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Abstract In this paper, we present a general method which can be used in order
to show that the maximum likelihood estimator (MLE) of an exponential mean θ is
stochastically increasing with respect to θ under different censored sampling schemes.
This propery is essential for the construction of exact confidence intervals for θ via
“pivoting the cdf” as well as for the tests of hypotheses about θ . The method is shown
for Type-I censoring, hybrid censoring and generalized hybrid censoring schemes. We
also establish the result for the exponential competing risks model with censoring.

Keywords Exponential distribution · Maximum likelihood estimation · Type-I
censoring · Type-I and Type-II hybrid censoring · Type-I and Type-II generalized
hybrid censoring · Exact confidence intervals · Stochastic ordering · Competing risks
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1 Introduction

A standard method for constructing exact confidence intervals for a real parameter θ

based on a statistic θ̂ is “pivoting the cdf”, or, equivalently, the survival function; see,
for example, Casella and Berger (2002, p. 432). The method is applicable as long as θ̂

is stochastically monotone with respect to θ , that is, Pθ (θ̂ > x) is a monotone function
of θ for all x . Assuming without loss of generality that it is increasing, the method
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then proceeds as follows: Choose α1 and α2 such that α1 + α2 = α (for example,
α1 = α2 = α/2) and solve the equations Pθ (θ̂ > θ̂obs) = α1, Pθ (θ̂ > θ̂obs) = 1 − α2
for θ . Here, θ̂obs is the observed value of θ̂ determined from the given sample. The
existence and uniqueness of the solutions of these equations are then guaranteed by
the monotonicity of Pθ (θ̂ > θ̂obs) with respect to θ . Denote by θL(θ̂obs) < θU (θ̂obs)

these solutions. Then, [θL(θ̂obs), θU (θ̂obs)] is the realization of an exact 100(1 − α)%
confidence interval for the parameter θ .

Obviously, the stochastic monotonicity of θ̂ with respect to θ is crucial in the above
construction. However, in the literature, a series of papers have been published con-
structing exact confidence intervals for the parameters of interest by assuming the
stochastic monotonicity of the corresponding MLEs and not being able to show it
theoretically but only observing it empirically. In particular, Chen and Bhattacharyya
(1988), Childs et al. (2003), and Chandrasekar et al. (2004) derived the maximum
likelihood estimator (MLE) of the exponential mean θ as well as its distribution for
different censoring schemes, but they did not provide a formal proof that these MLEs
are stochastically increasing with respect to the parameter θ . In all these cases, the
survival function of the MLE takes on a mixture form

Pθ (θ̂ > x) =
∑

d∈D
Pθ (D = d)Pθ (θ̂ > x |D = d), (1)

where D is a finite set. They all conjectured that the MLEs are stochastically increas-
ing and supported it by presenting numerical results for some special cases. They
then proceeded to the construction of exact confidence limits by “pivoting the survival
function”. In this paper, we formally prove that these conjectures are indeed true thus
validating the exact inferential procedures developed by all these authors.

Another useful need for the stochastic monotonicity of the MLE is in the context
of hypothesis testing. Suppose we want to test H0 : θ � θ0 versus H1 : θ > θ0. It
is natural to consider tests of the form θ̂ > Cα(θ0), where Cα(θ0) denotes the upper
α-quantile of the distribution of θ̂ at θ0. However, in order for such a test to have
desirable properties such as unbiasedness and monotone power function, the MLE θ̂

should be stochastically increasing in θ .
This paper is organized as follows. In Sect. 2, we present a lemma providing three

conditions which together are sufficient for a survival function of the form in (1) to
be increasing in θ . In other words, successive verification of these conditions would
imply that θ̂ is stochastically increasing in θ . In the subsequent sections, we apply this
lemma in different censoring scenarios from an exponential distribution. In Sect. 3,
we consider the case of the usual Type-I censoring as an illustrative example, since the
application of the lemma in this case is quite straightforward. Moreover, this particular
result will be used repeatedly in the sequel. In Sect. 4, we prove the stochastic mono-
tonicity of the MLE under hybrid censoring, while in Sect. 5 we establish the result for
generalized hybrid censoring. Section 6 summarizes the results and discusses some
other potential applications of our approach. In addition, we prove in this section the
stochastic monotonicity of the MLE in the setting of exponential competing risks, a
result conjectured earlier by Kundu and Basu (2000). Finally, the technical results
needed for verifying the conditions of the basic lemma are presented in an Appendix.
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Stochastic monotonicity of the MLE of exponential mean 755

2 The basic lemma

Suppose that the survival function of θ̂ has the form in (1). Then, the following lemma
holds.

Lemma 1 (Three Monotonicities Lemma) Assume that the following hold true:

(M1) For all d ∈ D, the conditional distribution of θ̂ , given D = d, is stochastically
increasing in θ , i.e., the function Pθ (θ̂ > x |D = d) is increasing in θ for all
x and d ∈ D;

(M2) For all x and θ > 0, the conditional distribution of θ̂ , given D = d, is sto-
chastically decreasing in d, i.e., the function Pθ (θ̂ > x |D = d) is decreasing
in d ∈ D;

(M3) D is stochastically decreasing in θ .

Then, θ̂ is stochastically increasing in θ .

Proof It is well-known that if X �st Y , where “�st” means stochastically smaller, then
for any integrable decreasing function g we have E{g(X)} � E{g(Y )}; see Shaked
and Shanthikumar (2007). Therefore, under the assumptions of the lemma, for any
θ < θ ′,

Pθ (θ̂ > x) =
∑

d∈D
Pθ (D = d)Pθ (θ̂ > x |D = d)

�
∑

d∈D
Pθ ′(D = d)Pθ (θ̂ > x |D = d) (by M2 and M3)

�
∑

d∈D
Pθ ′(D = d)Pθ ′(θ̂ > x |D = d) (by M1)

= Pθ ′(θ̂ > x)

as required.

Hence, a proof of the stochastic monotonicity of θ̂ with respect to θ may be com-
pleted in three steps, that is, establishing the three conditions of Lemma 1. We will
refer to the above lemma as TML (Three Monotonicities Lemma) in the sequel.

3 Type-I censoring

Type-I censoring is the most practical type of censoring in that the duration of the
experiment is fixed in advance by the experimenter. Specifically, let T > 0 be a fixed
time and let X1, . . . , Xn be iid random variables from an exponential distribution E(θ),
θ > 0. Suppose that the life-test is terminated at time T , and D denotes the number of
observed failures. Clearly, D is a random variable. By writing down the likelihood, it
can be easily seen that the MLE of θ does not exist if D = 0. Hence, in order to make
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inference about θ , we must condition on the event D � 1. In this case, the MLE of
θ is

θ̂ = 1

D

{
D∑

i=1

Xi :n + (n − D)T

}
. (2)

The conditional distribution of θ̂ , given D � 1, has been explicitly derived by
Bartholomew (1963). He then found the mean and the variance of this distribution and
used them in order to make asymptotic inference for θ via the Central Limit Theorem.
Later on, Spurrier and Wei (1980) used this conditional distribution in order to make
exact inference for θ . They stated that “it can be shown that Pθ (θ̂ � c) is an increas-
ing function of θ”, but did not present a proof. The result was formally proved by
Balakrishnan et al. (2002) by using a coupling argument.

Conditional on D � 1, the survival function of the MLE can be expressed as

Pθ (θ̂ > x) =
n∑

d=1

Pθ (D = d|D � 1)Pθ (θ̂ > x |D = d), (3)

and so it has the form in (1) with D = {1, . . . , n}. Of course, (3) coincides with the
expression of Bartholomew (1963), although this is not clear at first glance. Below,
we prove once more the stochastic monotonicity of θ̂ with respect to θ using TML.
Its application is rather straightforward in this case, and so it will also serve as an
illustrative example. Moreover, this result will be used repeatedly in the following
sections. Now, we proceed to the verification of the three monotonicities.

(M1) Recall that we have to show that the conditional distribution of θ̂ , given D =
d, is stochastically increasing in θ . To this end, note that conditional on D = d,

(X1:n, . . . , Xd:n) have the same distribution as (Z1:d , . . . , Zd:d), where Z1, . . . , Zd
iid∼

E(θ)I (Z � T ), i.e., exponential with parameter θ but right truncated at T ; see Arnold

et al. (1992). Hence, conditional on D = d,
∑D

i=1 Xi :n
d= ∑d

i=1 Zi :d ≡ ∑d
i=1 Zi .

Since the right truncated exponential distribution is stochastically increasing in θ and
Zi ’s are independent, the required monotonicity follows immediately.

(M2) Next, we have to prove that the conditional distribution of θ̂ , given D = d,
is stochastically decreasing in d. This will be done via standard coupling. For any
d ∈ {1, . . . , n − 1}, let Z1, . . . , Zd , Zd+1 be iid from E(θ)I (Z � T ). Then,

θ̂ |(D = d) has the same distribution as
1

d

{
d∑

i=1

Zi + (n − d)T

}

while

θ̂ |(D = d + 1) has the same distribution as
1

d + 1

{
d+1∑

i=1

Zi + (n − d − 1)T

}
.
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But,

1

d

{
d∑

i=1

Zi + (n − d)T

}
− 1

d + 1

{
d+1∑

i=1

Zi + (n − d − 1)T

}

=
∑d

i=1 Zi + (n − d)T + d(T − Zd+1)

d(d + 1)
> 0,

which implies that Pθ (θ̂ > x |D = d) > Pθ (θ̂ > x |D = d + 1) for all x, θ > 0.

(M3) Finally, we should verify that D is stochastically decreasing in θ . However, this
is a consequence of the fact that D has the monotone likelihood ratio property with
respect to θ . This is proven in Lemma 3(a) (with D, T in the place of D1, T1).

Thus follows the monotonicity of the conditional survival function of the MLE in
(3) for the case of Type-I censoring.

4 Hybrid censoring

4.1 Type-I hybrid censoring

Suppose there are n identical units under test, and that T > 0 and r ∈ {1, . . . , n}
are fixed. In this particular sampling scheme, the life-test stops at the random time
T ∗

1 = min{Xr :n, T }. The scheme was introduced first by Epstein (1954). By assuming
that the lifetimes X1, . . . , Xn are from the exponential distribution E(θ), he found the
MLE as

θ̂ =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1

D

{
D∑

i=1

Xi :n + (n − D)T

}
, if D = 1, . . . , r − 1,

1

r

{
r∑

i=1

Xi :n + (n − r)Xr :n

}
, if D = r, . . . , n,

(4)

where again D = #{X ’s � T }. Chen and Bhattacharyya (1988) derived the exact
distribution of the MLE of θ , but this was in a very complicated form. It was sim-
plified later by Childs et al. (2003) who termed this sampling scheme “Type-I hybrid
censoring” since it shares with standard Type-I censoring the feature that the total time
under test is no more than the pre-fixed time T . As mentioned earlier, in both these
papers, the authors were not able to prove the stochastic monotonicity of the MLE
with respect to θ . Here, we shall prove this result using TML.

(M1) As already mentioned in the case of Type-I censoring, conditional on D = d,
(X1:n, . . . , Xd:n) has the same distribution as the order statistics (Z1:d , . . . , Zd:d) in
a sample of size d from the right truncated exponential distribution E(θ)I (Z � T ).
Thus, for any x ∈ R,

Pθ (θ̂ > x |D = d) = Pθ (w0 + ∑d
i=1 wd Zi :d > x),
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where w1 = · · · = wd = 1/d and w0 = (n − d)T/d for d < r , and w1 = · · · =
wr−1 = 1/r , wr = (n − r + 1)/r , w0 = wr+1 = · · · = wd = 0, for d � r . Since
E(θ)I (Z � T ) is stochastically increasing in θ , the result follows from Lemma 4.

(M2) For d � r − 2, the result is the same as that in Sect. 3. For d = r − 1, let
Z1, . . . , Zr be iid observations from E(θ)I (Z � T ). Then,

θ̂ |(D = r − 1)
d= 1

r − 1

{
r−1∑

i=1

Zi + (n − r + 1)T

}

and

θ̂ |(D = r)
d= 1

r

{
r∑

i=1

Zr + (n − r)Zr :r

}
.

Now,

1

r − 1

{
r−1∑

i=1

Zi + (n − r + 1)T

}
− 1

r

{
r∑

i=1

Zr + (n − r)Zr :r

}

=
∑r

i=1 Zi + r(Zr :r − Zr ) + (n − r)Zr :r + r(n − r + 1)(T − Zr :r )
r(r − 1)

> 0,

which implies the result. Finally, for d � r , the result is obtained by applying Lemma 5.

(M3) The distribution of D is the same as in Sect. 3.
Thus follows the monotonicity of the conditional survival function of the MLE in

(4) for the case of Type-I hybrid censoring.

4.2 Type-II hybrid censoring

In Type-I hybrid censoring, there is a possibility of observing no failures at all. For
that reason, Childs et al. (2003) proposed an alternative sampling scheme wherein the
life-test terminates at the random time T ∗

2 = max{Xr :n, T }. This guarantees that at
least r failures will be observed. In this case, the MLE of θ is given by

θ̂ =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1

r

{
r∑

i=1

Xi :n + (n − r)Xr :n

}
, if D = 0, 1, . . . , r − 1,

1

D

{
D∑

i=1

Xi :n + (n − D)T

}
, if D = r, r + 1, . . . , n.

(5)

Note here that the MLE is always defined, and so D = {0, 1, . . . , n}.
We now proceed to establishing the stochastic monotonicity of θ̂ via TML.

123



Stochastic monotonicity of the MLE of exponential mean 759

(M1) For d � r , the stochastic monotonicity of θ̂ , given D = d, has already been
proved in Section 3. In order to prove it for d < r , use Lemma 7 to get that, con-
ditional on D = d, (X1:n, . . . , Xd:n) and (Xd+1:n, . . . , Xr :n) are independent. This
implies that, conditional on D = d,

∑d
i=1 Xd:n and

∑r
i=d+1 Xi :n + (n − r)Xr :n are

also independent. Moreover, conditional on D = d, (X1:n, . . . , Xd:n) has the same
distribution as the order statistics in a sample of size d from the right-truncated expo-
nential distribution E(θ)I (X � T ) and (Xd+1:n, . . . , Xr :n) has the same distribution
as the first r −d order statistics in a sample of size n −d from the left-truncated expo-
nential distribution E(θ)I (X > T ). Since both these distributions are stochastically
increasing in θ , the stochastic monotonicity of both sums with respect to θ follows
from Lemma 4. By their independence, their sum inherits the stochastic monotonicity.

(M2) For d � r , the situation is the same as in the Type-I censoring case. In order to
prove it for d = r − 1, let Z1, . . . , Zr be iid random variables from the right-trun-
cated exponential distribution E(θ)I (Z � T ) and Y an independent random variable
having the same distribution as the minimum in a sample of size n − r + 1 from the
left-truncated exponential distribution E(θ)I (Z > T ). (This is in fact the conditional
distribution of Xr :n given d = r − 1.) Then,

θ̂ |(D = r − 1)
d= 1

r

{
r−1∑

i=1

Zi + (n − r + 1)Y

}

and

θ̂ |(D = r)
d= 1

r

{
r∑

i=1

Zr + (n − r)T

}
.

But,

{
r−1∑

i=1

Zi + (n − r + 1)Y

}
−

{
r∑

i=1

Zr + (n − r)T

}
=(n − r)(Y − T ) + Y − Zr >0

with probability one, since Y > T > Zr with probability one.

Finally, let us consider the case d � r − 2. Let Z1, . . . , Zd+1
iid∼ E(θ)I (Z � T )

and W1, . . . , Wr−d
iid∼ E(θ), independent of Z ’s. Then, we have

θ̂ |(D = d) = 1

r

{
r∑

i=1

Xi :n + (n − r)Xr :n

}

= 1

r

{
d∑

i=1

Xi :n + (n − d)T +
r∑

i=d+1

(Xi :n − T ) + (n − r)(Xr :n − T )

}

d= 1

r

{
d∑

i=1

Zi + (n − d)T +
r−d∑

i=1

Wi

}
.
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The sum of W ’s appears above since conditional on D = d, (Xd+1:n − T, . . . ,

Xr :n − T ) has the same distribution as the first r − d order statistics in a sample
of size n − d from E(θ), and that

∑r−d
i=1 Wi :n−d + {(n − d) − (r − d)}Wr−d:n−d

follows a gamma distribution G(r − d, θ). Similarly,

θ̂ |(D = d + 1)
d= 1

r

{
d+1∑

i=1

Zi + (n − d − 1)T +
r−d−1∑

i=1

Wi

}
.

Taking their difference (and omitting 1/r ), we get

{
d∑

i=1

Zi + (n − d)T +
r−d∑

i=1

Wi

}
−

{
d+1∑

i=1

Zi + (n − d − 1)T +
r−d−1∑

i=1

Wi

}

= Wr−d + T − Zd+1 > 0

with probability one. Hence, the condition holds in this case as well.

(M3) It is the same as in the previous cases.
Thus follows the monotonicity of the survival function of the MLE in (5) for the

case of the Type-II hybrid censoring.

5 Generalized hybrid censoring

Both Type-I and Type-II hybrid censoring schemes have some potential drawbacks.
Specifically, in Type-I hybrid censoring, there may be very few or even no failures
observed whereas in Type-II hybrid censoring the experiment could last for a very
long period of time. In order to overcome these drawbacks, Chandrasekar et al. (2004)
defined generalized hybrid censoring schemes and derived the MLEs of the exponen-
tial mean lifetime θ . However, the stochastic monotonicity of these MLEs was not
proved by these authors.

5.1 Generalized Type-I hybrid censoring

Recall the notation of Sect. 4.1. Now, in addition to T and r , fix k ∈ {1, . . . , r − 1}
and terminate the life-test at T ∗∗

1 = max{Xk:n, T ∗
1 } = max{Xk:n, min{Xr :n, T }}. This

censoring scheme guarantees that at least k failures will be observed. If the lifetimes
are from E(θ), the MLE of θ has been derived by Chandrasekar et al. (2004) to be

θ̂ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

k

{
k∑

i=1

Xi :n + (n − k)Xk:n

}
, if D = 0, 1, . . . , k − 1,

1

D

{
D∑

i=1

Xi :n + (n − D)T

}
, if D = k, . . . , r − 1,

1

r

{
r∑

i=1

Xi :n + (n − r)Xr :n

}
, if D � r,

(6)
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where again D = {#X ’s � T }. There appears to be a misprint in Chandrasekar et al.
(2004) in that in the last case the MLE seems to be defined only for D = r rather than
for D � r .

We could again use TML to prove the stochastic monotonicity of the MLE. How-
ever, all the work has been done in the previous section since actually the above MLE
has a form similar to the MLEs in hybrid censoring. Specifically, for D � r − 1, θ̂ is
exactly like the MLE in Type-II hybrid censoring case (but with k and r − 1 instead
of r and n, respectively) whereas for D � k − 1 it is similar to the MLE in Type-I
hybrid censoring case (but with k instead of 1). Hence, the stochastic monotonicity of
the survival function of θ̂ in (6) may be proved exactly along the same lines.

5.2 Generalized Type-II hybrid censoring

We shall now slightly change the notation and denote T and D by T1 and D1, respec-
tively. This is because under generalized Type-II hybrid censoring a second time
point T2 > T1 is fixed and the life-test is terminated at the random time T ∗∗

2 =
min{T ∗

2 , T2} = min{max{Xr :n, T1}, T2}. Under this censoring scheme, it is guaran-
teed that the total time under test will be at most T2.

Define D2 = {#X ’s � T2} and ∆2 = T2 − T1. Under exponentiality, the MLE of
θ has been derived by Chandrasekar et al. (2004) to be

θ̂ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

D1

{
D1∑

i=1

Xi :n + (n − D1)T1

}
, if D1 = r, r + 1, . . . , n,

1

r

{
r∑

i=1

Xi :n + (n − r)Xr :n

}
, if D1 = 0, 1, . . . , r − 1, D2 � r,

1

D2

{
D2∑

i=1

Xi :n + (n − D2)T2

}
, if D2 = 1, 2, . . . , r − 1.

(7)

Note that in Chandrasekar et al. (2004) there is a misprint in this case too, in that in
the second line the MLE is defined only for D2 = r rather than for D2 � r .

In order to express θ̂ in (7) in a suitable form for using TML, we introduce an
auxiliary random variable D with pmf

Pθ (D = d) =

⎧
⎪⎪⎨

⎪⎪⎩

Pθ (D2 = d)/Pθ (D2 � 1), d = 1, . . . , r − 1,

Pθ (D1 � r − 1, D2 � r)/Pθ (D2 � 1), d = r ′,

Pθ (D1 = d)/Pθ (D2 � 1), d = r, . . . , n,

where r ′ is some (irrelevant) value between r − 1 and r . Then, the MLE of θ can be
expressed as
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θ̂ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

D

{
D∑

i=1

Xi :n + (n − D)T2

}
, if D = 1, . . . , r − 1,

1

r

{
r∑

i=1

Xi :n + (n − r)Xr :n

}
, if D = r ′,

1

D

{
D∑

i=1

Xi :n + (n − D)T1

}
, if D = r, . . . , n.

(8)

The survival function of θ̂ in (8) can be expressed in the form in (1) with D =
{1, . . . , r − 1, r ′, r, . . . , n}.

Before proceeding to verify the three conditions of TML, we need to observe the
following facts:

Fact 1 For any any d1 = 0, 1, . . . , r − 1 and x > 0,

Pθ (θ̂ > x |D1 = d1, D2 � r)

=
n∑

d2=r

Pθ (D2 = d2|D1 = d1)

Pθ (D2 � r |D1 = d1)
Pθ (θ̂ > x |D1 = d1, D2 = d2)

is increasing in θ . This will be proved using TML as follows:

(M1.1) Conditional on D1 = d1 � r − 1, D2 = d2 � r ,

θ̂ = 1

r

⎧
⎨

⎩

d1∑

i=1

Xi :n +
r∑

i=d1+1

Xi :n + (n − r)Xr :n

⎫
⎬

⎭

= 1

r

⎧
⎨

⎩

d1∑

i=1

Xi :n + (n − d1)T1 +
r∑

i=d1+1

(Xi :n − T1) + (n − r)(Xr :n − T1)

⎫
⎬

⎭

d= 1

r

{
d1∑

i=1

Zi + (n − d1)T1 +
r−d1−1∑

i=1

Wi :d2−d1 + (n − r + 1)Wr−d1:d2−d1

}
, (9)

where Z1, . . . , Zd1

iid∼ E(θ)I (Z � T1) and W1, . . . , Wd2−d1

iid∼ E(θ)I (W � ∆2),
independently of Z ’s. The sum of Z ’s in (9) is stochastically increasing in θ . Using
Lemma 4, we have the same to hold true for the sum of W ’s in (9) as well. By the
independence of the two sums, we conclude that the conditional distribution of θ̂ is
stochastically increasing in θ .

(M1.2) By Lemma 5, the sum of W ’s in (9) is stochastically decreasing in d2.

(M1.3) This is a consequence of Lemma 3(b).
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Fact 2 For any x > 0,

Pθ (θ̂ > x |D1 � r − 1, D2 � r)

=
r−1∑

d1=0

Pθ (D1 = d1|D2 � r)

Pθ (D1 � r − 1|D2 � r)
Pθ (θ̂ > x |D1 = d1, D2 � r)

is increasing in θ . Once again, we will use TML to prove this result as follows:
(M2.1) This is exactly Fact 1.

(M2.2) For any d1 � r − 2, let Z1, . . . , Zd1+1
iid∼ E(θ)I (Z � T1). Conditional on

D1 = d1, D2 � r , we have

1

r

⎧
⎨

⎩

d1∑

i=1

Xi :n +
r∑

i=d1+1

Xi :n + (n − r + 1)Xr :n

⎫
⎬

⎭

= 1

r

⎧
⎨

⎩

d1∑

i=1

Xi :n + (n − d1)T1 +
r−1∑

i=d1+1

(Xi :n − T1) + (n − r + 1)(Xr :n − T1)

⎫
⎬

⎭

d= 1

r

{
d1∑

i=1

Zi + (n − d1)T1 +
r−1−d1∑

i=1

Wi :n−d1 + (n − r + 1)Wr−d1:n−d1

}
,

where W1, . . . , Wn−d1

iid∼ E(θ) but conditional on the event that at least r −d1 of them
are less than ∆2 and are independent of Z ’s. Similarly, conditional on D1 = d1 + 1,
D2 � r , the MLE has the same distribution as

1

r

{
d1+1∑

i=1

Zi + (n − d1 − 1)T1 +
r−2−d1∑

i=1

W ′
i :n−d1−1 + (n − r + 1)W ′

r−d1−1:n−d1−1

}
,

where W ′
1, . . . , W ′

n−d1−1
iid∼ E(θ) but conditional on the event that at least r − d1 − 1

of them are less than ∆2 and are independent of Z ’s. Now,

{
d1∑

i=1

Zi + (n − d1)T1

}
−

{
d1+1∑

i=1

Zi + (n − d1 − 1)T1

}
= T1 − Zd+1 � 0.

Moreover, using arguments similar to those in Lemma 6, we can prove that the sum of
W ’s is stochastically larger than the sum of W ′’s. Indeed, conditional on W1:n−d1 = x
(� ∆2), (W2:n−d1 , . . . , Wn−d1:n−d1) have the same distribution as the order statistics
in a sample of size n −d1 −1 from E(θ)I (W > x) but conditional further on the event
that at least r − d1 − 1 of them are less han ∆2. The rest of the proof is similar. Thus,
the conditional distribution of the MLE given D1 = d1, D2 � r , is stochastically
decreasing in d1.
(M2.3) This is Lemma 3(d).
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Fact 3 For any x, θ > 0,

Pθ (θ̂ > x |D1 � r − 1, D2 � r) < Pθ (θ̂ > x |D2 = r − 1).

Here, we use once more TML but with a slight variation, where the events {D2 � r}
and {D2 = r −1} play the roles of θ and θ ′, respectively. Before proceeding, note that

Pθ (θ̂ > x | D2 = r − 1)

=
r−1∑

d1=0

Pθ (D1 = d1|D2 = r − 1)Pθ (θ̂ > x |D1 = d1, D2 = r − 1).

(M3.1) We want to show that for all d1 = 0, 1, . . . , r − 1 and x, θ > 0,

Pθ (θ̂ > x |D1 = d1, D2 � r) < Pθ (θ̂ > x |D1 = d1, D2 = r − 1).

For any d1 = 0, 1, . . . , r − 1, conditional on D1 = d1, D2 = r − 1, we have

1

r − 1

⎧
⎨

⎩

d1∑

i=1

Xi :n +
r−1∑

i=d1+1

Xi :n + (n − r + 1)T2

⎫
⎬

⎭

= 1

r − 1

⎧
⎨

⎩

d1∑

i=1

Xi :n + (n − d1)T1 +
r−1∑

i=d1+1

(Xi :n − T1) + (n − r + 1)∆2

⎫
⎬

⎭

d= 1

r − 1

{
d1∑

i=1

Zi + (n − d1)T1 +
r−1−d1∑

i=1

Wi :r−1−d1 + (n − r + 1)∆2

}
, (10)

where Z1, . . . , Zd1

iid∼ E(θ)I (Z � T1) and W1, . . . , Wr−1−d1

iid∼ E(θ)I (W � ∆2)

independently of Z ’s. On the other hand, conditional on D1 = d1, D2 � r , we have

1

r

⎧
⎨

⎩

d1∑

i=1

Xi :n +
r∑

i=d1+1

Xi :n + (n − r + 1)Xr :n

⎫
⎬

⎭

= 1

r

⎧
⎨

⎩

d1∑

i=1

Xi :n + (n − d1)T1 +
r−1∑

i=d1+1

(Xi :n − T1) + (n − r + 1)(Xr :n − T1)

⎫
⎬

⎭

d= 1

r

{
d1∑

i=1

Zi + (n − d1)T1 +
r−1−d1∑

i=1

Wi :n−d1 + (n − r + 1)Wr−d1:n−d1

}
,
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Stochastic monotonicity of the MLE of exponential mean 765

where the Z ’s are as before and W1, . . . , Wn−d1

iid∼ E(θ) but conditional on the event
that at least r −d1 of them are less than ∆2. This implies immediately that Wr−d1:n−d1

� ∆2 and that the MLE is stochastically smaller than

1

r − 1

{
d1∑

i=1

Zi + (n − d1)T1 +
r−1−d1∑

i=1

Wi :n−d1 + (n − r + 1)∆2

}
. (11)

Observe that (10) and (11) differ only in the sum of W ’s which in both cases are
independent of the sum of Z ’s. Therefore, we will complete the proof if we show that∑r−1−d1

i=1 Wi :n−d1 �st
∑r−1−d1

i=1 Wi :r−1−d1 . Since D2 ranges from r to n,∑r−1−d1
i=1 Wi :n−d1 has a mixture of distributions; conditional on D2 = d2, it has the

same distribution as
∑r−1−d1

i=1 Wi :d2−d1 . By Lemma 5, these distributions are sto-
chastically ordered, the stochastically greatest of which corresponding to d2 = r .
Thus,

∑r−1−d1
i=1 Wi :n−d1 �st

∑r−1−d1
i=1 Wi :r−d1 . Further, the latter sum is stochasti-

cally smaller than
∑r−1−d1

i=1 Wi :r−1−d1 and this completes the proof of (M3.1).

(M3.2) Next, we want to show that for any d1 = 0, 1, . . . , r − 2 and x, θ > 0,

Pθ (θ̂ |D1 = d1 + 1, D2 � r) < Pθ (θ̂ |D1 = d1, D2 � r).

But, this has been already proved in (M2.2).

(M3.3) We need to show that Pθ (D1 = d1|D2 � r)/Pθ (D1 = d1|D2 = r − 1) is
increasing in d1 ∈ {0, 1, . . . , r − 1}. But this is exactly Lemma 3(c).

We are now ready to apply TML for proving the stochastic monotonicity of the
MLE in (8).

(M1) For d �= r ′, the conditional distribution of θ̂ , given D = d, is similar to that in
Type-I censoring. For d = r ′, it is Fact 2.

(M2) Except for the cases d = r − 1 and r ′, all other cases are similar to Type-I
censoring. For d = r − 1, it is Fact 3. Now, we have to show that

Pθ (θ̂ > x |D1 � r − 1, D2 � r) > Pθ (θ̂ > x |D1 = r).

The conditional distribution of θ̂ , given D1 = r , is the same as of

1

r

{
r∑

i=1

Zi + (n − r)T1

}
, (12)

where Z1, . . . , Zr
iid∼ E(θ)I (Z � T1). On the other hand, the conditional distribution

of θ̂ , given D1 � r − 1, D2 � r, can be written as a mixture of distributions as D1
ranges from 0 to r −1. These are the same distributions encountered in (M2.2) wherein
we proved that they are stochastically decreasing in d1, the stochastically smallest aris-
ing when d1 = r − 1. Hence, θ̂ |(D1 = r − 1, D2 � r) �st θ̂ |(D1 � r − 1, D2 � r).
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766 N. Balakrishnan, G. Iliopoulos

Conditional on D1 = r − 1, D2 � r , θ̂ has the same distribution as

1

r

{
r−1∑

i=1

Zi + (n − r + 1)T1 + (n − r + 1)W1:n−r+1

}
, (13)

where W1:n−r+1 is the minimum in a sample of size n−r +1 from E(θ) but conditional
on the event that at least one observation is less than ∆2. The difference between (13)
and (12) is proportional to T1 − Zr + (n − r + 1)W1:n−r+1 > 0, and this implies the
result.

(M3) Since Pθ (D1 = d1)/Pθ ′(D1 = d1) and Pθ (D2 = d2)/Pθ ′(D2 = d2) are both
strictly increasing functions for θ < θ ′, it turns out that Pθ (D = d)/Pθ ′(D = d) is
strictly increasing in {1, . . . , r − 1} and {r, . . . , n}. Moreover, in Lemma 3(e), it is
shown that

Pθ (D2 = r − 1)

Pθ ′(D2 = r − 1)
� Pθ (D1 � r − 1, D2 � r)

Pθ ′(D1 � r − 1, D2 � r)
� Pθ (D1 = r)

Pθ ′(D1 = r)

as required.
Thus follows the stochastic monotonicity of the survival function of the MLE θ̂ in

(8) in the case of generalized Type-II hybrid censoring.

6 Discussion

In this paper, we have presented a lemma which is very useful in establishing the
stochastic monotonicity of an estimator in situations wherein its distribution can be
expressed as a mixture. By checking the three monotonicities described in this lemma,
we were able to present a formal proof for the stochastic monotonicity of the MLE
of an exponential mean under different types of censored data. In the case of Type-I
hybrid censoring, this monotonicity was in question for nearly two decades since the
work of Chen and Bhattacharyya (1988).

Clearly, TML can also be useful outside the censoring context whenever a mixture
distribution has the required monotonicities. We shall now present such an example.

Kundu and Basu (2000) considered the following model. Let (X1i , X2i ), i =
1, . . . , n, be independent random vectors consisting of independent components such
that for j = 1, 2 and i = 1, . . . , n, X ji ∼ E(θ j ). Further, let Xi = min{X1i , X2i }
and δi be an indicator of whether X1i < X2i or X1i � X2i . Such data arise when n
individuals are exposed to two competing risks, so that Xi represents the failure time
of the i-th individual and δi indicates its cause of failure. For a known fixed m < n, the
observed data are (X1, δ1), . . . , (Xm, δm), (Xm+1, ∗), . . . , (Xn, ∗). Here, a “∗” means
that the corresponding indicator δ is unobserved, and so there are n − m unallocated
failures.

Let D be the number of failures due to cause 1. Then, the MLE of θ1 is

θ̂1 = m
∑n

i=1 Xi

nD
,

123



Stochastic monotonicity of the MLE of exponential mean 767

provided D � 1. If no failures due to Cause 1 occurred, then the MLE of θ1 does not
exist. Here, D is a binomial B(m, p) random variable, where p = θ2/(θ1 + θ2), but
is restricted to be at least 1. Kundu and Basu (2000) conjectured that, for fixed θ2,
θ̂1 is stochastically increasing in θ1, but they could not provide a mathematical proof.
However, this result can be easily proved by using TML as follows:

(M1) Under the above assumptions,
∑n

i=1 Xi ∼ G(n, β), where β = θ1θ2/ (θ1 + θ2).
Hence, the conditional distribution of θ̂1, given D = d, follows a G(n, mβ/(nd))

distribution. Since the scale parameter of this gamma distribution is increasing in θ1,
the result follows immediately.

(M2) Similarly, the result follows by observing that the scale parameter of
G(n, mβ/(nd)) is decreasing in d.

(M3) The probability of success p of the binomial distribution of D is strictly decreas-
ing in θ1 and this implies that D is stochastically decreasing in θ1.

Hence, the required monotonicity result for θ̂1 follows immediately.

Appendix

A Distribution of the number of failures

Let X1, . . . , Xr , Xr+1, . . . , Xn
iid∼ E(θ), θ > 0, where 1 � r � n. Let T1 and T2

be some fixed constants with 0 = T0 < T1 < T2 and ∆ j = Tj − Tj−1, j = 1, 2.
Define N j = #{X ’s ∈ (Tj−1, Tj ]} and D j = #{X ’s � Tj }, j = 1, 2. Clearly,
(D1, D2) = (N1, N1 + N2). Then, the following hold true.

Lemma 2 (a) The probability mass function (pmf) of (N1, N2) is

Pθ (N1 = n1, N2 = n2) = n!
n1!n2!(n − n1 − n2)!
×(1 − e−∆1/θ )n1e−(n−n1)∆1/θ (1 − e−∆2/θ )n2

×e−(n−n1−n2)∆2/θ , 0 � n1, n2, n1 + n2 � n.

(b) The probability mass function (pmf) of (D1, D2) is

Pθ (D1 = d1, D2 = d2) = n!
d1!(d2 − d1)!(n − d2)!
×(1 − e−∆1/θ )d1 e−(n−d1)∆1/θ (1 − e−∆2/θ )d2−d1

×e−(n−d2)∆2/θ , 0 � d1 � d2 � n.

(c) The marginal distribution of D j is binomial B(n, 1 − e−Tj /θ ), j = 1, 2.

Proof The proofs are straightforward.

Next, we provide some statistical properties of the distribution of (D1, D2).
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768 N. Balakrishnan, G. Iliopoulos

Lemma 3 (a) The distribution of D j has the monotone likelihood ratio property

with respect to θ , i.e., the ratio
Pθ (D j =d)

Pθ ′ (D j =d)
is strictly increasing in d for any

θ < θ ′. The result does not change even if D j is restricted in some subset of
{0, 1, . . . , n}.

(b) For any d1 ∈ {0, 1, . . . , n}, the conditional distribution of D2, given D1 =
d1, has the monotone likelihood ratio property with respect to θ , i.e., the ratio
Pθ (D2=d2|D1=d1)
Pθ ′ (D2=d2|D1=d1)

is strictly increasing in d2 for any θ < θ ′. The result does not
change even if D2 is restricted in some subset of {0, 1, . . . , n}.

(c) For any fixed r ∈ {1, . . . , n} and θ > 0, the ratio Pθ (D1=d1|D2�r)
Pθ (D1=d1|D2=r−1)

is strictly
increasing in d1 ∈ {1, . . . , r − 1}.

(d) For any fixed r ∈ {1, . . . , n} and θ < θ ′, the ratio Pθ (D1=d1|D2�r)
Pθ ′ (D1=d1|D2�r)

is strictly
increasing in d1 ∈ {1, . . . , r}.

(e) For any fixed r ∈ {1, . . . , n} and θ < θ ′, we have

Pθ (D2 = r − 1)

Pθ ′(D2 = r − 1)
� Pθ (D1 � r − 1, D2 � r)

Pθ ′(D1 � r − 1, D2 � r)
� Pθ (D1 = r)

Pθ ′(D1 = r)
.

Proof (a) Let D∗ be any subset of {0, 1, . . . , n}. Then,

Pθ (D j = d|D j ∈ D∗)
Pθ ′(D j = d|D j ∈ D∗)

∝
(n

d

)
(1 − e−Tj /θ )de−(n−d)Tj /θ

(n
d

)
(1 − e−Tj /θ

′
)de−(n−d)Tj /θ

′ ∝
(

eTj /θ − 1

eTj /θ
′ − 1

)d

,

which is strictly increasing in d, since (eTj /θ − 1)/(eTj /θ
′ − 1) > 1.

(b) Similar to (a), for d2 ∈ {d1, . . . , n} ∩ D∗,

Pθ (D2 = d2|D1 = d1, D2 ∈ D∗)
Pθ (D2 = d2|D1 = d1, D2 ∈ D∗)

∝ Pθ (D1 = d1, D2 = d2)

Pθ ′(D1 = d1, D2 = d2)
∝

(
e∆2/θ − 1

e∆2/θ ′ − 1

)d2

.

(c) For some positive constants C1 and C2 that do not depend on d1, we have

Pθ (D1 = d1 + 1|D2 � r)

Pθ (D1 = d1 + 1|D2 = r − 1)
= C1

n∑

d2=r

Pθ (D1 = d1 + 1, D2 = d2)

Pθ (D1 = d1 + 1, D2 = r − 1)

= C2

n∑

d2=r

(r − 1 − d1 − 1)!(e∆2/θ − 1)d2

(d2 − d1 − 1)!(n − d2)!

= C2

n∑

d2=r

d2−d1

r −1−d1
×(r −1−d1)!(e∆2/θ −1)d2

(d2−d1)!(n−d2)!

> C2

n∑

d2=r

(r − 1 − d1)!(e∆2/θ − 1)d2

(d2 − d1)!(n − d2)!

= Pθ (D1 = d1|D2 � r)

Pθ (D1 = d1|D2 = r − 1)
.
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(d) Observe that

Pθ (D1 = d1 + 1, D2 � r)

=
n∑

d2=r

n!
(d1 + 1)!(d2 − d1 − 1)!(n − d2)!

×(1 − e−∆1/θ )d1+1e−(n−d1−1)∆1/θ (1 − e−∆2/θ )d2−d1−1e−(n−d2)∆2/θ

= e∆1/θ − 1

(d1 + 1)(1 − e−∆2/θ )

n∑

d2=r

(d2 − d1)
n!

d1!(d2 − d1)!(n − d2)!

×(1 − e−∆1/θ )d1 e−(n−d1)∆1/θ (1 − e−∆2/θ )d2−d1e−(n−d2)∆2/θ

= e∆1/θ − 1

(d1 + 1)(1 − e−∆2/θ )

×
⎧
⎨

⎩

n∑

d2=r

d2Pθ (D1 = d1, D2 = d2) − d1Pθ (D1 = d1, D2 � r)

⎫
⎬

⎭

and by Lemma 8,

Pθ (D1 = d1 + 1, D2 � r)

Pθ ′(D1 = d1 + 1, D2 � r)

>

∑n
d2=r d2Pθ (D1 = d1, D2 = d2) − d1Pθ (D1 = d1, D2 � r)

∑n
d2=r d2Pθ ′(D1 = d1, D2 = d2) − d1Pθ ′(D1 = d1, D2 � r)

.

The right-hand side of the above inequality is greater than or equal to
Pθ (D1=d1,D2�r)
Pθ ′ (D1=d1,D2�r)

if and only if

∑n
d2=r d2Pθ (D1 = d1, D2 = d2)

Pθ (D1 = d1, D2 � r)
−

∑n
d2=r d2Pθ ′(D1 = d1, D2 = d2)

Pθ ′(D1 = d1, D2 � r)
� 0.

However, the last difference equals Eθ (D2|D1 = d1, D2 � r) − Eθ ′(D2|D1 =
d1, D2 � r) which is strictly positive by Part (b). Thus, the assertion is proved.

(e) The second inequality arises from (d), since Pθ (D1 = r) = Pθ (D1 = r, D2 �
r). In order to prove the first inequality, we will first show that

Pθ (D2 = r − 1)

Pθ ′(D2 = r − 1)
� Pθ (D1 � r − 1, D2 = d2)

Pθ ′(D1 � r − 1, D2 = d2)
(14)
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for any d2 � r . This, in conjuction with Lemma 9, will give the result. Observe
that

Pθ (D1 � r − 1, D2 = d2)

Pθ (D2 = r − 1)

=
∑r−1

d1=0
n!

d1!(d2−d1)!(n−d2)! (1−e−∆1/θ )d1 e−(n−d1)∆1/θ (1−e−∆2/θ )d2−d1 e−(n−d2)∆2/θ

n!
(r−1)!(n−r+1)! (1 − e−T2/θ )r−1e−(n−r+1)T2/θ

= (e∆2/θ − 1)d2−r+1 (n − r + 1)!
(n − d2)!

×
r−1∑

d1=0

(r − 1 − d1)!
(d2 − d1)!

(
r − 1

d1

) (
1 − e−T1/θ

1 − e−T2/θ

)d1 (
1 − 1 − e−T1/θ

1 − e−T2/θ

)r−1−d1

= (e∆2/θ − 1)d2−r+1 (n − r + 1)!
(n − d2)! Eθ

{
(r − 1 − Y )!
(d2 − Y )!

}
,

where Y ∼ B
(

r − 1, 1−e−T1/θ

1−e−T2/θ

)
. It is easy to show that the probability of suc-

cess of this distribution is strictly decreasing in θ . Hence, Y is stochastically
decreasing in θ . Moreover,

(r − 1 − (y + 1))!
(d2 − (y + 1))! = (r − 1 − y)!

(d2 − y)! × d2 − y

r − 1 − y
>

(r − 1 − y)!
(d2 − y)!

for d2 � r , which means that (r−1−y)!
(d2−y)! is a strictly increasing function. Thus,

Eθ

{
(r − 1 − Y )!
(d2 − Y )!

}
> Eθ ′

{
(r − 1 − Y )!
(d2 − Y )!

}
. (15)

Now, for any d2 � r and θ < θ ′, we have

(e∆2/θ − 1)d2−r+1 > (e∆2/θ
′ − 1)d2−r+1. (16)

Since (15) and (16) imply (14), the inequality is proved.

B Some results on order statistics

Lemma 4 Let X, Y be absolutely continuous random variables with X �st Y . For
any fixed integer n, let X1, . . . , Xn be independent copies of X and Y1, . . . , Yn be
independent copies of Y . Then, for any (w0, w1, . . . , wn) ∈ R × [0,∞)n, we have
w0 + ∑n

i=1 wi Xi :n �st w0 + ∑n
i=1 wi Yi :n.

Proof The assertion is a consequence of the fact that X �st Y implies (X1:n, . . . , Xn:n)

�st (Y1:n, . . . , Yn:n); see Belzunce et al. (2005).

Lemma 5 Let X1, X2, . . . be iid from an absolutely continuous distribution. Then,
for any 1 � r � n, and (w1, . . . , wr ) ∈ [0,∞)r , Sn = ∑r

i=1 wi Xi :n is stochastically
decreasing in n.
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Proof This follows from the fact that for all n � 1 it holds (X1:n+1, . . . , Xn:n+1) �st
(X1:n, . . . , Xn:n); see Zhuang and Hu (2007).

Lemma 6 Let X1, X2, . . . be iid random variables from an absolutely continuous
distribution on a subset of non-negative reals. For any 1 � r � n and (w1, . . . , wr ) ∈
(0,∞)r , let S1 = ∑r−1

i=1 wi+1 Xi :n−1 and S2 = ∑r
i=1 wi Xi :n. Then, S1 �st S2.

Proof Let x be any point in the support of the distribution. Conditional on X1:n = x ,
(X2:n, . . . , Xr :n, . . . , Xn:n) has the same distribution as the order statistics in a
sample of size n − 1 from the underlying distribution but left truncated at x . Denote
by Y a random variable from this left truncated distribution and recall that X �st Y .
By Lemma 4, we have

∑r−1
i=1 wi+1 Xi :n−1 �st

∑r−1
i=1 wi+1Yi :n−1. Clearly, the latter is

smaller than w1x + ∑r−1
i=1 wi+1Yi :n−1 which has exactly the conditional distribution

of S2, given X1:n = x . Thus, for any integrable increasing function h, E{h(S1)} �
E{h(S2)|X1:n = x}. Since this inequality is true for all x , we have E{h(S1)} � E{h(S2)},
and the required result follows.

Lemma 7 Let X1, . . . , Xn be iid from some absolutely continuous distribution with
pdf f and cdf F. For some fixed real T , let D = #{X’s � T }. Then, conditional on
D = d, the random vectors (X1:n, . . . , Xd:n) and (Xd+1:n, . . . , Xn:n) are independent.
Moreover, conditional on D = d,

(X1:n, . . . , Xd:n)
d= (U1:d , . . . , Ud:d),

(Xd+1:n, . . . , Xn:n)
d= (V1:n−d , . . . , Vn−d:n−d),

where U1, . . . , Ud
iid∼ f (x)I (x � T ) and V1, . . . , Vn−d

iid∼ f (x)I (x > T ).

Proof The conditional joint density of the ordered sample is

f (x1, . . . , xn| D = d) = n! ∏n
i=1 f (xi )

P(D = d)
I (x1 < · · · < xd � T < xd+1 < · · · < xn)

= n! ∏n
i=1 f (xi )

n!
d!(n−d)! F(T )d{1 − F(T )}n−d

×I (x1 < · · · < xd � T < xd+1 < · · · < xn)

=
{

d!
d∏

i=1

f (xi )

F(T )
I (x1 < · · · < xd � T )

}

×
{

(n − d)!
n∏

i=d+1

f (xi )

1 − F(T )
I (T < xd+1 < · · · < xn)

}

which proves the required result.
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C Two useful lemmas

Lemma 8 For any a, b > 0, the function h(x) = 1−e−bx

eax −1 is strictly decreasing in
(0,∞).

Proof After some algebra, we get the derivative of h(x) to be

h′(x) = 1 − e−(a+b)x

x(1 − e−ax )

{
(a + b)x

e(a+b)x − 1
− ax

eax − 1

}
.

Since y
ey−1 is strictly decreasing in y > 0, the result follows.

Lemma 9 Let a, a1, . . . , am, b, b1, . . . , bm be positive real numbers such that ai/bi �
a/b, i = 1, . . . , m. Then,

∑m
i=1 ai/

∑m
i=1 bi � a/b.

Proof The proof is straightforward.
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