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Abstract Consider an ordinary errors-in-variables model. The true level αn(θ∗) of a
test at nominal level α and sample size n is said to be pointwise robust if αn(θ∗) → α

as n → ∞ for each parameter θ∗. Let �∗ be a set of values of θ∗. Define αn =
supθ

∗∈�∗αn(θ∗). The test is said to be uniformly robust over �∗ if αn → α as n → ∞.
Corresponding definitions apply to the coverage probabilities of confidence sets. It is
known that all existing large-sample tests for the parameters of the errors-in-variables
model are pointwise robust. However, they might not be uniformly robust over certain
null parameter spaces. In this paper, we construct uniformly robust tests for testing
the vector coefficient parameter and vector slope parameter in the functional errors-
in-variables model. These tests are established through constructing the confidence
sets for the same parameters in the model with similar desirable property. Power
comparisons based on simulation studies between the proposed tests and some existing
tests in finite samples are also presented.
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790 L. Huwang et al.

1 Introduction

Consider an ordinary errors-in-variables model

Yi = β0 + u′
iβ1 + εi , Zi = ui + τ i , i = 1, . . . , n(> p + 1), (1)

where ui = (ui1, . . . , uip)
′ are the true but unobserved explanatory variables, β=

(β0, β ′
1)

′ = (β0, β1, . . . , βp)
′ is the coefficient parameter, and εi , which may consist

of both measurement and equation errors, are i.i.d. N (0, σ 2
ε ), σ 2

ε > 0. It is assumed
that the measurement errors τ i = (τi1, . . . , τi p)

′ in Zi are i.i.d. N (0, �ττ ), where �ττ

is known and τ i are independent of ui and εi . The knowledge of �ττ can come from
either a set of independent data or the repeated observations made on ui . Let θ =
(β ′,φ′)′ ∈ � be the vector consisting of all parameters, where β is the parameter of
interest, φ is the nuisance parameter which consists of u1, u2, . . . , un in the functional
model (see definition below) and σ 2

ε , and � is the corresponding parameter space. In
model (1) if ui are fixed unknown parameters, it is said to have a functional model. On
the other hand, if ui are random variables, (1) is called a structural model. Errors-in-
variables model arises in many applications. Surveys of results can be found in Moran
(1971), Kendall and Stuart (1979), Anderson (1984), Fuller (1987), Cheng and Van
Ness (1994), Carroll et al. (1995), etc.

In this paper, we consider the problem of testing the hypotheses H10 : β = β∗
versus H11 : β �= β∗ and H20 : β1 = β∗

1 versus H21 : β1 �= β∗
1, where β∗ and β∗

1
are two arbitrarily specified vectors. Let A(β∗) be the acceptance region of a level α

test for testing H10 : β = β∗ versus H11 : β �= β∗. Then the true level of this test is
defined by

αn(θ∗) = Pθ=θ
∗ [(Y′, Z′)′ /∈ A(β∗)], (2)

where θ∗ = (β∗′
,φ′)′ and (Y′, Z′) = (Y1, . . . , Yn, Z′

1, . . . , Z′
n). A test for H10 is said

to be uniformly robust over the null parameter space �∗ if

αn = sup
θ

∗∈�∗
αn(θ

∗) → α as n → ∞, (3)

where �∗ is a subspace of � with β being fixed at β∗. The above supθ
∗∈�∗ αn(θ∗)

is usually called the size of the test H10. It is interesting that for any fixed sample
size n (no matter how large), there exist infinitely many �∗′s (each different β∗ of
β corresponds to a different �∗) such that for testing H10 versus H11 (or H20 versus
H21), all existing large-sample tests have supθ∗∈�∗ αn(θ∗) close to 1. The reason for
this phenomenon is due to a general theorem in the interval estimation of (1) by Gleser
and Hwang (1987). For each sample point (y′, z′)′, let S[(y′, z′)′] denote the set of
parameter values

S[(y′, z′)′] = {β : (y′, z′)′ ∈ A(β), θ ∈ �}. (4)
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Uniformly robust tests in EIV models 791

Then it is true (Lehmann 1986, p. 91, (18)) that

Pθ {β ∈ S[(Y′, Z′)′]} = Pθ {(Y′, Z′)′ ∈ A(β)}. (5)

Gleser and Hwang showed that for errors-in-variables models, Fieller problem, and
many other problems, any almost surely finite diameter confidence set has a zero
confidence coefficient for a fixed sample size n, no matter how large it is. Here the
diameter of a confidence set is defined to be the supremum distance between any
two points in this set and the confidence coefficient is defined to be the infimum of
the coverage probabilities over the parameter space. Since all existing large-sample
confidence sets (corresponding to large-sample tests) for β have finite diameters almost
surely, they have zero confidence coefficients, i.e., infθ∈� Pθ {β ∈ S[(Y′, Z′)′]} = 0
for all finite diameter confidence sets S[(Y′, Z′)′]. Consequently, for all existing large-
sample tests, by (5) we have

1 − sup
θ∈�

αn(θ) = 1 − sup
θ∈�

Pθ {(Y′, Z′)′ /∈ A(β)} = inf
θ∈�

Pθ {β ∈ S[(Y′, Z′)′]} = 0.

Note that the above supθ∈� αn(θ) is not the size of a large-sample test since the parame-
ter β can vary in the parameter space �. Due to the above result that supθ∈� αn(θ) = 1,
there exist infinitely many �∗′s defined in (3) such that the size supθ

∗∈�∗ αn(θ∗) of
the test H10 : β = β∗ is close to 1 no matter how large the sample size n is. However,
it is worth noting that we are unable to prove supθ

∗∈�∗ αn(θ∗) = 1 for a large-sample
test by using Gleser and Hwang’s theorem since β∗ is a fixed vector in �∗. Also note
that Huwang (1996) considered the simplest (p = 1) structural errors-in-variables
model of (1) and constructed a confidence set for β which does not have finite diame-
ter almost surely and hence Gleser and Hwang’s theorem does not apply. Huwang’s
confidence set is shown to have the infimum coverage probability converging to the
nominal level uniformly over the parameter space �. Therefore, the corresponding
test does not have supθ∈� αn(θ) = 1. The present work proposes new tests for tes-
ting the main parameters β and β1 in the functional errors-in-variables model for
any dimension p (structural model can be dealt similarly). These tests are shown to
satisfy (3) and hence are uniformly robust over the null parameter space �∗. By (5),
the confidence set can be obtained from the totality of parameter values for which
the hypothesis is accepted. As a result, the proposed tests can be used to construct
confidence sets which have confidence coefficients converging to the nominal levels
as n → ∞. Therefore, Huwang’s (1996) result for p = 1 in the structural model is a
special case of the current work. Based on the theorem of Gleser and Hwang, the issue
of lack of uniform robustness does not only exist in the case where �ττ is known but
also in other assumptions of identifying the model (1). In this paper, we only consi-
der the case where �ττ is known as the form of identifying the model and use the
approach that starts with a consistent estimator of the key parameter concerned and then
calculate the variance of a function of the consistent estimator and the parameter. We
then derive some test statistic by dividing the function of the consistent estimator
and the parameter by its estimated variance. However, the crucial point is not to
estimate the key parameter in the denominator of the ratio, but to use the hypothesized
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792 L. Huwang et al.

value of the test, which can be attributed to Huwang (1996) or more originally to
Hwang (1995) although different models are considered there. As for the other forms
of identifying the model (1), for example, if the model assumes that the ratios of the
variances of εi and τi j , 1 ≤ j ≤ p, are known, it might be very difficult to use the
above approach to prove uniform robustness.

The rest of the paper is organized as follows. Section 2 proposes two uniformly
robust tests for testing H10 : β = β∗ versus H11 : β �= β∗ and H20 : β1 = β∗

1 versus
H21 : β1 �= β∗

1 in the functional errors-in-variables model. In Sect. 3, simulation
studies are employed to compare the true test levels and power of some pointwise
robust tests and the proposed uniformly robust tests. A brief conclusion is given in
Sect. 4. Some technical proofs are in the Appendix.

2 Main results

2.1 Functional model

In this subsection, we assume that the ui in (1) are fixed unknown parameters. Namely,
we have a functional model. From now on, let δi = (0, τ ′

i )
′, xi = (1, u′

i )
′, and

Wi = (1, Z′
i )

′ = xi + δi . We also let

MY Y = 1

n

n∑

1

Y 2
i , MW W = 1

n

n∑

1

Wi W′
i , Mxx = 1

n

n∑

1

xi x′
i ,

MW Y = 1

n

n∑

1

W′
i Yi , MY W = 1

n

n∑

1

Yi Wi , (6)

where Mxx is assumed to be nonsingular and limn→∞Mxx = M0, a nonsingular
matrix. Then, it is easy to show that

E

(
MY Y MW Y

MY W MW W

)
=

(
β ′Mxxβ + σ 2

ε β ′Mxx

Mxxβ Mxx + �δδ

)
, (7)

where �δδ is the known covariance matrix of δi (since �ττ is known). Subsequently,
a reasonable consistent estimator of β can be defined as

β̂ = (MW W − �δδ)
−1MY W . (8)

Now, let vi = εi − δ′
iβ = Yi − W′

iβ and MvW = n−1 ∑n
1 vi Wi = MY W − MW W β.

By (8) and EMvW = −�δδβ, we have

β̂ = (MW W − �δδ)
−1[(MW W − �δδ)β + MY W − (MW W − �δδ)β]

= β + (MW W − �δδ)
−1[MY W − (MW W − �δδ)β], (9)
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Uniformly robust tests in EIV models 793

and

(MW W − �δδ)(β̂ − β) = MvW − EMvW = 1

n

n∑

i=1

[vi Wi − E(vi Wi )]. (10)

Now for testing H10 : β = β∗ versus H11 : β �= β∗, we shall construct a uniformly
robust test as follows. Firstly, we calculate the covariance matrix of (MW W −�δδ)(β̂−
β), which will be denoted by Q/n. Secondly, we show that

n(β̂ − β)′(MW W − �δδ)Q−1(MW W − �δδ)(β̂ − β)
L→ χ2

p+1 (11)

uniformly over the parameter space �. And finally, a matrix Q̂, which is a function of
Y1, . . . , Yn, W1, . . . , Wn , and β, will be defined and

n(β̂ − β)′(MW W − �δδ)(Q̂−1 − Q−1)(MW W − �δδ)(β̂ − β)
P→ 0

uniformly over � will be shown. Combining all these three parts, we have

n(β̂ − β)′(MW W − �δδ)Q̂−1(MW W − �δδ)(β̂ − β)
L→ χ2

p+1

uniformly over the parameter space �. From this result, it is easy to construct a test
for H10 : β = β∗ versus H11 : β �= β∗ which satisfies (3), namely a uniformly robust
test over the null parameter space �∗ (see Theorem 2 for details).

By definition, the covariance matrix of vi Wi − E(vi Wi ) equals

Cov[vi Wi − E(vi Wi )] = E[(vi Wi − E(vi Wi ))(vi Wi − E(vi Wi ))
′]

= E[(vi xi + viδi − �vδ)(vi xi + viδi − �vδ)
′]

= σ 2
v xi x′

i + E(v2
i xiδ

′
i ) + E(v2

i δi x′
i ) + E(v2

i δiδ
′
i ) − �vδ�

′
vδ

= σ 2
v xi x′

i + E(v2
i δiδ

′
i ) − �vδ�

′
vδ, (12)

where �vδ = E(viδi ) = −�δδβ and σ 2
v is the variance of vi . In the right side of

the last second line in (12), E(v2
i xiδ

′
i ) and E(v2

i δi x′
i ) are zero matrices because each

entry of them is of the form

E(xi jδi j ′v
2
i ) = xi j E(δi j ′v

2
i ) = 0, 1 ≤ j, j ′ ≤ p + 1,

due to that (δ′
i , vi )

′ has a multivariate normal distribution

(
δi

vi

)
∼ N

[
0,

(
�δδ �vδ

�′
vδ σ 2

v

)]
(13)
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794 L. Huwang et al.

and hence (δi j ′, vi )
′ has a bivariate normal distribution with zero third moment.

Subsequently, the conditional distribution of δi given vi is

δi | vi ∼ N (avi , B), (14)

where a = �vδ/σ
2
v = −�δδβ/σ 2

v and B = �δδ − �vδ�
′
vδ/σ

2
v = �δδ − �δδββ ′

�δδ/σ
2
v . Based on (14), we have

E(v2
i δiδ

′
i ) = E

⎡

⎢⎢⎢⎢⎢⎣

v2
i δ2

i1 v2
i δi1δi2 · · · v2

i δi1δi(p+1)

· v2
i δ2

i2 · · · v2
i δi2δi(p+1)

· · · · · ·
· · · · · ·
· · · · · v2

i δ2
i(p+1)

⎤

⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎣

σ 2
v σ11 + 2φ2

v1, σ 2
v σ12 + 2φv1φv2, · · · σ 2

v σ1 (p+1) + 2φv1φv(p+1)

· σ 2
v σ22 + 2φ2

v2, · · · σ 2
v σ2 (p+1) + 2φv2φv(p+1)

· · · · · ·
· · · · · ·
· · · · · ·
· · · · · σ 2

v σ(p+1)(p+1) + 2φ2
v(p+1)

⎤

⎥⎥⎥⎥⎥⎥⎦

= σ 2
v �δδ + 2�vδ�

′
vδ, (15)

where σi j is the (i, j)th element of �δδ, i, j = 1, . . . , p+1 and φvk is the kth element
of �vδ, k = 1, . . . , p + 1. Substituting (15) into (12), we have

Cov[vi Wi − E(vi Wi )] = σ 2
v (xi x′

i + �δδ) + �vδ�
′
vδ.

Subsequently, the covariance matrix of (MW W − �δδ)(β̂ − β) in (10) is given by

Cov[(MW W − �δδ)(β̂ − β)] = 1

n
[σ 2

v (Mxx + �δδ) + �vδ�
′
vδ]

= 1

n
[σ 2

v (Mxx + �δδ) + �δδββ ′�δδ] = Q
n

, (16)

where Q = σ 2
v (Mxx + �δδ) + �δδββ ′�δδ is positive definite since Mxx is so.

To prove (11), it suffices to show that Q− 1
2 S

L→ N (0, Ip+1) uniformly over the
parameter space �, where S = √

n(MW W − �δδ)(β̂ − β) and Ip+1 is the p + 1 by
p + 1 identity matrix. Because a moment generating function uniquely determines
a cumulative distribution function, and vice versa if the moment generating function

exists, it is straightforward to show that Q− 1
2 S

L→ N (0, Ip+1) uniformly over the

parameter space � if the moment generating function of Q− 1
2 S

M(t) = E[exp(S′Q− 1
2 t)] → et′t/2 (17)
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Uniformly robust tests in EIV models 795

uniformly over the parameter space � for any t ∈ R p+1. So we will prove (17) in the
following.

Theorem 1 Under the model (1), assume that a functional errors-in-variables model
holds with Mxx being nonsingular. Then the moment generating function M(t) =
E[exp(S′Q− 1

2 t)] → et′t/2 uniformly over the parameter space � for any t ∈ R p+1.

Consequently, Q− 1
2 S

L→ N (0, Ip+1) (or (11) holds) uniformly over the parameter
space �.

Proof By the definition of S and (10),

M(t) = E

{
exp

{
1√
n

n∑

1

[vi (x′
i + δ′

i ) − E(vi (x′
i + δ′

i ))]Q− 1
2 t

}}

=
n∏

1

E{E{exp[(vi x′
i + viδ

′
i − c)Q− 1

2 t/
√

n] | vi }}

=
n∏

1

E{exp[(x′
i Q

− 1
2 tσv/

√
n)v∗

i + (a′Q− 1
2 tσ 2

v /
√

n

+ t′Q− 1
2 BQ− 1

2 tσ 2
v /2n)v∗2

i − cQ− 1
2 t/

√
n]}, (18)

where v∗
i = vi/σv , a = −�δδβ/σ 2

v , B = �δδ − �δδββ ′�δδ/σ
2
v and c = E(viδ

′
i ) =

E[vi E(δ′
i |vi )] = E(a′v2

i ) = a′σ 2
v . Here the third equality of (18) and c are obtained

based on (13), (14), and the moment generating function of δi |vi ∼ N (avi , B). Define

η = a′Q− 1
2 tσ 2

v√
n

+ t′Q− 1
2 BQ− 1

2 tσ 2
v

2n
. (19)

From (18), we have

M(t) =
n∏

1

E{exp{η[v∗
i + x′

i Q
− 1

2 tσv/(2
√

nη)]2

−σ 2
v t′Q− 1

2 xi x′
i Q

− 1
2 t/(4nη) − cQ− 1

2 t/
√

n}}

=
n∏

1

{(1 − 2η)−
1
2 exp{σ 2

v t′Q− 1
2 xi x′

i Q
− 1

2 t/[2n(1 − 2η)] − cQ− 1
2 t/

√
n}}

= exp
{
−n

2
log(1 − 2η) + σ 2

v t′Q− 1
2 Mxx Q− 1

2 t/[2(1 − 2η)] − √
ncQ− 1

2 t
}

,

(20)

where the second equality is based on the fact that [v∗
i + x′

i Q
− 1

2 tσv/(2
√

nη)]2 has
a noncentral chi-square distribution with one degree of freedom, noncentrality ξ =
σ 2

v t′Q− 1
2 xi x′

i Q
− 1

2 t/(4nη2), and moment generating function (1−2η)−1/2exp{−ξ/2+
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796 L. Huwang et al.

ξ/[2(1 − 2η)]}. By a Taylor expansion,

n

2
log(1 − 2η) = n

2

(
−2η − 2η2 − 8

3
η∗3

)

= −√
na′Q− 1

2 tσ 2
v − 1

2
t′Q− 1

2 BQ− 1
2 tσ 2

v − t′Q− 1
2 aa′Q− 1

2 tσ 4
v

− 1√
n

a′Q− 1
2 tt′Q− 1

2 BQ− 1
2 tσ 4

v − 1

4n
(t′Q− 1

2 BQ− 1
2 tσ 2

v )2 − 4

3
nη∗3,

(21)

where η∗ is a number and 0 ≤ | η∗ | ≤ | η |. Plugging (21) in the right side of the last
equality in (20), we have

M(t) = exp

{
1

2
t′Q− 1

2 Q∗Q− 1
2 t + 1√

n
a′Q− 1

2 tt′Q− 1
2 BQ− 1

2 tσ 4
v

+ 1

4n
(t′Q− 1

2 BQ− 1
2 tσ 2

v )2 + 4

3
nη∗3

}
, (22)

where

Q∗ = σ 2
v

(
B + 2σ 2

v aa′ + Mxx

1 − 2η

)
= σ 2

v

(
Mxx

1 − 2η
+ �δδ

)
+ �δδββ ′�δδ. (23)

Now by Lemmas 1 and 2 in the Appendix and that n | η∗3 | ≤ n | η3 |= Op(n−1/2)→ 0,

for any fixed t ∈ R p+1,

exp

{
1√
n

a′Q− 1
2 tt′Q− 1

2 BQ− 1
2 tσ 4

v + 1

4n
(t′Q− 1

2 BQ− 1
2 tσ 2

v )2 + 4

3
nη∗3

}
→ 1

uniformly over the parameter space �. As a consequence, to show M(t) → et′t/2

uniformly over the parameter space �, it suffices to prove that Q− 1
2 Q∗Q− 1

2 → Ip+1
uniformly over the parameter space �. Comparing the matrices Q and Q∗ in (16) and
(23), respectively, this is equivalent to show that η → 0 uniformly over the parameter
space �. By the definition of η and Lemmas 1 and 2 in the Appendix, the result follows
immediately. 
�

By the result of Theorem 1, which is equivalent to (11), we construct a uniformly
robust test for testing H10 : β = β∗ versus H11 : β �= β∗.

Theorem 2 Under the model (1), assume that a functional errors-in-variables model
holds with Mxx being nonsingular. Then

1 = n(β̂ − β)′(MW W − �δδ)Q̂−1(MW W − �δδ)(β̂ − β)
L→ χ2

p+1 (24)

123
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uniformly over the parameter space �, where

Q̂ = σ̂ 2
v MW W + �δδββ ′�δδ, σ̂ 2

v = 1

n

n∑

1

(Yi − W′
iβ)2. (25)

Consequently, for testing H10 : β = β∗ versus H11 : β �= β∗, the test which rejects
H10 if 1|β=β

∗ > χ2
p+1,α , where P(χ2

p+1 > χ2
p+1,α) = α is a level α uniformly

robust test over the null parameter space �∗.

Proof To show (24), by Theorem 1 it suffices to prove that

S′(Q̂−1 − Q−1)S = S′Q− 1
2 Q

1
2 (Q̂−1 − Q−1)Q

1
2 Q− 1

2 S
P→ 0 (26)

uniformly over the parameter space �, where S = √
n(MW W − �δδ)(β̂ − β). Also

by Theorem 1, (26) is established if we can show that

Q
1
2 (Q̂−1 − Q−1)Q

1
2 = Q

1
2 Q̂−1Q

1
2 − Ip+1

P→ 0,

or equivalently

Q− 1
2 Q̂Q− 1

2 − Ip+1 = Q− 1
2 (Q̂ − Q)Q− 1

2
P→ 0

uniformly over the parameter space �. Since nσ̂ 2
v /σ 2

v ∼ χ2
n , we have σ̂ 2

v = σ 2
v +

σ 2
v Op(n− 1

2 ), where Op(n− 1
2 ) does not depend on any parameters. Subsequently, by

(16) and (25) we have

Q− 1
2 (Q̂ − Q)Q− 1

2 = Op(n
− 1

2 )σ 2
v Q− 1

2 MW W Q− 1
2

+σ 2
v Q− 1

2 [MW W − (Mxx + �δδ)]Q− 1
2 .

Using the results of Lemmas 3 and 4 in the Appendix, the theorem follows. 
�
Remark 1 In fact, the result of Theorem 2 which shows that both in f θ∈� αn(θ) and
supθ∈� αn(θ) converge to α as n → ∞ is stronger than (3). Namely, the convergence
of αn(θ) is not only uniform in all parameters in �∗ (where β is fixed at β∗) but also
uniform in the parameter β.

Note that Q̂ in (25) is a “pseudo” estimator of Q because the parameter β therein
is not estimated. Since it is difficult to accurately estimate β over the parameter space
�, leaving β unestimated in Q̂ would reduce the error in “estimating” Q. Also note
that Q̂ is nonsingular almost surely since MW W is so.

In Theorem 3 below we show that the power of the uniformly robust test proposed
in Theorem 2 goes to 1 asymptotically.
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798 L. Huwang et al.

Theorem 3 For testing H10 : β = β∗ versus H11 : β �= β∗, at any β = β1 �= β∗,
the test that rejects H10 if 1|β=β

∗ > χ2
p+1,α where 1 is defined in (24) has power

P
β

1(1|β=β
∗ > χ2

p+1,α) → 1 as n → ∞.

Proof See Appendix. 
�
Now we proceed to construct a uniformly robust test for testing the hypothesis

H20 : β1 = β∗
1 versus H21 : β1 �= β∗

1. Let σ̂
′2
v = (n − 1)−1 ∑n

i=1[Yi − Ȳ −∑p
j=1 β j (Wi( j+1) − W̄· j+1)]2, where W̄· j+1 = n−1 ∑n

i=1 Wi( j+1), j = 0, . . . , p.
Then

σ̂
′2
v = 1

n − 1

n∑

i=1

[Yi − W′
iβ − (Ȳ − W̄′β)]2 = 1

n − 1

n∑

i=1

(vi − v̄)2, (27)

where W̄ = (W̄·1, . . . , W̄· p+1)
′, vi = Yi − W′

iβ, and v̄ = n−1 ∑n
1 vi (cf. σ̂ 2

v =
n−1 ∑n

1 v2
i defined in (25)). Note that (n − 1)σ̂

′2
v /σ 2

v ∼ χ2
n−1 and σ̂

′2
v is a function of

β1 = (β1, . . . , βp)
′ only, not of β0. Also, since the first entry of δi is 0, �δδββ ′�δδ

is a function of β1 only, not of β0. As a result,

Q̂′ = σ̂
′2
v MW W + �δδββ ′�δδ (28)

is a function of β1 only, not of β0. Now, by an argument similar to that of Theorem 2,
the following corollary can be easily established.

Corollary 4 Suppose that in (1) we have a functional errors-in-variables model with
Mxx being nonsingular. Then as n → ∞,

2 = n(β̂ − β)′(MW W − �δδ)Q̂
′−1(MW W − �δδ)(β̂ − β)

L→ χ2
p+1 (29)

uniformly over the parameter space �. 
�
Since Q̂′ and MW W − �δδ are both nonsingular almost surely, let

(MW W − �δδ)Q̂
′−1(MW W − �δδ) =

(
R11 R12

R21 R22

)−1

,

where R22 is a p by p matrix. By this and Corollary 4 the following theorem holds
immediately.

Theorem 5 Under the same assumptions of Corollary 4,

3 = n(β̂1 − β1)
′R−1

22 (β̂1 − β1)
L→ χ2

p (30)

uniformly over the parameter space �, where β1 = (β1, . . . , βp)
′. Therefore, for

testing H20 : β1 = β∗
1 versus H21 : β1 �= β∗

1, the test which rejects H20 if
3|β1=β

∗
1
>χ2

p,α , where P(χ2
p > χ2

p,α) = α is a level α uniformly robust test over the

null parameter space �∗.
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Remark 2 Under the model (1), suppose that ui , i = 1, . . . , n, are i.i.d. vector random
variables (i.e. consider a structural model) with nonsingular covariance matrix and
continuous distribution function. Then the results similar to those in the functional
model can be easily obtained.

2.2 Remarks about the uniformly robust tests for scalar parameters and subsets of β1

Note that the approach used previously to construct the uniformly robust tests for
testing the values of β and β1 can not be applied to test the hypothesis H30 : β0 = β∗

0
versus H31 : β0 �= β∗

0 . Due to the fact that the variance of β̂0 is a function of β1
and other parameters, not of β0, if all parameters in this variance are estimated by
their consistent estimators and an approximate pivot is derived by the usual way, the
pivot will not converge to χ2

1 uniformly over the parameter space �. This is due to
the reason that the confidence interval for β0 has an almost surely finite diameter and
hence a zero confidence level by Gleser and Hwang’s theorem.

For 1 ≤ j ≤ p, to test the hypothesis H40 : β j = β∗
j versus H41 : β j �= β∗

j ,

note that the variance of β̂ j is a function of β1, . . . , βp. If all parameters except β j

in this variance are estimated by their consistent estimators and an approximate pivot
is derived, we conjecture that the resultant test is not uniformly robust although the
corresponding confidence interval may not have an almost surely finite diameter. The
reason for this conjecture is that in the functional model if for some k, 1 ≤ k �= j ≤ p,
uik, i = 1, . . . , n, do not vary much, it is difficult to accurately estimate βk and hence
the variance of β̂ j . As a result, this could lead to an inferior test for H40 : β j = β∗

j .
A possible way to resolve this problem is to employ the projection method. Note that
a conservative confidence interval for β j (or β0) can be constructed by projecting
a uniformly robust confidence set for β onto the β j (or β0) axis. As a result, the
corresponding test of this projected confidence interval is a conservative one. We
will compare this projected confidence interval with some other confidence interval
in the next section. Furthermore, it is also possible to use the projection method to
construct a uniformly robust test for testing any subset of β1, which corresponds to the
accurate unobserved explanatory variables while the complement corresponds to the
inaccurate ones. However, it is still expected that the test is conservative. Consequently,
to construct less conservative tests in such situations are needed in the future research.

3 Performance comparisons

In this section, we use statistical simulation to compare the performance of the point-
wise robust test, the modified test (the former is given in Theorem 2.2.1 of Fuller
(1987) and the later is a modification of the former suggested in Theorem 2.5.2 of the
same book), and the uniformly robust test. We assume a structural model of (1)

Yi = 1 + u′
i (2, 3)′ + εi , Zi = ui + τ i , i = 1, . . . , n (31)

with ui ∼ N2(0, �uu), εi ∼ N (0, σ 2
ε ), τi ∼ N2(0, �ττ ), and �ττ = �uu(r−1 − 1)
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800 L. Huwang et al.

Fig. 1 Estimated true levels of the pointwise robust, modified and uniformly robust tests with nominal

level α = 0.1 and replication=1,000. Model (31) is assumed with �uu =
(

1 0
0 1

)
and σ 2

ε = 0.5

(r is called the reliability of Zi if ui is a univariate variable). We let the nominal level

α = 0.1, �uu =
(

1 0
0 1

)
, and σ 2

ε = 0.5 in Fig. 1. We also let r = 0.025l, l =
1, . . . , 39, and n = 30, 50, 100, 200 in the figure. For testing H10 : (β0, β1, β2)

′ =
(1, 2, 3)′ versus H11 : (β0, β1, β2)

′ �= (1, 2, 3)′, 1000 replicates were generated for
each value of the parameters and n independently, and then the estimated true levels of
the three tests are computed. All level curves are plotted by connecting the estimated
true levels sequentially. From the figure, we observe that for fixed values of n and of
other parameters, the estimated true levels of the pointwise robust test and the modified
test deviate considerably from the nominal level 0.1 when r is small and approach 1 as
r goes to 0. This provides the evidence of lack of uniform robustness for the pointwise
robust test and the modified test. When the values of other parameters are fixed, the
estimated true levels of the pointwise robust test and the modified test wiggle around
the nominal level as r increases for a fixed n. And for the values of all parameters being
fixed, the wiggle of the estimated true level lessens in size as the sample n becomes
large. In contrast, for any value of n, the estimated true level of the uniformly robust
test is very close to the nominal level 0.1 for all values of the parameters considered.
This is consistent with the theoretical result proved in Sect. 2.
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Uniformly robust tests in EIV models 801

Fig. 2 Power of the pointwise robust, modified and uniformly robust tests at different values of (β1, β2)′
for testing H20 : (β1, β2)′ = (2, 3)′ based on 1,000 replications for nominal level α = 0.1 and n = 30.

Model (31) is assumed with �uu =
(

1 0
0 1

)
and σ 2

ε = 0.5

In Fig. 2, we compare the power for testing H20 : (β1, β2)
′ = (2, 3)′ versus

H21 : (β1, β2)
′ �= (2, 3)′ of the three tests based on 1000 simulation replicates at four

different values of (β1, β2)
′ for r ≥ 0.5 (under these cases the three estimated true

levels are roughly close to the nominal level), n = 30 and nominal level α = 0.1.
When β1 = 2.4 and β2 = 3.6 or when β1 = 1.6 and β2 = 3.6, the uniformly robust
test outperforms the other two tests. In particular, the power of both the pointwise
robust test and the modified test is less than the nominal level 0.1 for 0.5 ≤ r ≤ 0.72
when β1 = 2.4 and β2 = 3.6. On the other hand, the modified test gives the best results
among the three tests when β1 = 1.6 and β2 = 2.4 or when β1 = 2.4 and β2 = 2.4.
This indicates that there has a trade-off on power between the uniformly robust test and
the modified test. For the uniformly robust test, it seems to have a tendency that when
other parameters are fixed, the power decreases as (β1, β2) shrinks towards (0, 0).
Similar results are observed for n = 50 and presented in Fig. 3. Besides Figs. 2 and 3,
we also simulated the power of the three tests at several different values of (β1, β2)

′.
Results similar to those in Figures 2 and 3 are obtained and hence are not reported.

As suggested by one of the referees, in Fig. 4 (also based on 1,000 simulation
replicates) we compare the coverage probability and length of the confidence interval
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802 L. Huwang et al.

Fig. 3 Power of the pointwise robust, modified and uniformly robust tests at different values of (β1, β2)′
for testing H20 : (β1, β2)′ = (2, 3)′ based on 1,000 replications for nominal level α = 0.1 and n = 50.

Model (31) is assumed with �uu =
(

1 0
0 1

)
and σ 2

ε = 0.5

for the scalar parameter β2 inverted by the modified test and of that projected by the
confidence set of (β1, β2)

′ inverted by the uniformly robust test for n = 50 and 100 and
confidence level 1−α = 0.9. From the figure, we observe that the confidence interval
inverted by the modified test has coverage probability wiggling around the confidence
level, while the projected confidence interval always has coverage probability greater
than the confidence level (as mentioned in Sect. 2.2, this projected confidence interval is
conservative). For length comparison, since the confidence set for (β1, β2)

′ inverted by
the uniformly robust test has a positive probability with infinite diameter, subsequently
the projected confidence interval for β2 has infinite length with a positive probability
as well. Hence, it is not appropriate to directly compare the average lengths of both
confidence intervals for β2. Instead, we present respectively the first and the third
quartiles of the 1,000 lengths of both intervals. As expected both the first and the third
quartiles of the lengths of the confidence interval inverted by the modified test are
smaller than those of the projected confidence interval and the differences lessen as
the reliability r increases. In view of the above results, in practice if we know that the
reliability r is large enough (for instance r ≥ 0.5), it might be preferable to use the
modified test for testing the scalar parameter β2 and construct the confidence interval
for β2 from the test.
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Fig. 4 Coverage probabilities and quartiles of lengths of the confidence intervals derived from the modified
and the projected tests based on 1,000 replications for confidence level = 0.9 and n = 50 and 100. Model

(31) is assumed with �uu =
(

1 0
0 1

)
and σ 2

ε = 0.5

4 Conclusion

In this paper, we propose uniformly robust tests for testing the vector coefficient
parameter and vector slope parameter in the functional errors-in-variables model
(structural model can be dealt similarly). These tests are derived through construc-
ting the confidence sets for the same parameters in the model with similar desirable
property. Unlike the existing asymptotic tests, these uniformly robust tests have estima-
ted true levels reasonably close to the nominal levels for any parameter configurations
and sample sizes. Their powers are also comparable to those of the existing asymptotic
tests.

Appendix

In order to prove Theorem 1, we need the following two lemmas.

Lemma 1 The absolute value of every element in the vector a′Q− 1
2 σ 2

v is bounded
above by

√
p + 1, the square root of the dimension of β.
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Proof From (14) and (16), we have

‖ a′Q− 1
2 σ 2

v ‖2 = β ′�δδ[σ 2
v (Mxx + �δδ) + �δδββ ′�δδ]−1�δδβ

= trace of T = sum of the eigenvalues of T, (32)

where T = �δδββ ′�δδ[σ 2
v (Mxx + �δδ) + �δδββ ′�δδ]−1. Let λ be any eigenvalue

of T and e is the corresponding eigenvector. Then

�δδββ ′�δδe∗ = λ[σ 2
v (Mxx + �δδ) + �δδββ ′�δδ]e∗, (33)

where e∗ = [σ 2
v (Mxx + �δδ) + �δδββ ′�δδ]−1e. Multiplying e∗′

on the left of both
sides of (33), we conclude that 0 ≤ λ ≤ 1 because Mxx is positive definite. Now from
(32), the result follows immediately. 
�

Lemma 2 The absolute value of every element in the matrix Q− 1
2 BQ− 1

2 σ 2
v is bounded

above by
√

p + 1.

Proof For any two matrices M1 and M2, let the notation M1 ≤ M2 denote that
M2 − M1 is positive semi-definite. Since �δδββ ′�δδ/σ

2
v is positive semi-definite, by

the definition of B in (18) we have

Q− 1
2 BQ− 1

2 σ 2
v ≤ Q− 1

2 �δδQ− 1
2 σ 2

v . (34)

Let λ be any eigenvalue of Q− 1
2 BQ− 1

2 σ 2
v and e is the corresponding eigenvector. Then

Be∗ = λ
Q
σ 2

v

e∗, (35)

where e∗ = Q− 1
2 e. Multiplying e∗′

on the left of both sides of (35), we have 0 ≤ λ ≤ 1
because Q/σ 2

v − B = Mxx + 2�δδββ ′�δδ/σ
2
v is positive definite. Moreover, because

Q− 1
2 BQ− 1

2 σ 2
v is symmetric, there exists an orthogonal matrix L such that

Q− 1
2 BQ− 1

2 σ 2
v = LDL′, (36)

where D is a diagonal matrix with diagonal elements being the eigenvalues of Q− 1
2

BQ− 1
2 σ 2

v . Let γi j be the (i, j)th element of Q− 1
2 BQ− 1

2 σ 2
v . Then γi j = ξ ′

i LDL′ξ j ,

where ξ i = (0, . . . , 0, 1, 0, . . . , 0)′ is the i th unit vector in R p+1, i = 1, . . . , p + 1.

Consequently,

| γi j | ≤ ‖ DL′ξ i ‖ ‖ L′ξ j ‖ = (ξ ′
i LD2L′ξ i )

1
2 (ξ ′

j LL′ξ j )
1
2

= square root of the (i, i)th element of LD2L′.
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Since LD2L′ is nonnegative definite, trace(LD2L′) ≥ the (i, i)th element of LD2L′.
Moreover, trace(LD2L′) = trace(D2), which equals the sum of squares of the eigenva-

lues of Q− 1
2 BQ− 1

2 σ 2
v . The result follows because any eigenvalue λ of Q− 1

2 BQ− 1
2 σ 2

v

is between 0 and 1. 
�

Lemma 3 The absolute value of every element in the matrix σ 2
v Q− 1

2 MW W Q− 1
2 is

bounded above by
√

p + 1(p + 3 − l) + Op(n− 1
2 ), where l − 1 is the number of

elements in δi equal to 0 and Op(n− 1
2 )

P→ 0 uniformly over the parameter space �.

Proof By the definition of MW W in (7), it follows that σ 2
v Q− 1

2 MW W Q− 1
2 = T1 +

T2 + T3, where

T1 = (σ−2
v Q)−

1
2 Mxx (σ

−2
v Q)−

1
2 , T2 = (σ−2

v Q)−
1
2 Mδδ(σ

−2
v Q)−

1
2 ,

T3 = (σ−2
v Q)−

1
2 M(xδ)(σ

−2
v Q)−

1
2 , Mδδ = 1

n

n∑

1

δiδ
′
i ,

M(xδ) = 1

n

n∑

1

(xiδ
′
i + δi x′

i ). (37)

By an argument similar to that of Lemma 2, the absolute value of every element in T1 is
bounded above by

√
p + 1. Let λ be any eigenvalue of T2, and thus | Mδδ−λσ−2

v Q |=
0. Subsequently, by the definition of Q in (16) there exists a nonzero vector e ∈ R p+1

such that

e′Mδδe − λe′
(

Mxx + �δδ + 1

σ 2
v

�δδββ ′�δδ

)
e = 0,

and hence

λ = e′Mδδe

e′(Mxx + �δδ + σ−2
v �δδββ ′�δδ)e

. (38)

Note that if e′�δδe = 0, it is easy to show that e′Mδδe = 0 as well and hence λ = 0.
Otherwise,

λ ≤ e′Mδδe
e′�δδe

. (39)

Suppose, without loss of generality, that δ′
i = (0, τ ′

i ) = (0, . . . , 0, δil , . . . , δi(p+1))

where δi j �= 0 for some l, 1 < l ≤ p + 1 and j = l, . . . , p + 1 (i.e. τ i in (1)
could be a degenerate multivariate normal distribution). Let δ′

i∗ = (δil , . . . , δi(p+1)),
e′∗ = (el , . . . , ep+1), Mδδ∗ = n−1 ∑n

1 δi∗δ′
i∗, and �δδ∗ be the covariance matrix of

δi∗. Then by (39) and the fact that Mδδ∗ and �δδ∗ are both symmetric and positive
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definite, we have

λ ≤ e′∗Mδδ∗e∗
e′∗�δδ∗e∗

≤ maximum eigenvalue of Mδδ∗�−1
δδ∗

= maximum eigenvalue of �
− 1

2
δδ∗Mδδ∗�

− 1
2

δδ∗ . (40)

Furthermore, since the matrix �
− 1

2
δδ∗Mδδ∗�

− 1
2

δδ∗ is symmetric and positive definite, the
maximum eigenvalue of the matrix is less than or equal to the trace of the matrix. Now

trace(�
− 1

2
δδ∗Mδδ∗�

− 1
2

δδ∗ ) = 1

n

n∑

i=1

p+1∑

j=l

ρ2
i j = (p + 2 − l) + Op(n

− 1
2 ), (41)

where ρi = (ρil , . . . , ρi(p+1))
′ = �

− 1
2

δδ∗δi∗,
∑p+1

j=l ρ2
i j ∼ χ2

p+2−l , and Op(n− 1
2 ) does

not depend on any parameter. By an argument similar to the proof of Lemma 2,
the absolute value of every element in T2 is less than or equal to

√
p + 1 times the

absolute value of the maximum eigenvalue of T2. Combining this result, (40) and (41),
the absolute value of every element in T2 is bounded above by (p + 2 − l)

√
p + 1 +

Op(n− 1
2 ), where Op(n− 1

2 ) does not depend on any parameter.

Next, we shall show that T3 is a matrix with all elements of order Op(n− 1
2 ), where

Op(n− 1
2 )

P→ 0 uniformly over the parameter space �. Since

T3 = (σ−2
v Q)−

1
2

1

n

n∑

1

(xiδ
′
i + δi x′

i )(σ
−2
v Q)−

1
2 ,

it suffices to show that every element in the matrix

(σ−2
v Q)−

1
2

1

n

n∑

1

xiδ
′
i (σ

−2
v Q)−

1
2 = 1

n

n∑

1

[(σ−2
v Q)−

1
2 xi ][(σ−2

v Q)−
1
2 δi ]′ (42)

has order Op(n− 1
2 ) which converges to 0 in probability over the parameter space �.

let �∗ = (σ−2
v Q)− 1

2 �δδ(σ
−2
v Q)− 1

2 denote the covariance matrix of (σ−2
v Q)− 1

2 δi . By
an argument similar to that of T2, it follows that the absolute value of every element
in �∗ is bounded above by (p + 2 − l)

√
p + 1. Furthermore, the j th column of (42),

1 ≤ j ≤ p + 1, has a normal distribution

N

[
0,

1

n2 (σ−2
v Q)−

1
2

n∑

1

xi x′
i (σ

−2
v Q)−

1
2 σ ∗

j j

]
,

where σ ∗
j j denotes the j th diagonal element of �∗. The covariance matrix of the above

normal distribution equals n−1T1σ
∗
j j , where the absolute value of every element in
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the matrix is bounded by n−1(p + 2 − l)(p + 1) (recall that the absolute value of
every element in T1 is bounded above by

√
p + 1). Consequently, every element of

the j th column of (42) is of Op(n− 1
2 ) which converges to 0 in probability uniformly

over the parameter space �, so every element in T3 has the same property. Combining
the results for T1, T2, and T3 together, the lemma is established. 
�

Lemma 4 The matrix σ 2
v Q− 1

2 [MW W − (Mxx + �δδ)]Q− 1
2 converges to zero matrix

in probability uniformly over the parameter space �.

Proof By the definition of MW W in (7), the matrix σ 2
v Q− 1

2 [MW W −(Mxx +�δδ)]Q− 1
2

can be written as

σ 2
v Q− 1

2 M(xδ)Q− 1
2 + σ 2

v Q− 1
2 (Mδδ − �δδ)Q− 1

2 , (43)

where Mδδ and M(xδ) are defined in (37). By the result in the proof of Lemma 3, every

element in σ 2
v Q− 1

2 M(xδ)Q− 1
2 (defined as T3 in the proof of Lemma 3) is of order

OP (n− 1
2 ), where Op(n− 1

2 )
P→ 0 uniformly over the parameter space �. Rewrite the

second term in (43) as

σvQ− 1
2 �

1
2
δδ(�

− 1
2

δδ Mδδ�
− 1

2
δδ − I∗

p+1)�
1
2
δδQ− 1

2 σv, (44)

where

�
1
2
δδ =

(
0 0

0 �
1
2
δδ∗

)
, �

− 1
2

δδ =
(

0 0

0 �
− 1

2
δδ∗

)
, I∗

p+1 =
(

0 0
0 Ip+2−l

)
.

Here �δδ∗ is the covariance matrix of the nonzero components vector δi∗ = (δil , . . . ,

δi p+1)
′ in δi (suppose, without loss of generality, that δ′

i = (0, . . . , 0, δil , . . . , δi(p+1))

where δi j �= 0 for some 1 < l ≤ p+1 and l ≤ j ≤ p+1). To show that �
− 1

2
δδ Mδδ�

− 1
2

δδ

P→
I∗

p+1 uniformly over the parameter space �, it suffices to prove that �
− 1

2
δδ∗Mδδ∗�

− 1
2

δδ∗
P→

Ip+2−l uniformly over the parameter space �, where Mδδ∗ = n−1 ∑n
1 δi∗δ′

i∗. Recall
that

�
− 1

2
δδ∗Mδδ∗�

− 1
2

δδ∗ = 1

n

n∑

i=1

(�
− 1

2
δδ∗δi∗)(�

− 1
2

δδ∗δi∗)′ ∼ Wishart

(
1

n
Ip+2−l , n

)
. (45)

Therefore, �
− 1

2
δδ Mδδ�

− 1
2

δδ − I∗
p+1 = Op(n− 1

2 ) and

�
− 1

2
δδ Mδδ�

− 1
2

δδ

P→ I∗
p+1 (46)

uniformly over the parameter space �.
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Because Q = σ 2
v (Mxx + �δδ) + �δδββ ′�δδ , Mxx + �δδ is positive definite, and

σ−2
v �δδββ ′�δδ is positive semidefinite, we have

‖σvQ− 1
2 �

1
2
δδξ i‖2= ξ ′

i�
1
2
δδQ−1�

1
2
δδσ

2
v ξ i ≤ ξ ′

i�
1
2
δδ(Mxx + �δδ)

−1�
1
2
δδξ i , (47)

where ξ i = (0, . . . , 0, 1, 0, . . . , 0)′ is the i th unit vector in R p+1. Since �
1
2
δδQ−1�

1
2
δδσ

2
v

is symmetric and positive semidefinite,

every eigenvalue of �
1
2
δδQ−1�

1
2
δδσ

2
v ≤ trace

(
�

1
2
δδQ−1�

1
2
δδσ

2
v

)

≤ trace

[
�

1
2
δδ(Mxx + �δδ)

−1�
1
2
δδ

]
(by (47))

= sum of the eigenvalues of �δδ(Mxx+�δδ)
−1.

(48)

Let λ be any eigenvalue of �δδ(Mxx + �δδ)
−1. Then there exists a nonzero vector

e ∈ R p+1 such that

e′�δδe − λe′(Mxx + �δδ)e = 0. (49)

From this, we have 0 ≤ λ ≤ 1. Combining this and (48), we conclude that every

eigenvalue of �
1
2
δδQ−1�

1
2
δδσ

2
v ≤ p+1. By an argument similar to the proof of Lemma 2,

the absolute value of every element in �
1
2
δδQ−1�

1
2
δδσ

2
v is less than or equal to the

square root of the sum of squares of the eigenvalues of the same matrix, which is less

than or equal to (p + 1)
3
2 . As a consequence, the absolute value of every element

in Q− 1
2 σv�

1
2
δδ is less than or equal to (p + 1)

3
4 . Combining this and (46), we have

σ 2
v Q− 1

2 (Mδδ − �δδ)Q− 1
2 = Op(n− 1

2 ), where Op(n− 1
2 ) does not depend on any

parameter. Putting all results together, we establish the lemma. 
�

Proof of Theorem 3 Here we only give a sketchy proof without going into details.
Note that

1|β=β
∗ = n[(β̂ − β1) + (β1 − β∗)]′(MW W − �δδ)Q̂−1|β=β

∗

×(MW W − �δδ)[(β̂ − β1) + (β1 − β∗)]
= n(β̂ − β1)′(MW W − �δδ)Q̂−1|β=β

∗(MW W − �δδ)(β̂ − β1)

+2n(β̂ − β1)′(MW W − �δδ)Q̂−1|β=β
∗

×(MW W − �δδ)(β
1 − β∗) + n(β1 − β∗)′(MW W − �δδ)Q̂−1|β=β

∗

×(MW W − �δδ)(β
1 − β∗),
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where

Q̂|β=β
∗ = σ̂ 2

v |β=β
∗MW W + �δδβ

∗β∗′
�δδ→σ ∗

v
2
(M0 +�δδ)+ �δδβ

∗β∗′
�δδ ≡ Q∗,

which is positive definite since

σ̂ 2
v |β=β

∗ = 1

n

n∑

1

(Yi − W′
iβ

∗)2 → σ ∗
v

2
> 0 as n → ∞.

Firstly, it is easy to show that

√
n(MW W − �δδ)(β̂ − β1) → N (0, Q1),

where Q1 = σ 2
v (M0 + �δδ)�δδβ

1β1′
�δδ. Consequently,

Q̂− 1
2 |β=β

∗
√

n(MW W − �δδ)(β̂ − β1) → N (0, Q∗− 1
2 Q1Q∗− 1

2 )

and

n(β̂ − β1)′(MW W − �δδ)Q̂−1|β=β
∗(MW W − �δδ)(β̂ − β1) = Op(1).

Secondly, observe that

2n(β̂ − β1)′(MW W − �δδ)Q̂−1|β=β
∗(MW W − �δδ)(β

1 − β∗) = 2
√

n(β1 − β∗)′

(MW W − �δδ)Q̂− 1
2 |β=β

∗Q̂− 1
2 |β=β

∗
√

n(MW W − �δδ)(β̂ − β1) = √
nOp(1).

Finally,

n(β1 − β∗)′(MW W − �δδ)Q̂−1|β=β
∗(MW W − �δδ)(β

1 − β∗) = ncn,

where cn → c > 0. Combining all above together, we have

P
β

1(1|β=β
∗ > χ2

p+1,α)=P
β

1(Op(1) + √
nOp(1) + ncn > χ2

p+1,α)→1 as n→∞.


�
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