMC) methods. In prin-
ciple, with MCMC methods, Bayesian inference is performed and the posterior dis-
tribution of unknown parameters are obtained numerically. From methodological and
computational point of views, several techniques and tools have been proposed and
developed, while theoretical and asymptotic studies still leave much to be desired.
For example, when the noise distribution is assumed to be known and the Gaussian
process prior is used, computational methods have been developed such as in Neal
(1996, 1997) and Paciorek (2003). In addition, Neal (1997) also considered Gaussian
process regression by using a Student’s t-distributed noise.

However, since the noise distribution is assumed to be non-Gaussian, the estima-
ted regression curve is not always anaytically tractable although it is computationally
feasibile as stated above. Hence, one needs theoretical validation of the method by
verifying consistency properties indirectly. As stated previously, it is known that the
dimension of the parameter space plays a role in determining posterior consistency.
When the parameter space is finite dimensional, posterior consistency can be achieved
easily under fairly general conditions. Hence, consistency of posteriors for nonpara-
metric regression problems is involved with infinite-dimensional parameters is a much
more challenging problem than in the finite-dimensional case. The similar nonpara-
metric Bayesian regression setup has been considered under the Gaussian noise distri-
bution and its posterior consistency has been well investigated by Choi and Schervish
(2007). In this paper, we consider the posterior distribution of nonparametric Bayesain
Laplace regression problem and study its asymptotic behavior of posterior distribu-
tion. We follow the same approach as Choi and Schervish (2007) to establish posterior
consistency.
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3 Main results

Let A be a appropriate neighborhood of the true parameter value θ0 ≡ (η0, σ0) and
Zn = (Z1, . . . , Zn), {Zi }n

i=1 = {(Xi , Yi )}n
i=1 be the data. Then, given the prior, Π ,

the posterior probability of A is written as

Π(A|Zn) =
∫

A

∏n
i=1 f (yi − η(xi ))dΠ(θ)∫ ∏n

i=1 f (yi − η(xi ))dΠ(θ)
(4)

Let Θ be the product space of F and R
+, where F is the set of Borel measurable

functions defined on [0, 1] and R
+ is the positive real line. For now, assume that we

have chosen a topology on Θ .
For each neighborhood N of the true regression function η0, the true noise variance

σ and each sample size n, we compute the posterior probability as in (4), pn,N (Zn) =
Π({θ ∈ N }|Zn), as a function of the data. To say that the posterior distribution of θ

is almost surely consistent means that, for every neighborhood N , limn→∞ pn,N =
1 a.s. with respect to the joint distribution of the infinite sequence of data values.
Similarly, in-probability consistency means that for all N pn,N converges to 1 in
probability.

To make these definitions precise, we must specify the topology on Θ , in par-
ticular on F . This topology can be chosen independently of whether one wishes
to consider almost sure consistency or in-probability consistency of the posterior.
For this purpose, we use a popular choice of topology on F , L1 topology related
to a probability measure Q on the domain [0, 1] of the regression functions. The
L1(Q) distance between two functions η1 and η2 is ‖η1 − η2‖1 = ∫ 1

0 |η1 − η2|dQ.
In addition, we use a Hellinger metric for joint densities f for Z = (X, Y ) with
respect to a product measure ξ = Q × λ, where λ is a Lebesgue measure, namely
f (x, y) = φ([y − η(x)]/σ)/σ . The Hellinger distance between two densities f1 and

f2 is
{∫ [√

f1(x, y) − √
f2(x, y)

]2 dξ
}1/2

. These metrics were considered for loo-

king at posterior consistency under normal noise distribution by Choi and Schervish
(2007). Another frequently used neighborhood is the weak neighborhood of the true
probability measure of P0 with the true joint density of X and Y , f0. We say pn,N is
weakly consistent at P0 if posterior distribution pn,N , achieves almost sure consistency
when N is based on every weak neighborhood of P0. Note that when we consider the
joint distribution of (X, Y ), the distribution Q of X is assumed to be a known form,
thus this distribution is canceled out in the expression for the posterior distribution of η.

Before stating main results, we must make two assumptions, one about the suitable
prior distributions of the regression function and the scale parameter of the noise
distribution and the other about the rate at which the covariate values fill out the
interval [0, 1].

The first assumption about prior distributions is sufficient for the true density of the
data, i.e., either conditional density of Y when the covariate values are fixed ahead of
time or the joint density of Y and X when the covariate are sampled from a known dis-
tribution Q, to be in the Kullback-Leibler support. (See Ghosh and Ramamoorthi 2003,
Definition 4.4) and Choi and Schervish 2007, Theorem 1)). The second assumption
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ensures that most of the prior probability is given to the appropriate sieve, which grows
to the parameter space, as the sample size increases.

Suppose that a suitable prior, Π = Πη × Πσ assigned to θ ≡ (η, σ ), satisfies the
following two assumptions:

Assumption P.1 Let ε > 0. Define

Bε =
{

(η, σ ) : sup
x∈[0,1]

|η(x) − η0(x)| < ε ,

∣∣∣∣ σ

σ0
− 1

∣∣∣∣ < ε

}
(5)

and assume that Π(Bε) > 0 for all ε > 0.

Assumption P.2 Define

En =
{

η : sup
x∈[0,1]

|η(x)| < n3/4 , sup
x∈[0,1]

|η′(x)| < n3/4

}
, (6)

and assume that there exists a constant β > 0 such that Πη

{
EC

n

} ≤ exp(−nβ).
For the assumption about covariate values, we consider two versions of the assump-

tion, depending on the nature of the sequence X1, X2, . . . of convariates. First, we
consider the case that the covariates are all fixed values, designed ahead of time. The
following assumption is about how fast those fixed covariate values fill out the interval
[0, 1].
Assumption D.1 Let 0 = x0 < x1 ≤ x2 ≤ · · · ≤ xn < xn+1 = 1 be the design
points on [0, 1] and let Si = xi+1 − xi , i = 0, . . . , n denote the spacings between
them. There is a constant 0 < K1 < 1 such that the max0≤i≤n Si < 1/(K1n).

Now, we provide a result about posterior consistency for fixed covariates, in which
the data {Yn}∞n=1 are assumed to be conditionally independent with a symmetric condi-
tional densityφ([y−η(x)]/σ)/σ givenη, σ and the covariates. To investigate posterior
consistency with nonrandom covariates, we apply Theorem 1 of Choi and Schervish
(2007) by making pi (z; θ) equal to fi (z; θ0) as φ([yi − η(x)]/σ)/σ and by assu-
ming D.1. In this case, the unknown parameters are the regression function and the
scale parameter of the noise distribution. We prove it in the next section, by verifying
sufficient conditions on existence of tests as in Theorem 1 of Choi and Schervish
(2007), stated in the appendix. We assume the true regression function η0 is conti-
nuously differentiable.

Theorem 1 Suppose that the values of the covariate in [0, 1] arise from a fixed design
satisfying the Assumption D.1. Assume that the prior, Π , satisfies Assumptions P.1
and P.2. Let P0 be the conditional distribution of {Yn}∞n=1 given {xn}∞n=1 assuming that
θ0 = (η0, σ0) is the true value of parameter. Let ε > 0 and define Aε ,

Aε =
{
(η, σ ) :

∫
|η(x) − η0(x)|dx < ε,

∣∣∣∣ σ

σ0
− 1

∣∣∣∣ < ε

}
.

Then, for every ε > 0, Π
(

AC
ε | Y1, . . . , Yn, x1, . . . , xn

) → 0 a.s. [P0].
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When we deal with random covariates, the case where the covariates are sampled
from a probability distribution Q, we have a few theorems based on the joint density
f (x, y) = p(y|x)q(x) with respect to ξ = Q × λ, where p(y|x) is the conditional
density of y given x , q(x) is the marginal density of x , λ is the Lebesgue measure as
stated earlier. In this case, the probability distribution of Q is assumed to be known.
For example, the Xi ’s are assumed to be independent U (0, 1) random variables. Then
this distribution is canceled out of the expression (4) for the posterior of θ ≡ (η, σ ).
In addition, when Q is unknown, and thus a prior on Q is assigned, if we assume
the indepedence priors for η, σ and Q, the posterior distribution of (η, σ ) would not
change regardless of a prior on Q, by the marginalization. Note that in this regard, the
distribution of X would not be a matter of concern.

First, we consider weak consistency of posterior distribution. The weak consistency
of posterior distribution is defined as follows: (see also Tokdar and Ghosh 2007).

Definition 1 (weak consistency) Suppose that random samples X1, . . . , Xn are from
a density f0 that belongs to certain space of densities F . Let Π be a prior distribution
on F . A prior Π on F is said to achieve weak posterior consistency at f0 it for any
weak neighborhood U of f0, Π(U |X1, . . . , Xn) → 1 almost surely under Pf0 .

The Assumption P.1 is sufficient to achieve weak consistency at the true joint
density f0(x, y) so that f0 is in the Kullback-Leibler support as explained in Schwartz
(1965), Ghosh and Ramamoorthi (2003) and Tokdar and Ghosh (2007). We provide
the theorem regarding weak consistency, which implies that posterior probability for
any weak neighborhood of the true density converges to 1 almost surely under the true
probability measure.

Theorem 2 Suppose that the value of the covariate in [0, 1] sampled from a proba-
bility distribution Q and prior distribution, Π satisfies the Assumption P.1. Let P0
be the joint distribution of {(Xn, Yn)}∞n=1 assuming that (η0, σ0) is the true value of
parameter and the true join density of (X, Y ) is f0(x, y) = p(y|x, η0, σ0)q(x). Then
the posterior is weakly consistent at f0(x, y). That is, for any weak neighborhood U
of f0,

Π(U C |(Y1, X1), . . . , (Yn, Xn)) → 0 a.s. under P0.

Second, we state the Hellinger consistency of posterior distribution. In other words,
we show that the posterior probability of every Hellinger neighborhood of the true value
of parameter converges to 1 almost surely with respect to the true probability measure.
In addition, In addition, we provide consistency of posterior distribution based on L1

metric. For these purposes, we consider only the case in which the support of the
prior distribution contains only uniformly bounded regression functions as stated in
the Assumption P.3 below. Similar assumptions about the uniform boundedness of
regression function can be found in Shen and Wasserman (2001) and Huang (2004).
In this case, the probability distribution of Q is assumed to be known. For example, the
Xi ’s are assumed to be independent U (0, 1) random variables. Then this distribution
is canceled out of the expression for the posterior of θ ≡ (η, σ ).
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Assumption P.3 : Let Π ′
η be the prior for η satisfying P.1 and P.2. Let

Ω = {
η : supx∈[0,1] |η(x)| < M

}
with M > supx∈[0,1] |η0(x)|. Assume that Πη(·) =

Π ′
η(· ∩ Ω)/Π ′

η(Ω) with Π ′
η(Ω) > 0.

Theorem 3 Suppose that the values of the covariate in [0, 1] are sampled from a
probability distribution Q. Suppose that assumptions P.1–P.3 hold. Let P0 be the joint
distribution of {(Xn, Yn)}∞n=1 assuming that (η0, σ0) is the true value of parameter
and the true joint density of (X, Y ) is f0(x, y) = p(y|x, η0, σ0)q(x).

1. Let ε > 0 and define Bε ,

Bε =
{

(η, σ ) :
{∫

(
√

f − √
f0)

2dξ

}1/2

< ε

}
.

Then for every ε > 0, Π
(
BC

ε | (X1, Y1), . . . , (Xn, Yn)
) → 0 a.s. [P0].

2. Furthermore, we define Cε ,

Cε

{
(η, σ ) :

∫
|η − η0|dQ < ε,

∣∣∣∣ σ

σ0
− 1

∣∣∣∣ < ε

}

Then for every ε > 0, Π
(
CC

ε | (X1, Y1), . . . , (Xn, Yn)
) → 0 a.s. [P0].

Two typical examples of prior distributions for regression function—one about
Gaussian process prior and the other about an orthogonal expansion of the regression
function—are considered in Choi and Schervish (2007), and we can also make use of
those two typical priors for regression function here. Note that these two priors satisfy
the Assumptions P.1 and P.2 similarly as discussed in Choi and Schervish (2007). We
give the detailed proof in the next section.

4 The proofs of main results

This section contains the proofs of the main consistency results. We state several theo-
rems with different conditions on the covariate (nonrandom and random covariates)
and different topologies (L1, weak neighborhoods and Hellinger). The proofs of these
results all rely on Theorem A.1 in the appendix (Theorem 1 in Choi and Schervish
2007), and thereby have many steps in common.

4.1 Proof of Theorem 1

First, we consider posterior consistency based on L1 distance when covariate values
arise in a fixed design, known ahead of time. This section contains the proof of condi-
tion (A1) of Theorem A.1, which virtually the same for all of the main theorems. In
addition, we show how to construct uniformly consistent tests, described in (A2) of
Theorem A.1. This is done by piecing together finitely many tests, one for each ele-
ment of a covering of the sieve by L∞ balls. We generalize the result by considering
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the noise distribution has a symmetric (about 0) density function with an appropriate
condition, which includes the case of Laplace distribution.

4.1.1 Prior positivity condition: (A1) of Theorem A.1

Here, we state and prove those results that allow us to verify condition (A1) of
Theorem A.1.

Lemma 1 Let θ = (η, σ ) and θ0 = (η, σ0). Suppose that the conditional density of

Y given X = x is given by pθ (y|x) = 1
σ
φ
(

y−η(x)
σ

)
, where the density φ satisfies (2)

and (3).

Define Λ(θ0, θ) = log
pθ0 (yi |xi )

pθ (yi |xi )
, Ki (θ0, θ) = Eθ0(Λ(θ0, θ) and Vi (θ0, θ) =

Varθ0(Λ(θ0, θ)). For each δ > 0, consider Bδ as defined in (5).
Then, for every ε > 0, there exists δ > 0 such that ∀θ ∈ Bδ , Ki (θ0, θ) < ε for all

i and
∑∞

i=1
Vi (θ0,θ)

i2 < ∞, ∀θ ∈ Bδ .

Proof We first calculate Kullback-Leibler divergence between two conditional densi-
ties of Y given X = x when (2) holds,

K (pθ0(y|x), pθ (y|x))

=
∫

log
pθ0(y|x)

pθ (y|x)
pθ0(y|x)dy

≤ log
σ

σ0
+ c

∫ ∣∣∣∣ y − η0(x)

σ0
− y − η(x)

σ

∣∣∣∣ pθ0(y|x)dy

≤ log
σ

σ0
+ c

∣∣∣σ0

σ
− 1

∣∣∣
∫

|y|φ(y)dy + c

σ
sup

x∈[0,1]
|η(x) − η0(x)|.

Note that the last expression can be chosen arbitrarily small if supx∈[0,1] |η(x)−η0(x)|
and |σ/σ0 − 1| are sufficiently small. Therefore, for every ε > 0, there exists δ > 0
such that ∀θ ∈ Bδ , Ki (θ0, θ) < ε for all i .

Second, we calculate the variance of Vi,n = Varθ0(Λ(θ0, θ)) and show that the
variance is uniformly bounded for all i . By the conditions (2) and (3), we have

Varθ0(Λ(θ0, θ)) ≤
∫ {

log φ

(
y − η0(x)

σ0

)
− log φ

(
y − η(x)

σ

)}2

pθ0(y|x)dy

≤ c2
∫ ∣∣∣∣ y − η0(x)

σ0
− y − η(x)

σ

∣∣∣∣
2

pθ0(y|x)dy

≤ c2

{(σ0

σ
− 1

)2 + 2 sup
x∈[0,1]

|η(x) − η0(x)|
}∫

|y|2φ(y)dy

+c2

σ
sup

x∈[0,1]
|η(x) − η0(x)|2 < ∞, ∀θ ∈ Bδ.

�
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Since we assume suitable prior distributions, Πη and Πν , are assigned to satisfy
two Assumptions, P.1 and P.2, it is easy to see that conditions (A1) and (i i i) of (A2)
in Theorem A.1 in the appendix hold under Laplace regression setup as well as other
types additive regression with symmetric error distributions that satisfy (2) and (3).
Thus, what remains for completing the proof is to show there exist test functions that
meet conditions (A2), which will be presented in the next section.

4.1.2 Existence of uniformly consistent tests: (A2) of Theorem A.1

To verify (A2) of Theorem 1, we consider the sieve (6) that has been specified in the
Assumption, P.2., and then construct a test for each element of the sieve. The nth test is
constructed by combining a collection of tests, one for each of finitely many elements
of the sieve, which come from a covering the sieve (6). The construction of tests are
similar to the construction of tests under the normal noise done in Choi and Schervish
(2007) by following the idea of Chernoff bounds (Chernoff 1952). The main difference
from the normal case is the construction of test based on random noises from either
Laplace distribution or a symmetric distribution with suitable conditions that will be
given afterwards.

For this purpose, we consider three possible cases for the alternative hypotheses
depending on the configuration of η and σ . As in the Gaussian error case of Choi and
Schervish (2007), this is also done by piecing together finitely many tests, one for each
element of a covering of the sieve by L∞ balls. After tests have been constructed, the
remaining steps are exact same as those in the Gaussian error case and we omit those
steps and refer to previous results by Choi and Schervish (2007).

We construct those test functions in Lemmas 2–5.
The following relatively straightforward result is useful in the construction of tests.

Proposition 1 (a) For every random variable X with unimodal distribution symme-
tric around 0 and every c ∈ R,

Pr(|X | ≤ x) ≥ Pr(|X + c| ≤ x).

This is the special case of Anderson’s theorem (Anderson 1955).
(b) Let X1, . . . , Xn be i.i.d random variables satisfying (a). Let bi ∈ R, i = 1, . . . , n.
Then, ∀c ∈ R,

Pr

(
n∑

i=1

|Xi | ≤ c

)
≤ Pr

(
n∑

i=1

|Xi + bi | ≤ c

)
.

Proof (a)

Pr {|X | ≤ x} − Pr {|X + c| ≤ x}
= F(x) − F(−x) − F(x − c) + F(−x − c)

=
{ {F(x) − F(x − c)} − {F(x + c) − F(x)} ≥ 0, c ≥ 0

{F(x) − F(x + c)} − {F(x − c) − F(x)} ≥ 0, c < 0
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(b) We argue by induction and use the law of total probability.

Pr

{
n∑

i=1

|Xi | ≤ c

}
= E

(
Pr

{
|X1|+

n∑
i=2

|Xi | ≤ c

∣∣∣∣|X2| = x2, . . . , |Xn| = xn

})

≤ E

(
Pr

{
|X1+b1| ≤ c−

n∑
i=2

xi

∣∣∣∣|X2| = x2, . . . , |Xn|= xn

})

= Pr

{
|X1 + b1| +

n∑
i=2

|Xi | ≤ c

}

Using the same argument as above but conditioning on (|X1 + b1|, |X3|, . . . , |Xn|),
we get

Pr

{
n∑

i=1

|Xi | ≤ c

}
≤ Pr

{
|X1 + b1| + |X2 + b2| +

n∑
i=3

|Xi | ≤ c

}

Similarly, by conditioning on (|X1 + b1|, . . . , |Xi−1 + bi−1|, |Xi+1|, . . . , |Xn|),
i = 3, . . . , n, we reach the final result of part (b). �


Lemma 2 Let η1 be a continuous function on [0, 1] and define ηi j = ηi (x j ) for
i = 0, 1 and j = 1, . . . , n. Let ε > 0, and let r > 0. Let cn = nτ1 for α1/2 < τ1 < 1/2
and 1/2 < α1 < 1. Let b j = 1 if η1 j ≥ η0 j and −1 otherwise. Let Ψ1n[η1, ε] be the
indicator of the set A1, where A1 is defined as

A1 =
⎧⎨
⎩

n∑
j=1

b j

(
Y j − η0 j

σ0

)
> 2cn

√
n

⎫⎬
⎭ .

Suppose that the conditional density of Y given X = x is given by pθ (y|x) =
1
σ
φ
(

y−η(x)
σ

)
, where the density φ admits (3).

Then there exists a constant B3 > 0 such that for all η1 that satisfy

n∑
j=1

|η1 j − η0 j | > rn, (7)

EP0(Ψ1n[η1, ε]) < exp
(−B3c2

n

)
. Also, there exist constants C4 and C5 such that for

all sufficiently large n and all η satisfying ‖η−η1‖∞ <r/4 and for all σ ≤σ0(1+ε),

EP (1 − Ψ1n[η1, ε]) ≤ C4 exp(−nC5),

where P is the joint distribution of {Yn}∞n=1 assuming that θ = (η, σ ).
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Proof (1) Type I error:
For all 0 < t < 1, by the Markov inequality,

EP0(Ψ1n[η1, ε]) = P0

⎧⎨
⎩

n∑
j=1

b j

(
Y j − η0 j

σ0

)
> 2cn

√
n

⎫⎬
⎭

≤ exp
(−t · 2cn

√
n
)

m(t)n

= exp

([
−2t

cn√
n

+ log
{

1 + at2 + o(t2)
}]

· n

)

≤ exp

([
−2t

cn√
n

+ at2 + o(t2)

]
· n

)

Take t = cn

a
√

n
. Then, EP0(Ψ1n) = exp

{[
−2

c2
n

an
+ c2

n

an
+ o

(
c2

n

a2n

)]
· n

}
≤

exp

{
−c2

n

a
[1 − o(1)]

}
. This holds for sufficiently large n.

(2) Type II error:
As in the Type II error calculation for the Gaussian case in Choi and Schervish (2007),
first, assume that n is large enough so that cn/

√
n < r/(4σ0). Let η∗ j = η(x j ) for

j = 1, . . . , n. Since σ ≤ (1 + ε)σ0, then for all −1 < t < 0,

EP (1 − Ψn[η1, ε])

≤ EP (1 − Ψ1n) = P

⎧⎨
⎩

n∑
j=1

b j

(
Y j − η0 j

σ0

)
≤ 2cn

√
n

⎫⎬
⎭

= P

⎧⎨
⎩

n∑
j=1

b j

(
Y j − η∗ j

σ1

)
+

n∑
j=1

b j

(
η∗ j − η1 j

σ

)

+
n∑

j=1

∣∣∣∣η1 j − η0 j

σ

∣∣∣∣ ≤ 2cn
√

n
σ0

σ

⎫⎬
⎭

≤ P

⎧⎨
⎩

n∑
j=1

b j

(
Y j − η∗ j

σ

)
≤ rn

4σ
− rn

σ
+ 2cn

√
n
σ0

σ

⎫⎬
⎭

≤ P

⎧⎨
⎩

n∑
j=1

b j

(
Y j − η∗ j

σ

)
≤ −rn

4σ0(1 + ε)

⎫⎬
⎭

= P

⎧⎨
⎩t

n∑
j=1

b j

(
Y j − η∗ j

σ

)
≥ t

−rn

4σ0(1 + ε)

⎫⎬
⎭

≤ exp

(
−t

−rn

4σ0(1 + ε)

)
(1 + at2 + o(t2))n
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≤ exp

(
n

[
tr

4σ0(1 + ε)
+ at2 + o(t2)

])

= exp

(
nt

[
r

4σ0(1 + ε)
+ at + o(t)

])

Then, there exists t∗ such that −T < t∗ < 0 and −t∗
(

r
4σ0(1+ε)

+ at∗ + o(t∗)
)

=
C∗ > 0. Thus, the last expression above is less than exp

(−nC∗). �


As stated in Lemma 2, the test construction depends on the existence of the quantity
in (7) under L1 toplogy of the regression function. Lemma 3, asserts its existence under
the assumption D.1. for the fixed covariates.

Lemma 3 For each integer n, let An be the set of all continuously differentiable
functions η such that ‖η‖∞ < n3/4 and ‖η′‖∞ < n3/4. Then for each ε > 0 there
exist an integer N and r > 0 such that, for all n ≥ N and all η ∈ An such that∫ 1

0 |η(x) − η0(x)|dx > ε,
∑n

i=1 |η(xi ) − η0(xi )| ≥ rn.

Proof It follows from Lemmas 3 and 7 of Choi and Schervish (2007). �


Lemma 4 Suppose that the conditional density of Y given X = x is given by pθ (y|x)=
1
σ
φ
(

y−η(x)
σ

)
, where the density φ(z) admits that in some interval (−T, T ) with T > 0,

∫
exp(t |y|)φ(y)dy = 1 + bt + o(t)

as t → 0 for some b > 0. Let η1 be a continuous function on [0, 1] and define
ηi j = ηi (x j ) for i = 0, 1 and j = 1, . . . , n. Let Ψ2n be the indicator of the set A2,
where

A2 =
⎧⎨
⎩

n∑
j=1

∣∣∣∣Y j − η0 j

σ0

∣∣∣∣ > nb
√

1 + ε

⎫⎬
⎭ ,

Then there exists a constant C6 such that for all η1 EP0(Ψ2n) < exp(−nC6). Also,
there exist constants C7 such that for all sufficiently large n and all η satisfying
‖η − η1‖∞ < r/4 and for all σ > σ0(1 + ε),

EP (1 − Ψ2n[ε]) ≤ exp(−nC7),

where P is the joint distribution of {Yn}∞n=1 assuming that θ = (η, σ ).
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Proof (1) Type I error:

For sufficiently small 0 < t1 < T , by the Markov inequality, we have

EP0(Ψ2n) = P0

⎛
⎝ n∑

j=1

∣∣∣∣Y j − η0 j

σ0

∣∣∣∣ > nb
√

1 + ε

⎞
⎠

≤ exp
{
−n

(
b
√

1 + ε)t1
)

+ n (bt1 + o(t1))
}

= exp
{
−nt1b

(√
1 + ε − 1 − o(t1)

)}
.

Then, there exists 0 < t∗1 < T such that t∗1 → 0 and t∗1 b(
√

1 + ε − 1 − o(t∗1 )) =
C6 > 0. Therefore, EP0(Ψn) ≤ exp(−C6n).

(2) Type II error:

Since σ > (1 + ε)σ0, for all −T < t < 0,

EP (1 − Ψ2n) = P

⎧⎨
⎩

n∑
j=1

∣∣∣∣Y j − η0 j

σ0

∣∣∣∣ ≤ nb
√

1 + ε

⎫⎬
⎭

= P

⎧⎨
⎩

n∑
j=1

∣∣∣∣
(

Y j − η∗ j

σ

)
+
(

η∗ j − η0 j

σ

)∣∣∣∣ ≤ n
σ0

σ
b
√

1 + ε

⎫⎬
⎭

≤ P

⎧⎨
⎩

n∑
j=1

∣∣∣∣Y j − η∗ j

σ

∣∣∣∣ ≤ n
σ0

σ
b
√

1 + ε

⎫⎬
⎭

≤ exp

{
− nbt

1 + √
ε∗ + n(bt + o(t))

}

= exp

{
nbt

(
− 1

1 + √
ε∗ + 1 + o(t)

)}
. (8)

Thus, there exists a constant C7 such that EP (1 − Ψ2n) ≤ exp(−C7n). �

Lemma 5 Suppose that the conditional density of Y given X = x is given by pθ (y|x)=
1
σ
φ
(

y−η(x)
σ

)
, where the density φ(z) admits that in some interval (−T, T ) with T > 0,

∫
exp(t |y|)φ(y)dy = 1 + bt + o(t)

as t → 0 for some b > 0. Let η1 be a continuous function on [0, 1], and define
ηi j = ηi (x j ) for i = 0, 1 and j = 1, . . . , n. Let ε > 0, and 0 < r < 4σ0

√
ε − ε2.

Let Ψ3n[η1, ε] be the indicator of the set A3, where

A3 =
⎧⎨
⎩

n∑
j=1

∣∣∣∣Y j − η1 j

σ0

∣∣∣∣ < nb
√

1 − ε2

⎫⎬
⎭ ,
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Then there exists a constant C8 such that for all η1 that satisfy

n∑
j=1

‖η1 j − η0 j‖ < rn

EP0(Ψ3n[η1, ε]) < exp(−nC8) Also, there exist a constants C9 such that for all
sufficiently large n and all η and σ satisfying ‖η − η1‖∞ < r/4 and σ < σ0(1 − ε),

EP (1 − Ψ3n[η1, ε]) ≤ exp(−nC9),

where P is the joint distribution of {Yn}∞n=1 assuming that θ = (η, σ ).

Proof (1) Type I error:
For all t < 0, by the Markov inequality,

EP0(Ψ3n[η1,ε]) = P0

⎛
⎝ n∑

j=1

∣∣∣∣Y j − η1 j

σ0

∣∣∣∣ < nb
√

1 − ε2

⎞
⎠

≤ Pr

⎛
⎝ n∑

j=1

∣∣∣∣Y j − η0 j

σ0

∣∣∣∣ < nb
√

1 − ε2

⎞
⎠, by Proposition 1

≤ exp
(
−nb(

√
1 − ε2)t + n(bt + o(t))

)

= exp
{

ntb
(
−
√

1 − ε2 + 1 + o(1)
)}

Then, it is clear that there exists a constant C9 > 0 such that EP0(Ψ3n[η1,ε]) ≤
exp(−C9n).

(2) Type II error:
For all sufficiently small t such that t ∈ (0, T ],

EP (1 − Ψ3n[η1,ε][η1, ε])

= P

⎧⎨
⎩nb

√
1 − ε2 ≤

n∑
j=1

∣∣∣∣Y j − η1 j

σ0

∣∣∣∣
⎫⎬
⎭

= P

⎧⎨
⎩n

σ0

σ
b
√

1 − ε2 ≤
n∑

j=1

∣∣∣∣Y j − η∗ j

σ
+ η∗ j − η1 j

σ

∣∣∣∣
⎫⎬
⎭

≤ Pr

⎛
⎝n

σ0

σ
b
√

1 − ε2 −
n∑

j=1

∣∣∣∣η∗ j − η1 j

σ

∣∣∣∣ ≤
n∑

j=1

∣∣∣∣Y j − η∗ j

σ

∣∣∣∣
⎞
⎠

≤ exp

⎛
⎝n(bt + o(t)) − nbt

√
1 − ε2 σ0

σ
+ t

n∑
j=1

∣∣∣∣η∗ j − η1 j

σ

∣∣∣∣
⎞
⎠
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If ‖η1 − η‖∞ < r/4, then |η1 j − η∗ j | < r/4, ∀ j = 1, 2, . . .. Therefore,

exp

⎛
⎝n(bt + o(t)) − nbt

√
1 − ε2 σ0

σ
+ t

n∑
j=1

∣∣∣∣η∗ j − η1 j

σ

∣∣∣∣
⎞
⎠

≤ exp

{
n

btσ0

σ

[
(1 + o(1))(1 − ε) + r

4σ0
−
√

1 − ε2

]}
(9)

Because r < 4σ0(ε − ε2), (9) is less than

exp

{
nbt (1 − ε)

σ0

σ

[
1 + o(1) + ε −

√
1 + ε√
1 − ε

]}

Note that ε −
√

1 + ε√
1 − ε

< −1 for all ε > 0. Thus, there exits a constant C9 such that

EP (Ψ3n[η1,ε]) ≤ exp{−C9n} .

�

In order to apply those test functions constructed in Lemmas 2–5 to the cases of

testing for (η, σ ) = (η0, σ0) against (η1, σ1) ∈ Lε , where

Lε =
{
(η, σ ) :

∫
|η − η0|dQ > ε,

∣∣∣∣ σ

σ0
− 1

∣∣∣∣ > ε

}
,

we need to verify that if (η1, σ1) ∈ Lε , (7) holds, which is a key requirement for
constructing test in Lemma 2. Note that test functions constructed in Lemmas 4 and
5 are based on the discrepancy in terms of σ rather than η. This verification has
been studied for d-dimension nonrandom covariate with suitable assumptions and
d-dimensional random covariates in Choi and Schervish (2007), independently of the
error distribution. We also provide such results in the next section. On the other hand,
those results have also been specialized as the result by Choi (2007) for the case of one
dimensional fixed covariate under weaker assumption that the uniform bound of the
derivatives is not necessary. Finally, the test functions are considered here for specific
choice of (η1, σ1) and this dependence will be removed by utilizing the same sieve as
considered in Choi and Schervish (2007) because of the Assumption D.1. Therefore,
the existence of tests is proven. Hence, the proof of Theorem 1 is complete.

4.2 Proof of Theorem 2

As discussed in Schwartz (1965), Ghosh and Ramamoorthi (2003) and Tokdar and
Ghosh (2007), for weak consistency, it is sufficient to show a Kullback-Leibler support
condition on Π and f0, ∀ε > 0, Π( f : K ( f0, f ) < ε) > 0, where f is the joint
density of (X, Y ), f = p(y|x, η, σ )q(x) and f0 is the true joint density of (X, Y ),
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f0 = p(y|x, η0, σ0)q(x). In Sect. 4.1.1, we have already shown the Kullback-Leibler
support condition for conditional density, p(y|x, η0, σ0). Since the Kullback-Leibler
divergence between two joint densities is the integration of the Kullback-Leibler diver-
gence between two conditional densitites and the marginal density of X is assumed
to be known, by the Assumption, P.1., it is shown that the Kullback-Leibler support
condition holds. Hence, weak posterior consistency is achieved.

4.3 Proof of Theorem 3

First, assuming the noise distribution is the Laplace distribution, we calculate the
Hellinger distance between two density functions, dH ( f, f0). To simplify the calcu-
lation, we consider the quantity h( f, f0) defined as

h( f, f0) = 1

2
d2

H ( f, f0) = 1 −
∫ √

f f0dµ

and h( f, f0) is calculated as follows.

h( f, f0) = 1 − 1√
4σσ0

∫ ∫
exp

{
− 1

2σ
|y − η(x)| − 1

2σ0
|y − η0(x)|

}
dydQ

≤ 1 −
∫ ∫

exp

{
−
(

1

2σ
+ 1

2σ0

) ∣∣∣∣y −
(

η(x) + η0(x)

2

)∣∣∣∣
}

× 1√
4σσ0

× exp

{
−
(

1

4σ
+ 1

4σ0

)
|η(x) − η0(x)|

}
dydQ

≤ 1 −
∫ [

1√
4σσ0

× exp

{
−
(

1

4σ
+ 1

4σ0

)
|η(x) − η0(x)|

}

×
(

1

4σ
+ 1

4σ0

)−1
]

dQ (10)

The integral in (10) is of the form
∫

c1 exp(−c2|η(x) − η0(x)|)dQ(x), where c1 can
be made arbitrarily close to 1 by choosing |σ/σ0 − 1| small enough and c2 is bounded
when σ is close to σ0. Similarly to (a), it follows that for each ε there exists a δ such
that (10) will be less than ε whenever |σ/σ0 − 1| < δ and dQ(η, η0) < δ, where

dQ(η, η0) = inf{ε : Q({x : |η(x) − η0(x)| > ε}) < ε}.

Thus, it suffices to show that the posterior is consistent in terms of joint neighborhood
based on dQ metric of the regression function when the noise distribution is assumed
to be the Laplace distribution.

In addition, when we assume other noise distribution than the Laplace distribution,
that satisfies (2) and 3), it is shown that posterior consistency in terms of dQ metric,
called the dQ consistency is sufficient to achieve Hellinger consistency due to the
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following inequality between Kullback-Leibler divergence and the Hellinger metric:

H4( f, f0)

4
≤ K ( f, f0),

which are from Corollary 1.2.1 and Proposition 1.2.2 of Ghosh and Ramamoorthi
(2003). Also, note that from the conditions (2) and (3), we have

K ( f, f0) ≤ log
σ

σ0
+ c

∣∣∣σ0

σ
− 1

∣∣∣
∫

|y|φ(y)dy + c

σ

∫
|η(x) − η0(x)|dx . (11)

Let δ > 0, Then, the integral in (11) can be written as

∫
|η(x) − η0(x)|dx

=
∫

|η−η0(x)|≤δ

|η(x) − η0(x)|dQ(x) +
∫

|η(x)−η0(x)|>δ

|η(x) − η0(x)|dQ(x)

≤ δ + 2M Q(x : |η(x) − η0(x)| > δ),

where M is the uniform bound stated in the Assumption P.3.
Therefore, it follows that for each ε > 0, there exists a δ > 0 such that H( f, f0)

is less that ε whenever |σ/σ0 − 1| < δ and Q(x : |η(x) − η0(x)| > δ) < δ, which
means that the dQ consistency is sufficient to show the Hellinger consistency.

To prove the dQ consistency, we make use of the same techniques as in the proof
of L1 consistency under fixed covariates of Theorem 1 and need to modify such
techniques to the case of random covariates. Specifically, when we deal with the
case of random covariates, we first condition on the observed values of the covariate.
Then, test functions are constructed the same as in the previous lemmas in Sect. 4.1,
by understanding all probability statements regarding the test constructions in the
previous lemmas as conditional on the covariate values X1 = x1, . . . , Xn = xn . Thus,
Lemma Thus, we only need to show that the quantity in (7) occurs all but finitely often
with probability 1 as in the Lemma 6.

Lemma 6 Assume the covariate values are sampled from a probability distribution
Q and the prior satisfies the Assumption P.3. Let η be a function such that

∫ 1
0 |η(x) −

η0(x)|dQ(x) > ε. Let 0 < r < ε2, and define

An =
{

n∑
i=1

|η(Xi ) − η0(Xi )| ≥ rn

}
.

Then there exists a constant C11 > 0 such that Pr(AC
n ) ≤ exp(−C11n) for all n and

An occurs all but finitely often with probability 1. The same C11 works for all η such
that

∫ 1
0 |η(x) − η0(x)|dQ(x) > ε.

Proof Note that the regression functions are uniformly bounded by the Assump-
tion P.3. Thus, the proof is made by the Bernstein’s inequality. �
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Now, Lemma 7 provides posterior consistency based on the dQ metric.

Lemma 7 Suppose that the values of the covariate in [0, 1] are sampled from a proba-
bility distribution Q. Suppose that Assumptions P.1. and P.2. hold. Let P0 be the joint
distribution of {(Xn, Yn)}∞n=1 assuming that (η0, σ0) is the true value of parameter
and the true joint density of (X, Y ) is f0(x, y) = p(y|x, η0, σ0)q(x). Then for every
ε > 0,

Π

{
(η, σ ) :

∣∣∣∣ σ

σ0
− 1

∣∣∣∣ < ε, dQ(η, η0) < ε
∣∣{(Yi , Xi )}n

i=1

} → 1, a.s. [P0]. (12)

Proof The prior positivity condition, (A1) in Theorem A.1, has been already verified
in Theorem 1, which holds regardless of the feature of covariates. The existence
of uniformly consistent tests, the condition of (A2), are shown from Lemma 6 and
Lemmas 2–5 in the proof of Theorem 1. Hence, the proof is complete. �


To show L1 consistency, first we need to notice the convergence of random
sequences in terms of dQ metric is equivalent to the in-probability convergence of
random sequences (Choi, 2005, Lemma 3.2.1). Since we have the dQ consistency from
Lemma 7 and the regression functions are assumed to be uniformly bounded in the
Assumption P.3, L1 consistency is achieved.

5 Supplementary results

In the previous section, we provided posterior consistency results for the regression
function and the scale parameter under various situations. In this section, we examine
additional issues that are worth further consideration.

5.1 Multi-dimensional covariates

First of all, we consider the case of multi-dimensional covariates, i.e. x = (x1, . . . ,

xd) ∈ [0, 1]d for d ≥ 2. Up to this point, we assumed that the covariate is one
dimensional, but much concern also lies in multi-dimensional framework. Particularly,
in terms of posterior consistency, the results of Ghosal and Roy (2006), Tokdar and
Ghosh (2007) and Choi and Schervish (2007) are demostrated in the higher dimensions
as well under a certain topology of multidimensional probability functions or densities.

In general, the main difficulty in dealing with multidimensional regression function
lies in the so called phenomenon, the “curse of dimensionality”, and this problem also
affects the posterior consistency and makes the results less promising. As a result,
stronger assumptions on design points and the regression functions are required, or
different topologies in the parameter space can be considered. For example, Ghosal and
Roy (2006) treated L1 consistency of a probability function in one dimension with an
assumption about the fixed design points, while in higher dimensions, they considered
the consistency with respect to the empirical measure of the design points, which was
also used in (Ghosal and van der Vaart, 2007, Sect. 7.7) in the regression problems for
the rate of convergence. Choi and Schervish (2007) considered posterior consistency
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of nonparametric regression problems with Gaussian errors with multi-dimensional
covariates with stronger assumptions on the regression function that those for the case
of a one dimensional regression function, but still the equivalent condition about the
covariates to that for one dimensional covariate. We follow the same condition as in
Choi and Schervish (2007), stated as follows:

Assumption P.2d Define

En,d =
{

η : sup
x∈[0,1]d

|η(x)| < n3/4 , sup
x∈[0,1]d

∣∣∣∣ ∂

∂xi
η(x)

∣∣∣∣ < n3/4, i = 1, . . . , d

}
,

and assume that there exists a constant β > 0 such that Πη

{
EC

n,d

}
≤ exp(−nβ).

Assumption D.1d For each hypercube H in [0, 1]d , let λ(H) be its Lebesgue mea-
sure. Suppose that there exists a constant Kd , 0 < Kd ≤ 1 such that whenever
λ(H) ≥ 1

Kd n , H contains at least one design point.
Note that the assumption D.1d is a natural generalization of the Assumption D.1.

into d-dimensional covariate.

Assumption P.3d Let Π ′
η be the prior for η satisfying P.1. for d-dimensional func-

tion and P.2d. Let Ω =
{
η : supx∈[0,1]

∣∣∣ ∂
∂x j

η(x)

∣∣∣ < V, j = 1, . . . , d
}

with V >

supx∈[0,1]
∣∣∣ ∂
∂x j

η0(x)

∣∣∣, j = 1, . . . , d. Assume that Πη(·) = Π ′
η(· ∩ Ω)/Π ′

η(Ω) with

Π ′
η(Ω) > 0.

When we dealt with one dimensional regression function, the assumption P.3d
was unnecessary to achieve L1 consistency based on fixed covariates. However, this
condition is required for d-dimensional fixed covariates, in order to obtain (eq:test1).
Notice that this is irrespective of the feature of noise distribution, only depending on
the nature of covariates (see, Choi and Schervish 2007).

Therefore, based on these modified assumptions, it is easy to achieve the same
results of posterior consistency that have been shown in the previous sections. Note
that under such assumptions, every calculation and verification can be done with the
exact same manner as in the one dimensional case.

5.2 Bayes estimates: predictive approach

Another issue that we can think about is the consistency of Bayes estimates, or exis-
tence of consistent Bayes estimator from the predictive point of view. Generally spea-
king, it is known that Bayes predictive estimates inherit the convergence property of
the posterior (Ghosh and Ramamoorthi 2003, Proposition 4.2.1). Here we consider
this issue in detail. First, we focus on the case where we are interested in estimating
the conditional density, p(y|x), assuming Q(x) is known. Then the most frequently
used Bayes estimator is the predictive density of f0, obtained by

p̂n(y|x) =
∫

p(y|x, θ)dΠ(θ |{(Yi , Xi )}n
i=1). (13)
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Let η0(x) = Ep0 [Y |X = x] = ∫
yp0(y|x)dy be the true regression function and

denote η̂n(x) = E p̂n [Y |X = x] to be the predictive regression function, or a Bayes
estimate of the regression function. Also, we consider the predictiive probability,
P̂Y

n (A|X) = E p̂n IA(Y )|X).
The existence of consistent (predictive) Bayes estimators can be shown in the fol-

lowing theorem.

Theorem 4 Suppose that {(Yi , Xi )}n
i=1 is an i.i.d. random sample from density f0 and

all of assumptions in Theorem 3 hold, so that the posterior distribution is consistent
with respect to Hellinger metric as in Theorem 3. Then, (predictive) Bayes estimates
are consistent in that

1. dH (p0, p̂n) → 0, in Pn
0 probabili t y, where dH (p, p0) is the Hellinger metric.

2.
∫ (

P̂Y
n (A|x) − PY

0 (A|x)
)2

dQ(x) → 0, in Pn
0 probabili t y.

3. Assuming the scale parameter is known as σ0, we have

∫ (
η̂n(x) − η0(x)

)2 dQ(x) → 0, in Pn
0 probabili t y.

Proof Similar results and proofs can be found in Ge and Jiang (2006), who considered
the consistency of Bayes estimates under logistic regression structures.

1. Let ε > 0 and define Aε = { f : dH (p, p0) ≤ ε}. Using Jensen’s inequality, we
have

d2
H (p0, p̂n) ≤ ε2 + 4Π

(
AC

ε |{(Yi , Xi )}n
i=1

)
.

This result was proved in Ge and Jiang (2006), and a similar result was also proved
in Shen and Wasserman (2001) for the rate of convergence.

2. Using Hölder’s inequality, we have

∫ (
P̂Y

n (A|x) − PY
0 (A|x)

)2
dQ(x)

=
∫ [∫

IA(y)( p̂n − p0)

]2

dQ(x)

=
∫ [

IA(y)
(√

p̂n + √
p0

) (√
p̂n −

√
p̂0

)
dy
]2

dQ(x)

≤
∫ [∫

IA(y)2
(√

p̂n + √
p0

)2
dy

] [∫ (√
p̂n − √

p0

)
dy

]2

dQ(x)

Note that
∫

IA(Y )2
(√

p̂n + √
p0

)2
dy ≤ 2

∫
IA(Y )2( p̂n + p0)dy < ∞,

since
∫

IA(Y )2 p̂ndy ≤ ∫ ∫
p(y|x)dydΠ(θ |{(Yi , Xi )}n

i=1) = 1 due to the
Fubini’s theorem. Therefore, (i) implies (ii).
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3. Similarly in (ii), we use Hölder’s inequality to get

∫ (
η̂n − η0

)2 dQ(x)

=
∫ [∫

y( p̂n − p0)

]2

dQ(x)

≤
∫ [∫

y2
(√

p̂n + √
p0

)2
dy

] [∫ (√
p̂n −

√
p̂0

)
dy

]2

dQ(x)

In addition, using Fubini’s theorem, we have

∫
y2

(√
p̂n + √

p0

)2
dy

≤ 2
∫

y2( p̂n + p0)dy

= 2σ 2
0

∫
(y − η + η)2

σ 2
0

p(y|x)dydΠ(θ |{(Yi , Xi )}n
i=1)

+2σ 2
0

∫
(y − η0 + η0)

2

σ 2
0

p0(y|x)dy

= 2σ 2
0 + 2η2 + 2σ 2

0 + 2η2
0 < ∞,

which are bounded for all η ∈ Ω as defined in the Assumption P.3. Therefore, (i)
implies (iii), too. �


6 Conclusions

In this paper, we have studied asymptotic properties of posterior distributions of nonpa-
rametric regression problems when the noise distribution is assumed to be symmetric
non-Gaussian with suitable conditions that include the case of the Laplace distribution.
For posterior consistency, we could verify two sufficient conditions of Theorem A.1. in
the appendix, under non-Gaussian noise distribution and achieve almost sure consis-
tency of posterior distributions. In order to construct the uniformly consistent tests,
we could use the similar test functions to the normal regression problem considered
in Choi and Schervish (2007) and calculate the suitable type I and type II errors for
those test functions under the symmetric non-Gaussian distribution. In our approach,
the noise is assumed to be symmetric with a specific form of density that satisfies
certain conditions. It would be worth while to consider more general cases when the
distribution of noise is unknown but still can be taken to be a random symmetric
density function. Then a prior distribution for this unknown noise distribution needs
to be specified, and this involves another nonparametric Bayesian inference for the
unknown noise distribution as well as the unknown regression function. An alternative
approach to handling this unknown error distribution is to fix the error distribution as
a known distribution, although the true unknown error distribution is different from
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the distribution that has been fixed. This is commonly referred as misspecification of
error distribution. It would be interesting to further investigate the effect of misspeci-
fied error distribution when the error distribution is misspecified to be Laplace whereas
the true distribution is unknown, which has been studied in Kleijn and van der Vaart
(2006). Finally, another open issue that are worth further consideration but have not
been studied in this paper is to see if our formulation can be extended to the condi-
tional median in non-symmetric case. To achieve posterior consistency under these
structures, we see the main difficulty lies in constructing the uniformly consistent
tests, which depends on the formulation of the model structure. Future work should
be directed at alternative approaches to constructing uniformly consistent tests and
posterior consistency, using similar techniques to those in Barron (1989), Barron et al.
(1999) and Walker (2004).
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