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Abstract This paper studies the Generalized Neyman–Pearson (GNP) optimality
of empirical likelihood-based tests for parameter hypotheses. The GNP optimality
focuses on the large deviation errors of tests, i.e., the convergence rates of the type I and
II error probabilities under fixed alternatives. We derive (i) the GNP optimality of the
empirical likelihood criterion (ELC) test against all alternatives, and (ii) a necessary
and a sufficient condition for the GNP optimality of the empirical likelihood ratio
(ELR) test against each alternative.

Keywords Empirical likelihood · Generalized Neyman–Pearson optimality

1 Introduction

This paper studies the Generalized Neyman–Pearson (GNP) optimality of empirical
likelihood-based tests for parameter hypotheses. Compared to the Neyman–Pearson
optimality, the GNP optimality focuses on the large deviation errors of tests, i.e., the
convergence rates of the type I and II error probabilities under fixed alternatives. Under
some restriction on the convergence rate of the type I error probability, we maximize
the convergence rates of the type II error probabilities under fixed alternatives. We
derive (i) the GNP optimality of the empirical likelihood criterion (ELC) test against
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774 T. Otsu

all alternatives, and (ii) a necessary and a sufficient condition for the GNP optimality
of the empirical likelihood ratio (ELR) test against each alternative.

Empirical likelihood proposed by Owen (1988) is nonparametric likelihood con-
structed from some moment restrictions. Although the empirical likelihood-based
estimator and tests are asymptotically first-order equivalent to the generalized method
of moments (GMM) estimator and tests, recent research found important differences
between these methods. DiCiccio et al. (1991) and Newey and Smith (2004) showed
desirable higher order properties of the empirical likelihood-based parameter hypo-
thesis test and estimator, respectively. Kitamura (2001) considered power properties
of the empirical likelihood-based overidentifying restriction test and showed that the
empirical likelihood-based test has the GNP optimality against all fixed alternatives.

The motivation of this paper is as follows. Suppose that a statistician propose a
moment restriction model to explain some data. The validity of the model can be
checked by the empirical likelihood-based overidentifying restriction test whose GNP
optimality is shown by Kitamura (2001). If the proposed moment restriction model
is accepted, the next task for the statistician is to conduct some hypothesis testing
for unknown parameters in the model. The main interest of the present paper is to
investigate the GNP optimal properties of the empirical likelihood-based tests for the
parameter hypothesis testing problem and to complement Kitamura’s (2001) GNP
optimality result for the overidentifying restriction testing problem.

To analyze the convergence rates of the type I and II error probabilities under fixed
alternatives, large deviation theory plays a key role. See Dembo and Zeitouni (1998)
for a review of large deviation theory. By utilizing these convergence rates, several
efficiency or optimality criteria for tests are proposed, such as Bahadur and Chernoff
efficiency. Serfling (1980, Chap. 10) provides a concise review on this topic. The notion
of the GNP optimality is originally proposed by Hoeffding (1965) to compare the chi-
square and likelihood ratio tests for multinomial distributions. Hoeffding’s approach
is extended to various setups by, e.g., Zeitouni and Gutman (1991) and Steinberg and
Zeitouni (1992). Zeitouni et al. (1992) considered finite-state Markov process and
derived a necessary and a sufficient condition for the GNP optimality of the likelihood
ratio test. This paper extends the result of Zeitouni et al. (1992) to moment restriction
models, where data can be continuously distributed and the distribution forms of the
data are unspecified (i.e., semiparametric).

This paper is organized as follows. Section 2 introduces our basic setup. Section 3
presents the optimality results. Section 4 concludes. All proofs are in Appendix.

2 Setup

Let {xi }n
i=1 be an iid sequence of d ×1 random vectors, θ ∈ � ⊂ R

p be a p ×1 vector
of unknown parameters, θ0 ∈ � be the true value, g : R

d × � → R
q be an q × 1

vector of known functions, where q > p (overidentified). Consider the unconditional
moment restriction model:

E[g(x, θ0)] =
∫

g(x, θ0)dµ0 = 0, (1)
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GNP optimality of empirical likelihood 775

where µ0 is the unknown true measure of x . Let �0 be a subset of �. Consider the
composite parameter hypothesis testing problem:

H0 : θ0 ∈ �0, H1 : θ0 ∈ �\�0. (2)

This setup includes equality and inequality hypotheses for possibly nonlinear functions
of the parameters. This paper studies optimal properties of empirical likelihood for
testing H0. From Owen (1988) and Qin and Lawless (1994), empirical likelihood at
each θ ∈ � is defined as

L(θ) = sup
{pi }n

i=1

{
n∏

i=1

pi

∣∣∣∣∣pi > 0,

n∑
i=1

pi = 1,

n∑
i=1

pi g (xi , θ) = 0

}
. (3)

Without the restriction
∑n

i=1 pi g (xi , θ)=0, the unconstrained empirical likelihood is

Lu = sup
{pi }n

i=1

{
n∏

i=1

pi

∣∣∣∣∣pi > 0,

n∑
i=1

pi = 1

}
= n−n .

For testing H0, we consider the following two empirical likelihood-based test statistics.

(i) ELC test statistic:

�C = −2

{
sup
θ∈�0

log L(θ) − log Lu

}

= inf
θ∈�0

max
γ∈Rq

2
n∑

i=1

log
(
1 + γ ′g (xi , θ)

)
, (4)

(ii) ELR test statistic:

�R = −2

{
sup
θ∈�0

log L(θ) − sup
θ∈�

log L(θ)

}

= inf
θ∈�0

max
γ∈Rq

2
n∑

i=1

log
(
1 + γ ′g (xi , θ)

)

− inf
θ∈�

max
γ∈Rq

2
n∑

i=1

log
(
1 + γ ′g (xi , θ)

)
. (5)

Under H0 with certain regularity conditions, �C and �R converge in distribution to
χ2(q) and χ2(p), respectively (Qin and Lawless 1994). Note that the second term in
(5) (i.e., �O = �C − �R) is the empirical likelihood overidentifying restriction test
statistic, which follows the χ2(q − p) limiting distribution. Kitamura (2001) derived
the GNP optimality of �O for testing the overidentifying restrictions.
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776 T. Otsu

We now introduce an information theoretic interpretation of empirical likelihood.
Let M be the space of probability measures on R

d , P (θ) = {µ ∈ M : ∫
g (x, θ)

dµ = 0} be a set of measures which satisfy the moment restrictions (1) at θ ∈ � ,
P = ⋃

θ∈� P (θ), and P0 = ⋃
θ∈�0

P (θ). Based on this notation, the hypotheses H0
and H1 are written as

H0 : µ0 ∈ P0, H1 : µ0 ∈ P\P0. (6)

The relative entropy (or Kullback–Leibler divergence) of measures P and Q is defined
as

I (P‖Q) =
∫

log

(
dP

dQ

)
dP if P is absolutely continuous with respect to Q

= ∞ otherwise.

Let µn be the empirical measure of {xi }n
i=1. It is known that

�C

2n
= inf

P∈P0

I (µn‖P) ,

(7)
�R

2n
= inf

P∈P0

I (µn‖P) − inf
P∈P

I (µn‖P) ,

i.e., the test statistics �C and �R are written as functions of µn . Thus, the empirical
likelihood-based tests can be defined by partitions of the space of measures M.

(i) ELC test:

accept H0 if µn ∈ �C1 =
{
µ ∈ M : inf

P∈P0

I (µ‖P) < η

}
,

reject if µn ∈ �C2 = M\�C1. (8)

(ii) ELR test:

accept H0 if µn ∈ �R1 =
{
µ ∈ M : inf

P∈P0

I (µ‖P) − inf
P∈P

I (µ‖P) < η′
}

,

reject if µn ∈ �R2 = M\�R1. (9)

We consider a class of tests which are represented by partitions of M for µn and
derive optimal properties of the partitions �C = (�C1,�C2) and �R = (�R1,�R2).
Let B (µ, δ) be an open ball of radius δ ∈ (0,∞) around µ ∈ M, Aδ = ∪µ∈A B (µ, δ)

be a δ-blowup of a set A, and Pn
0 and Pn be the n-fold product measures of P0 and

P , respectively. As a metric on M, we use the Lévy metric, which is defined as

ρ (P1, P2) ≡ inf
{
ε >0 : F1 (x−εe) − ε ≤ F2 (x)≤ F1 (x + εe) + ε for all x ∈ Rd

}
,
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GNP optimality of empirical likelihood 777

for each P1 ∈ M and P2 ∈ M, where F1 and F2 are the distribution functions of
P1 and P2, respectively, and e ≡ (1, . . . , 1)′. The Lévy metric is compatible with
the weak topology on M (see Dembo and Zeitouni (1998, Chap. D.2)). Our optima-
lity criterion is called the Generalized Neyman–Pearson δ-optimality (or simply the
GNP optimality) by Zeitouni and Gutman (1991), which is a natural extension of the
Neyman–Pearson optimality to analyze large deviation error properties of tests.

Definition 1 (Generalized Neyman–Pearson δ-optimality) A test defined by a
partition � = (�1,�2) of M is Generalized Neyman–Pearson δ -optimal for a
set A if it satisfies

(i) supP0∈P0
lim supn→∞ n−1 log Pn

0 {µn ∈ �2} ≤ −η;
(ii) for any test defined by some partition �n = (

�1,n,�2,n
)
, which satisfies

sup
P0∈P0

lim sup
n→∞

n−1 log Pn
0

{
µn ∈ �δ

2,n

} ≤ −η (10)

for some δ ∈ (0,∞), we have

lim sup
n→∞

n−1 log Pn {µn ∈ �1} ≤ lim sup
n→∞

n−1 log Pn {
µn ∈ �1,n

}
(11)

for each P ∈ A.

This definition of the GNP optimality is slightly different from the one in Kitamura
(2001), where the set A is to be M. To analyze the optimality of the ELR test, we adopt
this definition. If the test � = (�1,�2) is consistent, the type I (i.e., Pn

0 {µn ∈ �2} for
P0 ∈ P0) and type II (i.e., Pn {µn ∈ �1} for P ∈ M\P0) error probabilities converge
to zero. As we will see below, these convergence rates (or large deviation errors) are
exponentially small. Therefore, under the restriction on the exponential convergence
rate of the type I error in (10), we minimize the exponential convergence rate of the
type II error in (11). However, because of a rough nature of the large deviation theorem
for µn (see Theorem 1 below), we need a modification by the δ-blowup, i.e., the rival
test �n must satisfy the type I error restriction (10) for the δ-blowup of �2,n . We can
replace �δ

2,n in (10) with �2,n if we consider a class of tests that satisfy

lim
δ→0

sup
P0∈P0

lim sup
n→∞

n−1 log Pn
0

{
µn ∈ �δ

2,n

} = sup
P0∈P0

lim sup
n→∞

n−1 log Pn
0

{
µn ∈ �2,n

}

(see, Kitamura 2001, pp. 1665–1666).
In order to analyze the convergence rates in Definition 1, we need to know large

deviation properties of the empirical measure µn . For our purpose, Sanov’s theorem
(see, e.g., Deuschel and Stroock 1989, Theorem 3.2.17) plays a central role.

Theorem 1 (Sanov) Let � be the Polish space (i.e., complete separable metric space),
M (�) be the space of measures on � endowed with the Lévy metric and P ∈ M (�).
Then

lim sup
n→∞

n−1 log Pn {µn ∈ G} ≤ − inf
ν∈G

I (ν‖P)
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for each closed sets G ⊂ M (�), and

lim inf
n→∞ n−1 log Pn {µn ∈ H} ≥ − inf

ν∈H
I (ν‖P)

for each open sets H ⊂ M (�).

Sanov’s theorem says that the large deviation properties of the empirical measure
µn is characterized by the relative entropy I . Intuitively, if the set G (or H ) is far from
the true measure P in terms of the relative entropy, the exponential convergence rate
of Pn {µn ∈ G} (or Pn {µn ∈ H}) is fast. Note that the upper (resp. lower) bound of
the convergence rate is available only for closed (resp. open) sets. This property is
called a “rough nature” of the Sanov’s theorem.

3 Main results

3.1 Optimality of the empirical likelihood criterion test

We first present the GNP optimality of the ELC test in (8). We impose the following
assumptions.

Assumption 1 Assume that

(i) {xi }n
i=1 is iid,

(ii) P
{
supθ∈�0

‖g(x, θ)‖ = ∞} = 0 for each P ∈ P0,
(iii) g(x, θ) is continuous for all x ∈ R

d at each θ ∈ �0.

Assumption 1 (i) is required to apply Sanov’s theorem. Assumption 1 (ii) is a
tightness condition, which guarantees that supθ∈�0

‖g(x, θ)‖ is a random variable.
Assumption 1 (iii) is required to obtain the first statement of Lemma 1 (i) (Appen-
dix A.2), which ensures continuity of a functional of the relative entropy. The GNP
optimality of the ELC test is obtained as follows.

Theorem 2 (Optimality of the empirical likelihood criterion test)

Under Assumption 1, the ELC test (8) is Generalized Neyman–Pearson δ-optimal
for M.

The proof is similar to that of Kitamura (2001, Theorem 2). We basically show that
as far as the rival test �n satisfies the type I restriction (10), the acceptance region �1,n

must satisfy �C1 ⊆ �1,n for sufficiently large n. Note that the GNP optimality of the
ELC test holds for any alternative P ∈ M. Thus, even if the moment restriction (1)
does not hold (i.e., P ∈ M\P), the ELC test maintains the optimal power property
in (11).

3.2 Optimality of the empirical likelihood ratio test

We next investigate the GNP optimality of the ELR test. To test the parameter hypo-
thesis H0, we often assume that the moment restriction (1) holds true and compare
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the difference of the maximized values of empirical likelihood under H0 and H1. The
critical value η′ for the ELR test in (9) is typically smaller than the critical value η

for the ELC test in (8). From the GNP optimality of the ELC test (Theorem 2), our
next question is: “when do the large deviation properties of the ELR test with the cri-
tical value η′ become equivalent to those of the ELC test with the same critical value
η′?” Therefore, we set as η′ = η in the following discussion. We add the following
assumption.

Assumption 2 g(x, θ) is continuous for all x ∈ R
d at each θ ∈ �.

This assumption is an extension of Assumption 1 (iii) and is required to obtain the
second statement in Lemma 1 (i) (Appendix A.2). From η′ =η and inf P∈P I (µ‖P)≥0
for each µ ∈ M, we have �C1 ⊆ �R1 and �R2 ⊆ �C2. From Theorem 2 and
�R2 ⊆ �C2, Definition 1 (i) is obviously satisfied for the ELR test �R . On the other
hand, from �C1 ⊆ �R1, the type II error probability satisfies

Pn {µn ∈ �R1} = Pn {µn ∈ �C1} + Pn {µn ∈ �R1 ∩ �C2} , (12)

for each P ∈ M. Therefore, lim supn→∞ n−1 log Pn {µn ∈ �C1} ≤ lim supn→∞ n−1

log Pn {µn ∈ �R1} for each P ∈ M, i.e., if the critical values are same, the ELC test
has a faster convergence rate of the type II error probability than the ELR test. However,
if the convergence rate of the component Pn {µn ∈ �R1 ∩ �C2} in (12) is faster than
that of Pn {µn ∈ �C1} for some P ∈ M, i.e.,

lim sup
n→∞

n−1 log Pn {µn ∈ �R1 ∩ �C2} ≤ lim sup
n→∞

n−1 log Pn {µn ∈ �C1} , (13)

then we can still obtain lim supn→∞ n−1 log Pn {µn ∈ �C1} = lim supn→∞ n−1

log Pn {µn ∈ �R1} and the ELR test becomes GNP optimal at P . Thus, to obtain
the GNP optimality of the ELR test, we need additional conditions for the alterna-
tives. Let Bm = {

x ∈ R
d : supθ∈� ‖g (x, θ)‖ ≤ m, ‖x‖ ≤ m

}
for m ∈ N, and

M̄ = {µ ∈ M : µ{Bm} = 1 for some m ∈ N},

�R1,0 =
{
µ ∈ M : inf

P∈P0

I (µ‖P) − inf
P∈P

I (µ‖P) ≤ η

}
,

�C1,0 =
{
µ∈M : inf

P∈P0

I (µ‖P) ≤ η

}
, �C2,0 =

{
µ∈M : inf

P∈P0

I (µ‖P) > η

}
.

Note that limm→∞ P {Bm} = 1 for each P ∈ P0 by Assumption 1 (ii). The GNP
optimality of the ELR test is presented as follows.

Theorem 3 (Optimality of the empirical likelihood ratio test)
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780 T. Otsu

(i) Sufficient condition: Suppose that Assumptions 1 (i)–(ii) and 2 hold. If

P ∈ M∗ =
{

P ∈ M : P

{
sup
θ∈�

‖g(x, θ)‖ = ∞
}

= 0,

inf
µ∈�R1,0∩�C2

I (µ||P) ≥ inf
µ∈�C1∩M̄

I (µ||P)

}
, (14)

then the ELR test (9) is Generalized Neyman–Pearson δ -optimal for P.
(ii) Necessary condition: Suppose that Assumptions 1 (i)–(ii) and 2 hold. If the ELR

test (9) is Generalized Neyman–Pearson δ-optimal for P, then

P ∈ M∗∗ =
{

P ∈ M : P

{
sup
θ∈�

‖g(x, θ)‖ = ∞
}

= 0,

inf
µ∈�R1∩�C2,0∩M̄

I (µ||P) ≥ inf
µ∈�C1,0

I (µ||P)

}
. (15)

Obviously, M∗ ⊆ M∗∗. The restriction P
{
supθ∈� ‖g(x, θ)‖ = ∞} = 0 in M∗

and M∗∗ implies that limm→∞ P {Bm} = 1 for each P ∈ M∗ and M∗∗. Theo-
rem 3 (i) is a sufficient condition for the GNP optimality of the ELR test at P . By
applying Sanov’s theorem (Theorem 1), the restriction infµ∈�R1,0∩�C2 I (µ||P) ≥
infµ∈�C1∩M̄ I (µ||P) in M∗ guarantees (13). Because of a “rough nature” of Sanov’s

theorem, we need to use �R1,0 ∩ �C2 and �C1 ∩ M̄ in the restriction instead of
�R1 ∩ �C2 and �C1, respectively. Theorem 3 (ii) is a necessary condition for the
GNP optimality of the ELR test at P . Again, because of the rough nature of Sanov’s
theorem, the restriction infµ∈�R1∩�C2,0∩M̄ I (µ||P) ≥ infµ∈�C1,0 I (µ||P) in M∗∗ is

slightly different from that in M∗. The component M̄ in M∗ and M∗∗ is required to
apply a trimming argument of Groeneboom et al. (1979). If the support of x is finite
or compact, we can drop M̄ in the definitions of M∗ and M∗∗. In finite state Markov
models, Zeitouni et al. (1992) derived similar results for the (standard) likelihood ratio
test. Our result can be considered as an extension to the ELR test, where the model is
semiparametric.

4 Conclusion

This paper studies the Generalized Neyman–Pearson (GNP) optimality of the empi-
rical likelihood criterion and ratio tests for testing parameter hypotheses. The GNP
optimality is defined by extending the Neyman–Pearson optimality to the large devia-
tion analog. We show that (i) the empirical likelihood criterion test is GNP optimal for
all alternatives, and (ii) under additional conditions for the alternatives the empirical
likelihood ratio test is also GNP optimal.
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GNP optimality of empirical likelihood 781

Appendix: Mathematical appendix

Notation Our notation closely follows that of Kitamura (2001). Let P(m) be the
conditional probability measure P(m) {C} = P {C |Bm} = P {C ∩ Bm} /P {Bm} for
C ∈ Bd and P ∈ M, M (Bm) be the space of probability measures on Bm , P(m)n

be the n-fold product measure of P(m), and 1 {B}, (B)c, and cl(B) be the indicator
function, complement, and closure of a set B, respectively. Define

Pm (θ) =
{
µ ∈ M :

∫
g (x, θ) 1 {Bm} dµ = 0

}
,

P0,m = ∪θ∈�0Pm (θ) , Pm = ∪θ∈�Pm (θ) ,

�
(m)
C1 =

{
µ ∈ M : inf

P∈P0,m

I (µ‖P) < η

}
,

�
(m)
C2 =

{
µ ∈ M : inf

P∈P0,m

I (µ‖P) ≥ η

}
,

�C2,ε =
{
µ ∈ M : inf

P∈P0

I (µ‖P) ≥ η − ε

}
,

�
(m)
C2,ε =

{
µ ∈ M : inf

P∈P0,m

I (µ‖P) ≥ η − ε

}
,

�R1,ε =
{
µ ∈ M : inf

P∈P0

I (µ‖P) − inf
P∈P

I (µ‖P) ≤ η + ε

}
,

�
(m)
R1,ε =

{
µ ∈ M : inf

P∈P0,m

I (µ‖P) − inf
P∈Pm

I (µ‖P) ≤ η + ε

}
.

A.1 Proof of Theorem 2

Since the proof is similar to that of Kitamura (2001, Theorem 2), it is omitted. A
detailed proof is available from the author upon request.

A.2 Proof of Theorem 3

A.2.1 Proof of (i)

We set as η′ = η. First, we show that �R2 satisfies Definition 1 (i). Since inf P∈P I
(µ‖P) ≥ 0 for each µ ∈ M, we have �R2 ⊆ �C2. Therefore, Pn

0 {µn ∈ �R2} ≤
Pn

0 {µn ∈ �C2} for each P0 ∈ P0 and the result follows from Theorem 2.
Next, we show that �R1 satisfies Definition 1 (ii). From Theorem 2, it is sufficient

to show that �R1 satisfies

lim sup
n→∞

n−1 log Pn {µn ∈ �R1} ≤ lim sup
n→∞

n−1 log Pn {µn ∈ �C1} , (16)
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782 T. Otsu

for each P ∈ M∗. Observe that �C1 ⊆ �R1, i.e.,

Pn {µn ∈ �R1} = Pn {µn ∈ �C1} + Pn {µn ∈ �R1 ∩ �C2} , (17)

for each P ∈ M. From (16) and (17), it is sufficient to show that

lim sup
n→∞

n−1 log Pn {µn ∈ �R1 ∩ �C2} ≤ lim sup
n→∞

n−1 log Pn {µn ∈ �C1} , (18)

for each P ∈ M∗. Pick any P ∈ M∗. Lemma 2 implies that for each ε ∈ (0,∞),
there exists mε ∈ N such that

lim sup
n→∞

n−1 log Pn {µn ∈ �R1 ∩ �C2} ≤ − inf
µ∈�R1,0∩�C2

I (µ||P(m)) + ε, (19)

for each m ≥ mε . Lemma 1 (iv) and (v) and the definition of M∗ in (14) imply that
for each ε ∈ (0,∞), there exists m′

ε ∈ N such that

− inf
µ∈�R1,0∩�C2

I (µ||P(m)) ≤ − inf
µ∈�R1,0∩�C2

I (µ||P) + ε

≤ − inf
µ∈�C1∩M̄

I (µ||P) + ε

≤ − inf
µ∈�C1∩M̄

I (µ||P(m)) + 2ε

≤ − inf
µ∈�C1

I (µ||P(m)) + 2ε, (20)

for each m ≥ m′
ε . Lemma 1 (ii) and (iii) imply that

− inf
µ∈�C1

I (µ||P(m)) = − inf
µ∈�C1∩M(Bm )

I (µ||P(m))

= − inf
µ∈�

(m)
C1 ∩M(Bm )

I (µ||P(m))

≤ − inf
µ∈�

(m)
C1

I (µ||P(m)), (21)

for each m ∈ N. Since �
(m)
C1 is an open set (from Lemma 1 (i)), Theorem 1 yields that

− inf
µ∈�

(m)
C1

I (µ||P(m)) ≤ lim inf
n→∞ n−1 log P(m)n{µn ∈ �

(m)
C1 }, (22)

for each m ∈ N. For each P ∈ M∗ and ε ∈ (0,∞), there exists m′′
ε ∈ N such that

− log P{Bm} ≤ ε for all m ≥ m′′
ε (from P

{
supθ∈� ‖g(x, θ)‖ = ∞} = 0). Thus, for
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GNP optimality of empirical likelihood 783

all m ≥ m′′
ε we have

lim inf
n→∞ n−1 log P(m)n{µn ∈ �

(m)
C1 }

= lim inf
n→∞ n−1 log P(m)n{µn ∈ �

(m)
C1 ∩ M(Bm)}

= lim inf
n→∞ n−1 log Pn{µn ∈ �

(m)
C1 ∩ M(Bm)} − log P{Bm}

≤ lim inf
n→∞ n−1 log Pn{µn ∈ �C1} + ε, (23)

where the first equality follows from P(m)n{µn /∈ M(Bm)} = 0 for each m ∈ N and
n ∈ N (by the definition of P(m)), the second equality follows from the definition of
P(m) and Assumption 1 (i), and the inequality follows from Lemma 1 (ii) and the set
inclusion relationship. From (19)–(23), we have

lim sup
n→∞

n−1 log Pn {µn ∈ �R1 ∩ �C2} ≤ lim sup
n→∞

n−1 log Pn {µn ∈ �C1} + 4ε,

for each ε ∈ (0,∞) and P ∈ M∗. Therefore, (18) is obtained.

A.2.2 Proof of (i i)

Suppose that the ELR test (9) is Generalized Neyman–Pearson δ-optimal at some P .
Definition 1 (ii) implies that lim sup

n→∞
n−1 log Pn {µn ∈ �R1} ≤ lim sup

n→∞
n−1 log Pn

{µn ∈ �C1}. Since �C1 ⊆ �R1, we must have

lim sup
n→∞

n−1 log Pn {µn ∈ �R1 ∩ �C2} ≤ lim sup
n→∞

n−1 log Pn {µn ∈ �C1} . (24)

Thus, it is sufficient to show that if P satisfies (24) then we have P ∈ M∗∗.
First, consider the left hand side of (24). For each ε ∈ (0,∞), there exists mε ∈ N

such that

lim sup
n→∞

n−1 log Pn {µn ∈ �R1 ∩ �C2}
≥ lim inf

n→∞ n−1 log Pn {
µn ∈ �R1 ∩ �C2,0

}

≥ lim inf
n→∞ n−1 log P(m)n{µn ∈ �

(m)
R1 ∩ �

(m)
C2,0} − ε, (25)

for each m ≥ mε , where the second inequality follows from the same argument as
(23). Since �

(m)
R1 ∩ �

(m)
C2,0 is open (from Lemma 1 (i)), Theorem 1 yields that

lim inf
n→∞ n−1 log P(m)n{µn ∈ �

(m)
R1 ∩ �

(m)
C2,0} ≥ − inf

µ∈�
(m)
R1 ∩�

(m)
C2,0

I (µ||P(m))

≥ − inf
µ∈�

(m)
R1 ∩�

(m)
C2,0∩M(Bm)

I (µ||P(m))
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784 T. Otsu

= − inf
µ∈�R1∩�C2,0∩M(Bm)

I (µ||P(m))

= − inf
µ∈�R1∩�C2,0

I (µ||P(m)), (26)

for each m ∈ N, where the first and second equalities follow from Lemma 1 (ii) and
(iii), respectively. Lemma 1 (iv) implies that for each ε ∈ (0,∞) there exists m′

ε ∈ N

such that

− inf
µ∈�R1∩�C2,0

I (µ||P(m)) ≥ − inf
µ∈�R1∩�C2,0∩M̄

I (µ||P(m))

≥ − inf
µ∈�R1∩�C2,0∩M̄

I (µ||P) − ε, (27)

for each m ≥ m′
ε .

Next, consider the right hand side of (24). Observe that

lim sup
n→∞

n−1 log Pn {µn ∈ �C1}
≤ lim sup

n→∞
n−1 log Pn {

µn ∈ �C1,0
}

≤ lim sup
n→∞

n−1 log P(m)n {
µn ∈ �C1,0

}

= lim sup
n→∞

n−1 log P(m)n {
µn ∈ �C1,0 ∩ M(Bm)

}

≤ lim sup
n→∞

n−1 log P(m)n
{
µn ∈ �

(m)
C1,0

}
, (28)

for each m ∈ N, where the first inequality follows from the set inclusion relationship,
the second inequality follows from the definition of P(m) and P{Bm} ≤ 1 for all
m ∈ N, the equality follows from P(m)n{µn /∈ M(Bm)} = 0 for each m ∈ N and
n ∈ N, the last inequality follows from Lemma 1 (ii) and the set inclusion relationship.
Since �

(m)
C1,0 is closed (from Lemma 1 (i)), Theorem 1 yields that

lim sup
n→∞

n−1 log P(m)n{µn ∈ �
(m)
C1,0} ≤ − inf

µ∈�
(m)
C1,0

I (µ||P(m))

= − inf
µ∈�

(m)
C1,0∩M(Bm)

I (µ||P(m))

= − inf
µ∈�C1,0∩M(Bm)

I (µ||P(m))

= − inf
µ∈�C1,0

I (µ||P(m)), (29)

for each m ∈ N, where the equalities follow from Lemma 1 (ii) and (iii). Lemma 1
(v) implies that for each ε ∈ (0,∞) there exists m′′

ε ∈ N such that

− inf
µ∈�C1,0

I (µ||P(m)) ≤ − inf
µ∈�C1,0

I (µ||P) + ε, (30)
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for each m ≥ m′′
ε .

Finally, combining these results, P satisfies

− inf
µ∈�R1∩�C2,0∩M̄

I (µ||P) − 2ε ≤ lim sup
n→∞

n−1 log Pn {µn ∈ �R1 ∩ �C2}

≤ lim sup
n→∞

n−1 log Pn {µn ∈ �C1}
≤ − inf

µ∈�C1,0
I (µ||P) + 2ε,

for each ε ∈ (0,∞), i.e., P ∈ M∗∗.

A.3 Auxiliary lemmas

The following lemmas are derived under Assumptions 1 and 2.

Lemma 1 (i) Kitamura (2001, Lemma 1): inf P∈P0,m I (µ||P) and inf P∈Pm

I (µ||P) are continuous in µ ∈ M.
(ii) A(m)∩M (Bm)= A∩M (Bm) for each m ∈ N, where (A(m), A)=(�

(m)
C1 ,�C1),

(�
(m)
C1,0,�C1,0), (�

(m)
R1,0 ∩ �

(m)
C2 ,�R1,0 ∩ �C2), (�

(m)
R1 ∩ �

(m)
C2,0,�R1 ∩ �C2,0),

and (�
(m)
R1,ε ∩ �

(m)
C2,ε,�R1,ε ∩ �C2,ε) for each ε ∈ (0,∞).

(iii) infµ∈A∩M(Bm ) I (µ||P(m)) = infµ∈A I (µ||P(m)) for each m ∈ N and P ∈ M,

where A = �C1, �
(m)
C1,0, �R1,0 ∩ �C2, �R1 ∩ �C2,0, and �R1,ε ∩ �C2,ε for

each ε ∈ (0,∞).
(iv) Groeneboom et al. (1979, Lemma 4.1): If � is a subset of M̄={µ ∈ M : µ{Bm}

= 1 for some m ∈ N}, then limm→∞ infµ∈� I (µ||P(m)) = infµ∈� I (µ||P) for
each P ∈ M∗.

(v) If � is a subset of M, then limm→∞ infµ∈� I (µ||P(m)) ≥ infµ∈� I (µ||P) for
each P ∈ M∗ .

Proof (ii) and (iii) are obtained from the proof of Kitamura (2001, Lemma 3). (v) is
obtained from the proof of Groeneboom et al. (1979, Lemma 4.1).

Lemma 2 For each ε ∈ (0,∞) and P ∈ M∗, there exists mε ∈ N such that

lim sup
n→∞

n−1 log Pn {µn ∈ �R1 ∩ �C2} ≤ − inf
µ∈�R1,0∩�C2

I (µ||P(m)) + ε,

for each m > mε .

��
Proof A similar argument as the proof of Kitamura (2001, Theorem 2) yields that for
each ε ∈ (0,∞) and P ∈ M∗, there exists mε ∈ N such that

lim sup
n→∞

n−1 log Pn {µn ∈ �R1 ∩ �C2} ≤ − inf
µ∈�R1,ε∩�C2,ε

I (µ||P(m)) + ε/2,
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for all m > mε . From Lemma 1 (ii) and (iii),

inf
µ∈�R1,0∩�C2

I (µ‖P(m)) = inf
µ∈�R1,0∩�C2∩M(Bm )

I (µ‖P(m))

= inf
µ∈�

(m)
R1,0∩�

(m)
C2 ∩M(Bm )

I (µ‖P(m)),

inf
µ∈�R1,ε∩�C2,ε

I (µ‖P(m)) = inf
µ∈�R1,ε∩�C2,ε∩M(Bm )

I (µ‖P(m))

= inf
µ∈�

(m)
R1,ε∩�

(m)
C2,ε∩M(Bm )

I (µ‖P(m)),

for each m ∈ N, P ∈ M∗, and ε ∈ (0,∞). Therefore, it is sufficient to show that

lim
ε→0

inf
µ∈�

(m)
R1,ε∩�

(m)
C2,ε∩M(Bm )

I (µ‖P(m)) = inf
µ∈�

(m)
R1,0∩�

(m)
C2 ∩M(Bm )

I (µ‖P(m))

for each m ∈ N and P ∈ M∗.
Now pick any P ∈ M∗ and m ∈ N. Since the sequence of the sets A(m)

ε =
{�(m)

R1,ε ∩�
(m)
C2,ε ∩M (Bm)}ε∈(0,∞) is non-increasing as ε ↓ 0, the sequence {inf

µ∈A(m)
ε

I
(
µ||P(m)

)}ε∈(0,∞) is non-decreasing as ε ↓ 0. Also, this sequence {inf
µ∈A(m)

ε
I(

µ||P(m)
)}ε∈(0,∞) is bounded above by inf

µ∈�
(m)
R1,0∩�

(m)
C2 ∩M(Bm )

I
(
µ||P(m)

)
. There-

fore, the sequence {inf
µ∈A(m)

ε
I
(
µ||P(m)

)}ε∈(0,∞) converges as ε ↓ 0 to some limit

Ī ≤ inf
µ∈�

(m)
R1,0∩�

(m)
C2 ∩M(Bm )

I
(
µ||P(m)

)
, and we can take a decreasing sequence

of positive numbers {εl}l∈N such that {inf
µ∈A(m)

εl
I
(
µ||P(m)

)}l∈N increases to Ī as

l → ∞.
Lemma 1 (i) implies that �

(m)
R1,εl

and �
(m)
C2,εl

are closed sets for each l ∈ N. Since

M (Bm) is compact (see, e.g., Dembo and Zeitouni 1998, Appendix D.2), A(m)
εl is also

compact for each l ∈ N. Thus, the lower semicontinuity of I
(
µ||P(m)

)
for µ ∈ A(m)

εl

implies that the infimum inf
µ∈A(m)

εl
I (µ‖P(m)) is attained on the compact set A(m)

εl ,

i.e., there exists µl ∈ A(m)
εl such that I (µl‖P(m)) = inf

µ∈A(m)
εl

I (µ‖P(m)) for each

l ∈ N.
Now consider the sequence of the sets {cl({µl}l≥l ′)}l ′∈N. Since cl({µl}l≥l ′) ⊆ A(m)

εl′
for each l ′ ∈ N, cl({µl}l≥l ′) is compact for each l ′ ∈ N. Thus, since {cl({µl}l≥l ′)}l ′∈N

is a non-increasing sequence of non-empty compact sets, the Heine–Borel theorem
implies that

⋂∞
l ′=1 cl({µl}l≥l ′) is non-empty. Pick any µ̄ ∈ ⋂∞

l ′=1 cl({µl}l≥l ′). Since
I (µl‖P(m)) ≤ Ī for each l ∈ N, we have {µl}l≥l ′ ⊆ {

µ ∈ M : I (µ‖P(m)) ≤ Ī
}
.

Since
{
µ ∈ M : I (µ‖P(m)) ≤ Ī

}
is closed (from the lower semicontinuity of

I (µ‖P(m)) for µ ∈ M), we have cl({µl}l≥l ′) ⊆ {
µ ∈ M : I (µ‖P(m)) ≤ Ī

}
for each

l ′ ∈ N, which implies I (µ̄‖P(m)) ≤ Ī . On the other hand, since µ̄ ∈ A(m)
εl for each

l ∈N , we have µ̄ ∈ �
(m)
R1,0∩�

(m)
C2 ∩M (Bm), which implies Ī ≤ inf

µ∈�
(m)
R1,0∩�

(m)
C2 ∩M(Bm )
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I (µ‖P(m)) ≤ I (µ̄‖P(m)). Combining these results,

I (µ̄‖P(m)) ≤ Ī ≤ inf
µ∈�

(m)
R1,0∩�

(m)
C2 ∩M(Bm )

I (µ‖P(m)) ≤ I (µ̄‖P(m)),

i.e., {inf
µ∈A(m)

εl
I
(
µ||P(m)

)}l∈N increases to the limit Ī = inf
µ∈�

(m)
R1,0∩�

(m)
C2 ∩M(Bm )

I (µ‖P(m)) as l → ∞. Therefore, the conclusion is obtained. ��
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