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Abstract A great deal of effort has been devoted to the inference of additive model
in the last decade. Among existing procedures, the kernel type are too costly to
implement for high dimensions or large sample sizes, while the spline type provide
no asymptotic distribution or uniform convergence. We propose a one step backfitting
estimator of the component function in an additive regression model, using spline
estimators in the first stage followed by kernel/local linear estimators. Under weak
conditions, the proposed estimator’s pointwise distribution is asymptotically equiva-
lent to an univariate kernel/local linear estimator, hence the dimension is effectively
reduced to one at any point. This dimension reduction holds uniformly over an interval
under assumptions of normal errors. Monte Carlo evidence supports the asymptotic
results for dimensions ranging from low to very high, and sample sizes ranging from
moderate to large. The proposed confidence band is applied to the Boston housing
data for linearity diagnosis.
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664 J. Wang, L. Yang

1 Introduction

In the last decade, a great deal of effort has been devoted to the inference of additive
model, popularized by the book of Hastie and Tibshirani (1990)

Y = m (X) + σ (X) ε, X = (X1, . . . , Xd) , m (x) = c +
d∑

α=1

mα (xα) , (1)

where the noise satisfies E (ε|X) = 0, var (ε|X) = 1 and the component functions
satisfy the identification conditions Emα (Xα) ≡ 0, α = 1, . . . , d. In addition, we
assume that the predictor Xα is distributed on a compact interval [aα, bα] , α =
1, . . . , d. Given an i.i.d. sample

{
Yi , XT

i

}n
i=1 = {Yi , Xi1, . . . , Xid}n

i=1 following

model (1), Stone (1985) proposed estimators for {mα (xα)}d
α=1 with optimal rates

of convergence. These were later called polynomial spline estimators in Stone (1994),
Huang (1998, 2003). Huang and Yang (2004) and Xue and Yang (2006a) further exten-
ded these estimators to weakly dependent data. Hastie and Tibshirani (1990) proposed
backfitting estimators for functions {mα (xα)}d

α=1 without theoretical justifications,
while Opsomer and Ruppert (1997) offered partial asymptotic results for the case
of d = 2 under some strong assumptions. Opsomer (2000) extended the theoretical
results to a general case with more than two covariates. Mammen et al. (1999) pro-
posed a modified backfitting algorithm with nice theoretical properties, which was
implemented in Nielsen and Sperlich (2005) and called smooth backfitting estimator.
Another alternative is the marginal integration method, first proposed in Tjøstheim
and Auestad (1994), Linton and Nielsen (1995), Linton and Härdle (1996), and fur-
ther developed by Fan et al. (1998), Yang et al. (1999, 2003, 2006), Sperlich et al.
(2002), and Xue and Yang (2006b). Using the wavelet transformation, Härdle et al.
(2001) developed the additivity and the polynomial structural tests. Series estima-
tor in Andrews and Whang (1990) circumvented the curse of dimensionality when
interactions are present in the model.

If the last d − 1 of the component functions were known by “oracle”, one could
define a new variable Y1 = Y − c −∑d

α=2 mα (Xα) = m1 (X1) + σ (X) ε and use
it to regress on the numerical variable X1 to estimate the only unknown function
m1 (x1), without the “curse of dimensionality”. The basic idea of Linton (1997) was
to obtain an approximation to the variable Y1 by substituting mα (Xα) , α = 2, . . . , d
with the marginal integration pilot estimates (kernel-based) and establishing that the
error caused by this “cheating” is negligible. Such two-step estimation idea also later
appeared in Fan and Chen (1999) for local quasi-likelihood estimation. It is well known
that the kernel estimation in high dimension would be extremely computationally
intensive. Kim et al. (1999) provided an computationally efficient two-step estimator,
reducing computation by order n compared with marginal integration. The spline
method, on the other hand, is very fast, but the rate of convergence is only established in
mean squares sense, and there is no pointwise confidence interval or even consistency
in additive models.

In this paper we propose to pre-estimate the functions {mα (xα)}d
α=1 by an unders-

moothed constant spline procedure. These estimates are then used to construct the
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Additive regression model 665

“oracle” estimator as if they were the true functions. Our approach is much faster
than that of Linton (1997), and can be applied to extremely high dimensional data
(e.g., d = 50, 100). Our approach marries the traditionally parallel spline and ker-
nel smoothing techniques, keeping the asymptotically normal distribution of kernel
estimator, without its computational burden. Figuratively speaking, spline smoothing
is a sledge-hammer capable of breaking a huge chunk of material (i.e., a regression
problem from data of very high dimension and very large sample size), in one slam
(i.e., solving one linear least squares problem), but does not guarantee the fine shapes
of the broken pieces (i.e., the estimates may not converge at a point or uniformly over
an interval). Kernel smoothing works like a sharp knife that cuts anything into pieces
of precise shapes (i.e., normal confidence intervals at any point, and confidence bands
over compact intervals), but is too tedious to use for a large chunk of material (i.e., the
computation cost is intolerable when dimension is high and/or sample size is large).
Our new tool is a hammer-knife that first slams a huge clump into smaller pieces
(univariate regression problems) in one hit (the spline step), then cuts each small piece
into an exact shape (univariate kernel smoothing). The method we propose therefore
combines the best of both spline and kernel methods.

The success of our method lies in the well-known “reducing bias by undersmoo-
thing” and “averaging out the variance” principles, see Propositions 1, 2 and 3. Both
goals are accomplished with the joint asymptotics of kernel and spline functions, a new
feature of our proofs, see Lemmas 3, 4 and 5 in Sect. A.3. Similar idea has appeared
in Horowitz and Mammen (2004) and Horowitz et al. (2006), which essentially have
used series estimators in the first step and kernel second step in their theory.

In addition to the above, uniform confidence bands are provided for all component
function estimates. Literature on nonparametric confidence bands has been scarce, esp-
ecially in multivariate setting. For univariate kernel smoothing, Hall and Titterington
(1988), Härdle (1989), and Xia (1998) made significant contributions, based on strong
approximation results as in Tusnády (1977), which is the same idea used in Bickel
and Rosenblatt (1973) for confidence band of probability density function. More
recently, Claeskens and Van Keilegom (2003) improved upon Xia (1998) by using
smoothed bootstrap, while Härdle et al. (2004) introduced the bootstrap bands with
corrected bias. For univariate spline smoothing under general setting, Wang and
Yang (2007a) provided simple solutions with asymptotic theory. Bootstrap confidence
band has been constructed for additive regression model in Yang (2007). However,
it seems that this present paper is the one of the few to offer the measure of uni-
form accuracy with theoretical justifications. The confidence band we provide for
mα (xα) , α = 1, . . . , d is asymptotically the same that Härdle (1989) established
for univariate kernel regression, regardless what other functions

{
mβ

(
xβ

)}
1≤β≤d,β �=α

are. Hence neither the dimension d nor other function components play any role
in forming the band for mα (xα), at least asymptotically. In this sense, our esti-
mator of mα (xα) possesses “uniform oracle efficiency”, which is much stronger
than the “pointwise oracle efficiency” of Linton (1997). Furthermore, components in
directions not of interests are only required to be Lipschitz continuous, allowing the
broadest class of additive model compared to existing methods, see Remark 3 in
Sect. 2.
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666 J. Wang, L. Yang

The paper is organized as follows. In Sect. 2 we introduce the spline-backfitted
kernel/local linear estimator, and state their asymptotic “oracle efficiency” under
appropriate assumptions. In Sect. 3 we provide insights into the proofs of the main
theoretical results. Section 4 presents Monte Carlo results to demonstrate that the
proposed spline-backfitted local linear estimator (SBLL) possesses the claimed asymp-
totic properties. The simulated examples cover a wide range of sample sizes, depen-
dence structure and dimensions. The SBLL estimator is applied to the Boston housing
data in Sect. 5. Section 6 concludes, and all technical proofs are in the Appendix.

2 The SBK and SBLL estimators

In this section, we describe the spline-backfitted kernel estimation procedure. Let{
Yi , XT

i

}n
i=1 = {Yi , Xi1, . . . , Xid}n

i=1 be an i.i.d. sample following model (1). In what

follows, we write all responses as Y = (Y1, . . . , Yn)T , and denote by X the design
matrix (X1, . . . , Xn)T . Without loss of generality, we take all intervals [aα, bα] =
[0, 1] , α = 1, . . . , d. We pre select an integer Nn ∼ n2/5 log (n), see Assumption
(A6) below. Define for any α = 1, . . . , d, the indicator function IJ,α (xα) of the
equally-spaced subintervals of the finite interval [0, 1], i.e. for any J = 0, 1, . . . , N ,

IJ,α(xα) =
{

1 J H ≤ xα < (J + 1) H, H = Hn = (Nn + 1)−1 .

0 otherwise,
(2)

Define the (1 + d N )-dimensional space G of additive spline functions as the linear
space spanned by

{
1, IJ,α (xα) , α = 1, . . . , d, J = 1, . . . , N

}
, while denote by Gn

the subspace of Rn spanned by
{{1}n

i=1,
{

IJ,α (Xiα)
}n

i=1, α = 1, . . . , d,

J = 1, . . . , N }. As n → ∞, the dimension of Gn becomes 1 + d N with probability
approaching one.

The spline estimator of additive function m (x) is the unique element m̂ (x) =
m̂n (x) from the space G so that the vector

{
m̂ (X1) , . . . , m̂ (Xn)

}T best approximates
the response vector Y = (Y1, . . . , Yn)T . To be precise,

m̂ (x) = λ̂0 +
d∑

α=1

N∑

J=1

λ̂J,α IJ,α (xα) , (3)

where the coefficients λ̂0, λ̂1,1, . . . , λ̂N ,d are the solution of the following least squares
problem

{
λ̂0, λ̂1,1, . . . , λ̂N ,d

}T =argmin
Rd N+1

n∑

i=1

{
Yi −λ0−

d∑

α=1

N∑

J=1

λJ,α IJ,α (Xiα)

}2

. (4)
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Additive regression model 667

Pilot estimators of component functions mα (xα) and the constant c are

m̂α (xα) =
N∑

J=1

λ̂J,α IJ,α (xα) − n−1
n∑

i=1

N∑

J=1

λ̂J,α IJ,α (Xiα) ,

m̂c = λ̂0 + n−1
d∑

α=1

n∑

i=1

N∑

J=1

λ̂J,α IJ,α (Xiα) . (5)

These pilot estimators are then used to define a set of new pseudo-responses Ŷi1
which are estimated versions of the unobservable “oracle” responses Yi1,

Ŷi1 =Yi −ĉ−
d∑

α=2

m̂α (Xiα) , Yi1 =Yi −c −
d∑

α=2

mα (Xiα) , i = 1, . . . , n (6)

where ĉ = n−1∑n
i=1 Yi . By Central Limit Theorem ĉ is a

√
n-consistent estimator of c.

Define the spline-backfitted kernel (SBK) estimator of m1 (x1) based on
{

Ŷi1, Xi1

}n

i=1
as m̂SBK,1 (x1), which is an attempt to mimic the would-be kernel estimator m̃K,1 (x1)

of m1 (x1) based on {Yi1, Xi1}n
i=1, had the unobservable “oracle” responses {Yi1}n

i=1
been available, i.e.

m̂SBK,1(x1)=
∑n

i=1 Kh(Xi1−x1) Ŷi1∑n
i=1 Kh(Xi1−x1)

, m̃K,1(x1)=
∑n

i=1 Kh(Xi1−x1) Yi1∑n
i=1 Kh(Xi1−x1)

, (7)

where Ŷi1 and Yi1 are defined in (6). Similarly, the spline-backfitted local linear (SBLL)

estimator m̂SBLL,1 (x1) based on
{

Ŷi1, Xi1

}n

i=1
mimics the would-be local linear

estimator m̃LL,1 (x1) based on {Yi1, Xi1}n
i=1

{
m̂SBLL,1 (x1) , m̃LL,1 (x1)

} = (1, 0
) (

ZT WZ
)−1

ZT W
(

Ŷ1, Y1

)
, (8)

in which the oracle and pseudo-response vectors are

Y1= (Y11, . . . , Yn1)
T , Ŷ1=

(
Ŷ11, . . . , Ŷn1

)T

and the weight and design matrices are

W = diag {Kh (Xi1 − x1)}n
i=1 , ZT =

(
1 , . . . , 1

X11 − x1 , . . . , Xn1 − x1

)
.

Throughout this paper, for a function g ∈ L2 [0, 1], denote c2 (g) = ∫ g2 (u) du.
Second order smooth function space is defined by C (2) [0, 1] = {

g| g′′ ∈ C [0, 1]
}
,
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668 J. Wang, L. Yang

while the Lipschitz continuous function class is defined by

Lip ([0, 1] , C) = {m||m(x) − m(x ′)| ≤ C |x − x ′|,∀x, x ′ ∈ [0, 1]
}
.

Before presenting the main theoretical results, we state the assumptions.

(A1) The component function m1 ∈ C (2) [0, 1] , while all components mβ ∈ Lip
([0, 1] , C∞) , ∀β = 1, . . . , d, 0 < C∞ < ∞.

(A2) The noise εi given Xi are i. i. d. with mean 0 and variance 1, for i = 1, . . . , n,
while the conditional standard deviation functionσ (x) is continuous on [0, 1]d .

Denote Cσ = maxx∈[0,1]d σ (x).

(A2′) The conditional distribution of noise ε=(ε1, . . . , εn) given X=(X1, . . . , Xn)T

is n-dimensional standard normal.
(A3) The density function f (x) of X is continuous and bounded away from zero

and infinity on [0, 1]d , i.e.

0 < c f ≤ infx∈[0,1]d { f (x)} ≤ supx∈[0,1]d { f (x)} ≤ C f < ∞.

(A4) The kernel function K ∈ Lip ([−1, 1] , CK ), for some constant CK > 0, is a
symmetric probability density function supported on [−1, 1] with the second
moment µ2 (K ) = ∫ u2 K (u) du.

(A5) The bandwidth h of the kernel K is assumed to be of order n−1/5, i.e., chn−1/5 ≤
h ≤ Chn−1/5 for some positive constants ch, Ch .

(A6) The number of interior knots Nn ∼ n2/5 log (n) , i.e., cN n2/5 log (n) ≤ Nn ≤
CN n2/5 log (n) for some positive constants cN ,CN , and the interval width H =
(Nn + 1)−1 .

(A7) The marginal density f1 (x1) of X1 has continuous derivative on [0, 1].

Asymptotic properties of smoothers m̃K,1 (x1) and m̃LL,1 (x1) are well-developed.
Under Assumptions (A1)–(A5), according to Theorem 4.2.1 of Härdle (1990), one
has for any x1 ∈ [h, 1 − h] ,

√
nh
{

m̃K,1 (x1) − m1 (x1) − bK (x1) h2
}

D→ N
(

0, v2 (x1)
)
,

√
nh
{

m̃LL,1 (x1) − m1 (x1) − bLL (x1) h2
}

D→ N
(

0, v2 (x1)
)
,

where

bK (x1) = µ2 (K )
{
m′′

1 (x1) f1 (x1) /2 + m′
1 (x1) f ′

1 (x1)
}

f −1
1 (x1),

bLL (x1) = µ2 (K ) m′′
1 (x1) /2,

v2 (x1) = ‖K‖2
2 E
{
σ 2 (x1, X2, . . . , Xd)

}
f −1
1 (x1)

(9)

with the equation for m̃K,1 (x1) requiring the additional assumption (A7). The next two
theorems state that the asymptotic magnitude of difference between m̂SBK,1 (x1) and
m̃K,1 (x1) is of order op

(
n−2/5

)
, both pointwise and uniformly, which is dominated

by the asymptotic size of m̃K,1 (x1) − m1 (x1). Hence m̂SBK,1 (x1) will have the same
asymptotic distribution as m̃K,1 (x1). The same is true for m̂SBLL,1 (x1) and m̃LL,1 (x1).
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Additive regression model 669

Theorem 1 Under Assumptions (A1) to (A6), for any x1 ∈ [0, 1], the estimators
m̂SBK,1 (x1) and m̂SBLL,1 (x1) given in (7) and (8) satisfy

∣∣m̂SBK,1 (x1) − m̃K,1 (x1)
∣∣+ ∣∣m̂SBLL,1 (x1) − m̃LL,1 (x1)

∣∣ = op

(
n−2/5

)
.

Hence with bK (x1) , bLL (x1) and v2 (x1) defined in (9), for any x1 ∈ [h, 1 − h]

√
nh
{

m̂SBLL,1 (x1) − m1 (x1) − bLL (x1) h2
}

D→ N
(

0, v2 (x1)
)

,

and with the additional assumption (A7) we have

√
nh
{

m̂SBK,1 (x1) − m1 (x1) − bK (x1) h2
}

D→ N
(

0, v2 (x1)
)

.

Theorem 2 Under Assumptions (A1) to (A6) and (A2′), estimator m̂SBK,1(x1) given
in (7) and m̂SBLL,1 (x1) in (8) satisfy

sup
x1∈[0,1]

∣∣m̂SBK,1 (x1) − m̃K,1 (x1)
∣∣+ ∣∣m̂SBLL,1 (x1) − m̃LL,1 (x1)

∣∣ = op

(
n−2/5

)
.

Hence for any z

lim
n→∞ P

[{
log
(

h−2
)}1/2

(
sup

x1∈[h,1−h]

√
nh

v (x1)

∣∣m̂SBLL,1 (x1) − m1 (x1)
∣∣− dn

)
< z

]

= exp {−2 exp (−z)} ,

in which dn = {log
(
h−2
)}1/2 + {log

(
h−2
)}−1/2

log
{
c
(
K ′) (2π)−1 c−1 (K )

}
.

With the additional assumption (A7), it is also true that

lim
n→∞ P

[{
log
(

h−2
)}1/2

(
sup

x1∈[h,1−h]

√
nh

v (x1)

∣∣m̂SBK,1 (x1) − m1 (x1)
∣∣− dn

)
< z

]

= exp {−2 exp (−z)} .

For any α ∈ (0, 1), an asymptotic 100 (1 − α) % confidence band for m1 (x1) over
interval [h, 1 − h] is

m̂SBLL,1 (x1) ± v (x1) (nh)−1/2
[

dn −log−1/2
(

h−2
)

log

{
− log (1 − α)

2

}]
. (10)

Remark 1 Similar estimators m̂SBK,α (xα) and m̂SBLL,α (xα) can be constructed for
mα (xα) , 2 ≤ α ≤ d with same oracle properties.
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670 J. Wang, L. Yang

Remark 2 Proofs of Theorems 1 and 2 make it clear that the number of knots can be
of the more general form Nn ∼ n2/5 N ′

n , where the sequence N ′
n satisfies N ′

n → ∞,

n−θ N ′
n → 0 for all θ > 0, while there is no optimal way to choose N ′

n . The fact
that N−1

n = o
(
n−2/5

)
ensures that the bias in the spline pilot estimators is negligible

compared to the bias of h2 in the kernel/local linear smoothing stage. On the other
hand, one does not allow Nn to be too large for practical reasons: the number of terms
in (4), 1 + d Nn has to be small relative to n. Hence we select Nn to be of order barely
larger than n2/5.

Remark 3 Assumption (A1) requires only the Lipschitz continuity for the components
except for the component of interest.

3 Decomposition

In this section, we introduce some additional notations in order to shed some light on
the ideas behind the proofs of Theorems 1 and 2. Denote by ‖φ‖2 the theoretical L2
norm of a function φ on [0, 1]d , ‖φ‖2

2 = E
{
φ2 (X)

} = ∫[0,1]d φ2 (x) f (x) dx, and the

empirical L2 norm as ‖φ‖2
2,n = n−1∑n

i=1 φ2 (Xi ) . For any L2-integrable functions
φ, ϕ on [0, 1]d , the corresponding inner products are defined by

〈φ, ϕ〉2 =
∫

[0,1]d
φ (x) ϕ (x) f (x) dx = E {φ (X) ϕ (X)} ,

(11)

〈φ, ϕ〉2,n = n−1
n∑

i=1

φ (Xi ) ϕ (Xi ) .

A function φ on [0, 1]d is called theoretically centered (empirically centered) if
〈1, ϕ〉2 = 0 (〈1, ϕ〉2,n = 0). Define the theoretically centered spline basis

bJ,α (xα) = IJ+1,α (xα) −
∥∥IJ+1,α

∥∥
2∥∥IJ,α

∥∥
2

IJ,α (xα) , ∀α = 1, . . . , d, J = 1, . . . , N ,

(12)
where the functions IJ,α (xα)’s defined in (2) are indicators on the subintervals
[J H, (J + 1) H). The standardized one is given for any α = 1, . . . , d,

BJ,α (xα) = ∥∥bJ,α

∥∥−1
2 bJ,α (xα) , ∀J = 1, . . . , N . (13)

The additive function space G is also spanned by the linearly independent basis{
1, BJ,α (xα) , J = 1, . . . , N , α = 1, . . . , d

}
. These new basis involve unknown quan-

tities and are not computable from the data, but are more convenient for mathematical
analysis than the truncated power basis in (2). Similarly Gn is spanned linearly by the
basis

{
1,
{

BJ,α (Xiα)
}n

i=1 , α = 1, . . . , d, J = 1, . . . , N
}
.

The n-dimensional vector, m̂ (X) = {
m̂ (X1) , . . . , m̂ (Xn)

}T , is the projection
of Y on the space Gn relative to the empirical inner product 〈·, ·〉2,n . In general,
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Additive regression model 671

for any n-dimensional vector V = {V1, . . . , Vn}T , we define PnV (x) as the spline
function constructed from the projection of V on the inner product space

(
Gn, 〈·, ·〉2,n

)
,

i.e., PnV (x) = v̂0 +∑d
α=1

∑N
J=1 v̂J,α BJ,α (xα) , with the least squares coefficients

obtained by

{
v̂0, v̂1,1, . . . , v̂N ,d

}T = argmin
Rd N+1

n∑

i=1

{
Vi − v0 −

d∑

α=1

N∑

J=1

vJ,α BJ,α (Xiα)

}2

,

which is similar to (3) and (4) except the basis. Next, the multivariate function PnV (x)

is decomposed into direct component P∗
n,αV (xα) = ∑N

J=1 v̂J,α BJ,α (xα) . In order
to consider the identification condition, the pilot estimator in this stage is chosen to
be the empirically centered additive components Pn,αV (xα) , α = 1, . . . , d and the
constant component Pn,cV

Pn,αV (xα) =
N∑

J=1

v̂J,α BJ,α (xα) − n−1
n∑

i=1

N∑

J=1

v̂J,α BJ,α (Xiα) , (14)

Pn,cV = v̂0 + n−1
d∑

α=1

n∑

i=1

N∑

J=1

v̂J,α BJ,α (xα) , (15)

in which the centering procedure is the same as (5).
With these new notations, we can rewrite the constant spline estimators

m̂ (x) , m̂α (xα) , m̂c defined in (3) and (5) as

m̂ (x) = PnY (x) , m̂α (xα) = Pn,αY (xα) , m̂c = Pn,cY.

Based on the relation Y = m (X) + σ (X) ε = m (X) + E, with noise vector E =
{σ (Xi ) εi }n

i=1, one defines similarly noiseless spline smoothers

m̃ (x) = Pn {m (X)} (x) , m̃α (xα) = Pn,α {m (X)} (xα) , m̃c = Pn,c {m (X)} ,

and spline components of the noise

ε̃ (x) = PnE (x) , ε̃α (xα) = Pn,αE (xα) , ε̃c = Pn,cE. (16)

Due to the linearity of operators Pn, Pn,α, Pn,c, α = 1, . . . , d, one has the following
decomposition, which is crucial to prove Theorems 1 and 2

m̂ (x) = m̃ (x) + ε̃ (x) , m̂α (xα) = m̃α (xα) + ε̃α (xα) , m̂c = m̃c + ε̃c, (17)

for α = 1, . . . , d.
As closer examination is needed later for ε̃ (x) and ε̃α (xα), one defines vector

ã = {ã0, ã1,1, . . . , ãN ,d
}T such that
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ã = argmin
Rd N+1

n∑

i=1

{
σ (Xi ) εi − a0 −

d∑

α=1

N∑

J=1

aJ,α BJ,α (Xiα)

}2

, (18)

then ε̃ (x) in (16) can be rewritten as ãT B (x) , where ã is the solution of equation (18),
and matrices B (x) and B are defined as

B (x) = {1, B1,1 (x1) , . . . , BN ,d (xd)
}T

, B = {B (X1) , . . . , B (Xn)}T . (19)

To be specific, the least squares solution of the noise is

ã =
(

BT B
)−1

BT E

=
⎛

⎝
1 0

0
〈
BJ,α, BJ ′,α′

〉
2,n

⎞

⎠
−1

1≤α,α′≤d
1≤J,J ′≤N

(
n−1∑n

i=1 σ (Xi ) εi

n−1∑n
i=1 BJ,α (Xiα) σ (Xi ) εi

)

1≤J≤N
1≤α≤d

(20)

Our objective is to study the difference between the estimator m̂SBK,1 (x1) and the
“oracle” smoother m̃K ,1 (x1), and between m̂SBLL,1 (x1) and m̃L L ,1 (x1). For notatio-
nal brevity, we assume without loss of generality that d = 2 and we focus on the proof
for SBK estimator. Denote the projection matrix P0N+1,IN = (

0N+1
IN

)
, and we define

another auxiliary entity

ε̃∗
2 (x2) = P∗

n,2E (x2) = ãT P0N+1,IN (B (x))T =
N∑

J=1

ãJ,2 BJ,2 (x2),

which, in particular, implies that

ε̃∗
2 (Xi2) = ãT P0N+1,IN

(
eT

i B
)T =

N∑

J=1

ãJ,2 BJ,2 (Xi2) , (21)

in which ei is the n-dimensional unit vector with i th element 1 and else 0. Hence the
i th row of matrix B, eT

i B = B (Xi ) , is the basis functions corresponding to the i th
observation Xi . Definitions (14) and (15) imply that ε̃2 (x2) is simply the empirical
centering of ε̃∗

2 (x2), i.e., ε̃2 (x2) ≡ ε̃∗
2 (x2) − n−1∑n

i=1 ε̃∗
2 (Xi2), typically

ε̃2 (Xi2) =
N∑

J=1

ãJ,2 BJ,2 (Xi2) − n−1
n∑

i=1

N∑

J=1

ãJ,2 BJ,2 (Xi2). (22)

Making use of the signal noise decomposition (17), the difference m̃K,1 (x1) −
m̂SBK,1 (x1) + ĉ − c can be treated as the sum of two terms
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n−1∑n
i=1 Kh(Xi1−x1)

{
m̂2(Xi2)−m2(Xi2)

}

n−1
∑n

i=1 Kh (Xi1 − x1)
= I (x1) + I I (x1)

n−1
∑n

i=1 Kh(Xi1−x1)
, (23)

where

I (x1) = n−1
n∑

i=1

Kh (Xi1 − x1) · ε̃2 (Xi2), (24)

I I (x1) = n−1
n∑

i=1

Kh (Xi1 − x1) · {m̃2 (Xi2) − m2 (Xi2)}. (25)

The term I (x1) relates to the noise terms ε̃2 (Xi2), while I I (x1) the bias terms
m̃2 (Xi2) − m2 (Xi2) . Propositions 1 and 2 below, both proved in Sect. A.1, bound
I (x1), while Proposition 3, proved in Sect. A.2, bounds I I (x1). Standard theory of
kernel smoothing ensures that the denominator term in (23), n−1∑n

i=1 Kh (Xi1 − x1),
has a positive lower bound for x1 ∈ [0, 1]. The additional term ĉ − c is of clearly
order O

(
n−1/2

)
and thus op

(
n−2/5

)
. Hence both Theorems 1 and 2 follow from

Propositions 1, 2 and 3. The Appendix is devoted to the proofs of these propositions,
rather than Theorems 1 and 2. If one were to prove the corresponding results for
SBLL estimator, one would need to extend Propositions 1 and 2 to include also the

term n−1∑n
i=1 Kh (Xi1 − x1)

(
Xi1−x1

h

)
· ε̃2 (Xi2), and Proposition 3 to include also

the term n−1∑n
i=1 Kh (Xi1 − x1)

(
Xi1−x1

h

)
· {m̃2 (Xi2) − m2 (Xi2)}. These do not

add a great deal of difficulty.

Proposition 1 Under Assumptions (A1) to (A6), for any x1 ∈ [0, 1]

|I (x1)| = Op

(
n−1/2

)
= op

(
n−2/5

)
.

Proposition 2 Under Assumptions (A1) to (A6) and (A2′)

sup
x1∈[0,1]

|I (x1)| = Op

(
n−1/2 {log n}1/2

)
= op

(
n−2/5

)
.

Proposition 3 Under Assumptions (A1), and (A3) to (A6)

sup
x1∈[0,1]

|I I (x1)| = Op

(
n−1/2 + H

)
= op

(
n−2/5

)
.

4 Simulation results

In this section, we present simulated results on the finite-sample behavior of the SBLL
estimators m̂SBLL,α (xα) , α = 1, . . . d. The SBK estimator is not implemented as it is
inferior to the SBLL estimator, see Fan and Gijbels (1996).

The data set is generated from the regression model Y =∑d
α=1 mα (Xα)+σ (X)·ε.

The additive elements are assumed to be mα (xα) = sin (2πxα) ,∀α = 1, . . . , d. The
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predictors Xα are Xα = 2.5 ∗ {Φ (Zα) − 0.5} , where Φ is the distribution function
of the variable Zα ∼ N (0, 1) , α = 1, . . . , d with the correlation ραβ = ρ, α �= β for
any pair of Z ’s. Note that the dependence among the X ’s increases with ρ. To ensure
that the density is bounded below from 0, estimation is carried out only at data points
Xi , i = 1, . . . , n, which satisfy max1≤α≤d |Xiα| ≤ 1, following Nielsen and Sperlich
(2005).

Meanwhile, the error term ε ∼ N (0, 1) and is independent of X. The conditional
standard deviation function is defined by

σ (x) =
√

d

2
·

100 − exp
{∑d

α=1 |xα| /d
}

100 + exp
{∑d

α=1 |xα| /d
} .

This choice of σ (x) ensures design heteroscedasticity, with variance roughly propor-
tional to dimension d. This proportionality mimics the case when independent copies
of the same univariate regression problems are added together.

To implement the SBLL estimator, one first obtain the spline estimator of∑d
α=1 mα (Xα), using the truncated power B-spline basis as in (4). The number of

knots Nn is

Nn = min
([

c1n2/5 log n
]

+ c2,
[
(n/4 − 1) d−1

])
, (26)

in which [·] denotes the integer part, and c1, c2 are tuning constants. The choice of
these constants c1 and c2 makes little difference for a large sample, while for small
sample size, it does affect the performance to a degree. In our simulation study, we
have used c1 = 1 = c2. The additional constraint, N ≤ (n/4 − 1) d−1, ensures that
the number of terms in the linear least squares problem (4), 1 + d Nn , is no greater
than n/4, which is necessary when the sample size n is moderate and dimension d is
high.

The oracle smoother m̃LL,α (xα) for comparison is obtained by local linear regres-
sion of the unobservable mα (Xα) + σ (X) ε on Xα directly, while the oracle SBLL

estimators m̂SBLL,α (xα) are obtained by local linear regression of
{

Ŷiα, Xiα

}n

i=1
,

using the XploRe quantlet “lpregxest” with the rule-of-thumb (ROT) bandwidth of
Fan and Gijbels (1996). For information on XploRe, see Härdle et al. (2000) or visit
http://www.xplore-stat.de.

We have run S = 500 replications for sample sizes n = 100, 200, 500 and 1, 000
with ρ = 0, 0.3, 0.9 respectively. The dimensions are taken at d = 4, 10. Denote by{
Yi , Xi1,l , . . . , Xid,l

}n
i=1 the lth sample, 1 ≤ l ≤ S. The main objective is to compare

the relative efficiency of m̃LL,α with respect to m̂SBLL,α ,

effα,l =
1
n

∑n
i=1

{
m̃LL,α

(
Xiα,l

)− mα

(
Xiα,l

)}2
I{|Xiα,l |≤1}

1
n

∑n
i=1

{
m̂SBLL,α

(
Xiα,l

)− mα

(
Xiα,l

)}2
I{|Xiα,l |≤1}

effα = 1

S

S∑

l=1

effα,l , 1 ≤ α ≤ d,
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Table 1 Relative efficiency of m̃LL,1 against m̂SBLL,1 with 500 replications

eff1

d n ρ = 0 ρ = 0.3 ρ = 0.9

100 1.015 (0.287) 0.958 (0.320) 0.731 (0.458)

4 200 0.992 (0.126) 0.974 (0.164) 0.940 (0.487)

500 0.993 (0.060) 0.990 (0.083) 1.037 (0.378)

1000 0.998 (0.0416) 1.000 (0.060) 1.024 (0.241)

100 0.899 (0.648) 0.666 (0.597) 0.027 (0.012)

10 200 1.026 (0.434) 0.818 (0.361) 0.160 (0.070)

500 1.012 (0.145) 0.977 (0.171) 0.946 (0.583)

1000 0.999 (0.078) 0.986 (0.104) 1.027 (0.457)

Theorems 1 and 2 indicate that the efficiency should be close to 1.
The corresponding mean and the standard error (in the parenthesis) of the relative

efficiencies for the first dimension (α = 1) is given in Table 1. For the cases of ρ = 0,

almost all of the mean values are around 1 without noticeable influence from the
sample size and the correlation. The trend of standard errors confirm the comparability
of SBLL estimator m̂SBLL,α to the oracle smoother m̃LL,α , with faster convergence for
larger samples.

In the cases of ρ = 0.3, the trend to relative efficiency 1 is very clear regardless
of the dimension d. All the means are becoming larger accordingly and approaching
to 1 steadily when the sample size increases. Typically, the relative efficiencies are
0.974 for d = 4 with sample size 200, and 0.977 for d = 10 with sample size
500 respectively. We believe that in high dimensional cases the convergence rate is
slower than in lower dimensional cases when the predictors are highly dependent.
The standard errors in the parenthesis follow the same trend that less variation is with
larger sample size, though it has slower convergence compared to the cases of ρ = 0,
which is not unexpected.

For the highly dependent cases of ρ = 0.9, the efficiency follows the similar trend as
the cases of ρ = 0, 0.3, but with less efficiency for sample sizes below 200, and much
better performance for sample sizes higher than 500. In particular, when n = 1,000,
the relative efficiency reaches the surprisingly high 1.024 and 1.027 when d = 4, 10
respectively. This offers some assurance that the SBLL can work well even in the
presence of strong dependence among predictors, as long as the sample size is large.

Several figures display the features of the relative efficiencies in details. In Fig. 1 four
types of line characteristics correspond to the four sample sizes, the solid line (100),
the dotted line (200), the thin line (500) and the thick line (1000). The vertical line at
efficiency 1 is the standard line for the comparison of m̂SBLL,1 (x1) and m̃LL,1 (x1).
More efficiency values distributed around the vertical line would be confirmative to
the conclusions of Theorems 1 and 2.

All the curves in Fig. 1 are the density estimates of relative efficiency distributions
for n = 100, 200, 500, 1,000, ρ = 0, 0.3 and d = 4, 10. With increasing sample
sizes, the relative efficiency distributions are becoming closer to the vertical standard
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Fig. 1 Empirical distribution of relative efficiency of m̃LL,α against m̂SBLL,α , d = 4, 10

line, with narrower spread. In addition, curves with ρ = 0 shows a faster convergence
to the vertical line than those with ρ = 0.3. An interesting point is that almost of all
the peak points of the thick line (with the largest sample size) fall very close to the
vertical lines. All of these confirm the theorem that SBLL behaves similarly to the
oracle local linear estimator.

We have experimented with high dimensionality d = 50, S = 100 replications,
ρ = 0, 0.3, and n = 500, 1, 000, 1, 500, 2, 000, the results of which are graphically
represented in Fig. 2. The basic graphic pattern is similar to that for the lower dimen-
sions d = 4, 10, though with slower convergence rate and relatively poorer efficiency.
The corresponding statistics are listed in Table 2. We agree with the referee’s com-
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Fig. 2 Empirical distribution of relative efficiency of m̃LL,α against m̂SBLL,α , d = 50, α = 19, 50

ment that the combination of very high d and moderate n makes the number of knots
Nn defined in (26) too small for the first step spline smoothing, thus undersmoothing
impossible, resulting in the significant loss of efficiency, at least when ρ = 0.3. The
good news is that at ρ = 0, the SBLL performs on average better than the oracle
local linear estimator in most cases because the independent components can be well-
estimated at the first stage, then univariate local linear smoothing at the second stage
faces smaller noise than the oracle local linear estimator.

To understand further what causes low efficiency when ρ > 0, the referee suggested
that decomposing the mean squared error into the bias and variance could provide
additional insights. We have therefore run S = 500 replications with n = 500, d = 10,
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Table 2 Relative efficiency of m̃LL,α against m̂SBLL,α , α = 1, 10, 19, 50, with 100 replications for d = 50

ρ n eff1 eff10 eff19 eff50

500 1.030 (0.830) 0.995 (0.778) 0.737 (0.567) 0.861 (0.648)

0 1000 1.130 (0.756) 1.015 (0.523) 1.055 (0.467) 1.056 (0.509)

1500 1.022 (0.318) 1.029 (0.248) 1.107 (0.302) 0.957 (0.205)

2000 1.029 (0.197) 1.016 (0.194) 1.045 (0.188) 1.061 (0.223)

500 0.379 (0.297) 0.410 (0.408) 0.352 (0.296) 0.444 (0.721)

0.3 1000 0.618 (0.269) 0.604 (0.290) 0.623 (0.268) 0.607 (0.311)

1500 0.864 (0.345) 0.843 (0.280) 0.806 (0.254) 0.831 (0.250)

2000 0.915 (0.247) 0.872 (0.194) 0.917 (0.221) 0.907 (0.221)

Table 3 Averaged squared bias and averaged variance of m̂SBLL,3, ratio = AVAR / ASB. Dimensionality
d = 10, sample size n = 500, number of replications S = 500

ρ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

ASB 0.023 0.023 0.02 0.023 0.024 0.025 0.028 0.032

AVAR 0.581 0.593 0.560 0.604 0.621 0.632 0.627 0.654

Ratio 25.15 25.58 25.8 25.8 25.6 24.9 22.6 20.70

ρ 0.8 0.85 0.9 0.92 0.94 0.96 0.98

ASB 0.037 0.044 0.057 0.069 0.084 0.117 0.192

AVAR 0.665 0.693 0.740 0.762 0.816 0.906 1.044

Ratio 17.8 15.7 13.1 11.1 9.7 7.7 5.4

and estimated the third component by SBLL procedure. The statistics of interest are
averaged squared bias ASB and the averaged variance AVAR, where the averaging is
taken over all replications and data points. Empirical values of ASB and AVAR associa-
ted with various ρ have been listed in Table 3. Also listed are the ratios AVAR / ASB,
which indicates the relative magnitude of the squared bias and variance. For all values
of ρ from 0 to 0.98, the variance dominates squared bias in magnitude, ranging from
25.15 for ρ = 0 to 17.8 for ρ = 0.8, and to 5.4 for ρ = 0.98. We do not have a theo-
retical interpretation at this point as to why the variance dominates, but the fact that
it does leads us to believe that the variance is most to blame for the loss of efficiency
when there exists high dependence among predictors. Similar phenomenon has been
noticed in Nielsen and Sperlich (2005).

5 Application to Boston housing data

In this section we apply our method to the Boston housing data. The data files
bostonh.dat is available in the software of XploRe. The data set contains 506 different
houses from a variety of locations in Boston Standard Metropolitan Statistical Area
in 1970. The median value and 13 sociodemographic statistics values of the Boston
houses were first studied by Harrison and Rubinfel (1978) to estimate the housing
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price index model. Breiman and Friedman (1985) did further analysis to deal with
the multi-collinearity among the independent variables. Four variables were selected
after penalizing for overfitting by using a stepwise method. We used the same four
covariates for our model fitting and current analysis. The response and explanatory
variables of interest are:

MEDV: Median value of owner-occupied homes in $1000’s
RM: average number of rooms per dwelling
TAX: full-value property-tax rate per $10, 000
PTRATIO: pupil-teacher ratio by town school district
LSTAT: proportion of population that is of “lower status” in %.

In order to ease off the trouble caused by big gaps in the domain of variables TAX and
LSTAT, logarithmic transformation is done for both variables before fitting the model.
We fitted an additive model as follows:

MEDV = µ + m1 (RM) + m2 (log (TAX)) + m3 (PTRATIO) + m4 (log (LSTAT)) + ε.

Although the transformation has shrunk the gap in the domain, some compromise
will be necessary to estimate the components since we select the same knots number
for each direction. In this case we choose a large number of knots, N = 5. In the
smoothing step, we use the SBLL estimator to get the final function estimate for each
input variable.

In Fig. 3, the univariate function estimates and corresponding confidence bands are
displayed together with the “pseudo data points” with pseudo response as the backfitted
response after subtracting the sum function of the remaining three covariates as in (6).
All the function estimates are represented by the dotted lines, “data points” by circles,
and confidence bands by upper and lower thin lines. The kernel used in SBLL estimator
is quartic kernel, K (u) = 15

16

(
1 − u2

)2
for −1 < u < 1.

The proposed confidence bands are used to test the linearity of the components.
In Fig. 3 the straight solid lines are the least squares regression lines. The first figure
shows that the null hypothesis H0: m1 (RM) = a1 + b1RM, will be rejected since the
confidence bands with 0.99 confidence couldn’t totally cover the straight regression
line, i.e, the p-value is less than 0.01. Similarly the linearity of the component functions
for log (TAX) and log (LSTAT) are not accepted at the significance level 0.01. While
the least square straight line of variable PTRATIO in the upper right figure totally falls
between the upper and lower 95% confidence bands, thus the linearity null hypothesis
H0 : m3 (PTRATIO) = a3 + b3 · PTRATIO is accepted at the significance level 0.05.

In addition we add up all the SBLL estimates of component functions and the mean
response as a estimate for the response (MEDV). The correlation between the estimate
and the raw value of MEDV is as high as 0.80112, implying rather satisfactory fit.

6 Conclusions

In this paper we have proposed SBK and SBLL estimators for the component functions
in an additive regression model. These estimators behave asymptotically like the stan-

123



680 J. Wang, L. Yang

Confidence Level = 0.99

4 5 6 7 8

RM

-1
0

0
10

20
30

Y
ha

t1

Confidence Level = 0.99

5.5 6 6.5

log(TAX)

-1
0

0
10

20
30

Y
ha

t2
Confidence Level = 0.95

14 16 18 20 22

PTRATIO
-1

0
0

10
20

30

Y
ha

t3

Confidence Level = 0.99

0.5 1 1.5 2 2.5 3 3.5

log (LSTAT)

-1
0

0
10

20
30

Y
ha

t4

Fig. 3 Linearity test for the Boston housing data. Plots of null hypothesis curves of H0 : mα (xα) =
aα + bα · xα, α = 1, 2, 3, 4 (solid line), linear confidence bands (upper and lower thin lines), the linear
spline estimator (dotted line) and the data (circle)

dard kernel and local linear estimators in one dimension, thus breaking the problem of
d-dimensional additive regression to d univariate regression problems. This is achieved
by approximating the unobservable sample {Yi1, Xi1}n

i=1 with the spline estimated

sample
{

Ŷi1, Xi1

}n

i=1
. Although much mathematics is devoted to the proof that this

approximation works, the implementation is very easy. To give some idea of how fast
the procedure is, to run 100 replications for sample sizes n = 500, 100, 1, 500, 2, 000
and dimension as high as d = 50 takes about 40 min on a Dell notebook. In other
words, within this time span, a total of 100 × 4 = 400 SBLL estimators m̂s,α (xα)
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and the same number of oracle smoothers m̃s,1 (x1) are computed. In addition, the
SBK and SBLL estimators inherit the asymptotic confidence bands (10) of univariate
kernel and local linear estimators. The combination of speed and global accuracy for
very high dimension regression is very appealing.
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Appendix

A.1 Variance reduction

In this subsection, we prove Propositions 1 and 2. Based on (22) and (24), the condi-
tional second moment E { I (x1)| X}2 of I (x1) is

E

⎧
⎨

⎩

[
n−1

n∑

l=1

Kh (Xl1 − x1)

{
ε̃∗

2 (Xl2) − n−1
n∑

i=1

ε̃∗
2 (Xi2)

}]2
∣∣∣∣∣∣
X

⎫
⎬

⎭ .

It is clear that E { I (x1)| X}2 = E
{

I 2
1 (x1)

∣∣X
}− E

{
I 2
2 (x1)

∣∣X
}
. Denote

I1 (x1) = n−1
n∑

l=1

Kh (Xl1 − x1) ε̃∗
2 (Xl2) ,

I2 (x1) = n−1
n∑

l=1

Kh (Xl1 − x1) · n−1
n∑

i=1

ε̃∗
2 (Xi2) , (27)

ξJ (Xl , x1) = Kh (Xl1 − x1) BJ,2 (Xl2) . (28)

In (22), one has ε̃∗
2 (Xi2) =∑N

J=1 ãJ,2 BJ,2 (Xi2) . Then

I1 (x1) = n−1
n∑

l=1

N∑

J=1

ãJ,2ξJ (Xl , x1) . (29)

In order to obtain the order of the conditional second moment of I1 (x1), we first
find the supremum magnitudes of EξJ (Xl , x1) , ξJ (Xl , x1) − EξJ (Xl , x1) and the
size of

∑N
J=1

∣∣ãJ,2
∣∣, in Lemmas 3 , 4 and 7. Consequently, Lemma 10 shows that

supx1∈[0,1] E
{

I 2
1 (x1)

∣∣X
} = Op

(
n−1
)
. In Lemma 11, we have supx1∈[0,1] |I2 (x1)| =

Op
(
Nn−1√log n

)
. Based on the selection of N ∼ n2/5 log n, Proposition 1 is thus

proved.
Under the additional assumption (A2′), the order of I1 (x1) is obtained uniformly over
[0, 1] inflated only by a factor of {log (n)}1/2 compared with the pointwise case, one

has supx1∈[0,1] |I1 (x1)| = Op

(√
log (n) /n

)
. Now again, due to the selection of the

123



682 J. Wang, L. Yang

interval width H ∼ (
n2/5 log n

)−1
, the order Op

(
Nn−1√log n

)
of supx1∈[0,1] |I2 (x1)|

in Lemma 11 is negligible compared with order of supx1∈[0,1] |I1 (x1)|. So under the
Assumptions (A1) to (A6) and (A2′), we have established the uniform bound over
[0, 1] of Proposition 2.

A.2 Bias reduction

Now we prove Proposition 3 by bounding the bias term I I (x1) in (25). We first cite
one important result from page 149 of de Boor (2001).

Theorem 3 Under Assumption (A1) mα ∈ Lip ([0, 1] , C∞), then there exists a func-
tion gα ∈ G [0, 1] such that ∀α = 1, . . . , d

‖gα − mα‖∞ ≤ C∞H. (30)

Lemma 1 Under Assumptions (A1), (A3) and (A6), for the spline function g2 satis-
fying (30), one has

sup
x1∈[0,1]

∣∣∣∣

∑n
i=1 Kh (Xi1 − x1) {g2 (Xi2) − m2 (Xi2)}∑n

i=1 Kh (Xi1 − x1)

∣∣∣∣ ≤ C∞H, (31)

and for α = 1, 2

|Engα (Xα)| =
∣∣∣∣∣n

−1
n∑

i=1

gα (Xiα)

∣∣∣∣∣ = Op

(
n−1/2 + H

)
. (32)

Proof The first inequality (31) follows trivially from (30). To prove the second inequa-
lity, define a function g (x) = c+∑2

α=1 gα (xα), then ‖g − m‖∞ ≤ 2C∞H and hence
‖g − m‖2,n ≤ 2C∞H . The definition of projection in Hilbert space then implies that
‖m̃ − m‖2,n ≤ ‖g − m‖2,n ≤ 2C∞H where m̃ is the projection of m to the space G
with respect to 〈·, ·〉2n , the triangular inequality implies that ‖m̃ − g‖2,n ≤ 4C∞ H.

Now (30) leads to |Engα (Xα) − Enmα (Xα)|≤C∞H , while Emα (Xα)=0 leads
to Enmα (Xα) = Op

(
n−1/2

)
. Then one has |Engα (Xα)| ≤ C∞H + Op

(
n−1/2

)
,

which establishes (32). ��
In order to show that the bias term I I (x1) defined in (25) is uniformly op

(
n−2/5

)
,

the following lemma suffices.

Lemma 2 Under Assumptions (A1) to (A6), as n → ∞

sup
x1∈[0,1]

∣∣∣∣

∑n
i=1 Kh (Xi1−x1){m̃2 (Xi2)−g2 (Xi2)+Eng2 (X2)}∑n

i=1 Kh (Xi1 − x1)

∣∣∣∣= Op

(
n−1/2+H

)
.

Proof Lemmas 1 and 8 would entail that

‖m̃ − g + Eng1 (X1) + Eng2 (X2)‖2 = Op

(
n−1/2 + H

)
. (33)
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Write next (m̃ − g) (x)+ Eng1 (X1)+ Eng2 (X2) = a +∑2
α=1

∑N
J=1 aJ,α B∗

J,α (xα),
where B∗

J,α(xα) = BJ,α(xα)− En BJ,α(Xα), 1 ≤ J ≤ N , 1 ≤ α ≤ 2, which is the
empirically centered spline basis. Then forα = 1, 2, m̃α (xα)−gα (xα)+Engα (Xα) =∑N

J=1 aJ,α B∗
J,α (xα), and according to (39) one has

‖m̃ − g + Eng1 (X1) + Eng2 (X2)‖2
2

≥ c0

⎡

⎣
{

a +
2∑

α=1

N∑

J=1

aJ,α En BJ,α (Xα)

}2

+
2∑

α=1

N∑

J=1

a2
J,α

⎤

⎦ . (34)

We bound n−1∑n
i=1 Kh (Xi1 − x1) {m̃2 (Xi2) − g2 (Xi2) + Eng2 (X2)} by

N∑

J=1

∣∣aJ,2
∣∣ sup

1≤J≤N

∣∣∣∣∣n
−1

n∑

i=1

Kh (Xi1 − x1) B∗
J,2 (Xi2)

∣∣∣∣∣

≤
N∑

J=1

∣∣aJ,2
∣∣
{

sup
1≤J≤N

∣∣∣∣∣n
−1

n∑

i=1

Kh (Xi1 − x1) BJ,2 (Xi2)

∣∣∣∣∣

+
∣∣∣∣∣n

−1
n∑

i=1

Kh (Xi1 − x1)

∣∣∣∣∣ sup
1≤J≤N

∣∣En BJ,2 (X2)
∣∣
}

which can be rewritten as the following according to the definitions of ξJ (Xl , x1) in
(28) and of An in Lemma 8

N∑

J=1

∣∣aJ,2
∣∣
{

sup
1≤J≤N

∣∣∣∣∣n
−1

n∑

l=1

ξJ (Xl , x1)

∣∣∣∣∣+ An

∣∣∣∣∣n
−1

n∑

i=1

Kh (Xi1 − x1)

∣∣∣∣∣

}
.

Minkowski inequality, Lemmas 5, 8 and standard properties of kernel density estimator
now imply that

sup
x1∈[0,1]

∣∣∣∣∣n
−1

n∑

i=1

Kh (Xi1 − x1) {m̃2 (Xi2) − g2 (Xi2) + Eng2 (X2)}
∣∣∣∣∣

≤
√√√√N

N∑

J=1

a2
J,2

{
Op

(√
H
)

+ Op

(√
log n

n

)}
= Op

⎛

⎝

√√√√
N∑

J=1

a2
J,2

⎞

⎠

= Op

⎛

⎜⎝

⎡

⎣
{

â +
2∑

α=1

N∑

J=1

âJ,α En BJ,α (Xα)

}2

+
2∑

α=1

N∑

J=1

a2
J,α

⎤

⎦
1/2
⎞

⎟⎠ ,

which according to (33), (34) is Op
(‖m̃ − g + Eng1 (X1) + Eng2 (X2)‖2

) =
Op
(
n−1/2 + H

)
, thus proving the lemma. ��
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Lemmas 1, 2 lead to the following and then Proposition 3

sup
x1∈[0,1]

∣∣∣∣∣
1

n

n∑

i=1

Kh(Xi1−x1){m̃2 (Xi2)−m2(Xi2)}
∣∣∣∣∣= Op

(
n−1/2+H

)
=op

(
n−2/5

)
.

A.3 Technical lemmas

In this subsection we have collected all the auxiliary results used in Sects. A.1 and A.2.

Lemma 3 Under Assumptions (A3) to (A6), one has

sup
x1∈[0,1]

sup
1≤J≤N

|EξJ (Xl , x1)| = O
(

H1/2
)

.

Proof See Wang and Yang (2007b).

Lemma 4 Denote by Dn a set of endpoints in [0, 1] , with cardinality Mn = |Dn| of
order n6, i.e. there exist constants 0 < cD < CD such that cDn6 ≤ Mn ≤ CDn6, then
under Assumptions (A3) to (A6)

sup
x1∈Dn

sup
1≤J≤N

∣∣∣∣∣n
−1

n∑

l=1

{ξJ (Xl , x1) − EξJ (Xl , x1)}
∣∣∣∣∣ = Op

(
(nh)−1/2 log1/2 n

)
.

Proof Based on Assumptions (A3) and (A4), there exist constants c′, C ′ > 0, such
that c′h−1 ≤ Eξ2

J (Xl , x1) ≤ C ′h−1. Then Eξ2
J (Xl , x1) � {EξJ (Xl , x1)}2 where

an �bn means limn→∞ bn/an =0. For simplicity, denote ξ∗
J (Xl , x1) = ξJ (Xl , x1)−

EξJ (Xl , x1). There exists a positive constant c∗ < c′ such that

E
{
ξ∗

J (Xl , x1)
}2 = Eξ2

J (Xl , x1) − {EξJ (Xl , x1)}2 ≥ c∗h−1.

When k ≥ 3, the kth moment E |ξJ (Xl , x1)|k can be bounded as follows

c′
kh(1−k) H (1−k/2)

(
1 + ck

f

Ck
f

)
≤ E |ξJ (Xl , x1)|k ≤ C ′

kh(1−k) H (1−k/2)

(
1 + Ck

f

ck
f

)
.

Lemma 3 implies that E |ξJ (Xl , x1)|k � |EξJ (Xl , x1)|k . There exists a positive
constant c such that

E
∣∣ξ∗

J (Xl , x1)
∣∣k ≤ 2k−1

(
E |ξJ (Xl , x1)|k + |EξJ (Xl , x1)|k

)

≤ ck−2k!E ∣∣ξ∗
J (Xl , x1)

∣∣2 ,
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the sequence of
{
ξ∗

J (Xl , x1)
}n

l=1 satisfies the Cramér’s condition. By the Bernstein’s
inequality we have

P

{∣∣∣∣∣n
−1

n∑

l=1

ξ∗
J (Xl , x1)

∣∣∣∣∣≥δ

√
log n

(nh)

}
≤2 exp

{
−δ2 log n

c∗ + 2C2δH−1/2
√

log n/ (nh)

}
,

for δ>0 large enough such that δ2
{
c∗+2C2δH−1/2

√
log n/ (nh)

}−1
>10, then

∞∑

n=1

P

{
sup

x1∈Dn

sup
1≤J≤N

∣∣∣∣∣n
−1

n∑

l=1

ξ∗
J (Xl , x1)

∣∣∣∣∣ ≥ δ

√
log n

(nh)

}
≤ 2CD

∞∑

n=1

n−3 < ∞.

Borel-Cantelli Lemma implies the desirable result in the lemma.

Lemma 5 Under Assumptions (A3) to (A6)

sup
x1∈[0,1]

sup
1≤J≤N

∣∣∣∣∣n
−1

n∑

l=1

ξJ (Xl , x1)

∣∣∣∣∣ = Op

(
H1/2

)
.

Proof Denote for x ∈ [0, 1] , Λ (x) = sup1≤J≤N

∣∣n−1∑n
l=1 ξJ (Xl , x)

∣∣. Let the sub-
set Dn in Lemma 4 be equally spaced in [0, 1], specifically
Dn = {x1,k, 0 ≤ k ≤ Mn; 0 = x1,0 < x1,1 < . . . < x1,Mn = 1

}
, then the consecutive

endpoints make a total of Mn subintervals with length M−1
n . Employing the discreti-

zation method, we have

sup
x1∈[0,1]

|Λ(x1)|= sup
0≤k≤Mn

∣∣Λ
(
x1,k
)∣∣+ sup

1≤k≤Mn

sup
x1∈∆k

∣∣Λ(x1)−Λ
(
x1,k
)∣∣ , (35)

where ∆k = [
x1,k−1, x1,k

]
. We only need to bound the second term, as Lemmas 3

and 4, and the fact H1/2 � √
log n/ (nh) yield

sup
0≤k≤Mn

∣∣Λ
(
x1,k
)∣∣ = sup

x1∈Dn

sup
1≤J≤N

∣∣∣∣∣n
−1

n∑

l=1

ξJ (Xl , x1)

∣∣∣∣∣ = Op

(
H1/2

)
. (36)

Employing Lipschitz continuity of kernel K , one has

sup
1≤k≤Mn

sup
x1∈∆k

∣∣Kh (Xl1 − x1) − Kh
(
Xl1 − x1,k

)∣∣ ≤ CK M−1
n h−2 (37)

Hence we have

∣∣Λ(x1)−Λ
(
x1,k
)∣∣ ≤ ∣∣Kh (Xl1−x1)−Kh

(
Xl1−x1,k

)∣∣ sup
1≤J≤N

n∑

l=1

∣∣BJ,2 (Xl2)
∣∣

n
,
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sup
1≤k≤Mn

sup
x1∈∆k

∣∣Λ(x1) − Λ
(
x1,k
)∣∣ = O

(
M−1

n h−2 H−1/2
)

= o
(

n−1
)

(38)

since cDn6 ≤ Mn ≤ CDn6 in Lemma 4. The lemma follows instantly from (35), (36)
and (38). ��
Lemma 6 Under Assumptions (A3) and (A6), there exist constants C0 > c0 > 0
such that for any a = (a0, a1,1, . . . , aN ,1,a1,2, . . . , aN ,2

)T ∈ R2N+1

c0

⎛

⎝a2
0 +

∑

J,α

a2
J,α

⎞

⎠ ≤
∥∥∥∥∥∥

a0 +
∑

J,α

aJ,α BJ,α

∥∥∥∥∥∥

2

2

≤ C0

⎛

⎝a2
0 +

∑

J,α

a2
J,α

⎞

⎠ . (39)

Proof See Wang and Yang (2007b).

Lemma 7 Under Assumptions (A1) to (A6), the least square solution ã defined in
(18) satisfies

ãT ã = ã2
0 +

N∑

J=1

2∑

α=1

ã2
J,α = Op

(
N

n

)
. (40)

Proof According to (18), ã = (BT B
)−1

BT E, then ãT BT Bã = ãT
(
BT E

)
. Replacing

BT B with matrix of the inner products
〈
BJ,α, BJ ′,α′

〉
2,n , as the matrix B is given in

(19), one has

‖Bã‖2
2,n = ãT

(
1 〈

BJ,α, BJ ′,α′
〉
2,n

)
ã = ãT

(
n−1BT E

)
. (41)

Based on (39), one has

(1 − An) ‖Bã‖2
2 =(1 − An)

∥∥∥∥∥∥
ã0 +

∑

J,α

ãJ,α BJ,α

∥∥∥∥∥∥

2

2

≥c0 (1 − An)

⎛

⎝ã2
0 +
∑

J,α

ã2
J,α

⎞

⎠ ,

(42)
where An is of order op (1) in Lemma 8. Meanwhile by the Cauchy–Schwartz inequa-
lity, the right-hand side of (41) is bounded from above by

∣∣∣ãT
(

n−1BT E
)∣∣∣ ≤

⎛

⎝ã2
0 +

∑

J,α

ã2
J,α

⎞

⎠
1/2 {

n−2ET BBT E
}1/2

. (43)

Now (41), (42), (43) imply ã2
0 + ∑J,α ã2

J,α ≤ c−2
0 (1 − An)−2 n−2ET BBT E. It is

trivial to verify that E
{
n−2ET BBT E

} = O
(
n−1 N

)
, so (40) holds. ��
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Lemma 8 Under Assumptions (A3) and (A4), the uniform supremum of the rescaled
difference between 〈g1, g2〉2,n and 〈g1, g2〉2 is

An = sup
g1,g2∈G(−1)

∣∣〈g1, g2〉2,n − 〈g1, g2〉2

∣∣
‖g1‖2 ‖g2‖2

= Op

(√
log n

nH

)
= op (1) . (44)

Proof See Wang and Yang (2007b).

The positive definiteness of matrix
(
n−1BT B

)−1
is a sufficient step to achieve

Lemma 10. For simplicity it is denoted by S = (s j j ′
)d N+1

j, j ′=1.

Lemma 9 Under Assumptions (A3) and (A4), for the matrix S defined above, there
exist constants CS > cS > 0 such that with probability approaching to 1, one has

cS I2N+1 ≤ S−1 ≤ CS I2N+1. (45)

Proof See Wang and Yang (2007b).

Lemma 10 Under Assumptions (A1) to (A6) , for any x1 ∈ [0, 1] and I1 (x1) defined
in (27), one has

sup
x1∈[0,1]

E
{

I 2
1 (x1)

∣∣∣X
}

= Op

(
n−1
)

. (46)

Proof The conditional mean square of ε̃∗
2 (Xl2) given X is

E
[{

ε̃∗
2 (Xl2)

}2
∣∣∣X
]

= E

({
ãT P0N+1,IN

(
eT

l B
)T
}T {

ãT P0N+1,IN

(
eT

l ′ B
)T
}∣∣∣∣∣X

)
.

Based on Assumption (A2), we have E
{(

E · ET
)∣∣X1, . . . , Xn

} ≤ C2
σ In in the matrix

sense. Knowing that ã = (
BT B

)−1
BT E, and apply the matrices to a quadratic form

with vector ET
{

B
(
BT B

)−1
P0N+1,IN BT el ′

}
, one has

E
[{

ε̃∗
2 (Xl2)

}2
∣∣∣X
]

≤ n−1C2
σ

∑

1≤J,J ′≤N

BJ,2 (Xl2) sJ+N+1,J ′+N+1 BJ ′,2 (Xl ′2) ,

where the sJ+N+1,J ′+N+1’s are elements of S in Lemma 9. Plugging in the above
term, and employing (29), E

{
I 2
1 (x1)

∣∣X
}

is less than

C2
σ

n

∑

1≤J,J ′≤N

sJ+N+1,J ′+N+1

∑

1≤J≤N

{
n−1

n∑

l=1

Kh (Xl1 − x1) BJ,2 (Xl2)

}2

≤ C2
σ

n
CS

∑

1≤J≤N

{
n−1

n∑

l=1

Kh (Xl1 − x1) BJ,2 (Xl2)

}2

,
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where CS is as in (45). Using Lemma 5, supx1∈[0,1] E
{

I 2
1 (x1)

∣∣X
} ≤ C2

σ n−1CS∑
1≤J≤N H = Cn−1 in probability, which implies (46). ��

Lemma 11 Under Assumptions (A1) to (A6), for I2 (x1) as defined in (27), one has

sup
x1∈[0,1]

|I2 (x1)| = sup
x1∈[0,1]

∣∣∣∣∣
1

n

n∑

l=1

Kh (Xl1 − x1)
1

n

n∑

i=1

ε̃∗
2 (Xi2)

∣∣∣∣∣ = Op

(
N

n

√
log n

)
.

Proof See Wang and Yang (2007b).

Lemma 12 Under Assumptions (A1) to (A6) and (A2′), and with I1 (x1) defined in
(27), one has

sup
x1∈[0,1]

|I1 (x1)| = sup
x1∈[0,1]

∣∣∣∣∣
1

n

n∑

l=1

Kh (Xl1 − x1) ε̃∗
2 (Xl2)

∣∣∣∣∣ = Op

(√
log n

n

)
.

Proof Using the same discretization as in Lemma 5, we start with

sup
x1∈[0,1]

|I1 (x1)| = sup
0≤k≤Mn

∣∣I1
(
x1,k
)∣∣+ sup

1≤k≤Mn

sup
x1∈∆k

∣∣I1 (x1) − I1
(
x1,k
)∣∣ . (47)

Note that for any x1 ∈ [0, 1], (21) and (27) imply that

I1 (x1) = n−1
n∑

l=1

Kh (Xl1 − x1)
(

eT
l B
)

P0N+1,IN

(
BT B

)−1
BT E.

Under Assumption (A2′), L {R
(
X,x1,k

) |X} is standard normal. There exists some
c > 0, such that 1 − Φ (x) ≤ cφ (x) for large x , where Φ (x), φ (x) are the standard
normal distribution and density functions. Take tn = √

16 log n, then there is a constant
c such that for n large enough

n∑

n=1

P

{
sup

0≤k≤Mn

∣∣R
(
X,x1,k

)∣∣ ≥ tn

∣∣∣∣∣X
}

=
n∑

n=1

P

{
sup

0≤k≤Mn

|Z | ≥ tn

}

≤
n∑

n=1

Mn · P {|Z | ≥ tn} ≤ c
n∑

n=1

Mn · exp
{
−t2

n /2
}

< ∞,

where Z ∼ N (0, 1) . Consequently for a large value δ > 0, we have

n∑

n=1

P

{
sup

0≤k≤Mn

∣∣R
(
X,x1,k

)∣∣ ≥ δ
√

log n

}
< ∞,

Borel-Cantelli Lemma implies that sup0≤k≤Mn

∣∣R
(
X,x1,k

)∣∣ = Op
(√

log n
)
. The

conditional variance of I1
(
x1,k
)

given X is naturally defined as follows:
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var
{

I1
(
x1,k
)∣∣X

} = E
[{

I1
(
x1,k
)− E I1

(
x1,k
)}2
∣∣∣X
]

= E
{

I 2
1

(
x1,k
)∣∣∣X

}
.

Now Lemma 10 implies that sup0≤k≤Mn
var
{

I1
(
x1,k
)∣∣X

}= Op
(
n−1
)

and

sup
0≤k≤Mn

∣∣I1
(
x1,k
)∣∣ ≤ sup

0≤k≤Mn

∣∣R
(
X,x1,k

)∣∣ sup
0≤k≤Mn

√
var
{

I1
(
x1,k
)∣∣X

}

= Op

(√
n−1 log n

)
. (48)

Next, with (21), (37), and (40 ), it leads to

sup
1≤k≤Mn

sup
x1∈∆k

∣∣I1 (x1)− I1
(
x1,k
)∣∣= Op

(
M−1

n h−2 N 3/2n−1/2
)
=op

(
n−1
)

(49)

due to the choice of cDn6 ≤ Mn ≤ CDn6 in Lemma 4. Now (47), (48) and (49)
establish the lemma. ��
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