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Abstract We consider the problem of constructing functional regression models for
scalar responses and functional predictors, using Gaussian basis functions along with
the technique of regularization. An advantage of our regularized Gaussian basis expan-
sions to functional data analysis is that it creates a much more flexible instrument for
transforming each individual’s observations into functional form. In constructing func-
tional regression models there remains the problem of how to determine the number
of basis functions and an appropriate value of a regularization parameter. We present
model selection criteria for evaluating models estimated by the method of regulariza-
tion in the context of functional regression models. The proposed functional regression
models are applied to Canadian temperature data. Monte Carlo simulations are con-
ducted to examine the efficiency of our modeling strategies. The simulation results
show that the proposed procedure performs well especially in terms of flexibility and
stable estimates.
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812 Y. Araki et al.

1 Introduction

Recently, functional data analysis has received considerable attention in different fields
of application such as criminology, electromyography, signal processing, and a number
of successful applications have been reported (see, e.g., Ramsay and Silverman 2002,
2005; Araki and Konishi 2006; Mizuta 2006).

The basic idea behind functional data analysis is to express discrete observations
in the form of a function, and then draw information from a collection of functional
data by applying concepts from multivariate data analysis. The focus in the present
paper will be on the problem of constructing functional regression models, where the
observed values can be interpreted as a discretized realization of a function evaluated
at possibly differing time points for each subject.

The early works on functional data analysis mainly use Fourier series, spline or
B-spline smoothing techniques in transforming vector-valued data into functions. A
Fourier series is useful as basis functions if the observed data are periodic and have
sinusoidal features. Moreover, a remarkable point is that the orthogonal property of
Fourier series basis yields an identity matrix for the integral of the product of any
two basis functions in model building process. For non-periodic data, splines and B
-splines are employed as a useful tool in transforming discrete data with complex
structure into functions. Despite their attractive properties, there is a drawback in
modeling the relationship between a response and functional predictors. Spline types
of basis functions do not have the orthogonal property, and in consequence the cross-
product matrix may not be directly calculated.

James (2002) presented a technique for extending generalized linear models to a sit-
uation where some of the predictor variables are observations from a curve or function,
in which the spline coefficients for the functional predictor are assumed to be distrib-
uted according to a multivariate normal distribution. In contrast we consider a direct
generalization of functional regression models that uses Gaussian basis expansions for
filtering the predictor functions and weight functions. We propose functional regres-
sion modelings for scalar responses, using Gaussian basis functions along with the
technique of regularization. We also unified functional regression models in the con-
text of generalized linear models. There are several advantages for the use of Gaussian
basis in functional data analysis. First, it creates a much more flexible instrument
for transforming each individual’s observations into functional form. Second, we can
model the coefficient parameter function by using the same Gaussian basis as for the
predictors, since the integral of the product of any two Gaussian basis functions can
be easily calculated.

In practice, individuals are measured at possibly different time points, and the
amount of smoothness imposed on a set of discrete data may differ from each other.
Hence a crucial issue in functional regression modeling is the choice of a smoothing
parameter and the number of basis functions. Cross-validation (CV) and generalized
cross-validation (GCV) are often referred as in the literature. An advantage of these
procedures lies in their independence from probabilistic assumptions. The compu-
tational time of the procedures is very large, however, and the high variability and
tendency to undersmooth in CV and GCV are not negligible in the analysis of func-
tional data, since the selectors are repeatedly applied.
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Functional regression modeling 813

We present an information-theoretic criterion for evaluating models estimated by
the method of regularization in the context of functional regression modeling. The
criteria are applied to choose smoothing parameters and the number of basis functions.
The proposed method is illustrated through real data analyses and numerical studies.
It is shown that the proposed functional regression modeling procedures perform well
especially in terms of flexibility and stable estimates.

This paper is organized as follows. In Sect. 2 we consider a Gaussian basis expansion
for converting the observed discrete data into the functional form. Section 3 describes
the problem of constructing functional regression models that directly model the rela-
tionship between a response and a functional predictor. In Sect. 4, we introduce the
functional logistic regression model with Gaussian bases. In the context of general-
ized linear models we present a functional regression model in Sect. 5 and derive
model selection criteria in Sect. 6. In Sect. 7 Monte Carlo simulations are conducted
to investigate the effectiveness of our modeling strategies. We also apply the proposed
modeling procedure to Canadian temperature data. Summary and concluding remarks
are given in Sect. 8.

2 Functionalization by Gaussian basis functions

Suppose we have n independent observations x1, x2, . . . , xn , where xα are the vectors
consisting of the Nα observed values xα1, xα2, . . . , xαNα at times tα1, tα2, . . . , tαNα ,
respectively. Our goal here is to express this kind of data {(xαi , tαi ); i = 1, 2, . . . ,
Nα, tαi ∈ T ⊂ R} (α = 1, 2, . . . , n) as a set of smooth functions {xα(t);α =
1, 2,. . . , n, t ∈ T } by an appropriate smoothing technique. In this section we drop
the notational dependence on the subject xα and consider a functionalization of the
data {(xi , ti ); i = 1, . . . , N }.

It is assumed that the observed values {(xi , ti ); i = 1, 2, . . . , N } for a subject are
drawn from the regression model

xi = u(ti )+ εi , i = 1, 2, . . . , N, (1)

where u(t) is a smooth function to be estimated and the errors εi are independently,
normally distributed with mean zero and variance σ 2. We also assume that the function
u(t) can be expressed as a linear combination of basis functions

u(t) = ω0 +
m∑

k=1

ωkφk(t;µk, η
2
k ), (2)

where φk(t;µk, η
2
k ) are Gaussian basis functions given by

φk(t;µk, η
2
k ) = exp

{
− (t − µk)

2

2η2
k

}
, k = 1, 2, . . . ,m. (3)
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814 Y. Araki et al.

Here µk are the positions of the centers, ηk are the dispersion parameters and m is the
number of basis functions.

The centers and the dispersion parameters are determined first, then the weights are
estimated, using the method of regularization. This two-stage learning is reported to
solve the problem of convergence and the identification problem (Moody and Darken
1989; Ando et al. 2001, 2005). We use the k-means clustering algorithm to determine
the centers µk and the dispersion parameters ηk of the Gaussian basis functions.
More precisely, the observation points {ti ; i = 1, . . . , N } are divided into m clusters
{C1,C2, . . . ,Cm}, where m is the given number of Gaussian basis functions. The
centers µk and the dispersion parameters ηk of the clusters Ck are then determined by

µ̂k = 1

nk

∑

ti ∈Ck

ti , η̂2
k = 1

nk

∑

ti ∈Ck

(ti − µ̂k)
2, (4)

where nk represents the number of observations that belongs to the cluster Ck . If the
subjects are measured at different times, then all the time points {tαi ; i = 1, . . . , Nα,
α = 1, . . . , n} are divided into m clusters. Replacing µk and ηk in equation (3) by
their sample estimates (4), we have a set of m basis functions

φk(t; µ̂k, η̂
2
k ) = exp

{
− (t − µ̂k)

2

2η̂2
k

}
≡ φk(t), k = 1, 2, . . . ,m. (5)

It follows from (1) and (5) that the nonlinear regression model based on the Gaussian
basis functions for the α-th subject can be written as

f (xi |ti ;ω, σ 2) = 1√
2πσ 2

exp

[
−
{

xi − ωT φ(ti )
}2

2σ 2

]
, i = 1, 2, . . . , N , (6)

where ω = (ω0, ω1, . . . , ωm)
T and φ(t) = (1, φ1(t), . . . , φm(t))T . The maximum

likelihood estimates of the parameters ω and σ 2 can be easily obtained. However,
in the context of functional data analysis, all the individual data that are observed
discretely should be smoothed by using the common basis functions. Moreover, it is
expected that the amount of smoothness imposed on sets of discrete data will differ
between the subjects. To take this into account, the parameters ω and σ 2 are estimated
by using the regularization method instead of the maximum likelihood method.

The regularization method maximizes the penalized log-likelihood function

�ζ (ω, σ
2) =

N∑

i=1

log f (xi |ti ;ω, σ 2)− Nζ

2
ωT Kω

= − N

2
log(2πσ 2)− 1

2σ 2 (x −
ω)T (x −
ω)− Nζ

2
ωT Kω, (7)

where x = (x1, . . . , xN )
T ,
 is an N × (m + 1) matrix defined by 
 = (φ(t1), . . . ,

φ(tN ))
T and ζ is the regularization or smoothing parameter, which adjusts the amount
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Functional regression modeling 815

of smoothness and also avoids ill-posed problems. Typical forms for the regularization
term are given as

m∑

j=k+1

(�kw j )
2 = wT DT

k Dkw,

m∑

j=0

w2
j = wT Im+1w, (8)

where � is a difference operator such as �w j = w j − w j−1, Dk is an (m + 1 −
k)×(m +1) matrix that represents the kth order difference operator�k and Im+1 is an
(m +1) dimensional identity matrix. Hence the regularization term can be represented
as a quadratic form η(w) = wT Kw by taking appropriate matrix DT

k Dk or Im+1 for
the (m + 1) × (m + 1) matrix K . The penalized maximum likelihood estimates are
given by

ω̂ = (
T
+ Nζ σ̂ 2 K )−1
T x, σ̂ 2 = 1

N

N∑

i=1

{
xi − ω̂

T
φ(ti )

}2
. (9)

Then the observed discrete data {(xi , ti ); i = 1, . . . , N } are converted into the func-
tional form given by

û(t) = ω̂0 +
m∑

k=1

ω̂kφk(t) ≡ x(t). (10)

We note here that in the functional regression modeling all the individual data
observed discretely should be smoothed by using the common basis functions. The
amount of the smoothness imposed on sets of discrete data will differ among the
subjects, however. Hence we transfer the issue of the number of basis functions into
the choice of the smoothing parameter.

In practice, we first obtain the optimal number of basis functions by using GIC
(Ando et al. 2005) for each curve. Then the most frequently selected number of basis
functions (m) among n sample is determined. Once m is fixed, then we choose the
optimum value of the smoothing parameter ζ for each set of discrete data as the
minimizer of the criterion.

GIC(ζ ) = N log(2πσ̂ 2)+ N + 2tr{Q R−1}, (11)

where σ̂ 2 is given in (9) and the (m + 2)× (m + 2)matrices Q and R are respectively
given by

Q = 1

N σ̂ 2

⎛

⎜⎜⎝

1

σ̂ 2

T�2
− ζK ω̂1T

N�

1

2σ̂ 4

T�31N − 1

2σ̂ 2

T�1N

1

2σ̂ 4 1T
N�

3
− 1

2σ̂ 2 1T
N�


1

4σ̂ 6 1T
N�

41N − N

4σ̂ 2

⎞

⎟⎟⎠ , (12)
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R = 1

N σ̂ 2

⎛

⎜⎝

T
+ Nζ σ̂ 2 K

1

σ̂ 2

T�1N

1

σ̂ 2 1T
N�


N

2σ̂ 2

⎞

⎟⎠ , (13)

where 1N = (1, 1, . . . , 1)T and � = diag[ x1 − ω̂
T
φ(t1), . . . , xN − ω̂

T
φ(tN )].

The observed discrete data {(xαi , tαi ); tαi ∈ T , i = 1, . . . , Nα} (α = 1, . . . , n) are
smoothed by the method described above, producing a functional data set {xα(t); α =
1, . . . , n} given by

û(t) = ω̂α0 +
m∑

k=1

ω̂αkφk(t) ≡ xα(t), t ∈ T ⊂ R, (14)

with the common basis functions {φ1(t), . . . , φm(t)}. In the next section we model the
relationship between a response and a functional predictor.

3 Functional regression model with Gaussian noise

Suppose that the n sets of observed discrete data {(xαi , tαi ); tαi ∈ T ⊂ R, i =
1, . . . , Nα} (α = 1, . . . , n) are functionalized by the method described in the previous
section, and that we have {(xα(t), yα); t ∈ T , α = 1, 2, . . . , n}, where xα(t) are
functional predictors and yα are time independent scalar responses. Assume that the
functional predictor xα(t) for the αth subject is

xα(t) = wα0 +
m∑

k=1

wαkφk(t)

= wT
αφ(t), (15)

where wα = (wα0, wα1, . . . , wαm)
T are the estimated weight vectors and φ(t) =

(1, φ1(t), . . . , φm(t))T is a vector of Gaussian basis functions φk(t) given by Eq. (5).
In order to draw information from the set of functional data, we model the relation-

ship between the response and predictor as follows:

yα = β f +
∫

T
xα(t)β(t)dt + εα, α = 1, 2, . . . , n, (16)

where εα are independently, normally distributed with mean 0 and variance σ 2

(Ramsay and Silverman 2005). Using the same Gaussian basis functions φ(t) as in
(15), we expand the functional parameter as

β(t) = β0 +
m∑

k=1

βkφk(t)

= γ T φ(t), (17)
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Functional regression modeling 817

where γ = (β0, β1, . . . , βm)
T . Substituting Eqs. (15) and (17) into Eq. (16) yields

yα = β f + wT
α

∫
φ(t)φ(t)T dtγ + εα

= β f + wT
α Jγ + εα

= zT
αβ + εα, α = 1, 2, . . . , n, (18)

where zT
α = (1,wT

α J ), β = (β f , γ
T )T and J is an (m + 1) × (m + 1) matrix with

( j, k)th element

J jk =
∫
φ j (t)φk(t)dt, j, k = 0, 1, . . . ,m. (19)

An advantage of the use of the Gaussian type of basis functions is that the integral
of the product of any two Gaussian basis functions can be easily calculated. In fact,

we have J00 = 1, J0k =
√

2πη̂2
k (k = 1, . . . ,m), J j0 =

√
2πη̂2

j ( j = 1, . . . ,m) and

J jk =
√

2π
√

1

η̂2
j

+ 1

η̂2
k

exp

{
− 1

2(η̂2
j + η̂2

k )
(µ̂ j − µ̂k)

2

}
, j, k = 1, . . . ,m, (20)

where µ̂ j and η̂ j are given in equation (4). Then it follows from (18) that the likelihood
function is given by

n∏

α=1

f (yα|xα;β, σ 2) =
(

1√
2πσ 2

)n

exp

{
− 1

2σ 2

n∑

α=1

(
yα − zT

αβ
)2
}

=
(

1√
2πσ 2

)n

exp

{
− 1

2σ 2 ( y − Zβ)T ( y − Zβ)

}
, (21)

where xα is the functional predictor, y = (y1, . . . , yn)
T and Z is an n × (m + 2)

matrix defined by

Z T = (z1, . . . , zn) =
(

1 1 . . . 1

J T w1 J T w2 . . . J T wn

)
. (22)

Our Gaussian basis function regression models can also be applied to analyze a set of
multidimensional functional data such as surface fitting, since the explicit formula for
the J matrix in the Eq. (19) can be easily obtained by calculating the integral of the
product of any two Gaussian basis functions.

The maximum likelihood method often gives an unsatisfactory result in estimating
the functional regression coefficient β(t) in terms of instability and computability. The
inverse of Z T Z , which is required for computing the maximum likelihood estimates,
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818 Y. Araki et al.

tends to be unstable and often yields an ill-posed problem, especially in functional
logistic model. Hence we estimate the (m+2)-dimensional unknown parameter vector
β and the error variance σ 2 by the method of regularization.

Instead of maximizing the log-likelihood function, we choose the β and σ 2 to
maximize the penalized log-likelihood function

�λ(β, σ
2) = −n

2
log(2πσ 2)− 1

2σ 2 ( y − Zβ)T ( y − Zβ)− nλ

2
βT Kβ, (23)

where K is an (m + 2) × (m + 2) penalty matrix and λ is a smoothing parameter
that controls the smoothness of the functional parameter. For a fixed value of the
regularization parameter λ, the penalized maximum likelihood estimates are given by

β̂ = (Z T Z + nσ̂ 2λK )−1 Z T y and σ̂ 2 = 1

n
( y − Z β̂)T ( y − Z β̂). (24)

Adding a positive constant to the elements of Z T Z , the solution β̂ makes the problem
nonsingular even when Z T Z is not of full rank.

We choose the value of the smoothing parameter which minimizes the information
criterion derived in Sect. 6. Then the functional parameter estimate and the predictive
values are, respectively, given by

β̂(t) = γ̂
T
φ(t) and ŷ = Z(Z T Z + nσ̂ 2λK )−1 Z T y. (25)

4 Functional logistic regression model

We consider a functional regression modeling in the case of a binary response variable,
resulting in functional logistic regression with regularization parameter estimates.

Suppose that {yα; α = 1, 2, . . . , n} are independent observations of a response Y
taking the value 0 or 1, associated with the functional data {xα(t); t ∈ T ,α = 1, . . . , n}
for a predictor where xα(t) are given by Eq. (15). The conditional probabilities of Y
given the functional predictor xα are assumed to be

Pr(Yα = 1|xα) = π(α) and Pr(Yα = 0|xα) = 1 − π(α). (26)

We consider the functional logistic regression model in the form

log

{
π(α)

1 − π(α)

}
= β f +

∫

T
xα(t)β(t)dt. (27)
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By using the same Gaussian basis functions φ(t)= (1, φ1(t), . . . , φm(t))T as in (15),
we expand the functional parameter β(t) as

β(t) = β0 +
m∑

k=1

βkφk(t)

= γ T φ(t), (28)

where γ = (β0, β1, . . . , βm)
T . Substituting β(t) and xα(t) into Eq. (27), we have

log

{
π(α)

1 − π(α)

}
= zT

αβ, (29)

where β = (β f , γ
T )T and zT

α = (1,wT
α J ) with (m + 1) × (m + 1) matrix J= (J jk)

given by Eq. (19).
The conditional probabilities can be rewritten as

π(α) =
exp

{
β f +

∫

T
xα(t)β(t)dt

}

1 + exp

{
β f +

∫

T
xα(t)β(t)dt

}

= exp
(
zT
αβ
)

1 + exp
(
zT
αβ
) . (30)

Then the log-likelihood function for yα in terms of β is

�(β) =
n∑

α=1

{
yα logπ(α) + (1 − yα) log(1 − π(α))

}

=
n∑

α=1

[
yα
(
βT zα

)
− log

{
1 + exp

(
βT zα

)}]
. (31)

Estimates for β can be found using a regularization method that maximizes the penal-
ized log-likelihood function

�λ(β) =
n∑

α=1

[
yα
(
βT zα

)
− log

{
1 + exp

(
βT zα

)}]
− nλ

2
βT Kβ, (32)

where K is an (m + 2)× (m + 2) penalty matrix and λ is a smoothing parameter that
controls the smoothness of β(t).
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When a particular value of λ is given, the following iterative algorithm, Newton–
Raphson method, is used to find the parameter estimates,

βnew = βold +
{

−∂
2�λ(β

old)

∂β∂βT

}−1
∂�λ(β

old)

∂β
. (33)

The updated β̂ is given by

β̂
new = (Z T DZ + nλK )−1 Z T Dξ , (34)

where Z is given by Eq. (22), ξ = Zβold + D−1( y − �1), y = (y1, . . . , yn)
T ,

1 = (1, . . . , 1)T and

D = diag
[
π(1){1 − π(1)}, . . . , π(n){1 − π(n)}

]
,

� = diag
[
π(1), π(2), . . . , π(n)

]
.

After choosing the value of the smoothing parameter λ that minimizes the infor-
mation criterion derived in Sect. 6, we have the estimate of the functional parameter
and the predicted value given by

β̂(t) = γ̂
T
φ(t) and ŷ =

exp
(

zT
α β̂
)

1 + exp
(

zT
α β̂
) , (35)

respectively.

5 Functional generalized linear models

Generalized linear model (GLM) introduced by Nelder and Wedderburn (1972) pro-
vides a unified theoretical and computational framework for a class of nonlinear and
nonnormal regression models. Green and Silverman (1994) proposed nonparametric
GLM with roughness penalty methods. The functional version of GLM was implicitly
introduced in the literature by Marx and Eilers (1999) as a penalized splines proce-
dure. This section considers various types of functional regression models based on
Gaussian basis functions in the context of generalized linear models.

Suppose that we have n sets of observations {(xα(t), yα); t ∈ T } (α = 1, 2, . . . , n),
where yα is a scalar response and xα(t) are functional predictors. It is assumed that the
functional predictor xα(t) for theαth subject is functionalized by the method described
in Sect. 2 and is given by
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xα(t) = wα0 +
m∑

j=1

wα jφ j (t)

= wT
αφ(t), α = 1, 2, . . . , n, (36)

where wα = (wα0, wα1, . . . , wαm)
T and φ(t) = (1, φ1(t), φ2(t), . . . , φm(t))T is a

vector of the Gaussian basis functions.
To draw information from a collection of the functional data, we use the exponential

family of densities

f (yα|xα; ξα, ψ) = exp

{
yαξα − b(ξα)

ψ
+ c(yα, ψ)

}
, (37)

where b(·) and c(·, ·) are specific functions and ξα and ψ are unknown parameters.
Under the functional generalized linear model framework, the conditional expectation
E[yα|xα] = µα(= b′(ξα)) is related to the predictor ηα by h(µα) = ηα , where h(·) is
a link function. In systematic component, it is assumed that

h(µα) = ηα = βa +
∫

T
xα(t)β(t)dt. (38)

Using the same Gaussian basis functions φ1(t), φ2(t), . . . , φm(t) as in Eq. (36), we
expand the functional parameter as

β(t) = β0 +
m∑

k=1

βkφk(t)

= γ T φ(t), (39)

where γ = (β0, β1, . . . , βm)
T . The systematic component can then be expressed as

h(µα) = βa +
m∑

j=0

m∑

k=0

wα jβk

∫
φ j (t)φk(t)dt

= βa + wT
α Jγ

= zT
αβ, α = 1, 2, . . . , n, (40)

where J is an (m + 1) × (m + 1) cross-product matrix given as in Eq. (20), β

= (βa, γ
T )T is the (1 + m)-dimensional parameter vector and zα = (1,wT

α J )T .
Combining the random component (37) and the systematic component ( 40), we have
a functional generalized linear model

f (yα|xα;β, ψ) = exp

{
yαk(zT

αβ)− r(zT
αβ)

ψ
+ c(yα, ψ)

}
, (41)

where k(·) = b′−1 ◦ h−1(·) and r(·) = b ◦ b′−1 ◦ h−1(·).
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822 Y. Araki et al.

The unknown parameters β and ψ are estimated by maximizing the penalized
log-likelihood function

�λ(β, ψ) =
n∑

α=1

{
yαk(zT

αβ)− r(zT
αβ)

ψ
+ c(yα, ψ)

}
− nλ

2
βT Kβ, (42)

where K is an (m + 2)-dimensional positive semidefininte matrix with rank m − d.
The maximum penalized likelihood estimator β̂ is a solution of the penalized like-

lihood equation ∂�λ(β, ψ)/∂β = 0. This solution in general will be a nonlinear
optimization problem, and for fixed values of ψ and λ, the iteration may be expressed
as

βnew = (Z T W Z + nλψK )−1 Z T W k, (43)

where Z is given in (22), k is an n dimensional vector with the αth element given by
kα = (yα−µα)h′(µα)+ zT

αβ and W is an n ×n diagonal matrix with the αth element

given by wαα = {b′′(ξα)h′(µα)2
}−1

.
In each Fisher scoring step β is updated to βnew by (43) until a suitable convergence

criterion is satisfied. After the estimate β̂ is obtained, the estimate of the scale parameter
ψ is given as a solution of ∂�λ(β̂, ψ)/∂ψ = 0. Substituting the sample estimates β̂

and ψ̂ into Eq. (41) yields the statistical model

f (yα|xα; β̂, ψ̂) = exp

{
yαk(zT

α β̂)− r(zT
α β̂)

ψ̂
+ c(yα, ψ̂)

}
, (44)

which depends on the values of the smoothing parameter λ. In Sect. 6, we derive a
model selection criterion for evaluating the functional generalized linear models with
Gaussian basis functions from an information theoretic point of view.

The functional generalized linear model can be used with various types of distrib-
utions. Here shown are two examples.

Example 1 Suppose that the observations yα are independently and normally distrib-
uted with mean µα and common variance σ 2. By taking b(ξα) = ξ2

α/2, ψ = σ 2,
c(yα, ψ) = −y2

α/(2σ
2) − log(σ

√
2π) and h(µα) = µα in the exponential family of

densities (37), we have a functional regression model with Gaussian noise explained
in Sect. 3.

Example 2 Suppose that we have n sets of observations {(xα(t), yα); t ∈ T ,
α = 1, 2, . . . , n}, where xα(t) are a functional predictor and yα are independent
random variables coded as either 0 or 1. By taking b(ξα)= log{1 + exp(ξα)}, ψ = 1,
c(yα, ψ) = 0 and h(µα) = log{µα/(1 − µα)} in (37), we have a functional logistic
regression model explained in Sect. 4.
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6 Model selection criteria

In the functional regression models, we need to determine the appropriate values of
the adjusted parameters that include the number of basis functions and a smoothing
parameter or a regularization parameter. Choosing these parameters can be viewed as a
model selection and evaluation problem; how to choose the best approximating model
from the competing models by a suitable criterion. Although there is a large amount
of literature regarding model selection (see, for example, Linhart and Zucchini 1986;
Rao and Wu 2001), research on model selection for functional data analysis has not yet
been developed. Rice and Wu (2001) used the model selection techniques AIC (Akaike
information criterion), BIC (Bayesian information criterion) and CV (cross-validation)
to select the number of breakpoints for the splines. Ramsay and Silverman (2005) used
CV in a functional linear model to choose the smoothing parameter. It might be noticed
that AIC and BIC cover only models estimated by the maximum likelihood method.
Estimation in our model building process is by regularization. Hence we obtain a model
selection criterion for evaluating models estimated by regularization in the context of
functional regression modeling.

6.1 Generalized information criterion

Suppose that independent responses y1, . . . , yn are generated from an unknown true
distribution G(y|x) having probability density g(y|x). Based on the information con-
tained in the observations, we choose a model which consists of a family of probabil-
ity distributions f (y|x; θ), where θ = (θ1, . . . , θp)

T is the p-dimensional vector of
unknown parameters. This specified parametric family of densities may or may not
contain the true density g(y|x).

The unknown parameter vector θ in a specified model is estimated by the method of
regularization, and we have a statistical model f (y|x; θ̂)with regularized estimator θ̂ .
Once a statistical model has been estimated, then an overall measure of the divergence
of the statistical model from the true density would be assessed by the Kullback-Leibler
information (Kullback and Leibler 1951) from the predictive point of view.

Suppose that z = {z1, . . . , zn} are future observations for the response variable
drawn from g(y|x). Let f (z|x; θ̂) =∏n

α=1 f (zα|xα; θ̂) and g(z|x) =∏n
α=1g(zα|xα).

Then the Kullback–Leibler information is given by

I {g, f } = EG(z|x)

[
log

g(z|x)
f (z|x; θ̂)

]

= EG(z|x)
[
log g(z|x)]− EG(z|x)

[
log f (z|x; θ̂)

]
. (45)

We choose the model that minimizes the Kullback-Leibler information from among
different statistical models. A model selection criterion is obtained as an estima-
tor of the Kullback-Leibler information or equivalently minus twice the expected
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log-likelihood −2EG(z|x)[log f (z|x; θ̂)] and is, in general, given by

IC = −2
n∑

α=1

log f (yα|xα; θ̂)+ 2b̂(G), (46)

where b̂(G) is an estimator of the bias defined by

b(G) = EG( y|x)

[
n∑

α=1

log f (yα|xα; θ̂)− EG(z|x)[log f (z|x; θ̂)]
]
. (47)

Konishi and Kitagawa (1996) obtained an asymptotic bias for a statistical model
with functional estimator and approximated the bias by the trace of a matrix for
products of the empirical influence function of estimators and the score function of a
specified parametric model. The influence function of the regularized estimator θ̂ is
given by

T (1)(y|x; G) = R(G)−1 ∂{log f (y|x; θ)− (1/2)θT K θ}
∂θ

∣∣∣∣∣
θ=θ̂

,

where

R(G) = −
∫

∂2

∂θ∂θT

{
log f (y|x; θ)− (1/2)θT K θ

}
dG.

Then using Theorem 2.1 given by Konishi and Kitagawa (1996, p. 876), we have an
information criterion

GIC = −2
n∑

α=1

log f (yα|xα; θ̂)+ 2tr{R(Ĝ)−1 Q(Ĝ)}, (48)

where the matrices in the bias correction term are, for the empirical distribution func-
tion Ĝ, given by

R(Ĝ) = −1

n

n∑

α=1

∂2

∂θ∂θT

{
log f (yα|xα; θ)− (1/2)θT K θ

}∣∣∣∣∣
θ=θ̂

,

(49)

Q(Ĝ) = 1

n

n∑

α=1

∂{log f (yα|xα; θ)− (1/2)θT K θ}
∂θ

∂ log f (yα|xα; θ)

∂θT

∣∣∣∣∣
θ=θ̂

.

Substituting the density (41) into Eqs. (48) and (49) and differentiating the result with
respect to θ and ψ , we have the following result;

GIC(λ) = −2
n∑

α=1

{
yαk(zT

α β̂)− r(zT
α β̂)

ψ̂
+ c(yα, ψ̂)

}
+ 2tr

(
Q̂ R̂−1

)
, (50)
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where Q̂ and R̂ are the (m + 3) × (m + 3) matrices given by

Q̂ = 1

nψ̂

(
Z T�/ψ̂ − λK β̂1T

n

pT

)(
�Z , ψ̂ p

)
,

(51)

R̂ = 1

nψ̂

(
Z T�Z + nψ̂λK Z T�1n/ψ̂

1T
n �Z/ψ̂ −ψ̂qT 1n

)
.

Here � and � are the n × n diagonal matrices with the α-th diagonal elements

�αα = yα − µ̂α

b′′(ξ̂α)h′(µ̂α)
,

�αα =
(yα − µ̂α)

{
b′′′(ξ̂α)h′(µ̂α)+ b′′(ξ̂α)2h′′(µ̂α)

}

{
b′′(ξ̂α)h′(µ̂α)

}3 + 1

b′′(ξ̂α)h′(µ̂α)2
,

and p and q are n-dimensional vectors with α-th elements

pα = − yαk(zT
α β̂)− r(zT

α β̂)

ψ̂2
+ ∂

∂ψ
c(yα, ψ)

∣∣∣∣∣
ψ=ψ̂

,

qα = ∂pα
∂ψ

∣∣∣∣
ψ=ψ̂

.

We present model selection criteria for evaluating functional regression and func-
tional logistic regression models with multiple predictors constructed by the regular-
ized Gaussian basis functions.

Example 3 Consider the functional regression model given in Sect. 3. The statisti-
cal model estimated by the regularization method is given by f (yα|xα; β̂, σ̂ 2) =
(2πσ̂ 2)−1/2 exp{−(yα − zT

α β̂)2/(2σ̂ 2)}. By taking b(ξ̂α) = ξ̂2
α/2, ψ̂ = σ̂ 2,

c(yα, ψ̂) = −y2
α/(2σ̂

2) − log(σ̂
√

2π), h(µ̂α) = µ̂α in (50) and (51), we have a
generalized information criterion for evaluating the statistical model in the following;

GIC(λ) = n(log 2π + 1)+ n log σ̂ 2 + 2tr
(

Q̂ R̂−1
)
,

where matrices Q̂ and R̂ are given by

R̂ = 1

nσ̂ 2

⎛

⎜⎝
Z T Z + nλσ̂ 2 K

1

σ̂ 2 Z T �̂1n

1

σ̂ 2 1T
n �̂Z

n

2σ̂ 2

⎞

⎟⎠ , (52)

Q̂ = 1

nσ̂ 2

⎛

⎜⎜⎝

1

σ̂ 2 Z T �̂2 Z − λK β̂1T
n �̂Z

1

2σ̂ 4 Z T �̂31n − 1

2σ̂ 2 Z T �̂1n

1

2σ̂ 4 1T
n �̂

3 Z − 1

2σ̂ 2 1T
n �̂Z

1

4σ̂ 6 1T
n �̂

41n − n

4σ̂ 2

⎞

⎟⎟⎠ , (53)
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where �̂ = diag{y1 − β̂
T

z1, . . . , yn − β̂
T

zn}.
Example 4 Consider the functional logistic regression model given in Sect. 4. The
statistical model estimated by the regularization method is given by f (yα|xα; β̂) =
{π̂ (α)}yα {1 − π̂ (α)}1−yα , where π̂ (α) = exp(zT

α β̂)/{1 + exp(zT
α β̂)}. By taking b(ξ̂α)

= log{1 + exp(ξ̂α)}, ψ = 1, c(yα, ψ) = 0 and h(µ̂α) = log{µ̂α/(1 − µ̂α)} in (50)
and (51), we have a model selection criterion for evaluating the statistical model in
the following;

GIC(λ) = −2
n∑

α=1

[
yα
(
β̂

T
zα
)

− log
{

1 + exp
(
β̂

T
zα
)}]

+ 2tr
(

Q̂ R̂−1
)
, (54)

where the matrices Q̂ and R̂ are respectively given by

Q̂ = 1

n

{
Z T �̂2 Z − λK β̂1T

n �̂Z
}

and R̂ = 1

n
Z T �̂(In − �̂)Z + λK , (55)

where �̂ = diag
[
y1 − π̂ (1), y2 − π̂ (2), . . . , yn − π̂ (n)

]
and �̂ = diag[π̂ (1), π̂ (2), . . . ,

π̂ (n)].
There exist other criteria for selecting the smoothing parameters in the functional

regression model with Gaussian noise.

6.2 Modified AIC

Suppose that the fitted value ŷ = (ŷ1, . . . , ŷn)
T may be expressed as ŷ = S y, where S

is the hat matrix for functional regression model with Gaussian noise, S = Z(Z T Z +
nσ̂ 2λK )−1 Z T . Then Hastie and Tibshirani (1990) and Hurvich et al. (1998) proposed
to use the trace of the smoother matrix as an approximation to the model complexity.
By replacing the number of parameters in AIC by the trace of the smoother matrix,
we have

MAIC(λ) = −2
n∑

α=1

log f (yα|xα; β̂, ψ̂)+ 2trS, (56)

where β̂ and ψ̂ are regularized estimates. A problem may arise in the theoretical
justification for the use of the bias-correction terms in MAIC selector automatically,
since AIC covers only models estimated by the maximum likelihood method.

6.3 Cross-validation

Cross-validation method creates the new observation situation from the given data by
predicting for each observation based on the remaining data. Let ŷ(−α) be a regression
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response value estimated by the observed data except (xα(t), yα). The cross-validation
criterion is then

CV(λ) = 1

n

n∑

α=1

(
yα − ŷ(−α)

)2

= 1

n

n∑

α=1

(
yα − ŷα

1 − Sαα(λ)

)2

, (57)

where Sαα(λ) is an αth diagonal element of the hat matrix S.
Generalized cross-validation, a modified form of cross-validation, introduced by

Craven and Wahba (1979) replaces Sαα(λ) in Eq. (57) by the average and is

GCV(λ) = 1

n

n∑

α=1

(
yα − ŷα

1 − trS/n

)2

.

In the next section, we compare GIC with modified AIC, cross-validation and
generalized cross-validation through Monte Carlo simulations.

7 Numerical results and practical examples

7.1 Role of a smoothing parameter

In the functional regression modeling all the individual data that are observed dis-
cretely should be smoothed by using the common basis functions. The amount of the
smoothness imposed on sets of discrete data will differ among the subjects. Therefore,
the smoothing parameter plays an important role in adjusting the difference of the indi-
vidual smoothness. We conduct a Monte Carlo simulation to examine the efficiency
of the smoothing parameter ζ for a regression model with the fixed number of basis
functions.

Figure 1 plots a set of 100 generated data from the model

(a) yα = exp(−2xα) sin(5πxα)+ εα, (b) yα = sin(2πx3
α)+ εα,

where the errors εα are assumed to be independently distributed according to the
normal distribution with means 0 and the standard deviations are taken as 0.2Ry with
Ry being the range of (a) exp(−2xα) sin(5πxα) and (b) sin(2πx3

α), over the input
space. The independent variable xα are generated from uniform distribution on [0, 1].

The solid lines are smoothed curves produced by using Gaussian basis func-
tions, estimated by the regularization method. The number of basis functions and
the smoothing parameter ζ were selected by GIC in Eq. (11). The selected values
were m = 6, ζ = 10−2.9, GIC = 46.35 for (a) and m = 4, ζ = 10−2.1, GIC = 93.66
for (b).

Next we tried to adjust the smoothness of each curve by changing only the smooth-
ing parameter, fixing the number of basis functions. First, 100 pairs of data were
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Fig. 1 Gaussian basis function smoothing; the figures (a) and (b) show the regularized Gaussian basis
functions that fit to the data generated from the true model (a) yα = exp(−2xα) sin(5πxα) + εα, (b)
yα = sin(2πx3

α)+ εα, and ε ∼ N (0, 0.2Ry), with Ry being the range of y over the input space

generated from the models (a) and (b), and the optimal number of basis functions and
the smoothing parameter were determined by GIC. Then the mean squared errors of∑100
α=1{û(xα) − u(xα)}2/100 were calculated, where u(x) denotes the true function.

Second, with a fixed m = 6, only the number of the smoothing parameter was selected
by the GIC and the mean squared errors were calculated. This process was repeated
100 times and the averages of the 100 simulation were obtained.

When the number of the basis functions and also the smoothing parameter being
selected by GIC, the mean squared errors for the models (a) and (b) are 0.02270
and 0.04351, respectively. On the other hand, when we fixed the number of the basis
functions as m = 6, the resulting values for the models (a) and (b) were 0.02941 and
0.04782, respectively. The differences between the adjusting number of basis and the
fixed number of basis for (a) and (b) are 6.71×10−3 and 4.31×10−3, respectively. This
result shows the effect of the smoothing parameter for the regression model with a fixed
number of basis functions. We can conclude that even with a fixed number of basis
functions, the smoothing parameter ζ can effectively adjust individual smoothness
differences.

7.2 Monte Carlo simulation

Monte Carlo experiments were conducted to investigate the effectiveness of the pro-
posed modeling strategy with GIC comparing to others (modified AIC (MAIC), cross-
validation (CV) and generalized cross-validation (GCV)). In the simulation study,
we generated a data set {(yα, xα(t)); α = 1, . . . , n, t ∈ T } according to the fol-
lowing procedure. Firstly, scalar responses yα were generated from the true model
yα = g(uα) + εα with g(uα) = ∫ β(t)uα(t)dt , where u(t) and β(t) are given as
follows.
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(a) β(t) = t2, uα(t) = exp(a1αt)+ a2αt,

a1 ∼ N (2, 0.32), a2 ∼ N (−3, 0.42), T = [−1, 1], (58)

(b) β(t) = t2, uα(t) = b1α + b2αt + b3αt2 + b4αt3,

b1 ∼ N (0.2, 0.12), b2 ∼ N (0.4, 0.22), b3 ∼ N (0.1, 0.082),

b4 ∼ N (0.4, 0.12), T = [−1, 2]. (59)

The errors εα are assumed to be independently distributed according to the normal
distributions with means 0 and the variances are taken as (I) σ 2 = 0.01Rx , (II) σ 2 =
0.05Rx with Rx being the range of g(uα) over the input space. Secondly, functional
predictors xα(t) were generated as following steps:

Step 1. The design points {ti ; i = 1, . . . , 100} are generated independently from
uniform distribution on T .

Step 2. We obtain a discrete data set {(xαi , ti ); i = 1, . . . , 100, ti ∈ T }, where
xαi = uα(ti ) + eαi . The errors eαi are independently, normally distributed
with mean 0 and variance 1.

Step 3. The discrete data sets are transformed into a functional data set {xα(t); α =
1, . . . , n} along with the smoothing technique described in Sect. 2.

We fitted the functional regression model. The smoothing parameter λ was deter-
mined by GIC, MAIC, CV and GCV. Tables 1 and 2 compare the average squared
errors ASE =∑n

α=1{g(uα)− ŷα}2/n, and the means and standard deviations of the
smoothing parameter λ. The simulation results were obtained by averaging over 100
Monte Carlo trials. It may be seen from the simulation results that the models eval-
uated by GIC are superior to those based on CV-type or MAIC in all cases in the
sense that they give smaller average squared error (ASE). The standard deviations of
λ determined by GIC are smaller than the others in many cases.

7.3 Canadian temperature data

We investigate the efficiency of our functional regression modeling technique through
the analysis of Canadian temperature data (Ramsay and Silverman 2005), for which
we compare models constructed by the cross-validation (CV) and the GIC via the
bootstrap method (Efron 1979). The data consist of daily average temperatures and
annual rainfall observed at thirty-five Canadian weather stations.

Ramsay and Silverman (2005) transformed the daily average temperature data into a
temperature function by Fourier expansion. The number of basis functions was selected
subjectively based on the amount of variability in the estimated regression coefficient
function. Next, the functional regression model was fitted by minimizing penalized
squared error and the smoothing parameter λ was selected by the CV method.

To investigate the stability of the functional regression model evaluated by GIC,
100 sets of bootstrap samples were generated from the 35 temperature functions,
and the regression coefficient function β̂(t) was estimated for each bootstrap sample.
The estimates based on CV created a large variation, while the estimates based on
the GIC were stable as we can observe from the Fig. 2a and b. The averages of
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Table 1 Comparison of the average squared errors (ASE) based on various criteria for the simulation (a)

GIC MAIC CV GCV

n = 25

σ 2/Rx = 0.01

ASE 2.548×10−4 2.669×10−4 2.697×10−4 2.632×10−4

λ 2.934×10 3.174×10 3.288×10 3.335×10

SD(λ) 2.814×10 2.779×10 2.764×10 2.760×10

σ 2/Rx = 0.05

ASE 6.810×10−3 7.371×10−3 7.340×10−3 6.878×10−3

λ 2.469×10 3.012×10 3.241×10 3.565×10

SD(λ) 2.705×10 2.791×10 2.764×10 2.701×10

n = 50

σ 2/Rx = 0.01

ASE 2.493×10−4 2.515×10−4 2.591×10−4 2.527×10−4

λ 1.646×10 2.285×10 2.488×10 2.367×10

SD(λ) 2.461×10 2.758×10 2.795×10 2.785×10

σ 2/Rx = 0.05

ASE 6.475×10−3 6.851×10−3 6.846×10−3 6.756×10−3

λ 3.327×10 3.432×10 3.487×10 3.487×10

SD(λ) 2.769×10 2.754×10 2.742×10 2.743×10

n = 100

σ 2/Rx = 0.01

ASE 2.527×10−4 2.572×10−4 2.574×10−4 2.573×10−4

λ 0.782×10 1.578×10 1.759×10 1.631×10

SD(λ) 1.778×10 2.536×10 2.537×10 2.564×10

σ 2/Rx = 0.05

ASE 6.175×10−3 6.199×10−3 6.287×10−3 6.203×10−3

λ 0.784×10 0.851×10 1.072×10 0.906×10

SD(λ) 1.914×10 2.015×10 2.215×10 2.069×10

the squared differences between the predicted values ŷα and the observed values yα
(α = 1, . . . , 35) for 100 bootstrap replications were 6.27 × 10−11 by the GIC and
1.21 × 10−10 by CV. For comparison with CV as a model selector, we observe the
efficiency of the proposed modeling procedure based on the Gaussian basis function
with the GIC.
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Table 2 Comparison of the average squared errors (ASE) based on various criteria for the simulation (b)

GIC MAIC CV GCV

n = 25

σ 2/Rx = 0.01

ASE 1.534×10−1 1.562×10−1 1.633×10−1 1.655×10−1

λ 1.028×10−2 1.198×10−2 1.571×10−2 1.669×10−2

SD(λ) 7.266×10−3 7.593×10−3 8.760×10−3 8.891×10−3

σ 2/Rx = 0.05

ASE 2.012×10−1 2.017×10−1 2.060×10−1 2.063×10−1

λ 0.723×10−2 0.818×10−2 1.135×10−2 1.158×10−2

SD(λ) 5.782×10−3 6.160×10−3 6.561×10−3 6.892×10−3

n = 50

σ 2/Rx = 0.01

ASE 1.762×10−1 1.766×10−1 1.782×10−1 1.789×10−1

λ 6.815×10−3 7.158×10−3 8.469×10−3 8.765×10−3

SD(λ) 4.358×10−3 4.415×10−3 5.136×10−3 5.296×10−3

σ 2/Rx = 0.05

ASE 2.127×10−1 2.131×10−1 2.142×10−1 2.144×10−1

λ 6.115×10−3 6.503×10−3 7.282×10−3 7.643×10−3

SD(λ) 3.505×10−3 3.569×10−3 3.791×10−3 3.556×10−3

n = 100

σ 2/Rx = 0.01

ASE 1.910×10−1 1.911×10−1 1.916×10−1 1.917×10−1

λ 5.778×10−3 5.942×10−3 6.387×10−3 6.494×10−3

SD(λ) 3.410×10−3 3.496×10−3 3.661×10−3 3.739×10−3

σ 2/Rx = 0.05

ASE 2.094×10−1 2.096×10−1 2.102×10−1 2.102×10−1

λ 4.158×10−3 4.327×10−3 4.595×10−3 4.655×10−3

SD(λ) 2.245×10−3 2.401×10−3 2.404×10−3 2.448×10−3

8 Summary and concluding remarks

We introduced functional regression modelings, using Gaussian basis functions with
the method of regularization. We first transfer the vector-valued observations to a set of
functions. Second, functional regression models are constructed by using the property
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Fig. 2 a Estimated regression coefficient functions based on cross-validation (CV) and b estimated regres-
sion coefficient functions based on GIC for 100 bootstrap replications

that the integral of the product of any two Gaussian basis functions can be directly
calculated. In order to select adjusted parameters, we derived model selection criteria
within the framework of functional regression modeling from an information-theoretic
approach.

In recent years, statistical challenges arise in such areas as genome databases in life
science, motion data in robotics, POS data in marketing and economic data. Especially
in the analysis of genome science the number of variables is much greater than the
number of observations. One way to handle the large number of variables is to employ
techniques in the functional data analysis. In practice it is required to use a flexible
instrument for transforming each individual’s observations into functional form. We
observed that Gaussian bases produce a variety of functional forms, using the method
of regularization and the model selection criterion GIC given in Sect. 6. Our modeling
strategies may be applied to the problem of constructing a discriminant rule based on
a collection of functional data, which will be discussed in another paper.
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