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Abstract A new local smoothing procedure is suggested for jump-preserving
surface reconstruction from noisy data. In a neighborhood of a given point in the
design space, a plane is fitted by local linear kernel smoothing, giving the conventio-
nal local linear kernel estimator of the surface at the point. The neighborhood is then
divided into two parts by a line passing through the given point and perpendicular to
the gradient direction of the fitted plane. In the two parts, two half planes are fitted,
respectively, by local linear kernel smoothing, providing two one-sided estimators of
the surface at the given point. Our surface reconstruction procedure then proceeds in
the following two steps. First, the fitted surface is defined by one of the three esti-
mators, i.e., the conventional estimator and the two one-sided estimators, depending
on the weighted residual means of squares of the fitted planes. The fitted surface of
this step preserves the jumps well, but it is a bit noisy, compared to the conventional
local linear kernel estimator. Second, the estimated surface values at the original de-
sign points obtained in the first step are used as new data, and the above procedure is
applied to this data in the same way except that one of the three estimators is selected
based on their estimated variances. Theoretical justification and numerical examples
show that the fitted surface of the second step preserves jumps well and also removes
noise efficiently. Besides two window widths, this procedure does not introduce other
parameters. Its surface estimator has an explicit formula. All these features make it
convenient to use and simple to compute.
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1 Introduction

Local smoothing techniques are popular in applications for reconstructing regres-
sion curves and surfaces from noisy data. Conventional local smoothing procedures,
including running averages (Tukey 1977), locally weighted scatter plot smoothing
(Cleveland 1979), kernel smoothing (Hirdle 1990), local polynomial kernel smoo-
thing (Fan and Gijbels 1996), and several others, are appropriate for estimating conti-
nuous regression functions. When the underlying regression function has jumps, the
estimated functions by conventional procedures are not statistically consistent at the
jump positions. However, the problem of estimating jump regression functions is im-
portant because true regression functions are often discontinuous in applications. For
example, the image intensity function of an image is discontinuous at the outlines
of objects, and equi-temperature surfaces in high sky or deep ocean are often dis-
continuous too. This article introduces a new jump-preserving surface reconstruction
procedure, which has good statistical properties and is convenient to use.

A main reason why most conventional surface estimators are not statistically
consistent around the jumps, I think, is that: a continuous function has been used by
these procedures for estimating a jump function. To preserve jumps while estimating
a surface, the estimation procedure should adapt itself to the jump structure of the sur-
face, which is a major challenge in this research problem, because the jump structure
is unobservable and it is often too complicated to be expressed by any mathematical
formulas. In the image processing literature, most Bayesian estimation methods use a
so-called line process to denote the unobservable jump structure of the image intensity
surface (Geman and Geman 1984). Each element in this process is binary and denotes
the existence of jumps between two neighboring pixels, with 1 denoting presence
of jumps and O absence. The true image intensity function and the line process are
then assumed to form a joint Markov random field (MRF). Under the assumption that
observed image intensities follow a known distribution (e.g., Normal distribution),
the true image is then estimated by maximizing a posteriori (MAP). The MAP pro-
cess is accomplished computationally by using the stochastic relaxation and simulated
annealing. This kind of procedures, however, require expensive computation, although
some simplifications and modifications exist (e.g., Besag 1986; Besag et al. 1995;
Fessler et al. 2000; Godtliebsen and Sebastiani 1994; Li 1995; Marroquin et al. 2001;
Sebastiani and Godtliebsen 1997; Titterington 1985; Yi and Chelberg 1995). Due to
their iterative nature, it is also difficult to study their statistical properties, including
the consistency of the reconstructed images.

Another existing jump surface estimation method is based on bilateral filtering
(Tomasi and Manduchi 1998). Its major idea is that: observations which are more
different from the observation at a given point should receive less weights in the local
averaging for estimating the surface at the given point, because it is more likely that they
are located on a different side of the related jump location curve (JLC), relative to the
given point. This strategy is accomplished by using two kernel functions: one for pixel
locations, and the other one for observations of the response. Because observations
on the different side of the JLC, relative to the given point, still receive some weights,
although such weights are generally small, some blurring may still happen around the
jumps, using this method. Furthermore, blurring can also be generated by large surface
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slopes, because in such cases observations on the different side of the JLC, relative to
the given point, could be even closer to the observation at the given point, compared
to some observations on the same side. A closely related procedure to this bilateral
filtering procedure is the adaptive weights smoothing (AWS) algorithm, suggested by
Polzehl and Spokoiny (2000). In the AWS algorithm, bilateral filtering is performed
iteratively. Numerical studies show that it performs well when the true surface has large
homogeneous regions. Other related methods in the literature include the nonlinear
diffusion filter by Perona and Malik (1990) (also see Keeling and Stollberger (2002)
and Weikert et al. (1998) for modifications and generalizations), the sigma filter by
Chu et al. (1998), the three-stage procedure by Qiu (1998), and several others. See
Qiu (2007) for a more detailed discussion.

In special cases when the number of JLCs is known and the JLCs satisfy some
smoothness conditions, Miiller and Song (1994); O’Sullivan and Qian (1994); Qiu
(1997), and several others suggest various two-stage procedures, by which the JLCs
are first estimated by some curves, and then the regression surface is fitted as usual
in design sub-spaces separated by the estimated JLCs. In applications, however, it is
often difficult to obtain information about the number of JLCs and their smoothness.
Therefore, these procedures may not be appropriate for many applications. Recently,
Qiu (2004) suggests a jump surface estimation procedure by fitting four local planes
in four quadrants of a neighborhood of a given point. The best one of the four surface
estimators defined by the four fitted local planes is chosen by a criterion to be the final
surface estimator at the given point. It has been shown that this procedure preserves
jumps well; but it is relatively noisy around the JLCs, because only one quadrant of
the neighborhood is actually used in defining its surface estimator. Several papers,
including Carlstein and Krishnamoorthy (1992), Hall and Molchanov (2003), Hall
et al. (2001), Hall and Rau (2000), Qiu (2002), Qiu and Yandell (1997) and Sun and
Qiu (2007), focus mainly on estimation of the JLCs. For an overview of the methods
mentioned above, see Qiu (2005).

The major goal of this paper is to suggest a jump surface estimator, which would
have an explicit mathematical formula like most conventional surface estimators and
which can preserve jumps well and remove noise efficiently. Generally speaking, there
are two major benefits for a surface estimator to have an explicit mathematical formula.
One is that such an estimator is often easy to use and simple to compute; the other
major benefit is that it is usually easier for us to study its statistical properties. To
achieve these goals, we suggest a three-stage procedure briefly described below. In
the first stage, a local plane is fitted in a neighborhood of a given point by the local
linear kernel smoothing, from which the conventional local linear kernel estimator of
the surface at the given point can be obtained. In the second stage, the neighborhood
is divided into two parts by a line passing through the given point and perpendicular
to the gradient direction of the fitted local plane. Two one-sided local linear kernel
estimators of the surface are then constructed, respectively, in the two parts. The fitted
surface is defined by one of the three estimators (i.e., the conventional estimator and
the two one-sided estimators), depending on the weighted residual means of squares
of the corresponding fitted planes: the smaller, the better. To further remove noise, in
the third stage, the estimated surface values at the original design points obtained in
the second stage are used as a new dataset, and the surface estimation procedure of
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the second stage is applied to this dataset in the same way except that one of the three
estimators is selected as the final surface estimator based on their estimated variances
in this step. It will be shown that the final surface estimator preserves jumps well and
removes noise efficiently.

The idea to define an estimator of a jump regression function by one of the three
estimators (i.e., the conventional estimator and the two one-sided estimators) has been
discussed by Gijbels et al. (2007) and Qiu (2003) in 1-D cases. However, 2-D problems
are much more challenging than their 1-D counterparts due mainly to the following
two facts. First, in 1-D cases, jump locations are at most a series of points in the
design interval; in 2-D cases, jump locations are often curves without any mathe-
matical expressions. Second, in 1-D cases, two different sides of a given point are
well defined; in 2-D cases, two different sides of a given point can be defined along
a specific direction, but the direction parameter would add much complexity to 2-D
problems. Recently, Gijbels et al. (2006) generalizes these 1-D methods to 2-D cases.
In that paper, the surface estimator at a given point is defined in a single step, by one
of the three estimators constructed directly from the observations. To choose among
the three estimators, a threshold parameter is introduced and used for comparing their
weighted residual means of squares. That procedure is then modified for preserving
corners of edges. The random design case is also discussed in that paper along with
many numerical examples using various test images. But, theoretical properties of that
procedure are not derived. As a comparison, the proposed procedure in the current
paper has three steps, motivated by our theoretical study about the properties of
the three local estimators, especially about the specific relationship between their
performance and the signal-to-noise ratio in the data (see Sects. 2 and 3 for detai-
led discussion). Besides the two bandwidths, no other parameters, such as threshold
values, are used in the current procedure. Its estimated surface is proved to be strong
consistent.

The rest of the article is organized as follows. In next section, the proposed jump-
preserving surface estimation procedure is introduced in some details. Some of its
statistical properties are discussed in Sect. 3. Several numerical examples are presented
in Sect. 4. Some technical details, including two propositions and proofs of several
theorems, are provided in Sect. 5. Some remarks conclude the article in Sect. 6.

2 The jump-preserving surface reconstruction procedure

In this section, we introduce our jump surface estimation procedure in detail. To make
the introduction easier to understand, we keep it intuitive here, and provide some
mathematically more rigorous justifications in Sect. 3.

Suppose that the regression model is

zij = f(xi,y) ‘e, i,j=12,...,n, (D
where f is a bivariate nonparametric regression function, {(x;, y;) =(i/n, j/n),i, j=

1,2, ..., n} are equally spaced design points in [0, 1] x [0, 1], {g;;} are i.i.d. random
errors with mean 0 and variance 02, {zij} are observations, and N = n? is the sample
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size. The regression function f is assumed to be continuous in the design space except
on some curves, which are called the jump location curves (JLCs). A formal definition
of the JLCs can be found in Qiu (1998).

Ata given point (x, y) in the design space, we consider a neighborhood M, (x, y) =
{(u,v) = (u,v) € [0,1] x [0, 1], /(u —x)2+ (v — y)2 < h,}, where h,, < lisa
window width parameter. In M, (x, y), a local plane is fitted by the local linear kernel
smoothing:

n n

i 2 Xi—X y;—y

i ;Z}{Zu —[a+b(x; —x) +c(y; — 1} K(—hn T ) 2)
1=1 j=

where K (-, -) is an isotropic, bivariate density kernel function with support {(x, y) :
x2 4 y? < 1}. The solution of (2) is denoted by a(x, y), b(x, y),and ¢(x, y); a(x, y)
is the conventional local linear kernel estimator of f(x, y). Its weighted residual mean
square (WRMYS) is

S X~ (@G 4B, 10— 0 +e, 0y - K 42)
S S K ()

e(x,y)=

3

The gradient direction of the fitted plane is G(x, y) = (E(x, y),c(x,y)), and it is a
good estimator of the gradient direction of f.

A major consideration for using circular neighborhoods here is their rotation-
invariance property. For some applications in geology, meteorology, and oceanogra-
phy, a pre-specified coordinate system is not essential to the surface reconstruction
problem. In such cases, it is desirable to have the estimated surface coordinate-free,
and circular neighborhoods can make this possible. For some other applications, such
as image reconstruction, the coordinate system is well defined. In such cases, square-
shaped or other types of neighborhoods can also be used.

If the point (x, y) is on a JLC, then according to Corollary 1 in Sect. 3, G(x, y)
also well indicates the direction orthogonal to the JLC tangent at (x, y). In the lite-
rature, there are several different ways to estimate the gradient direction of f. For
example, in the image processing literature (cf. Gonzalez and Woods 1992), people
often use two discrete difference operators in the x and y directions for estimating
the gradient direction. Here, the gradient direction of f is estimated by G (x, y) based
on two considerations. One is computational. Since G(x, y) is a by-product of the
minimization problem (2), no extra computation is required for obtaining G(x, y)
after the problem (2) is solved. The other consideration is theoretical. It can be shown
that G (x, y) converges to the gradient direction of f with optimal convergence rate
under some regularity conditions (cf., Fan and Gijbels 1996).

In order to accommodate the jump structure of the surface in surface fitting, the
neighborhood M, (x, y) is then divided into two parts: M,(,l)(x, y) and M,Sz) (x,y), by
a line which passes through (x, y) and is perpendicular to G (x, y), as shown in Fig. 1.
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Fig. 1 The neighborhood
My, (x, y) is divided into two
parts M,gl)(x, y) and

M,Sz) (x,y), along a direction
perpendicular to the gradient
direction G(x, y)

Then, in M,(,l)(x,y) and M,(,2)(x,y), two one-sided local planes are fitted,
respectively, by the local linear kernel smoothing:

a,rbr.lilelR 2. {zij —la+b(x; —x) + ey =1}’

(4
GiyeM (x.y)

K (EZE N TN gore=1,2. @)
h " hy

The solution of (4) is denoted by @© (x, y), ﬁg)(x, y), O (x, y)), for £ = 1 and 2.
The WRMS values of the two fitted one-sided planes are
O,y

=

2w vy
aij=1@© @, ) +50 0 =0+ -1} K (2D

x Yy
K (x, X Y )
z(x,-,yj)eM,(,[) (x,y) hn hn

(x; ,yj)GMy(,l) (x.y)

&)

for £ = 1 and 2.

Intuitively, a comparison of the three estimators a(x, y), aW(x, y) and a? (x, y)
can be done to determine the best overall estimator of f (x, y), based on whether or not
M, (x, y) contains any jump points. When there are no jumps in M, (x, y), all three
estimators are statistically consistent for estimating f(x, y) under some regularity
conditions. Then, the conventional estimator a(x, y) is preferred, because it averages
more observations. When there is a single JLC in M,,(x, y) and the JLC has a unique
tangent line on each of its points in the neighborhood, @(x, y) does not estimate
f(x,y) well, because observations on both sides of the JLC are averaged and jumps
are blurred. In such cases, one of the two parts of M, (x, y) should be mostly on one
side of the JLC, and the one-sided estimator constructed in that part should be able to
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estimate the surface well. So, in both cases, at least one of the three estimators a(x, y),
al(x,y) and @? (x, y) estimates f(x, y) well when the sample size is reasonably
large.

In applications, however, it is often unknown whether or not a given point (x, y)
is close to a JLC. So a data-driven mechanism is needed to choose one of the three
estimators for estimating f(x, y), which leads to three possible solutions, described
below.

To estimate f (x, y) properly, one possibility is to choose one of the three estimators
based on the corresponding WRMS values, defined by (3) and (5). According to
Proposition 1 given in Sect. 5, e(x, y) > min(e(l)(x, y), ) (x,¥)), forany (x,y) €
[0, 1] x [0, 1]. Therefore, by this proposal, a(x, y) can never be selected, and the
surface estimator is actually defined by

R a(x, y), if eV (x,y) <e®(x,y)
A, yiz) = 1aPx,y), ifeM(x,y) >ePx,y) (6
@V, ) +a@x, y)/2  ifeDx,y) =e@x, ),

where z Adenotes the vector of all observations {z;;,i, j = 1,2, ..., n}. As explained
above, f1(x, y; z) should preserve the jump well at each point of the JLCs at which
the JLCs have a unique tangent line and the jump magnitude is non-zero. The “unique
tangent line” requirement is mainly due to the fact that the neighborhood M, (x, y) is
divided into two half circles M." (x, y) and M{¥ (x, y) by a line in (4). This requi-
rement can be made more flexible, if, for example, two opposite sectors in M (x, y)
along a direction perpendicular to G(x, y) are used in (4), for constructing the two
one-sided estimators of f(x, y).

Like most local smoothing estimators, the estimator ﬁ(x, v; 2) is defined for
(x,y) € Hy, = [hy, | —hy] x [hy, 1 — hy] only. It is not well defined in the boundary
regions of the design space. This is the notorious “boundary problem” in the literature.
There are several existing proposals to partially overcome this problem. For example,
most discrete wavelet transformation (DWT) software packages use periodic or sym-
metric extension methods to define neighborhoods in the boundary regions (Nason
and Silverman 1994). In this paper, the symmetric extension method is used in all
numerical examples.

While the surface estimator ﬁ(x, y; z) should preserve jumps well, it is expected
to be relatively noisy, compared to the conventional estimator a(x, y), because it is
defined by only half observations in M, (x, y). The major reason why ﬁ(x, y; 2) is
noisy is that a(x, y) can not be selected in its definition, even in continuity regions of
f. One natural idea to overcome this limitation is to choose one of a(x, y), a®(x, y)
and @® (x, y) for estimating f (x, y) based on their variances, because the variance
of @(x, y) would be smaller than the variances of a!(x, y) and @® (x, y) in the
continuity regions of f due to the fact that the former averages more observations.
As a matter of fact, when the kernel function K is a constant, it can be checked
that Var@(x, y)) =~ Var@? (x,y)) ~ 2Var(@(x, y)) ~ C*(nh,) 202, when
there are no jumps in M, (x, y), where C* is a constant and “~” denotes asymp-
totic equality. In applications, o2 is often unknown. But it can be estimated by the
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WRMS values e(x, y), eW(x, y) and e (x, y) for the three estimators. Based on
these considerations, the surface estimator can be defined by

ax, y), if e(x, )/2 < min(e™V (x, y), e@ (x, y))
N aD(x,y), if eM(x, ) < e(x, y)/2and eV (x, y) < P (x, y)
falx,y;2) =

a®(x, y), if €@ (x,y) < e(x,y)/2and e (x,y) < eD(x,y)

@V, +a@ @, y/2 e, y) =e@x,y) < e, y)/2.
(7)

From Proposition 1in Sect. 5, ¢(x, y) can never be the smallest one among e(x, y), e(!
(x,y), and @ (x, y). So, by comparing (6) and (7), we can see that the estimator
ﬁ (x, y; z) can also be obtained by Eq. (7), after the quantity e(x, y)/2 is replaced by
e(x, y). This connection between (6) and (7) is helpful for computer programming.

In continuity regions of f, e(x, y)/2 is less than both ¢V (x, y) and ¢® (x, y) when
n is large, because all of e(x, y), eW(x, y) and e (x, y) are consistent estimators of
o2. In this case, a(x, y) is selected in (7), and, consequently, ﬁ(x, ¥; Z) can remove
noise well. When there are jumps in M, (x, y), e(x, y) would be relatively large,
because of the jumps. If the jump size is large compared to o, then it can happen that
e(x,y)/2 > mm(e(l)(x y), e (x, v)). In such a case, fz(x y; 2) equals f1 (x,y;2),
and consequently the jumps are preserved well. If the jump size is small compared
to o, however, e(x, y)/2 could be smaller than both eW(x, y) and e (x, y). In such
a case, the jumps are blurred by (7). These facts will be formally justified in Sect. 3
when we discuss statistical properties of fz(x, y; 2).

From the above description, we notice that procedure (7) provides a good surface
estimator when the ratio of the jump size to o (which is called the signal-to-noise ratio
(SNR) hearafter) is large, and procedure (6) is preferred when this ratio is small. Based
on this observation, we suggest the following procedure: procedure (6) is first applied
to the original data to decrease the noise level, and then procedure (7) is applied to
the estimated surface of the previous step to further remove noise. That is, the surface
estimator is defined by

fxyi2) = b,y £, ®)

where fl denotes the vector of {f](i/n, Jj/n;z),i,j = 1,2,...,n}. It should be
noticed that the window widths used in the two steps of (8) could be different. They
are denoted by A, and h,> hereafter. Since both steps of (8) involve local smoothing
only, the computation of (8) is quite straightforward. Its computational complexity is
O(N?h2)) + O(N?h2)).

In applications, the window widths 4,1 and h,2 can be determined by minimizing
the following cross-validation criterion

1 n n R
CV it hi2) = = D3 (i = Frimj i 32 9) ©)

i=1 j=1

where ﬁi,, j(x, y; z) is the “leave-one-out” estimator of f(x, y). Namely, the obser-
vation (x;, y;, zjj) is left out in constructing f—; —;(x, y; 2).
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3 Some statistical properties of the fitted surfaces

In this section, we discuss some statistical properties of the estimated surfaces of
procedures (6)—(8). For simplicity of presentation, a point on the JLCs is called a
nonsingular point below, if the JLCs have a unique tangent line at this point and
the jump magnitude is non-zero. Other points of the JLCs are called singular points.
Obviously, a singular point of the JLCs is: (i) a cross point of several JLCs, or (ii)
a point on a single JLC at which the JLC does not have a unique tangent line, or
(iii) a point on a single JLC at which there exists a neighborhood such that the jump
magnitude is zero at the given point but non-zero at any other points of the JLC in the
neighborhood.

The first theorem below is about the conventional local linear kernel estimators
a(x,y), E(x, y) and ¢(x, y). Proofs of original theorems are given in Sect. 5.

Theorem 1 [This theorem can be proven similarly to some closely related theo-
rems in Qiu 1997 and Qiu and Yandell 1997] Suppose that the regression function
f has continuous second order derivatives in each closed set of the design space in
which it is continuous, E(£131) < 00, the kernel function K (x,y) is a Lipschitz-1
continuous, isotropic, bivariate density function;, and h,, satisfies the condition that
log?(n)/(nh>) = O(1). Then

N log(n)
@ - flip,, = Oy + O ( £ ) a.s., (10)
nhy,
—~ log(n)
16— fllip,, = Ohy) + O ( = ) as., (11)
nh;
~ log(n)
IE= £y, = Otha) + O ( = ) as., (12)
nhz
where Dy, = Hy\Jp,, Jp, is a band of the JLCs with radius h,, and gDy, denotes

SUP(x,y)eDy, |g(x, y)|. For a given point (x;, y;) € J\S, where J denotes the set of
points on the JLCs and S denotes the set of all singular points of the JLCs, if the
projection of a point (x, y) € Jy, to J is (x¢, yr) and the Euclidean distance between
the two points is ch,, where 0 < ¢ < 1 is a constant (note: the point (x, y) depends
on n although it is not explicit in notation), then

a(x,y) = f-(xz, yr) —{—dr//(z) Kw,v)dudv+o(l) a.s., (13)
0

E(x,y) = ~dT // uK(u,v)dudv+o(l/hy,) a.s., (14)
Bozhn 0O

cx,y) = ~d, // vK@,v)dudv+o(1/h,) a.s., (15)
Baohn o

where d; > 0 is the jump magnitude of f at (x¢, y;), which is assumed to be finite,
Q,(ll)(x, y) and ng) (x, y) are two different parts of M, (x, y) separated by the JLC
with a positive jump at (x;, y;) from Q,(ll)(x, y) to Q,?) (x,y), OV and Q@ are the
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two corresponding parts of the support of K (-, -), f—(x¢, yr) isthe limitof f at (x¢, y¢)
from Qﬁ,l)(x, y), and Bss, = ffooo ffooo w$v2 K (u,v) dudv, forsi,sp =0,1,2.

In Theorem 1, if i, ~ n~"/3log?3(n), then @ — f|Ip,, = o(1), |6 — fllp,, =
o(1), and [[¢ — fylp,, = o(1). Therefore, a(x, y), b(x, y) and ¢(x, y) converge uni-
formly to f(x, y), fy(x, y) and fy(x, y), respectively, in Dy, where f is continuous.
Theorem 3.1 also shows that a(x, y), Z(x, y) and ¢(x, y) are affected by the jumps
around the JLCs. In a special case when the point (x, y) is a nonsingular point of the
JLCs, it can be seen from (13) thata(x, y) does not converge to f (x, y), as mentioned
in Sect. 1.

Corollary 1 If (x,y) € Hy is a non-singular point on a JLC and the JLC has a unique
tangent line at (x, y) with the direction of 6, where 0 € [0, 7], then it can be checked
that: under all other conditions in Theorem 1, we have

- d.C d.C
b(x,y) = —=—sin(®) + o(1/h,), ¢(x,y) = =—— cos(8) + o(1/h,), a.s.,
020 Baohn

where C is a constant, d, ,502 and ,520 are defined in Theorem 1.

Corollary 1 is a direct conclusion of Egs. (14) and (15) in Theorem 1. It implies that
the gradient direction G(x, y) = (E(x, ¥), ¢(x, y)) is approximately in the direction
of (—sin(0), cos(f)), which is perpendicular to the direction of the tangent line of
the JLC at (x, y). Therefore, G(x, y) indeed indicates the orientation of the JLC at
(x, y) well, which is one of the foundations of our jump surface estimation procedures
introduced in Sect. 2.

Theorem 2 Suppose that the conditions stated in Theorem 1 are all satisfied, and
E(s‘l‘l) < 00. Then

le — o?llp,, =o(1)as.,
e —o2lip,, =o(l)as., fort=1,2. (16)
For a given point (x¢, y:) € J\S, if the projection of a point (x,y) € Jp, to J is

(x¢, y¢) and the Euclidean distance between the two points is ch,, where 0 < ¢ < 1
is a constant, then

e(x,y) =02 +d>C? +o(1) a.s.,
O, y) =02 4+d*C9Y? +0() as., fort=1,2, (17)

where

2
c? = %// [// (Boz + us + vi)K (u, v) dudv} K (s, 1) dsdt
Bis om 0@

2
1 ~
+T// [ / (B2o + us + vt)K (u, v) dudv] K (s, t) dsdt,
Bl Joo L) Jou
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de, Q(l) and Q(z) are defined in Theorem 1, and (Cﬁl))2 and (C?))2 are defined in
Sect. 5, similarly to C%.

Theorem 2 says that the three WRMS values are all consistent estimators of 0% in
continuity regions of f. When the point (x, y) is close to a JLC, the WRMS values
are affected by the jumps. Based on Theorems 1 and 2, the strong consistency of the
estimated surfaces of procedures (6) and (7) is established below.

Theorem 3 Under the conditions in Theorem 2, we have

—~ 1
17 = flip, = 02+ 0 ( Og(”)) as. (18)

nh,

Theorem 4 Under the conditions in Theorem 2,

—~ 1
15— flip, = O(h2) + 0 ( "gh(”)) as. (19)

nhy

For a given point (x;, yr) € J\S, if the projection of a point (x, y) € Jp, to J is
(x7, yr) and the Euclidean distance between the two points is ch,, where 0 < ¢ < 1
is a constant, then

() ifd;/o > 1/Cy, then
Hlx,y) = fx,y) +o(l), as. (20)

(i) ifd;/o <1/C¢,then
ﬁ(x, y)=f(x,y)+ dr//(z) K (u,v) dudv + o(1) a.s., 21
0

where d,, C; and Q(z) are defined in Theorems 1 and 2.

Theorem 3 says that ﬁ is uniformly consistent in regions where f is continuous.
With regard to ﬁ, Theorem 4 says that it is uniformly consistent in regions where f is
continuous. In regions around the JLCs, ﬁ is consistent only when the SNR is larger
than a certain value.

Theorem 5 Under the conditions in Theorem 2, if hyy ~ hpi, then

-~ 1
17 = FlDiy iy = OG2) + 0 ( "ff”)) as. )

nhni

Theorem 5 establishes the strong consistency of the estimated surface of procedure
(8) in continuity regions of f. By comparing (22) with (10), it can be seen that fhas
the same convergence rate in the continuity regions of f, as the rate of the conventio-
nal estimator @, which is O (n=2/3 logz(n)) when hy,; ~ n~1/3 log(n). According to
Stone (1982), this rate is optimal, up to a logarithmic factor.
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For most existing jump surface estimation procedures in the literature, we do not
know much of their theory yet, mainly due to their iterative nature which makes it
hard to study their statistical properties under reasonably flexible assumptions. For
instance, Geman and Geman (1984) proves that the image estimator obtained by their
simulated annealing algorithm converges in probability to the MAP estimator, under
some quite restrictive assumptions (cf. Sect. 1 for some related discussion). But it is
still unknown at this moment whether the MAP estimator is a consistent estimator or
not of the original image. It is not clear either, where in the design space the MAP
estimator would work well and where it may estimate the original image poorly.

4 Numerical study

In this section, we present some numerical examples for evaluating the performance
of procedures (6)—(8). The examples are organized in four parts. Those regarding
procedures (6) and (7) are discussed in Sect. 4.1. The numerical performance of (8)
is investigated in Sect. 4.2. In Sect. 4.3, procedures (6)—(8) are compared to the local
median smoother, a DWT procedure and a MRF procedure by some examples. The
related procedures are then applied to a test image in Sect. 4.4.

4.1 Numerical performance of procedures (6) and (7)

Assume that the true regression surface is f(x, y) = —2(x — 0.5)2 — 2(y — 0.5)2+1
if (x —0.5)% 4+ (y —0.52 < 0.25% and f(x,y) = —2(x — 0.5)> — 2(y — 0.5)?
otherwise. It has one JLC which is a circle with constant jump size 1. We first apply
procedures (6) and (7) to this example. The observations are generated by (1) with
n = 100 and o = 0.2, 0.5 or 0.8. We let the window width #,, in both procedures
change from 0.02 to 0.2 with step 0.01. The MSE values of the fitted surfaces in various
combinations of o and /4, are shown in Fig. 2. If there is no further specification, all
MSE values presented in this section are averages of 100 replications. From the plots,
it can be seen that for each o, the MSE values of each procedure first decrease and
then increase when #,, increases from 0.02 to 0.2. The optimal value of &, gets larger
when o is larger, which implies that 4, needs to be chosen larger for noisier data. By
comparing the two plots, we can see that %, needs to be chosen a little larger in (6)
than its value in (7). This can be explained by the fact that procedure (6) uses only
half observations in M, (x, y) for constructing its surface estimator while procedure
(7) uses more observations.

We then concentrate on the case when o = 0.5. The 2.5 and 97.5 percentiles of 100
replications of the fitted surface by (6) in the cross section of y = 0.5 are presented
in Fig. 3a by the lower and upper dashed curves, respectively. In (6), &, is chosen to
be 0.11 which is optimal according to Fig. 2a. In Fig. 3a, the solid curve denotes the
true surface in the cross section of y = 0.5 and the dotted curve denotes the averaged
surface fit. The corresponding results of (7) are presented in Fig. 3b. As demonstrated
by Theorem 4, the performance of (7) depends on the value of SNR. To further see this,
we present the corresponding results of (7) when o = 0.2 in Fig. 3c. The window width
h,, 15 0.06 in Fig. 3b and 0.05 in Fig. 3c. Both of them are optimal according to Fig. 2b.
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Fig. 2 The MSE values of the fitted surfaces of procedures (6) (plot (a)) and (7) (plot (b))
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Fig. 3 In each plot, the dashed curves denote the 2.5 and 97.5 percentiles of the 100 replications of the
fitted surface, the solid curve denotes the true surface and the dotted curve denotes the averaged surface

fit in the cross section of y = 0.5. a Procedure (6); b procedure (7) when o = 0.5; ¢ procedure (7) when
o=02

Figure 3 shows that procedure (6) preserves the jumps well but its estimated surface
is relatively noisy (since its 95% confidence interval is relatively wide) compared to
the estimated surface of (7). However, procedure (7) blurs the jumps when o = 0.5
(the SNR value is relatively small in this case) and it preserves the jumps well when
o = 0.2 (the SNR value is relatively large in this case).

The MSE value of the estimated surface of (7) is 0.0127 (cf. Fig. 2) in the case of
Fig. 3b, which is smaller than the MSE value (= 0.0151) of the estimated surface of
(6) in the same case. So the MSE value does not reflect the blurring phenomenon seen
in Fig. 3b. To better see this, part of the two dotted curves (corresponding to o = 0.5)
in Fig. 2a and b has been put together in Fig. 4a. One explanation of this result is
that MSE is computed from the entire design space in which the blurring effect of (7)
around the JLC is attenuated by the relatively small variability of its estimated surface
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Fig. 4 a The MSE values of the estimated surfaces of (6) and (7) when o = 0.5; b the local MSE values
of the two procedures calculated in a local band of the JLC with radius &y,

in regions where f is continuous. To further check this issue, local MSE values of
the estimated surfaces of (6) and (7) are computed in a local band of the JLC with
radius h,. They are presented in Fig. 4b. We can see that the local MSE value of
(7) is much larger than that of (6) in the range of 0.06 < h, < 0.2. This example
shows that the conventional MSE is a good measurement of global performance of
the surface reconstruction procedures while the local MSE is a better measurement of
jump preservation of these procedures.

4.2 Numerical performance of procedure (8)

Procedure (8) is a combination of (6) and (7), each of which has a window width.
In the previous part, the impact of the two window widths on the performance of the
two individual procedures has been studied. In the next example, we study their joint
impact on the performance of (8). Suppose that the true surface is the one used in the
previous example, n = 100, and o = 0.5. The two window widths A, and &, in
(8) can both vary from 0.03 to 0.16 with step 0.01. The averaged MSE value of the
estimated surface of (8) based on 10 replications is presented in Fig. 5a. This plot
shows that neither 4,1 nor h,, should be chosen too large or too small. The optimal
values of i, and h,; are 0.05 and 0.08, respectively, with MSE = 0.0112. Compared
to the results shown in Fig. 2, i.e., the optimal values of 4,1 and h, are respectively
0.11 and 0.06 with MSE = 0.0150 and MSE = 0.0127 for procedures (6) and (7)
when o =0.5, we can see that: (1) &, should be chosen larger than %,> when the
two procedures (6) and (7) are used separately, and (2) &, should be chosen smaller
than %,> when the two procedures are used jointly in (8). With the optimal window
widths, the 2.5 and 97.5 percentiles of 100 replications of the estimated surface of (8)
in the cross section of y = 0.5 are presented in Fig. 5b by the lower and upper dashed
curves, respectively. Compared to Fig. 3a and b, we can see that the estimated surface
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Fig.5 aThe MSE values of the estimated surfaces of (8) are presented. b With the optimal window widths,

the 2.5 and 97.5 percentiles of 100 replications of the estimated surface of (8) in the cross section of y = 0.5

are denoted by the lower and upper dashed curves, the true surface and the averaged surface estimator are

denoted by the solid and dotted curves, respectively. ¢ The local MSE values of the estimated surfaces of
(8) are presented

of (8) is smoother than that of (6), especially in regions where f is continuous, and it
preserves the jumps better than that of (7) as well.

The averaged local MSE value of the estimated surface of (8) based on 10 repli-
cations is presented in Fig. 5c. The local MSE is computed in a band of the true JLC
with width %, + h,2. From the plot, it can be seen that the local MSE has a similar
pattern to that of the global MSE shown in Fig. 5a, except that the local MSE seems
more robust to selection of 4, and £, in the sense that its value is minimal or close
to minimal for more combinations of 4, and A,,». The minimum value 0.0221 of the
local MSE is reached when 4,1 and &,,5 are 0.05 and 0.09, respectively. It can be seen
that the optimal values of %, and &, by the local MSE criterion are similar to those
by the MSE criterion. Also, the relationship between these local optimal bandwidth
values and the local optimal bandwidth values &, = 0.12 with local MSE=0.0293
and /1,2 = 0.08 with local MSE=0.0522 (cf., Fig. 4b) when procedures (6) and (7) are
used separately is similar to that under the MSE criterion discussed in the previous
paragraph.

We then consider three o values: 0.2, 0.5 and 0.8; and three n values: 100, 200 and
500. For each combination of ¢ and n, the optimal window widths of (8) are searched
with step 0.01 based on 10 replications and on the MSE criterion. The results are
presented in Table 1. It can be seen that the optimal value of 4,1 is smaller than the
optimal value of %,,, in all cases. When 7 is larger, both %,,1 and /> need to be smaller
and both nh,; and nh,> need to be larger, which is often true for local smoothing
procedures (Hirdle 1990). When o is larger, both h,; and &, need to be chosen
larger, which is intuitively reasonable.

4.3 Some numerical comparisons

In this part, the three procedures (6)—(8) are compared to each other and to several exis-
ting procedures in some numerical examples. Three existing procedures are considered
here. The first one is the local median smoothing procedure, by which the surface esti-
mator is defined by the sample median of the observations in a neighborhood of a given
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Table 1 In each entry, the first two numbers are the optimal /4,1 and h,; and the last number is the
corresponding MSE value

n

g

0.2

0.5

0.8

100
200
500

0.03, 0.06, 0.0051
0.02, 0.04, 0.0022
0.01, 0.02, 0.0008

0.05, 0.08, 0.0112
0.03, 0.06, 0.0048
0.02, 0.03, 0.0019

0.06, 0.10, 0.0175
0.04, 0.07, 0.0078
0.02, 0.04, 0.0030

point. Because this procedure is simple and has some ability to preserve jumps while
removing noise, it is widely used in the image reconstruction literature (cf. Gonzalez
and Woods 1992, Chap. 4). The second one is the DWT procedure implemented by
the R package wavethresh (see Nason and Silverman 1994 for detailed introduction).
It has several parameters to determine before it can be used for image reconstruction.
In this paper, the default family of wavelets (which is Daubechies’ “extremal phase”
wavelet) and the “symmetric” boundary handling condition are used. The parameter
“filter.number” can vary from 1 to 10. The thresholding “policy” is either “hard” or
“soft”. The “levels” to be thresholded are r : s, where 25! is the sample size and r
is an integer ranging from 1 to s. The third existing procedure is the MRF procedure
suggested by Godtliebsen and Sebastiani (1994). It combines the idea of disconti-
nuity labeling process (Geman and Geman 1984) and the iterated conditional modes
algorithm (Besag 1986). This procedure assumes that a binary line component exists
between any two vertically or horizontally neighboring pixels, with 1 denoting an
existing edge between the two pixels and 0 denoting no edge. In a 3 x 3 neighborhood
of a given pixel, there are 12 line components and 2!? possible configurations of these
components. To use this procedure, probabilities of the 22 possible line configurations
need to be specified. In this and the next subsections, these probabilities are estimated
from the true regression function values at the design points, which is in favor of this
procedure. Besides the line configurations, it has three positive procedure parameters
a, B and A. The estimated surfaces by the three existing procedures are denoted by
]/‘;1, ﬁ, and ﬁnr f» Tespectively.

To compare their performance, we consider two regression functions £ and f®,
where f(I is the one used in the previous two subsections, f Dx,y) = —2(x —
0.5)2 — 2(y — 0.5)% + g(x, y) where g(x, y) = 0,1 and 2 when (x, y) belongs to
[0, 0.5] x [0, 0.5], ([0, 0.5] x (0.5, 1) U ((0.5, 1] x [0, 0.5]) and (0.5, 1] x (0.5, 1],
respectively. So, f(1) has one JLC without any singular points, and f® has four JLC
segments with one singular point at (0.5, 0.5). Observations are generated by model
(1) with n = 100 and o = 0.2, 0.5 or 0.8. Table 2 presents the optimal MSE values
of the six procedures in various cases along with the corresponding values of the
procedure parameters. In order to see the performance of the procedures around the
JLCs, their local MSE values are also presented. For each of f1, f> and f;,, the local
MSE value is computed in a local band of the JLCs with radius equal to the optimal
window width. For f\, its local MSE value is computed in a local band of the JLCs with
radius equal to the sum of the two optimal window widths of (8). For ﬁ) and j‘;”f, no
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Table 2 In each entry, the numbers in the first two lines are the minimum MSE value and the corresponding
local MSE value, respectively. The third line gives the optimal values of the procedure parameters (i.e., the
optimal window widths for f fl f2 and ]‘m, the optimal “filter.number”, “policy” and “levels” for ﬁu;
and the optimal «, B and A for fm, £)

o F F@
0.2 0.5 0.8 0.2 0.5 0.8
0.0051 0.0112 0.0175 0.0022 0.0085 0.0168

f 0.0157 0.0228 0.0295 0.0045 0.0142 0.0229
0.03, 0.06 0.05, 0.08 0.06, 0.10 0.04, 0.06 0.06, 0.10 0.08,0.13
0.0055 0.0151 0.0260 0.0029 0.0114 0.0223

ﬁ 0.0153 0.0297 0.0431 0.0053 0.0186 0.0313
0.07 0.11 0.14 0.09 0.14 0.18
0.0031 0.0127 0.0177 0.0021 0.0147 0.0205

fi 0.0151 0.0533 0.0553 0.0080 0.0507 0.0574
0.05 0.06 0.08 0.06 0.05 0.07
0.0036 0.0135 0.0207 0.0039 0.0169 0.0245

f;n 0.0189 0.0584 0.0670 0.0163 0.0605 0.0686
0.04 0.05 0.07 0.04 0.05 0.07
0.0077 0.0146 0.0204 0.0057 0.0151 0.0212

f;, 0.0209 0.0295 0.0302 0.0159 0.0294 0.0291
3, hard, 5:6 5, hard, 4:6 5, soft, 4:6 4, hard, 4:6 4, hard, 3:6 5, soft, 4:6
0.0013 0.0132 0.0220 0.0009 0.0160 0.0225

f;“.f 0.0016 0.0219 0.0317 0.0008 0.0227 0.0286

3.8,41.5,1.9 7.5,59,0.2 17,2.5,6.0 35,33,0.4 39,28,6.7 7.7,2.1,5.1

window widths are involved. To make the results comparable, their local MSE values
in the same local band of the JLCs as that for fare also presented in the table.

First, let us compare the performance of (6)—(8). It can be seen from the table that
the global and local MSE values of (8) are smaller than the corresponding values of (6)
and (7) when o is 0.5 or 0.8, in both cases of () and f®. So it might be safe to say
that when the noise level is moderate to high, procedure (8) outperforms procedures
(6) and (7). When o = 0.2, procedure (7) performs better than both (6) and (8) in the
case of £, Inthe case of f®, the three procedures perform similarly well. Therefore
procedure (7) is competitive when the noise level is low, which is consistent with the
results found in Fig. 3.

Next, let us compare the performance of (8) with the performance of fm, fw and
fm, f- Table 2 shows that procedure (8) performs uniformly better than fw It performs
better than fm in all cases except the case when f = f M and o = 0.2, in which fm
performs better than f in MSE, but f is slightly better in terms of the local MSE.
Compared to fmr £ f performs better when o is either 0.5 or 0.8. When o = 0.2,
fm rf performs the best among all procedures.
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Fig. 6 Plot (a): The noisy test image. Plots (b)—(h): the reconstructed images by the local median smoo-
thing procedure, the DWT procedure, the MRF procedure, the AWS procedure, and procedures (6)—(8),
respectively

4.4 Application to a test image

In this part, we apply all the related procedures discussed in the previous part to a
test image posted on the Waterloo Research Group’s web page http://links.uwaterloo.
ca/bragzone.base.html The original image has four grey levels: 20, 75, 150 and 235;
and several circular edges with three different jump magnitudes: 75, 160 and 215. Its
resolution is 256 x 256. We then add i.i.d. noise with distribution N (0, 752) to the
image, and the noisy image is shown in Fig. 6a. The darker the color, the larger the
image grey level.

Since the intensity function of this test image is piecewisely constant and it has
large homogeneous regions, this image is ideal for the adaptive weights smoothing
(AWS) procedure by Polzehl and Spokoiny (2000), which adapts itself to edge struc-
tures iteratively in surface reconstruction. We then use the AWS procedure as a golden
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standard in this example, and compare the others with it. The AWS procedure has a
number of parameters and functions to specify. We use their default values specified
in the R package aws(). The local median smoothing procedure, the DWT procedure,
the MRF procedure, the AWS procedure, and procedures (6)—(8) are then applied to
the noisy test image, and their reconstructed images are presented in Fig. 6b—h, res-
pectively. For the local median smoothing procedure and the procedures (6)—(8), their
window widths are chosen to be 0.02, 0.05, 0.02 and (0.02, 0.04), respectively, by the
cross-validation procedure (cf. (9)). For the DWT procedure, all possible combina-
tions of its parameters are tried and the combination with the best visual impression
is selected, which turn out to be: filter.number = 5, policy = “soft” and levels = 6:7.
For the MRF procedure, as requested by one referee, the version by Sebastiani and
Godtliebsen (1997) is used here, which searches for the estimate of the true image by
MCMC and which chooses its parameter values automatically.

From the plots, it can be seen that the local median smoothing procedure and
procedure (7) blur the edges much, especially in the region around the smallest circle.
The reconstructed image of the DWT procedure looks quite noisy and some edges
are also blurred. The MRF procedure can preserve the edges well, although its results
include certain salt and pepper noise. The reconstructed images by procedures (6) and
(8) look compatible to that by the AWS procedure. If we compare them carefully, then
we can see that the reconstructed image of (8) is smoother than that of (6). We can
also see that both procedures slightly blur some parts of the edges close to the image
border. That is because they both use the “symmetric” extension procedure to handle
the boundary regions and these parts are close to some singular points of the edges
artificially created by the “symmetric” extension procedure. From Fig. 6, it seems that
procedure AWS does a good job in removing noise and preserving edges, compared
to all other procedures. That might due to the facts that procedure AWS adapts its
degree of smoothing to local features of the observed image by constantly changing
the neighborhood size at a given point, while all other procedures considered here use
constant procedure parameters for the entire image, and that procedure AWS smooths
the observed data iteratively, while procedure (8) is non-iterative. This example shows
that a potential improvement to the proposed procedure (8) is to use variable bandwidth
and to apply procedure (6) iteratively, which is left to our future research.

5 Technical details

This section mainly gives proofs of the theorems presented in Sect. 3. First, we give
two propositions.

Proposition 1 Fore(x, y), eV (x, y) and e® (x, y) defined by (3) and (5), there exists
the following relationship:

e(x,y) > min (e(l)(x, y), e(z)(x, y)) ,
forany (x,y) € [0, 1] x [0, 1].

@ Springer



734 P. Qiu

Proof By the definition of e(x, y), we have

2 e ey {zij = [@0x, ¥) +Blx, )0 = 2) + 80, 0y = M P K (xhj yl;':y)
SIS K (5 5)

3 e ey (207 = (3G )+ B0 ) (=) 80, 0y —01F K (52, 32
S Yk (3 )

Z(x, \;)EM,(ll)(X ¥) {ZI/ _[A(l)(x y)+b D(x »)(xi —x) +A(l)(x })(y el } K ("'"" ’ ‘]j’"y)
h 2 ,—1K(X'HX ‘iz?)
2 yem® ey {7 —@D s W+ B2 ) =2 + 8D -1 K (X‘nx’ V;z;‘)
S s K ()
eD(x, y) Z(x,.y,v)eM,(,l)(x,y) K (X;L;X, %) +e@(x,y) Z(Xl,yf)eM,ﬁz’(x,y) K (xlil?’ v;:)

n n xi—=x YV
Zi:l Zj:l K( hy * hy )

e(x,y) =

+

> min(e(l)(x, ¥), e(z)(x, ¥)).

The first inequality in the above expressions is due to the definition (cf. Eq. (4)) of
the one-sided estimators (Zﬂ) (x,y), O (x, y),E“) (x,y)), for £ = 1 and 2, and the
second inequality is due to the fact that a weighted average of two numbers must be
larger than or equal to the smaller one of the two numbers.

Proposition 2 Under the conditions in Theorem 1, we have

22221(( x)’/h y)_l zo(nllz)’ @3)

ni=1 j=I1
J= Dy,

and

1 i “ o (iox iy Bn log(n) o4
JE— fore , — =o\—}), a.s.
n’h} < pu Y hn hn nhy,

Dhn
for any positive sequence B, that diverges to infinity as n — oQ.

Proof First, we prove Eq. (23). For any (x, y) € Dj,, we can write

n’

Sk (L)

ni=1j=1

n
x - y) 1// K(u—x v—y) d
_ _ , udv
2N 222 ( hy, h?2 B, (x.y) b~ hn

"ll]l

@ Springer



Jump-preserving surface reconstruction 735
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where By, (x, y) is the circle centered at (x, y) with radius &,, A;; = [xj—1, x;] x
[vj—1,¥jl.x0 = yo = 0,and Cg > 0Oisthe Lipschitz constant that satisfies | K (x, y) —

K(x',y)| < Cx/(x —x)2+ (y — y")2. So, Eq. (23) s true.

dudv

IA

0

1
W2
n
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To prove (24), let us first define

Eij = Sijllsij\f(tij log? (1i))1/3> Lji=12....n
1 -~ Xi—X yj—Yy
gn(x,y) = ﬁzzéiﬂ( (l— ]—)
nhy st hy hy

I — < Xi—X yj—Yy
* _ E E . l J
gn(-xvy)_ n2h2 Sl]K( hn )’ hn )7

no=1 j=I

where #;; = (i — D2 + Jifj <iandf; = j2 — (i — 1) otherwise. By the defi-
nition, #;; = 1, 2,3,4,5, ..., respectively, when (i, j) = (1, 1), (2, 1), (2, 2), (1, 2),
(3, 1), .... When (i, j) changes by a bijection from (1,1) to (n, n), t;; changes from 1

to n2.

Let A, = {(G/[n"], j/[n"]) : i =1,2,...,[n"],j = 1,2,...,[n"]}, where 1 is
a positive constant and [x] is the integer part of x. Then, there are [n"]? points in
Ay, and for any (x,y) € [0, 1] x [0, 1], there exists (v(x), w(y)) € A, such that
[x —v(x)| < 1/[n"] and |y — w(y)| < 1/[n"]. Let B, > 0 be an arbitrary sequence

of constants diverging to infinity as n — oo. Then, we have

nh _ )
B IO:(;” 18n(x, y) — Egnlx, y)”Dh,, < Sin + Son + Sz,
n
where
nhy,  _ .
Sin = B logn 8 (x, ¥) — &n(v(x), w(¥) Dy,
n
nh, _ i
Son = Brlogn 8n (v(x), w(y)) — Egn(v(x), w(y) D,
n
nhy, _ i
Ssn = giogn | E&n (000 w) — Egn(x. Ml
n

We can choose 7 large enough such that

nhy, ] =~ Xi—X yj—y
Sip = —m e YTy
"= 8 Jogn n2hgzzs”[ ( h, . h,

i=1 j=1

K (Xi - U(X)’ yj— w(Y))i|
hn hn

nhn n? 2 2 a3 Ckv2
< -22~(n10g(n)) g
Bnlogn n<h; [n")h,

Dy,,

= o(1).

@ Springer
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By similar arguments, we have S3, = o(1). Now, for any (x, y) € Dy,,,

—X Y=Yy
gn(x,y) — Egn(x,y) = E E 2/12 (&ij — EEU)K( A 7—j/’l )
o1 =1 n n

= Zzgn,ij(x’ y)

i=1 j=1

For any small constant € > 0, when n is large enough, we have

nhy, _
P (ﬂ [gn( y) — Egn(x, y)] > e)

172 non 1/24 ~
< exp (—eﬂn logn) £ { T 11 exp | (nha/Bs/)ijx. )|
i=lj=

—eg> I pn 2,2 ~
w1+ @R B Var Gy (5. ) |

/2 n n
eﬂn

1T exp (122 o) Var @i (. ) )
i=1j=1

=1 exp [ 22/ > D Var(n i, 1) | (25)

i=1 j=I

In (25), the second line is obtained by using the Chebyshev’s inequality of the expo-
nential form. The third line is obtained by the facts that

2(tyn 1 nn 13k
() By *)8n.ij(x, ) < (nhy /By (tnn log (2th2)) K|l

1 logz(n) 13

and that exp(x) < 1 +x + x2 when |x| < 1/2, where || K| denotes the maximum

value of the kernel function K in its support. The fourth line in (25) is based on the
fact that exp(x) > 1 + x when x > 0. Now,

i — i — 1
ZZVaf(gmﬂ”))—ZZ(nzhz)z (xhnx,yf y):o( )

i=1 j=I i=1 j=I

Combining this result and (25), we have

P( iy [ (x,y) — Eg,(x )]>6)<0(n—6,l/2)
B, 1o 8n y En (X, Y = )
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738 P. Qiu

which is uniformly true for (x, y) € Dj,. By similar arguments, we have

hi‘l - -
P ( O [(=gu(x. ¥) — E(=gn(x. y))] > e)
Bn logn

— P ( B g, y) — E@u(x. )] < —e)
Bn logn

<0 (n_eﬂ':/z) .

So,

12

nhn o o _eﬁn
P(ﬁnlognIgn(x,y)—Egn(x,y)l >6) < 0<n )

and
12

P(Sy>e) <[P0 (n—fﬁ"'/z) —0 (n—fﬂn +2'7).

Consequently, > > | P (52, > €) < 0. By the Borel-Cantelli Lemma, we have
S>, = 0(1), a.s.

Therefore
nhy,
Bnlogn

Next, we write

lgn(x, y) = Egn(x, Y)llD,, = o(1), a.s. (26)

lgn e WDy, < llgnx, y) = gnlx, YD,
+18n(x, y) — Egn(x, YDy, + 1E&n(x, VD, - 27)

Since P(Je;j] > (4 log?(t:j)'/?) < (t;j log?(#;;)) "' E(le11|*) and
o0 o0 o0
D> (wjlog? (1) =D (Llog? (€)™ < oo,
i=1 j=1 =1

we have

DD Plleijl > (i log* (1)) < oo

i=1 j=1
By the Borel-Cantelli lemma, P (|g;;| > (#;; logz(tij))1/3, i.0.) = 0. Therefore, there

exists a full set €2p such that for each w € Q( there exists a finite positive integer N,
and when max(i, j) > N, we have
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Jump-preserving surface reconstruction 739

gij(w) = &j(w).
Hence, for any (x, y) € Dp,, whenn > N,,,

|g::(-xv Y) _gn(xv )’)|

j— Y
= X X - (L 22
ni=1 j=1 n
—X Y=y
= 2222(811 SlJ)K( /h )
n ”z 1 j=1 n
K]l
522'” Eijl n2h2
i=1 j=1

So,
nhy C(Ny, K)
: =o(1), 28
~ Bulogn  n2h2 oD, @8

ﬂnlog lgn(x, ¥) = gn(x, YD, <

where C (N, K) = | K|| Zf\g’l z;vil |e;j — & is a factor depending on both N, and
K.
Finally, for any (x, y) € Dy,,,

_ IK| _
|Egn(x. y)| < 2h2z > |E&l

(xi,y;)€Bpy, (x,y)

K]
= nZh2 Z Z ‘Egif Dieij <13 10g2 3172

i»Yj)EBn, (x,y)

IK|l
= 2h2 Z Z ‘Egijl\eij|>(lij log?(t;))1/3

i:Yj)EBR, (x,Y)

K
n2h2 Z Z E (|8ij|1|8ij|>(lij logz(tij))m)

(Xi,yj)EBp, (x,y)

K] _
n2h2 > 2 ElsilPiylog )
n

i»Yj)EBn, (x,y)

K| .
. > ElelPaylog )7
n

(xi,yj)€Bny, (hn.hy)

—~
=

><

IA

IA

—~
=

IA

2nhy+12nh,+1
E(811)||K|| . -

T Z Z (13 log’ (1)) >/
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2nhy+1)?

> (tloge)

=1

_ o (@
w2z )

which is uniformly true for (x,y) € Dp,. In the above expression, By, (x,y)
denotes a circle centered at (x, y) with radius &, log(1) is defined to be 1 in lines
5-8 for simplicity of presentation, and line 6 is obtained based on the facts that
x > hy and y > h, when (x, y) € Dy, and ZZ(Xi,y_;)eBh,, oy i logz(tl-j))’z/3 <
> Z(x,-,y/-)eBhn () (tij log? (tij))_2/3 in such cases. Therefore,

_E@)IK|
n2h2

nhy,

B, logn

1 1
|W@“”w”"=0(mmyfom0m)=“n @

By combining (26)-(29), we have ||g;; (x, ¥)[p,, =0 (ﬁ"nlfg") , a.s..

Remark 1 For any (x, y) € Dy, , we have

2 12 —1¢ijK (%’%)
S S K (5 )
3 ﬁ 2o 2 €ijK (% %)
T ( L S K (5 5 )
n2n2 228’1 ( nx’ yjh;y)

”ll/l

¥i=X ¥y 1
10T %ZEZEZK( i ) : +o(ﬁw)

ni=1 j=1

So, by Egs. (23) and (24), we have

i—x Y=Y

i 2= 18’1K(xhnx’ ,hn) - (log(n)) a.s (30)
R , a.s.

i 2o K (x = ) Dy, "

hy ° hn

By similar arguments to those in Proposition 2, it can be shown that, under conditions
stated in Theorem 2, we have

n n 2 2 Xi—=x Yj—=Y
zi:12j21 (5ij—U)K(';l TR )

n

R
Z?:l Z;l':l K (x'h o ]h_,,)

n

=o0(1), a.s. 31

Dy,
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Proof of Theorem 2 First, we prove the second and third equations of (16). The first
equation of (16) can be proved in a similar way. For £ = 1,2 and any (x, y) € Dy,,,
based on (5), we have

ePx,y)
Dm0 Gy =800 ) = DO ) -0 =0 @ )0 ~nP R
Z(n.y,-)eMi“(x.y) K (XIZX’ yzi:y)
C ZpemPey ey K (x'h:X’ yﬁ)

xi—x Yji—Y
Z(xi.y/>eM£5)(x,>v>K( hn * )

+ZZ(X,.,yj)€M'(xf>(x,y) & [ £ iy y) = @0 (e, y) = 5O (x, y) (i =) O (x, ) (v — )] K(";‘;" , )jl:‘)
Z(x;,.vneM,‘,“u,_v) K (X;L_,X' y{;y)
+ Z(X"».Vj)eMy)(x.y) [f Gy =@ x ) =50 )i =)~ (x, N *y)]z K(Xi;x ’ v},:)
z(x,,y,»eMé“’(xw K (Xi;x’ yi;y)

= 1{" G, y) + 10 y) + B0 y). (32)

By similar results to (31), we have
1Y = o2lip, =o(); as. (33)
By Taylor’s expansion of f(x;, y;) at the point (x, y), we have

K9 (x, y)

= (fy) —a%0 )’

2 2y yem® (x—"_x) K(—‘_x,—yj_y)
(xi.y;)eEM,”’ (x,y) \ ha hy hy,
+(f)é(-x’y)_/l;(£)(xay)) h2 !

n
xXi—x Yj—Yy
Z(xi,yj)eM.5‘)<x,y>K( M *  hy )

Yi=y xXi—x Yj=Y
2D () “+—) K |-4—,
(xi.yj)eM, (X,y)( hn ) ( hy hy )
+ (00 =T ) nE = _
K Xi—x Yj—Y
@iy eM (x.y) Tn o Thy

+2 (£ =a0 @) (He ) =50 )

Xi—X xi—x Yj—Yy
Z(x,-,y_,-)eM,g“<x,y> K ( o ha )

xi—x Yj—Y
z(xi,y_»eM,i“(x,y)K( My * hy )

+2 (£ =a0 ) (£ =00 ) hy
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Yi—y

hn

“(

Xi—x Yj—Y
hll

’

hn

Xi—X

(4
Z(x;,y»eM,S ) (x,y)
© .

n (X,Y) K (

+2 (e =20 ) (1

3

z(xi»yj)EM

(4
z(x,-,y,-)eM,S ) (x,y) h2

i —x0)(yj—y)

)
() =20, )k

(55

xXi—x Yj—Yy

K

Z(x,-,y,-)eM,S"(x,w K (

+o(h?)

Xi—X

yi=y
B

El

hy > hy

I

By Eqgs. (10)—(12) and the fact that the absolute value of each ratio of two summations
appeared on the right-hand side of the above equation is less than or equal to 1, we

have ,
152 01p, = o(1), a.s. (34)
For 12“), by Taylor’s expansion and Eqgs. (10)-(12), we have
. Xi—x Y=Y
() o~ Z(x,-,y_,-)eM},“(x,y) &ij K ( hn > hn )
11, Ip,, <2Ilf —alp,, —
© K (xi—x Yj )’)
(xi»)’j)EMn (x,y) hy ° hn Dy,
> ®, . Eij oK (Xi_x, y"'iy)
N (is ')EMn ( s ) J hy hn hy
20 fy = Bl | — —
Z(xi,y,»eMé‘)(x,y)K( i ) D,
3 o g M K (xi—x’ }’j*)’)
(i, y))EM,” (x,y) “ hn hn Dn
20,1 £} = Cllpy, |—— ~ —
- J
Z(xl-,y,»eM,E“(x,y)K( hu ) D,
2 e vnem @ Eii K (x"h*x,y’;l—_y)
+O(hn) (xla)j)e o (X,Y) n : n ) (35)
0 K (xifx yj_)’)
Ciyped? ey = ke TR ) g,

Using similar arguments to those in the proof of Proposition 2, we can prove that

¢ &
Z(xiij)EMr(t ) (e,y) S Ty

Xi—X K

Z(xl-,y,»eMé‘)(x,y) K
and

Z @ g2
(i, yj)eMy” (x,y) “H ha

-y

(x,-—x }’_i—}’)
hy, * h
- ! =o(1), a.s.
(x,-—x y_/—y)
hn > hy Dy,
K xXi—x Yj—Yy
hn > Pn
=o0(1), a.s.

Z(xi,y,-)eM.S%,y) K
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Therefore, by combining these results with (10)—(12), (30) and (35), we have
13711 p,,, = 0(1), a.s. (36)

By (32)—(34) and (36), the second and third equations of (16) are proved.

Next, we assume that (x;, y;) is a given nonsingular point of a JLC, the projection
of a point (x, y) € Jj, to the JLC is (x;, y;) and the Euclidean distance between the
two points is ch, with 0 < ¢ < 1 a constant. In such cases, as in (32), we still write

l 4 l
e®©0x,y) =170, y) + 17, )+ 1P (x, ).

Then, by (33), we have
190, y) =% +0(1), as. (37)

For IZ(E)(x, y), it can be written as

2

xi—x Yj—Yy
Z(x,-,y_,-)eM;“(x,y)K( hn °  ha )

x 2 + 2

iy @ NMP @y iype0l? ey N MY (x,y)

x g1y [ £ i, v =0 (@, 1) =B, 1) =0 =20 @, 1) 0 - )]

WK (o E Yy
hy hy

=10 )+ 10, y). (38)

4
12( )(x,y) =

By Egs. (13)—(15),

22 (€0 o) () MY e,y B L Gxis yj) = f- e yr)]K(%’ %)
Z(xi,yj)eMn“)(x,w K (xih:x’ hh__y)
Cr+oM) 2, oW ey N ml ey Fii K (xih;x’ yjé:y)
z(x,wy_/)eMﬁ“(x,y) K (xzh_;x %)
(€2 +o(D)) Z(xl-,yneQ ey N My & R K (X e ylhnv)
2spemPiy K (x,h:x’ yjhny)
(€340 X, o r) MO txnyy &1 T K (xh;x yjh:y)

xXi—x Yj—Y
Z(xi,yj)eMé”(x,y)K( T )
=o0(1), a.s., (39)

4
I()(x y) =
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where C1, C» and C3 are constants. In (39), we have used the results that the ratio of
two summations appeared in each of the four terms on the right hand side of the first
equation is of order o(1) almost surely, which is a consequence of (30). Similarly,

I(e)(x y) =o(l), a.s. (40)

Now, let M ©, for £ = 1,2, be two halves of the support of the kernel func-
tion K separated by a line passing the center of the circular support in the direc-
tion perpendicular to the asymptotic direction of (E(x y),¢(x, y)), which is g =
(—fo(z)uK(u v) dudv, =— fo(z) vK (1, v) dudv) (cf., Egs. (14) and (15)).

Deﬁne 010 = o N\ MO, Q(%) = 0O N MY, Ay =  Joen K, v) dudv,
Ay = fo(zg) uK (u,v) dudv, and Ay = fo(zg) vK (1, v) dudv, where Q1) and

Q® are defined in Theorem 1. By the isotropic property of K and by similar arguments
to those in the proof of Eq. (23), we have

1 P—x oy — 1
TR K(x =, 4 y)—— =o(l). @

¢
iy e, (x.y) D,

Also, for a function ¢ (x, y) satisfying the condition that sup,2, >y [¢(x, y)| < by <
00, we have

1 Xp—X yj—Yy Xi =X yj—y
9 K 9
n2h? Z ¢ h, h, h, hy,
(iy)e0s’ o N MY (x.y)
1 Xp =X yj—y Xi =X yj—y
- —7 - K b
n2h2 Z ~ ¢ h, h, h, h,
<x, y)e0s (x.y) N M7 (x.y)
< bylIK I th > !
iy eM” ) AMY (x,y)
=0, =o()a.s., (42)

where My (x, ) AM” (e, y) = (M (e, \M? (e, ) U (e, )\MLE (x, 7)),
AA/?,(,K) (x,y), for £ = 1,2, are two halves of the neighborhood M, (x, y) separated by
a line passing the center of M), (x, y) in the direction perpendicular to g, and 6, is the
acute angle between the two directions (B(x, v),¢(x, y)) and g. The last equation in
(42) is a direct conclusion of Eqs. (14) and (15).

Using (41), (42), and results about a® (x,y), Z(e)(x, y) and ) (x, y) similar to
those in (13)—(15), we have
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19,y

3 e 7 2 =800 =0 0 =020 0, 1 0= o k(. 52
‘ X=X .Vj—Y)

K ( ,
Z(Xi.y_,')EM,ge)(x,y) hn hn

dzAlg Xp =X
hll

2
n2n2 Z |:f(x1s)’)—f (X7, yr) —de Agp —

n
(i MO (x.y) Pon

dr A —y1* x—x yi—y
_ G ’} K(——= 2 100
B hn hn hn

:L Z +

27,2
n=h
" (xiv,vj)EQ)(ll)(X-y)nM}SZ)(X-y) (Xiw}’j)EQr(zZ)(Xq,V)nMyge)(qu)

drArg xj —x  drAy yj—y]2 (Xi—x yj_y)
iy )= fo (v, yo) —dr Agy — —= - K : +o()
|:f( i Yj f—(xz, vz TA0L o i B I In Iy

. 3 +

n2h% _
" \eivpeoL e N oy ypeo? o NP .y

2
drAyp xj—x drAzzyj—y] (x,-—x Yj_)’)
x| f @i yj) = f= @ yr) —dr Age = — - K , +o(l)
|: i yj)— [ (xz, e T A0 Box  In B I . n
 —y12 L L

22 Z —derg—daAw xifx_d-,ivAzg yj—}j| K(xl x,yj y)
n2h ) 10) /302 hn :320 hn hn hy

(x5, )EQn (x, y)ﬂM (x,y)

2
2 drAyg xi —x  deApp yj— ¥
5 dr —diAgp — —= —
n2h2 T draot Iy

_ Boz  hn 20
" iy e o NI (x,y)

Xi—x Yi—)
K 1
) (hn " )*"()

2
A Aot
zzdf// [Aoz+ 16 +i] K (s, 1) dsdr
000 Boz B0

A Agpt 1?
+2df2// [1—A I i] K (s, 1) dsdf + o(1)
020 Bo> B20

= d? (CSZ’)2 +o(D), as. (43)

where

A Aoyt
cO = 2// |:Aoe ”S+i} K (s, 1) dsdr
10 Boz B0

A YAk
+2// [1 — Ag — 28 l} K (s, 1) dsdr
@0 Boa B0

1/2
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In the fifth equation of (43), we have used the facts that (1) f(x;, y;) — f-(x¢, yo) =

0 () when (xi, yj) € 08" (x, y),and i) f (xi, v)) = f—(xe, yo) = de+0 (5)

when (x;, y;) € Qf,z)(x, y).

By expressions (37)—(40) and (43), the second and third equations of (17) are proved.
The first equation of (17) can be proved in a similar way, after using the properties
of the kernel function that (i) [ fQ(l) K(u,v) dudv=1- [ fQ@) K (u, v) dudv, (ii)
fo(l) uK (u,v) dudv=— foQ) uK (u, v) dudv, and (iii) fo(l) vK (1, v) dudv=

— fo(z) vK (1, v) dudv.

Proof of Theorem 3 The estimator ﬁ(x, y) is one of @V (x, y) and @@ (x, y) when
(x,y) € Dy,. By results similar to those in Theorem 1, both of them are uniformly
consistent for estimating f in Dy, . Therefore, Eq. (18) is true.

Proof of Theorem 4 The estimator ﬁ(x, y) is one of a(x, y), a(x, y), a® x,y),
and @V (x, y) +a® (x, y))/2, all of which are uniformly consistent for estimating
fin Dy, (cf., (10)). Therefore, Eq. (19) is true.

For a given nonsingular point (x;, y;) on a JLC, suppose that the projection
of a point (x, y) to the JLC is (x;, y;), the Euclidean distance between the two
points is ch, with 0 < ¢ < 1 a constant, without loss of generality the tangent
line of the JLC at (x;, y,) is assumed to be parallel to the y-axis, and (x, y) is
on the left side of (x;, y;). Then, by (17), we have eDx,y) = 0?2 4+ o(1), a.s.,
@ (x, y) = 02+dr2(C§2))2~|—0(1), a.s.,ande(x,y) = oz—i—d?C%—i—o(l), a.s.,where
(ng))2 and C% are positive constants. Therefore, when d; /o > 1/C; and n is large
enough, e (x, y) < e(x,y)/2 and eV (x, y) < ¢®(x, y). Consequently, f;(x, y)
equals aj(x, y). So, Eq. (20) is true by results similar to (10). When d; /o < 1/C,
e(x,y)/2 < min(e® (x, y), e(z)(x, ). By (7), ﬁ(x, y) = a(x, y) in such a case. So
Eq. (21) is true according to (13).

Proof of Theorem 5 For a given point (x, y) € Dp,, +1,,, We can write

ate, v f) = £y = (@i £ —ate v p) + (@6 v £ = G 0)
Whereidenotes the vector of { f (i/n, j/n),i,j=1,2,...,n}.So

lace, y; £,) = £ Dby, o,

< l@@.y: 7,) = a0 vi Plipy, o, + 130 y: ) = FG Dy, - (@4)

n2’

Now, the local linear kernel estimator @ (x, y; z), which uses kernel function K and
bandwidth #,,, has the following expression (cf., e.g., Eq. (2.2) in Qiu 2004):

iy 2o wij (o, )z
2o 2w y)

ax,y;z) =
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where

wij(r, ) = [V, ) + AP0 90 =0 + AV @ 0 0 - )]
XK(xi —X Y —)’)
b
AV, y) = B (x, B (x, y) = BV, ) B, y)

AP (x,y) = B (x, ) B (x, y) — B9 (x, y) B (x, y)
ADx,y) = BYx, y) B (x, y) — BOV(x, y) BV (x, y)

n n
X=X Y=y
B2 (x, y) = ZZ(x,-—x)” (yj—y»"*K (lh—n, /h—n) , forry,r=0,1,2.

i=1 j=1
Similar to (23), we have, forr;,rp =0, 1, 2,

I o~ (x5 =x\"(yi—=>y\?  (xi—x yj—Y

i J i J 3
_z z K(2—= )
n2h2 ( Iy ) ( Iy ) ( hn * hy ) Prirs

ni=1 j=1

Dhn 1+hp2

1
()

where f,,,, = f_]l f_ll " v"2 K (u, v) du dv. Since the kernel function K is assumed
to be an isotropic bivariate density function, we have o1 = 19 = 0. By these results,
we have

1
’ <AV, y) - Cx = o(D),
n hn Dhn1+hn2
1
4—,17A<2>(x, ¥) = o(1), (46)
i Dhn1+11)12
‘ =AY, ) = o(l),
n hn Dhn1+h)12

where C}‘< = ,520,502 — ,5121 > (. By these results and Eq. (18), we have

Hﬁ(X. yifp)=ace,y; ) H
- Dhn1+hn2

Z?:] Z?:l wij(x, y) (ﬁ(xi, yj) — f(xi, yj))
2 2o wij ()

R R
’ X [t 8aCk 0S| (i v = o) K (S5 5

41,8 8 xXj—x Yj—y
;1:1 ’JI'=I [” hnZC}k( +0(n4ht12)] K( i r )

Dhnl +hp

hnZ , hn2 Dhnl+hn2

_ 1
<|fi- J"HDhnlJrhn2 (1 +o(1) = 0h2) + 0 ( Zi:j)) a.s., (47)
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where h,1 and h,» are two bandwidths used in the two steps of (8). Since f(x, y)
is assumed to have continuous second order derivatives at any (x, y) € Dy, +h,,, by
Taylor’s expansion of f(x;, y;) at (x, y) and by (45) and (46), we have

D> wii b W [y = fGx )]

i=1 j=I

* S~ i yji—Yy
—n*15,C5 ST+ o(1) [f(xi,yj)—f(x,y)]K(xhnzx, L= )

i=1 j—l

=G 33 o) [ £ 9 = 1) + £, )05 — )]

i=1 j=1
Xi —x -
XK(I Y y)
hn2 hnZ

1
“hngKZZaw(l)) [ A0 )G =242 £, 6 ) G5 =) (3= )

i=1 j=I

+ fry (e ) (j = y)z] K (

Xi — X yj

—_y) +1*h8,CL (1 + o(1))o(n2hy)
n2

hp ~ h
> (5)

n2 j=1 j=1

=n*hS,Cr (1 +o()n*hyy | fl(x,y)

xK( x’y,—y)
hnZ hnZ

+ V) 55 22 ZZ(yj_y) ( hnzx,y/hn—zy)

nZ, 1 j=I

+= ;14}182CK(1—i—o(l))yﬂhn2 (X, Y) 5 2h2 Zz(xz —x)

n2 j= 1 j=1
xK( x’yj—y>
hnz hn2
17 Xi — X ) XX Y7y
+2fxy('x y) 2h2 ZZ( )( n2 )K( hn2 ’ hn2 )
yj— i—XxX Y=Y
+f\7y(x y) 2h2 ZZ( ) ( /’lnz ’ hn2 )

n2 j=1 j=I
+n*h8,C% (1 + o(1)o(n*ht,)
= n4h§2cK(1 +o(1)n*h,

< [f;
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4= n4h82CK(1 + o(1))n*ht,
x [fxx (e B0 + £, 06 B + £y, 1) +o(D)]
+n*hd,CE (1 + o(1))o(n*ht,)
=n*n®,C5 (1 4+ 0(1)n%h3, 0(hpy) + 1n4h82CK(1 + oIy [ £1(x, ¥)Bao
+2f4G B+ £ y)Bo + o(l)] + 1ty Ck (14 o(D)o(m?hyp). (48)
In the last equation of (48), we have used the results Egl B 10 = 0 and the condition

that l/nhl12 = o(1). Obviously, (48) is uniformly true for (x, y) € Dy, +h,,. Similarly,
we have

Zzwij(xa}’)

i=1 j=1
P—X yi=Y
=n*hS,Cx (1 + o(1)n’hy, = ZZ ( , Jh )
i 1= 1 j=I n2
_ 418 % 272
=1y Cx (1 + o)k (14 o(1), (49)

which is uniformly true for (x, y) € Dy, +n,,- By (48) and (49), we have

”a(x’ s i) - f(-x’ y)||D;,”1+hn2
o 2= wij (X, y) [f iy — fx, 0]
D 2 wi(x, )

= 0(h%,). (50)

Dhn 1+hn2

By (44), (47), and (50) and the condition that h,> ~ h,1, we have

log(n)
nhy '

[y 7 - f = 0(h51)+0(

hp1+hp2

Similar results can be derived fora! (x, y; fl) anda® (x, y; fl). Since 7 (x, : zl)
is one of a(x, y: £). @V (x, y: F). @@, y: f ) and @D (x, yi ) +a@(x, y;
Zl))/z, Eq. (22) is proved.

6 Concluding remarks
We have introduced three jump-preserving surface reconstruction procedures (6)—(8).

Procedure (6) preserves the jumps well but its estimated surface is quite noisy com-
pared to the estimated surfaces of the other two procedures. Procedure (7) preserves

@ Springer



750 P. Qiu

the jumps well and also smooths away the noise efficiently when the signal-to-noise
ratio is high. When this ratio is low, its ability to preserve jumps is limited. Proce-
dure (8) is a combination of procedures (6) and (7). Numerical examples show that
it preserves the nonsingular points of the JLCs well and also smooths away the noise
efficiently. Theoretically, it has been proved that its estimated surface is uniformly,
strongly consistent in continuity regions of f.
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