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Abstract We construct and investigate a consistent kernel-type nonparametric esti-
mator of the intensity function of a cyclic Poisson process in the presence of linear
trend. It is assumed that only a single realization of the Poisson process is observed
in a bounded window. We prove that the proposed estimator is consistent when the
size of the window indefinitely expands. The asymptotic bias, variance, and the mean-
squared error of the proposed estimator are also computed. A simulation study shows
that the first order asymptotic approximations to the bias and variance of the estimator
are not accurate enough. Second order terms for bias and variance were derived in
order to be able to predict the numerical results in the simulation. Bias reduction of
our estimator is also proposed.

Keywords Cyclic Poisson process · Intensity function · Linear trend · Nonparametric
estimation · Consistency · Bias · Variance · Mean-squared error

1 Introduction and main results

Let X be a Poisson point process on [0,∞) with (unknown) locally integrable intensity
function λ which is assumed to consist of two components, namely a periodic or cyclic
component with period τ > 0 and a (unknown) linear trend component. In other words,
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600 R. Helmers, I. W. Mangku

for any point s ∈ [0,∞), we can write the intensity function λ as

λ(s) = λc(s) + as (1)

where λc(s) is a periodic function with period τ and a denotes the slope of the linear
trend. In the present paper, we do not assume any (parametric) form of λc except that
it is periodic. That is we assume that the equality

λc(s + kτ) = λc(s) (2)

holds for all s ∈ [0,∞) and k ∈ Z. Here we consider a Poisson point process on [0,∞)

instead of, for instance, on R because λ has to satisfy (1) and must be nonnegative.
For the same reason we also restrict our attention to the case a ≥ 0. The present paper
aims at extending previous work for the purely cyclic case, i.e. a = 0, (cf. Helmers
et al. 2003, 2005; Kutoyants 1984; Sect. 2.3 of Kutoyants 1998) to the more general
model (1).

Furthermore, let W1, W2, . . . be a sequence of intervals [0, |Wn|], n = 1, 2, . . .,
such that the size or the Lebesgue measure |Wn| of Wn is finite for each fixed n ∈ N,
but

|Wn| → ∞ (3)

as n → ∞.
Suppose now that, for some ω ∈ �, a single realization X (ω) of the Poisson

process X defined on a probability space (�,F , P) with intensity function λ (cf. (1))
is observed, though only within a bounded interval, called ‘window’ W ⊂ [0,∞). Our
goal in this paper is to construct a consistent nonparametric estimator of λc at a given
point s ∈ [0,∞) from a single realization X (ω) of the Poisson process X observed
in W := Wn . We also compute the asymptotic bias, variance, and the mean-squared
error of the proposed estimator.

We will assume throughout that s is a Lebesgue point of λ, that is we have
limh↓0

1
2h

∫ h
−h |λ(s + x) − λ(s)|dx = 0 (e.g. see Wheeden and Zygmund 1977, pp.

107–108), which automatically means that s is a Lebesgue point of λc as well. This
assumption is a mild one since the set of all Lebesgue points of λ is dense in R,
whenever λ is assumed to be locally integrable.

To begin with we will suppose that the period τ is known, but the slope a and the
function λc on [0, τ ) are both unknown. Since λc is periodic with period τ , the problem
of estimating λc at a given s ∈ [0,∞) can be reduced to the problem of estimating λc

at a given s ∈ [0, τ ). In this situation we may define estimators of respectively a and
λc, at a given point s ∈ [0, τ ), as follows:

ân := 2X (Wn)

|Wn|2 (4)

and

λ̃c,n(s) := 1

ln
( |Wn |

τ

)
∞∑

k=1

1

k

X ([s + kτ − hn, s + kτ + hn] ∩ Wn)

2hn

−ân

(

s + |Wn|
ln(

|Wn |
τ

)

)

, (5)
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Intensity of a cyclic Poisson process 601

where hn is a sequence of positive real numbers converging to 0, that is,

hn ↓ 0 (6)

as n → ∞.
We note in passing that if, instead of estimating λc(s), one is interested in estimating

λ(s) at a given point s, then λ(s) can be estimated by

λ̂n(s) = λ̃c,n(s) + âns. (7)

To obtain the estimator ân of a it suffices to note that

EX (Wn) = a

2
|Wn|2 + O(|Wn|)

as n → ∞, which directly yields the estimator given in (4). Note also that if X were a
Poisson process with intensity λ(s) = as, then ân would be the maximum likelihood
estimator of a.

Next, we describe the idea behind the construction of the kernel-type estimator
λ̃c,n(s) of λc(s). By (1) and (2) we have, for any point s ∈ [0, τ ) and k ∈ N, that

λc(s) = λc(s + kτ) = λ(s + kτ) − a(s + kτ). (8)

Let Bh(x) := [x − h, x + h] and Ln := ∑∞
k=1 k−1I(s + kτ ∈ Wn). By (8), we can

write

λc(s) = 1

Ln

∞∑

k=1

1

k
(λc(s + kτ)) I(s + kτ ∈ Wn)

= 1

Ln

∞∑

k=1

1

k
(λ(s + kτ) − a(s + kτ)) I(s + kτ ∈ Wn)

= 1

Ln

∞∑

k=1

1

k
(λ(s + kτ)) I(s + kτ ∈ Wn)−as− aτ

Ln

∞∑

k=1

I(s + kτ ∈ Wn). (9)

By the assumption that s is a Lebesgue point of λ and (6), we have

λc(s) ≈ 1

Ln

∞∑

k=1

1

k

1

|Bhn (s + kτ)|
∫

Bhn (s+kτ)∩Wn

λ(x)dx − as − a|Wn|
Ln

= 1

Ln

∞∑

k=1

1

k

EX (Bhn (s + kτ) ∩ Wn)

2hn
− a

(

s + |Wn|
Ln

)

≈ 1

Ln

∞∑

k=1

1

k

X (Bhn (s + kτ) ∩ Wn)

2hn
− a

(

s + |Wn|
Ln

)

. (10)
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Here we also have used the fact that

aτ

Ln

∞∑

k=1

I(s + kτ ∈ Wn) = aτ

Ln

( |Wn|
τ

+ ζn

)

= a|Wn|
Ln

+ aτζn

Ln
≈ a|Wn|

Ln

(cf. (39)), where |ζn| ≤ 1 for all n ≥ 1. From the second ≈ in (10) and noting that
Ln ∼ ln(|Wn|/τ) as n → ∞, we see that

λ̄c,n(s) = 1

ln
( |Wn |

τ

)
∞∑

k=1

1

k

X ([s + kτ − hn, s + kτ + hn] ∩ Wn)

2hn

−a

⎛

⎝s + |Wn|
ln

( |Wn |
τ

)

⎞

⎠ (11)

can be viewed as an estimator of λc(s), provided both the period τ and the slope a of
the linear trend are assumed to be known. If a is unknown, we replace a by ân (cf. (4))
and one obtains the estimator of λc(s) given in (5).

Lemma 1 Suppose that the intensity function λ satisfies (1) and is locally integrable.
Then we have

E
(
ân

) = a + 2θ

|Wn| + O
(

1

|Wn|2
)

(12)

and

Var
(
ân

) = 2a

|Wn|2 + O
(

1

|Wn|3
)

(13)

as n → ∞, where θ = τ−1
∫ τ

0 λc(s)ds, the global intensity of the cyclic component
λc. Hence, by (3), ân is a consistent estimator of a; its mean-squared error (MSE) is
given by

MSE
(
ân

) = 4θ2 + 2a

|Wn|2 + O
(

1

|Wn|3
)

(14)

as n → ∞.

Theorem 1 Suppose that the intensity function λ satisfies (1) and is locally integrable.
If, in addition, hn ↓ 0 and

hn ln |Wn| → ∞, (15)

then

λ̃c,n(s)
p→ λc(s) (16)
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Intensity of a cyclic Poisson process 603

as n → ∞ provided s is a Lebesgue point of λc. In other words, λ̃c,n(s) is a consistent
estimator of λc(s). In addition the MSE of λ̃c,n(s) converges to 0, as n → ∞.

We note that Lemma 1 and Theorem 1 together imply that the estimator λ̂n(s) in
(7) is a consistent estimator of λ(s).

Theorem 2 Suppose that the intensity function λ satisfies (1) and is locally integrable.
If hn ↓ 0 and (15) holds true, then

Var
(
λ̃c,n(s)

)
= aτ

2hn ln(|Wn|/τ)
+ o

(
1

hn ln |Wn|
)

(17)

as n → ∞, provided s is a Lebesgue point of λc. If, in addition, λc has finite second
derivative λ′′

c at s and

h2
n ln |Wn| → ∞, (18)

then we have

Eλ̃c,n(s) = λc(s) + λ′′
c (s)

6
h2

n + o(h2
n) (19)

as n → ∞.

Note that (19) yields the classical bias term (λ′′
c (s)h

2
n)/6 for kernel estimates of

λc(s) (cf. Helmers et al. 2005) in the purely cyclic case, where a = 0. On the other
hand, the asymptotic approximation to the variance given in (17) differs from the
classical formula (λc(s)τ )/(2hn|Wn|) (cf. Helmers et al. 2005) in two ways: in the
denominator of (17) we have ln(|Wn|/τ) instead of |Wn|, implying that in the presence
of linear trend one needs a much larger window (larger by a factor |Wn|/ ln(|Wn|/τ))
than in the purely cyclic case a = 0. This is a simple consequence of the ‘weight’
1/k we have used in definition (5) of λ̃c,n(s). The second difference is the factor a in
the numerator of (17), replacing λc(s) (cf. Theorem 3.2 of Helmers et al. 2005) in the
purely cyclic case, when no linear trend is assumed to be present. In a way this tells
us that the linear trend will dominate the variability of λ̃c,n(s).

It is clear from the proof of Theorem 2 that, in case a would be known, we obtain
the same leading term (aτ)/(2hn ln(|Wn|/τ)) for the asymptotic approximation to
the variance of the estimator of λc(s) (e.g. see (51)). This is due to the fact that the
variance of ân(s +|Wn|/(ln(|Wn|/τ))) in (5) is of smaller order than the leading term
on the r.h.s. of (17).

In the second part of Theorem 2 we assume that h2
n ln |Wn| → ∞, as n → ∞.

In fact, without assuming h2
n ln |Wn| → ∞, we can only prove that the remainder

term on the r.h.s. of (19) is of order o(h2
n) + O((ln |Wn|)−1), as n → ∞. Since the

second term on the r.h.s. of (19) is exactly of order O(h2
n), it is therefore natural to

require (ln |Wn|)−1 = o(h2
n), which is equivalent to the assumption h2

n ln |Wn| → ∞,
as n → ∞.
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604 R. Helmers, I. W. Mangku

Remark 1 If either a or θ = τ−1
∫ τ

0 λc(s)ds (the global intensity of the cyclic
component λc) is known, then the linear trend in (1) can be replaced by a trend asb,
for some known b ∈ (0, 1). In the case a is known, λc(s) can be estimated by

λ̃c,n,b(s) := 1

Ln,b

∞∑

k=1

1

kb

X ([s + kτ − hn, s + kτ + hn] ∩ Wn)

2hn

−a

(

s + |Wn|
Ln,b

)

, (20)

where Ln,b := ∑∞
k=1 k−bI(s + kτ ∈ Wn). In the case that a is unknown but θ is

known, λc(s) can be estimated by (20) with a is replaced by

ân,b := (1 + b)X (Wn)

|Wn|1+b
− (1 + b)θ

|Wn|b . (21)

A calculation similar to the one given in the proof of Theorem 1 can now be used to
show that λ̃c,n,b(s) is a consistent estimator of λc(s) in both cases. In the case that
a is unknown, knowledge of θ is needed to correct for the bias of the estimator of a
(cf. (21)). Without bias correction, the bias of λ̃c,n,b(s) will not vanish, as n → ∞,
which of course implies that λ̃c,n,b(s) will not be consistent in estimating λc(s).
Furthermore, we have

Var
(
λ̃c,n,b(s)

)
= O

(
1

hn|Wn|1−b

)

(22)

as n → ∞. Note that, in the case b = 1 we have Var(λ̃c,n(s)) = O((hn ln |Wn|)−1)

(cf. (17)), whereas for the case b = 0 (purely cyclic case) the variance of the estimator
of λc(s) is of order O((hn|Wn|)−1) (cf. Helmers et al. 2005), while the quantity in
(22) is in between. This reflects the fact that the smaller the value of b, the larger is
the part of the data set X (ω) which can be used to estimate λc(s).

Finally, let us consider the intensity function λ in (1) with linear trend replaced by
asb, for some known b > 1, and consider our estimator of λc(s) in (20). Because in the
case b > 1, Ln,b = O(1) as n → ∞, it follows that Var(λ̃c,n,b(s)) does not converge
to zero, as n → ∞, and the estimator λ̃c,n,b(s) is not consistent in estimating λc(s).
Hence, in this case, our kernel type estimation of λc(s) fails.

In a way, the preceding argument tells us that adding a linear trend to the cyclic
component (cf. (1)) is a ‘border case’: trends increasing slower than linear can be
handled by our kernel estimation method, though at the price of knowing either a or
θ . However, for trends increasing faster than linear, for instance a quadratic trend, our
estimation procedure does not work, i.e. consistent estimation of the intensity of the
cyclic component appears to be impossible by the proposed method.

Next we turn to the important case that the period τ is unknown. This will be the
situation one typically encounters in statistical practice. In order to be able to construct
an estimator of λc for the case τ is unknown, we require a consistent estimator of τ .
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Intensity of a cyclic Poisson process 605

Let τ̂n be a consistent estimator of τ . Then we modify our estimator of λc in (5) by
replacing τ by τ̂n to obtain

λ̂c,n(s) := 1

ln
( |Wn |

τ̂n

)
∞∑

k=1

1

k

X ([s + kτ̂n − hn, s + kτ̂n + hn] ∩ Wn)

2hn

−ân

⎛

⎝s + |Wn|
ln

( |Wn |
τ̂n

)

⎞

⎠ . (23)

The construction of estimators τ̂n of the period τ of a cyclic Poisson process with
desired accuracy (cf. (25), (28) or (30)), using only a single realization from X , is out-
side the scope of the present paper. Some results concerning nonparametric estimation
of the period in the purely cyclic case a = 0 can be found in Helmers and Mangku
(2003) and Bebbington and Zitikis (2004). We intend to pursue the general case a > 0
elsewhere.

Note that the estimator in (23) can be viewed as a special case (take K = 1
2 I[−1,1](·))

of a general kernel-type estimator, which is given by

λ̂c,n,K (s) := 1

ln
( |Wn |

τ̂n

)
∞∑

k=1

1

hnk

∫

Wn

K

(
x − (s + kτ̂n)

hn

)

X (dx)

−ân

⎛

⎝s + |Wn|
ln

( |Wn |
τ̂n

)

⎞

⎠ , (24)

where K : R → R is a function, called kernel, satisfying assumptions: K is a proba-
bility density function, bounded, and has support in [−1, 1]. However, in this paper
we focus on the uniform kernel-type estimator in (23). Similarly as in Helmers et al.
(2003, 2005), one can obtain similar results for the estimator given in (24).

Note also that (24) reduces to (1.10) of Helmers et al. (2003), if the weight 1/k is
replaced by 1 and the second term ân(s + |Wn|/(ln(|Wn|/τ̂n))) is deleted, because in
Helmers et al. (2003) λ(s) = λc(s) or in other words a = 0.

In the following theorem, we will show that the consistency result in Theorem 1
remains valid, provided the rate of consistency of τ̂n to τ is sufficiently fast.

Theorem 3 Suppose that the assumptions of Theorem 1 are satisfied. If, in addition,
for any δ > 0 we have

P
( |Wn|2

hn ln |Wn|
∣
∣τ̂n − τ

∣
∣ > δ

)

= o(1) (25)

as n → ∞, then

λ̂c,n(s)
p→ λc(s) (26)

as n → ∞. In other words, λ̂c,n(s) is a consistent estimator of λc(s).

123



606 R. Helmers, I. W. Mangku

Condition (25) on the estimator τ̂n is equivalent to assuming that |Wn|2
(hn ln |Wn|)−1 |τ̂n − τ | p→ 0, while condition (2.2) of Helmers et al. (2003) which
yields (26) in the purely cyclic case (a = 0) considered in Helmers et al. (2003),

requires only (|Wn|h−1
n )|τ̂n − τ | p→ 0, as n → ∞. An extra factor |Wn|/(ln |Wn|) is

needed here due to the presence of linear trend in our model (1). From the proof of
Theorem 3 it appears that (25) is a minimal assumption required to ensure that λ̂c,n(s)
is a consistent estimator of λc(s).

In order to be able to derive asymptotic approximations to respectively bias and
variance of the estimator of λc(s) under weak assumptions on the estimator τ̂n of the
period, it is required to modify our estimator of λc(s) slightly as follows:

λ̂�
c,n(s) := I

(
λ̂c,n(s) ≤ Dn

)
λ̂c,n(s) + I

(
λ̂c,n(s) > Dn

)
Dn (27)

where the nonrandom Dn will approach infinity when n → ∞. The truncation level Dn

in the definition of λ̂�
c,n(s) is needed to avoid accumulation of errors due to estimation

of τ in estimating λc(s), so that statements (29) and (31) would still hold true. The
Dn

,s were introduced in Helmers et al. (2005) for similar purposes in the purely cyclic
case, when a = 0 in (1).

In the following two theorems, it is shown that one can estimate τ by τ̂n without
affecting the statistical properties of our estimate λ̃c,n(s) of λc(s), i.e. its asymptotic
bias, variance, and MSE, given in Theorem 2, provided the rate of consistency of τ̂n

to τ is sufficiently fast.

Theorem 4 Suppose that the intensity function λ satisfies (1) and is locally integrable.
Furthermore, let the bandwidth hn satisfy (6) and (18), and the sequence Dn be such
that, for some c > 0 and ε > 0, the bound Dn ≥ c(hn)−ε holds for all sufficiently
large n. If, in addition, for any δ > 0 we have

P
( |Wn|2

h3
n ln |Wn|

∣
∣τ̂n − τ

∣
∣ > δ

)

= o

(
h2

n

Dn

)

(28)

as n → ∞ and λc has finite second derivative λ′′
c at s, then

Eλ̂�
c,n(s) = λc(s) + λ′′

c (s)

6
h2

n + o(h2
n) (29)

as n → ∞.

Theorem 5 Suppose that the intensity function λ satisfies (1) and is locally integrable.
Furthermore, let the bandwidth hn satisfy (6) and (15), and the sequence Dn be such
that, for some c > 0 and ε > 0, the bound Dn ≥ c(hn ln |Wn|)ε holds for all sufficiently
large n. If, in addition, for any δ > 0 we have

P

(
|Wn|2

h1/2
n (ln |Wn|)1/2

∣
∣τ̂n − τ

∣
∣ > δ

)

= o

(
1

D2
nhn ln |Wn|

)

(30)
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as n → ∞, then

Var
(
λ̂�

c,n(s)
)

= aτ

2hn ln(|Wn|/τ)
+ o

(
1

hn ln |Wn|
)

(31)

as n → ∞, provided s is a Lebesgue point of λc.

By Theorems 4 and 5 (i.e. (29) and (31)), we can compute the MSE of λ̂�
c,n(s) as

follows:

MSE
(
λ̂�

c,n(s)
)

= aτ

2hn ln(|Wn|/τ)
+ (λ′′

c (s))
2

36
h4

n + o

(
1

hn ln |Wn| + h4
n

)

(32)

as n → ∞. Now, we consider the r.h.s. of (32). By minimizing the sum of the first
and second term (the leading term for the variance and the squared bias), we get the
optimal choice of hn , which is given by

hn =
[

9aτ

2(λ′′
c (s))

2

] 1
5

(ln(|Wn|/τ))−
1
5 . (33)

With this choice of hn , the optimal rate of decrease of MSE(λ̂�
c,n(s)) is of order

O((ln |Wn|)−4/5) as n → ∞.

Remark 1 (continued) Recall that in Remark 1 we consider the intensity function in
(1) with as replaced by asb, for some known b ∈ (0, 1). For the case τ is unknown,
λc(s) can be estimated by λ̂c,n,b(s), that is the estimator in (20) with τ is replaced by
its estimator τ̂n . In order to have that λ̂c,n,b(s) is a consistent estimator of λc(s), it is
required that the estimator τ̂n of τ has to satisfy the condition: for any δ > 0,

P
(
|Wn|1+bh−1

n

∣
∣τ̂n − τ

∣
∣ > δ

)
= o(1)

holds true as n → ∞, that is condition (25) with ln |Wn| is replaced by |Wn|1−b.
Note that, if b = 0 (the case that the intensity function is purely cyclic), this condition
reduces to condition (2.2) of Helmers et al. (2003). Similarly, in order to be able to
derive asymptotic approximations to respectively bias and variance of λ̂c,n,b(s), it is
required that τ̂n has to satisfy respectively conditions (28) and (30) with ln |Wn| in
both these conditions are replaced by |Wn|1−b. Note also that, for the case b = 0,
these two conditions reduce to respectively conditions (2.4) and (3.3) of Helmers et al.
(2005).

To conclude this section, we remark that Helmers and Zitikis (1999) also consider
a uniform kernel-type estimator for λ(s) in the case where λ is a parametric function
of spatial location. These authors focus their attention to the case that X is a Poisson
process on [0,∞) with intensity function

λ(s) = exp
{
α + βs + γ s2 + K1 sin(ω0s) + K2 cos(ω0s)

}
,
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608 R. Helmers, I. W. Mangku

s > 0, where α, β, γ, K1, and K2 are unknown parameters, and ω0 is a known
‘frequency’. Helmers and Zitikis (1999) obtain L2-convergence of their estimator,
whenever (3) holds.

The nonparametric maximum likelihood estimator of λc, the intensity function of
a (purely) cyclic Poisson process X (i.e. a = 0 in (1)), with known period τ , was
investigated by Dorogovtsev and Kukush (1996) and Kukush and Mishura (1999). To
do this, these authors assume that λc|[0, τ ), the restriction of λc to [0, τ ), belongs
to a Sobolev space of functions on [0, τ ). An algorithm for the computation of a
nonparametric MLE is also given. The paper by Dorogovtsev and Kukush (1996)
restricts attention to the case that X is Poisson, while in Kukush and Mishura (1999)
X may consists of three components: a drift, a diffusion and a cyclic Poisson process
with known period τ . The result obtained in Dorogovtsev and Kukush (1996) was
extended to the case that X is a Poisson random field in Kukush and Stepanishcheva
(2002).

2 Simulations

For the simulations, we consider the intensity function

λ(s) = λc(s) + as = A exp

{

ρ cos

(
2πs

τ
+ φ

)}

+ as,

that is (1), where λc is the intensity function discussed in Vere-Jones (1982). We chose
A = 2, ρ = 1, τ = 5 and φ = 0. With this choice of the parameters, we have

λ(s) = 2 exp

{

cos

(
2πs

τ

)}

+ as. (34)

The cyclic part λc(s) of (34) achieves its maximum 2e = 5.4366 at s = 5k and its
minimum 2e−1 = 0.7358 at s = 2.5 + 5k, for any integer k. Since λc is periodic with
period τ , the problem of estimating λc at a given s ∈ [0,∞) can be reduced to the
problem of estimating λc at a given s ∈ [0, τ ). In our simulations we will consider
three values of s, namely s = 2.6 (a small value of λc(s)), s = 4.0 (a moderate value
of λc(s)) and s = 4.9 (a large value of λc(s)). In each of the examples presented below,
we only investigate the performance of an estimator of λc(s) in the case the period τ

is known. We use Wn = [0, 1000] and take the ’optimal’ choice for the bandwidth hn .

Example 1 (the purely cyclic case a = 0) In this example we consider the purely
cyclic Poisson process, that is the Poisson process with intensity function given in
(34) in the case we know that a = 0. This model is studied extensively in Helmers
et al. (2003, 2005). To estimate λc(s) in the purely cyclic (PC) case, we can use the
estimator given by (1.3) of Helmers et al. (2005). In this example, we use this estimator
with kernel K = 1

2 I([−1, 1]), that is

λ̃c,n,PC (s) := τ

|Wn|
∞∑

k=−∞

X ([s + kτ − hn, s + kτ + hn] ∩ Wn)

2hn
.
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Asymptotic approximations to the variance and bias of this estimator are given
respectively by (cf. Theorems 2.2 and 3.2 of Helmers et al. (2005))

Var
(
λ̃c,n,PC (s)

)
= λc(s)τ

2hn|Wn| + o

(
1

hn|Wn|
)

, (35)

and

Bias
(
λ̃c,n,PC (s)

)
= λ′′

c (s)

6
h2

n + o(h2
n), (36)

as n → ∞. The optimal choice for the bandwidth hn is given by (cf. (3.6) of Helmers
et al. 2005)

hn =
[
9λc(s)τ/(2(λ′′

c (s))
2)

]1/5
(|Wn|)−1/5. (37)

(i) For s = 2.6, we haveλc(s) = 0.7416 andλ′′
c (s) = 1.1802. By (37), with |Wn| =

1000 and τ = 5, we obtain the (optimal) choice of bandwidth hn = 0.4128.
By (35) and (36), we obtain the numerical values of the asymptotic approxima-
tions to respectively the variance and the bias of λ̃c,n,PC (s): Var(λ̃c,n,PC (s)) =
0.0045 and Bias(λ̃c,n,PC (s)) = 0.0335. From the simulation, using M = 104

independent realizations of the process X observed in the Wn = [0, 1000],
we obtain respectively V̂ar(λ̃c,n,PC (s)) = 0.0047 and B̂ias(λ̃c,n,PC (s)) =
0.0303, where V̂ar(λ̃c,n,PC (s)) is the sample variance 1

M−1

∑M
i=1(λ̃c,n,PC,i (s)

− 1
M

∑M
j=1 λ̃c,n,PC, j (s))2 and B̂ias(λ̃c,n,PC (s)) is the sample mean M−1 ∑M

j=1

λ̃c,n,PC, j (s) minus λc(s). Summarizing, we have Var(λ̃c,n,PC (s)) −
V̂ar(λ̃c,n,PC (s)) = 0.0045 − 0.0047 = −0.0002 and Bias(λ̃c,n,PC (s)) −
B̂ias(λ̃c,n,PC (s)) = 0.0335 − 0.0303 = 0.0032.

(ii) For s = 4.0, we have λc(s) = 2.7242 and λ′′
c (s) = 2.5617. By (37), we obtain

hn = 0.3927. By (35) and (36) and from the simulation (M = 104) we obtain
Var(λ̃c,n,PC (s)) − V̂ar(λ̃c,n,PC (s)) = 0.0173 − 0.0178 = −0.0005 and
Bias(λ̃c,n,PC (s)) − B̂ias(λ̃c,n,PC (s)) = 0.0658 − 0.0472 = 0.0186.

(iii) For s = 4.9, we have λc(s) = 5.3939 and λ′′
c (s) = −8.3167. By (37), we

obtain hn = 0.2811. By (35) and (36) and from the simulation (M = 104) we
obtain
Var(λ̃c,n,PC (s)) − V̂ar(λ̃c,n,PC (s)) = 0.0480 − 0.0462 = 0.0018 and
Bias(λ̃c,n,PC (s)) − B̂ias(λ̃c,n,PC (s)) = −0.1095 − (−0.1404) = 0.0309.

In this example we find that the asymptotic approximations to respectively the variance
and the bias of the estimator proposed in Helmers et al. (2005) are relatively close
to the numerical values obtained in the simulation. So we can conclude that the first
order asymptotics derived in Helmers et al. (2005) for the purely cyclic case works
well in approximating the variance and the bias in finite samples.
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Example 2 (cyclic in the presence of linear trend, a = 0.05) In this example we study
the performance of the estimator λ̃c,n(s) in (5), in the case that the intensity function
λ(s) is given by (34) with a = 0.05.

(i) Recall that for s = 2.6, we have λc(s) = 0.7416 and λ′′
c (s) = 1.1802. By (33),

with |Wn| = 1000 and τ = 5, we obtain the ’optimal’ hn = 0.6865. By (17),
(19) and from the simulation (M = 104) we obtain respectively
Var(λ̃c,n(s)) − V̂ar(λ̃c,n(s)) = 0.0344 − 0.0750 = −0.0406 and
Bias(λ̃c,n(s)) − B̂ias(λ̃c,n(s)) = 0.0927 − (−0.8127) = 0.9054.

(ii) For s = 4.0, we have λc(s) = 2.7242 and λ′′
c (s) = 2.5617. By (33), we obtain

hn = 0.5035. By (17) and (19) and from the simulation (M = 104) we obtain
Var(λ̃c,n(s)) − V̂ar(λ̃c,n(s)) = 0.0469 − 0.2255 = −0.1786 and
Bias(λ̃c,n(s)) − B̂ias(λ̃c,n(s)) = 0.1082 − (−0.6034) = 0.7116.

(iii) For s = 4.9, we have λc(s) = 5.3939 and λ′′
c (s) = −8.3167. By (33), we

obtain hn = 0.3144. By (17) and (19) and from the simulation (M = 104) we
obtain
Var(λ̃c,n(s)) − V̂ar(λ̃c,n(s)) = 0.0750 − 0.6012 = −0.5262 and
Bias(λ̃c,n(s)) − B̂ias(λ̃c,n(s)) = −0.1370 − (−0.5780) = 0.4410.

In sharp contrast with Example 1, the first order asymptotic approximations to the
variance and bias — the ones given by Theorem 2 — fail to predict the variance and
bias in finite samples accurately. We also see that the bias of λ̃c,n(s) is unacceptable
large (cf. Remark 2).

To improve the accuracy of our approximations for variance and bias we added
second order terms to the expansions given in (17) and (19). Expansions (17) and
(19) for variance and bias are replaced by the second order approximations (38)
and (39) respectively. Expansion (38) improves upon (17) by adding a term of order
h−1

n (ln |Wn|)−2 to the original approximation of order (hn ln |Wn|)−1. On the other
hand, the bias expansion (19) without assumption (18) has a remainder term of order
o(h2

n) + O((ln |Wn|)−1)); assumption (18) in Theorem 2 is in fact meant to eliminate
the O((ln |Wn|)−1) remainder term (cf. paragraph preceding Remark 1). Expansion
(39) improves now upon (19) by adding a term of order h4

n and also a term of order
(ln |Wn|)−1. We restrict attention to the case that τ is known.

Corollary 1 Suppose that the intensity function λ satisfies (1) and is locally integrable.
If hn ↓ 0 and (15) holds true, then

Var
(
λ̃c,n(s)

)
= aτ

2hn ln(|Wn|/τ)
+ (λc(s) + as)(π2/6) + aτγ

2hn(ln(|Wn|/τ))2

+o

(
1

hn(ln |Wn|)2

)

(38)

as n → ∞, provided s is a Lebesgue point of λc, where γ = 0.577.. is Euler’s
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constant. If, in addition, λc has finite fourth derivative λ
(iv)
c at s then we have

Eλ̃c,n(s) = λc(s) + λ′′
c (s)

6
h2

n − 2θ − γ λc(s) − (γ s + τζn)a

ln(|Wn|/τ)
+ λ

(iv)
c (s)

120
h4

n

+o

(

h4
n + 1

ln |Wn|
)

(39)

as n → ∞, where ζn = (2hn)
−1 ∑∞

k=1

∫ hn
−hn

I(x + s + kτ ∈ Wn)dx − (|Wn|/τ) and
|ζn| ≤ 1 for all n ≥ 1.

Example 2 (continued) Instead of using Theorem 2 we use the second order asymptotic
approximations to the variance and bias ((38) and (39) of Corollary 1) to predict the
variance and bias in finite samples.

(i) For s = 2.6, we obtain
Var(λ̃c,n(s)) − V̂ar(λ̃c,n(s)) = 0.0753 − 0.0750 = 0.0003 and
Bias(λ̃c,n(s)) − B̂ias(λ̃c,n(s)) = −0.8086 − (−0.8127) = 0.0041.

(ii) For s = 4.0, we obtain
Var(λ̃c,n(s)) − V̂ar(λ̃c,n(s)) = 0.2222 − 0.2255 = −0.0033 and
Bias(λ̃c,n(s)) − B̂ias(λ̃c,n(s)) = −0.5904 − (−0.6034) = 0.0130.

(iii) For s = 4.9, we obtain
Var(λ̃c,n(s)) − V̂ar(λ̃c,n(s)) = 0.6087 − 0.6012 = 0.0075 and
Bias(λ̃c,n(s)) − B̂ias(λ̃c,n(s)) = −0.5218 − (−0.5780) = 0.0562.

We see that the second order approximations (38) and (39) are quite close to the
numerical values obtained in the simulation.

Remark 2 (Bias reduction): Note that the bias of λ̃c,n(s) in Example 2 is quite large.
However, we can reduce this bias by subtracting and adding respectively estimators
of the second and third term on the r.h.s. of (39) into λ̃c,n(s). To indicate that λ̃c,n(s)
depends on hn , let us write λ̃c,n(s) = λ̃c,n,hn (s). We may define estimators of respec-
tively λ′′

c (s) and θ as follows:

λ̃′′
c,n(s) := λ̃c,n,h′

n
(s + 2h′

n) + λ̃c,n,h′
n
(s − 2h′

n) − 2λ̃c,n,h′
n
(s)

4(h′
n)2

where h′
n is a sequence of positive real numbers converging to 0, that is h′

n ↓ 0 as
n → ∞, and

θ̂n := 1

ln(|Wn|/τ)

∞∑

k=1

1

k

X ([kτ, (k + 1)τ ] ∩ Wn)

τ
− ân

(
τ

2
+ |Wn|

ln(|Wn|/τ)

)

.
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A similar calculation as the one used to compute the expectation of λ̃c,n(s) shows that

Eθ̂n = θ − (2 − γ )θ − (γ /2 + ζn)aτ

ln(|Wn|/τ)
+ o

(
1

ln |Wn|
)

(40)

as n → ∞. Then we obtain a bias corrected estimator of θ as follows:

θ̂n,b := θ̂n + (2 − γ )θ̂n − (γ /2 + ζn)τ ân

ln(|Wn|/τ)
. (41)

Now, we can define a bias corrected estimator of λc(s) as

λ̃c,n,BC (s) = λ̃c,n(s) − λ̃′′
c,n(s)

6
h2

n + 2θ̂n,b − γ λ̃c,n(s) − (γ s + τζn)ân

ln(|Wn|/τ)
. (42)

Corollary 2 Suppose that the intensity function λ satisfies (1) and is locally integrable.
If h′

n ↓ 0, hn = o(h′
n) and (15) holds true, then

Var
(
λ̃c,n,BC (s)

)
= aτ

2hn ln(|Wn|/τ)
+ aτh2

n

12(h′
n)3 ln(|Wn|/τ)

+ aτh4
n

192(h′
n)5 ln(|Wn|/τ)

+ (λc(s) + as)(π2/6) − aτγ

2hn(ln(|Wn|/τ))2 + o

(
1

hn(ln |Wn|)2

)

(43)

as n → ∞ provided λc is continuous at s. If, in addition, λc has finite fourth derivative
λ

(iv)
c in the neighborhood of s then we have

Eλ̃c,n,BC (s) = λc(s) − λ
(iv)
c (s)

12
h2

n(h
′
n)2 + o

(

h2
n(h′

n)
2 + 1

ln |Wn|
)

(44)

as n → ∞.

Note that we require hn = o(h′
n) as n → ∞ in order to have the second and third

term on the r.h.s. of (43) is of smaller order than its first term.
However, Corollary 2 remains valid when h′

n = hn . In this case, the second and
third term on the r.h.s. of (43) are of the same order as the first term, and we obtain

Var
(
λ̃c,n,BC (s)

)
= 113aτ

192hn ln(|Wn|/τ)
+ (λc(s) + as)(π2/6) − aτγ

2hn(ln(|Wn|/τ))2

+o

(
1

hn(ln |Wn|)2

)

(45)

as n → ∞.
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Next we note that the second term on the r.h.s. of (44) is of the same order as the
fourth term on the r.h.s. of (39), which directly yields that

Bias(λ̃c,n,BC (s)) = −3λ
(iv)
c (s)

40
h4

n + o(h4
n + (ln |Wn|)−1) (46)

as n → ∞. We consider this situation in the simulation.
With the aid of (45) and (46) one can obtain the MSE of λ̃c,n,BC (s). Minimizing

the MSE of λ̃c,n,BC (s) yields the optimal choice of hn , which is given by

hn =
[

200

9(λ
(iv)
c (s))2

(
113aτ

192
+ (λc(s) + as)(π2/6) − aτγ

2 ln(|Wn|/τ)

)] 1
9

× (ln(|Wn|/τ))−
1
9 . (47)

With this choice of hn , the optimal rate of decrease of MSE(λ̃c,n,BC (s)) is of order
O((ln |Wn|)−8/9) as n → ∞, slightly faster than the order O((ln |Wn|)−4/5) obtained
with (32) and (33).

Example 3 Here we use λ̃c,n,BC (s) (cf. (42)) to estimate λc(s). In the simulation we
use the ‘optimal’ choice of hn given by (47) and take h′

n = hn .

(i) For s = 2.6, using (47) and by noting that λ
(iv)
c (s) = 3.6831, we obtain

hn = 0.7585. From (45), (46) and the simulation (M = 104) we obtain
Var(λ̃c,n,BC (s)) − V̂ar(λ̃c,n,BC (s)) = 0.0669 − 0.0864 = −0.0195 and
Bias(λ̃c,n,BC (s)) − B̂ias(λ̃c,n,BC (s)) = −0.0914 − (−0.0617) = −0.0297.

(ii) For s = 4.0, using (47) and by noting that λ(iv)
c (s) = −26.3675, we obtain hn =

0.5342. From (45), (46) and the simulation (M = 104) we obtainVar(λ̃c,n,BC (s))
−V̂ar(λ̃c,n,BC (s)) = 0.2075 − 0.2376 = −0.0301 and Bias(λ̃c,n,BC (s)) −
B̂ias(λ̃c,n,BC (s)) = 0.1610 − 0.0773 = 0.0837.

(iii) For s = 4.9, using (47) and by noting that λ
(iv)
c (s) = 50.9627, we obtain

hn = 0.4900. From (45), (46) and the simulation (M = 104) we obtain
Var(λ̃c,n,BC (s)) −V̂ar(λ̃c,n,BC (s)) = 0.3886 − 0.4080 = −0.0194 and
Bias(λ̃c,n,BC (s)) − B̂ias(λ̃c,n,BC (s)) = −0.2203 − (−0.1810) = −0.0393.

Clearly the bias of λ̃c,n,BC (s) is much smaller than the bias of λ̃c,n(s) (cf. Example 2
(continued)); the bias reduction proposed in (42) works.

A cautionary remark on the range of validity of our results in Example 2 (continued)
and Example 3 is in order. The remainder terms in (38), (39), (43) and (44) will depend
on the values of the parameters involved, such as λc(s), λ′′

c (s), λ
(iv)
c (s), a, and τ . In

order to have a close agreement between the second order approximations and the
results of our simulations as in Example 2 (continued) and Example 3, one would
need that λc(s), |λ′′

c (s)|h2
n , |λ(iv)

c (s)|h4
n , and aτ are relatively small compared with

ln(|Wn|/τ).
To conclude this section, we remark that, in view of the preceding results, the bias

corrected estimator λ̃c,n,BC (s) is to be preferred in practical applications.
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3 Proofs of Lemma 1 and Theorems 1 and 2

In this section we prove our main results for the case that the period τ is known.

Proof of Lemma 1 By (4), E(ân) can be computed as follows:

E
(
ân

) = 2

|Wn|2 EX (Wn) = 2

|Wn|2
∫

Wn

λ(s)ds

= 2

|Wn|2
∫

Wn

(λc(s) + as)ds = 2

|Wn|2
(
θ |Wn| + a

2
|Wn|2 + O(1)

)

= a + 2θ

|Wn| + O
(

1

|Wn|2
)

(48)

as n → ∞. The variance of ân is obtained in a similar fashion:

Var
(
ân

) = 4

|Wn|4 Var (X (Wn)) = 4

|Wn|4 EX (Wn) = 4

|Wn|4
(a

2
|Wn|2 + O(|Wn|)

)

= 2a

|Wn|2 + O
(

1

|Wn|3
)

(49)

as n → ∞. This completes the proof of Lemma 1.

We first prove Theorem 2.

Proof of Theorem 2 First we prove (17). Note that

Var
(
λ̃c,n(s)

)
= Var

(
λ̄c,n(s)

) + Var
(
λ̃c,n(s) − λ̄c,n(s)

)

+ 2Cov
(
λ̄c,n(s), (λ̃c,n(s) − λ̄c,n(s))

)
. (50)

We will first show that

Var
(
λ̄c,n(s)

) = aτ

2hn ln(|Wn|/τ)
+ o

(
1

hn ln |Wn|
)

(51)

as n → ∞. To establish (51) we argue as follows. By (6), for sufficiently large n, we
have that X ([s +kτ −hn, s +kτ +hn]∩Wn) and X ([s + jτ −hn, s + jτ +hn]∩Wn)

are independent, provided k = j . Hence, for large n, we have

Var
(
λ̄c,n(s)

)

= 1

4h2
n(ln(|Wn|/τ))2

∞∑

k=1

1

k2 Var (X ([s + kτ − hn, s + kτ + hn] ∩ Wn))
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= 1

4h2
n(ln(|Wn|/τ))2

∞∑

k=1

1

k2

∫ hn

−hn

(λc(x + s) + a(x + s)) I(x + s + kτ ∈ Wn)dx

+ aτ

4h2
n(ln(|Wn|/τ))2

∞∑

k=1

1

k

∫ hn

−hn

I(x + s + kτ ∈ Wn)dx . (52)

Since s is a Lebesgue point of λc, a simple calculation shows that the first term on the
r.h.s. of (52) is of order O(hn

−1(ln |Wn|)−2), as n → ∞. Clearly

1

ln(|Wn|/τ)

∞∑

k=1

1

k
I(x + s + kτ ∈ Wn) = 1 + O

(
1

ln |Wn|
)

(53)

as n → ∞, uniformly in x ∈ [−hn, hn]. Using (53), we easily seen that the second
term on the r.h.s. of (52) is equal to

aτ

4h2
n ln(|Wn|/τ)

∫ hn

−hn

(
1

ln(|Wn|/τ)

∞∑

k=1

1

k
I(x + s + kτ ∈ Wn)

)

dx

= aτ

2hn ln(|Wn|/τ)
+ O

(
1

hn(ln |Wn|)2

)

(54)

as n → ∞, and (51) follows.
Next we show that the second and third term in (50) are of lower order. By (13),

the second term on the r.h.s. of (50) is equal to

(

s + |Wn|
ln(|Wn|/τ)

)2

Var
(
ân

) = 2a

(ln(|Wn|/τ))2 + O
(

1

|Wn|(ln |Wn|)
)

(55)

as n → ∞. By (54), (55) and the Cauchy–Schwarz inequality, we obtain that the third
term on the r.h.s. of (50) is of order o((hn ln |Wn|)−1) as n → ∞. Combining these
results, we obtain (17).

Next we prove (19). Note that

Eλ̃c,n(s) = Eλ̄c,n(s) −
(

s + |Wn|
ln(|Wn|/τ)

)

E
(
ân − a

)
(56)

(cf. (11)) and

Eλ̄c,n(s) = 1

ln
( |Wn |

τ

)
∞∑

k=1

1

k

EX ([s + kτ − hn, s + kτ + hn] ∩ Wn)

2hn

−a

⎛

⎝s + |Wn|
ln

( |Wn |
τ

)

⎞

⎠ . (57)
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The first term on the r.h.s. of (57) is equal to

1

2hn ln(|Wn|/τ)

∞∑

k=1

1

k

∫ hn

−hn

λ(x + s + kτ)I(x + s + kτ ∈ Wn)dx

= 1

2hn

∫ hn

−hn

λc(x + s)

(
1

ln(|Wn|/τ)

∞∑

k=1

1

k
I(x + s + kτ ∈ Wn)

)

dx

+ a

2hn ln(|Wn|/τ)

∞∑

k=1

1

k

∫ hn

−hn

(x + s + kτ)I(x + s + kτ ∈ Wn)dx, (58)

where we have used (1) and (2). Since λc has finite second derivative λ′′
c at s, by (6)

and Taylor’s theorem (e.g. see Theorem B.5 of Dudley (1989), p. 413), we have

1

2hn

∫ hn

−hn

λc(x + s)dx = 1

2hn

∫ hn

−hn

(

λc(s) + λ′
c(s)

1! x + λ′′
c (s)

2! x2 + o(x2)

)

dx

= λc(s) + λ′′
c (s)

6
h2

n + o(h2
n) (59)

as n → ∞. The second term on the r.h.s. of (58) is easily seen to be equal to

a

(

s + |Wn|
ln(|Wn|/τ)

)

+ O
(

1

ln |Wn|
)

(60)

as n → ∞. Combining (53), (59) and (60), we conclude that

Eλ̄c,n(s) = λc(s) + λ′′
c (s)

6
h2

n + o(h2
n) + O

(
1

ln |Wn|
)

(61)

as n → ∞. Using (12), the second term on the r.h.s. of (56) reduces to

− 2θ

ln(|Wn|/τ)
+ O

(
1

|Wn|
)

= O
(

1

ln |Wn|
)

(62)

as n → ∞. By (61), (62) and assumption (18), we obtain (19). This completes the
proof of Theorem 2. ��

Proof of Theorem 1 By (17) and assumption (15) we obtain

Var
(
λ̃c,n(s)

)
= o(1) (63)
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as n → ∞. We also easily check from the second part of the proof of Theorem 2 that

Eλ̃c,n(s) = λc(s) + o(1) (64)

as n → ∞, provided s is a Lebesgue point of λc. Together (63) and (64), imply (16).
This completes the proof of Theorem 1. ��

4 Proofs of Theorems 3, 4 and 5

In this section we give our proofs for the case that the period τ is unknown.

Proof of Theorem 3 Let

λ̂c,n,1(s) := 1

ln
( |Wn |

τ

)
∞∑

k=1

1

k

X ([s + kτ̂n − hn, s + kτ̂n + hn] ∩ Wn)

2hn

−ân

⎛

⎝s + |Wn|
ln

( |Wn |
τ̂n

)

⎞

⎠ (65)

and

λ̂c,n,2(s) := 1

ln
( |Wn |

τ

)
∞∑

k=1

1

k

X ([s + kτ̂n − hn, s + kτ̂n + hn] ∩ Wn)

2hn

−ân

⎛

⎝s + |Wn|
ln

( |Wn |
τ

)

⎞

⎠ . (66)

By Theorem 1, to prove this theorem it suffices to check

(
λ̂c,n(s) − λ̂c,n,1(s)

)
+

(
λ̂c,n,1(s) − λ̂c,n,2(s)

)
= op(1), (67)

and
(
λ̂c,n,2(s) − λ̃c,n(s)

)
= op(1) (68)

as n → ∞.
First we prove (68). Recall the notation Bh(x) := [x − h, x + h]. Then, (68) holds

true, if we can show

1

ln
( |Wn |

τ

)
∞∑

k=1

1

2hnk

∣
∣{X

(
Bhn (s + kτ̂n) ∩ Wn

)

−X
(
Bhn (s + kτ) ∩ Wn

)}∣∣ = op(1) (69)
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618 R. Helmers, I. W. Mangku

as n → ∞. To prove (69), first note that the difference within curly brackets on the
l.h.s. of (69) does not exceed

X
(
Bhn (s + kτ̂n)�Bhn (s + kτ) ∩ Wn

)
. (70)

Now we notice that

Bhn−|k(τ̂n−τ)|(s + kτ) ⊆ Bhn (s + kτ̂n) ⊆ Bhn+|k(τ̂n−τ)|(s + kτ). (71)

This implies that the quantity in (70) does not exceed

2X
(
Bhn+|k(τ̂n−τ)|(s + kτ) \ Bhn−|k(τ̂n−τ)|(s + kτ) ∩ Wn

)
. (72)

Hence, to prove (69), it suffices to show that

1

ln
( |Wn |

τ

)
∞∑

k=1

1

hnk
X

(
Bhn+|k(τ̂n−τ)|(s + kτ) \ Bhn−|k(τ̂n−τ)|

× (s + kτ) ∩ Wn) = op(1) (73)

as n → ∞. To prove (73) we argue as follows. First note that, for any k such that
(s + kτ) ∈ Wn , we have |k| = O(|Wn|) as n → ∞. Let �n denotes the l.h.s. of (73),
and let also ε > 0 be any fixed real number. Then, for any fixed δ > 0, we have

P (|�n| ≥ ε) ≤ P
(
{|�n| ≥ ε} ∩

{
|Wn||τ̂n − τ | ≤ δhn(ln(|Wn|τ−1))|Wn|−1

})

+P
(
|Wn||τ̂n − τ | > δhn(ln(|Wn|τ−1))|Wn|−1

)
. (74)

By assumption (25), we have that the second term on the r.h.s. of (74) is op(1), as
n → ∞. Let αn := (ln(|Wn|τ−1))|Wn|−1. Then the first term on the r.h.s. of (74),
does not exceed P(|�̄n| ≥ ε), where

�̄n = 1

ln(|Wn|/τ)

∞∑

k=1

1

hnk
X

(
Bhn+δhnαn (s + kτ) \ Bhn−δhnαn (s + kτ) ∩ Wn

)
. (75)

Next, by Markov inequality for the first moment, we have that P(|�̄n| ≥ ε) ≤
ε−1E|�̄n|, and ε−1E|�̄n| can also be written as

1

ε ln
( |Wn |

τ

)
∞∑

k=1

1

hnk

∫

B(1+δαn )hn (0)\B(1−δαn )hn (0)

λ(x + s + kτ)

×I(x + s + kτ ∈ Wn)dx . (76)
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Since λ(x + s + kτ) = λc(x + s) + a(x + s + kτ), the quantity in (76) can be written
as

1

ε ln(|Wn|/τ)

1

hn

∫

B(1+δαn )hn (0)\B(1−δαn )hn (0)

(λc(x + s) + a(x + s))
(
Ln,x

)
dx

+ aτ

ε ln(|Wn|/τ)

1

hn

∫

B(1+δαn )hn (0)\B(1−δαn )hn (0)

( ∞∑

k=1

I(x + s + kτ ∈ Wn)

)

dx . (77)

where Ln,x = ∑∞
k=1 k−1I(x + s + kτ ∈ Wn). Since Ln,x ∼ ln(|Wn|/τ) as n → ∞

uniformly in x , a simple calculation shows that the first term of (77) is of order
O(αn) = O((ln |Wn|)|Wn|−1) as n → ∞. Hence, the proof of Theorem 3 is complete
if we can show that the second term of (77) is o(1) as n → ∞. To show this, first
note that

∑∞
k=1 I(s + kτ + x ∈ Wn) ≤ |Wn|τ−1 + 1 ≤ 2|Wn|τ−1, for n large enough.

Then, the quantity in the last term of (77) does not exceed

2a|Wn|
εhn ln

( |Wn |
τ

)
∣
∣B(1+δαn)hn (0)\B(1−δαn)hn (0)

∣
∣= 2a|Wn|

εhn ln
( |Wn |

τ

) (4δαnhn) = 8aδ

ε
. (78)

By taking δ = δn ↓ 0 as n → ∞, we have that the quantity in (78) converges to zero
as n → ∞.

Next we prove (67). The second term on the l.h.s. of (67) is equal to

ân|Wn|
(

1

ln(|Wn|/τ̂n)
− 1

ln(|Wn|/τ)

)

.

A simple calculation shows that

(
1

ln(|Wn|/τ̂n)
− 1

ln(|Wn|/τ)

)

= Op

(
(τ̂n − τ)

(ln(|Wn|/τ))2

)

(79)

as n → ∞. By assumption (25) and (79), we obtain the second term on the l.h.s. of
(67) is op(1) as n → ∞. The first term on the l.h.s. of (67) is equal to

(
1

ln(|Wn|/τ̂n)
− 1

ln(|Wn|/τ)

) ∞∑

k=1

1

k

X ([s + kτ̂n − hn, s + kτ̂n + hn] ∩ Wn)

2hn
.

Since λ̂c,n,2(s) = λc(s) + op(1), we have

∞∑

k=1

1

k

X ([s + kτ̂n − hn, s + kτ̂n + hn] ∩ Wn)

2hn
= Op(|Wn|), (80)

as n → ∞. By assumption (25), (79) and (80), we obtain the first term on the l.h.s. of
(67) is op(1) as n → ∞. This completes the proof of Theorem 3. ��
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620 R. Helmers, I. W. Mangku

Proof of Theorem 4 Denote

Bn =
{

|τ̂n − τ | ≤ δh3
n ln |Wn|
|Wn|2

}

. (81)

Then we can write λ̂�
c,n(s) as follows:

λ̂�
c,n(s) = I(Bn)λ̂c,n(s) − Rn,1 + Rn,2 + Rn,3 + Rn,4, (82)

where

Rn,1 = I(Bn)I
(
λ̂c,n(s) > Dn

)
λ̂c,n(s)

Rn,2 = I(Bc
n)I

(
λ̂c,n(s) ≤ Dn

)
λ̂c,n(s)

Rn,3 = I(Bn)I
(
λ̂c,n(s) > Dn

)
Dn

Rn,4 = I(Bc
n)I

(
λ̂c,n(s) > Dn

)
Dn .

We see that E(Rn,2 + Rn,4) ≤ 2DnP(Bc
n). By the assumption (28), this quantity is of

order o(h2
n), as n → ∞. While

E(Rn,3 − Rn,1) ≤ 2D−r
n EI(Bn)λ̂1+r

c,n (s) ≤ 2c−r hrεEI(Bn)λ̂1+r
c,n (s)

for sufficiently large n. The latter inequality is due to the lower bound of Dn . Since,
for sufficiently large n we have Bn ⊂ An , then by Lemma 2 and choosing sufficiently
large r such that rε > 2, we have this term is of order o(h2

n), as n → ∞. Hence, it
remains to show

E
(

I(Bn)λ̂c,n(s)
)

= λc(s) + λ′′
c (s)

6
h2

n + o(h2
n), (83)

as n → ∞. To prove (83) we argue as follows. First we write

E
(

I(Bn)λ̂c,n(s)
)

= EI(Bn)
(
λ̂c,n(s) − λ̂c,n,1(s)

)
+ EI(Bn)

(
λ̂c,n,1(s) − λ̂c,n,2(s)

)

+EI(Bn)
(
λ̂c,n,2(s) − λ̃c,n(s)

)
+ Eλ̃c,n(s) − EI(Bc

n)λ̃c,n(s),

(84)

where λ̃c,n(s), λ̂c,n,1(s) and λ̂c,n,2(s) are given respectively by (5), (65) and (66).
By Theorem 2, we have Eλ̃c,n(s) = λc(s) + (λ′′

c (s)h
2
n)/6 + o(h2

n), as n → ∞. By
Lemma 2 (for the case τ is known), for any positive integer m, we have Eλ̃2m

c,n(s) =
O(1), as n → ∞. Then, by assumption (28) and Hölder’s inequality, we obtain
EI(Bc

n)λ̃c,n(s) = o(h2
n), as n → ∞. A simple calculation using assumption (28), also

shows that the first and second term on the r.h.s. of (84) is of order o(h2
n), as n → ∞.

Hence, it remains to check that the third term on the r.h.s. of (84) is of order o(h2
n), as

n → ∞.
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This term does not exceed

EI(Bn)
1

ln(|Wn|/τ)

∞∑

k=1

1

2hnk

∣
∣{X

(
Bhn (s + kτ̂n) ∩ Wn

) − X
(
Bhn (s + kτ) ∩ Wn

)}∣∣ .

(85)
By a similar calculation as in the proof of (69), but with assumption (25) now replaced
by assumption (28), we obtain that the quantity in (85) is of order o(h2

n), as n → ∞.
This completes the proof of Theorem 4. ��
Proof of Theorem 5 Denote

Cn =
{

|τ̂n − τ | ≤ δh1/2
n (ln |Wn|)1/2

|Wn|2
}

. (86)

Then we can write λ̂�
c,n(s) as follows:

λ̂�
c,n(s) = I(Cn)λ̂c,n(s) − R∗

n,1 + R∗
n,2 + R∗

n,3 + R∗
n,4, (87)

where R∗
n,1, R∗

n,2, R∗
n,3 and R∗

n,4 are the same as respectively Rn,1, Rn,2, Rn,3 and Rn,4
in (82) but with set Bn replaced by set Cn . Then, to prove this theorem it suffices to
check that

Var
(

I(Cn)λ̂c,n(s)
)

= aτ

2hn ln |Wn| + o

(
1

hn ln |Wn|
)

(88)

and

E
(
R∗

n,1

)2 + E
(
R∗

n,2

)2 + E
(
R∗

n,3

)2 + E
(
R∗

n,4

)2 = o

(
1

hn ln |Wn|
)

(89)

as n → ∞. First, we consider (89). We see that E(R∗
n,2)

2 + E(R∗
n,4)

2 ≤ 2D2
nP(Cc

n).
By the assumption (30), this quantity is of order o((hn ln |Wn|)−1), as n → ∞. While

E(R∗
n,1)

2+E(R∗
n,3)

2 ≤ 2D−r
n EI(Cn)λ̂2+r

c,n (s)≤(2EI(Cn)λ̂
1+r
c,n (s))/(cr (hn ln |Wn|)rε),

for sufficiently large n. The latter inequality is due to the bound Dn ≥ c(hn ln |Wn|)ε .
Since, for sufficiently large n we have Cn ⊂ An , then by Lemma 2 and choosing
sufficiently large r such that rε > 1, we have this term is of order o((hn ln |Wn|)−1),
as n → ∞.

Next, we consider (88). To prove (88) we argue as follows. First we write

I(Cn)λ̂c,n(s) = I(Cn)
(
λ̂c,n(s) − λ̂c,n,1(s)

)
+ I(Cn)

(
λ̂c,n,1(s) − λ̂c,n,2(s)

)

+ I(Cn)
(
λ̂c,n,2(s) − λ̃c,n(s)

)
+ λ̃c,n(s) − I(Cc

n)λ̃c,n(s), (90)
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622 R. Helmers, I. W. Mangku

where λ̃c,n(s), λ̂c,n,1(s) and λ̂c,n,2(s) are given respectively by (5), (65) and (66).
Then, to prove (88), it suffices to check

Var
(
λ̃c,n(s)

)
= aτ

2hn ln |Wn| + o

(
1

hn ln |Wn|
)

, (91)

E
(

I(Cn)
(
λ̂c,n,2(s) − λ̃c,n(s)

))2 = o

(
1

hn ln |Wn|
)

, (92)

and

E
(

I(Cn)
(
λ̂c,n(s) − λ̂c,n,1(s)

))2 + E
(

I(Cn)
(
λ̂c,n,1(s) − λ̂c,n,2(s)

))2

+E
(

I(Cc
n)λ̃c,n(s)

)2 = o

(
1

hn ln |Wn|
)

(93)

as n → ∞. By Theorem 2, we have (91). A simple calculation using assumption (30)
shows that the first and second term on the l.h.s. of (93) is of order o(h−1

n (ln |Wn|)−1)

as n → ∞. By Lemma 2 (for the case τ is known), for every positive integer m, we
have Eλ̃2m

c,n(s) = O(1), as n → ∞. Then, by assumption (30) and Hölder’s inequality,
we obtain that the third term on the l.h.s. of (93) is of order o(h−1

n (ln |Wn|)−1) as
n → ∞. Hence, it remains to prove (92).

The l.h.s. of (92) does not exceed

1
(

ln
( |Wn |

τ

))2 E

×
( ∞∑

k=1

1

2hnk

∣
∣{X

(
Bhn (s + kτ̂n) ∩ Wn

) − X
(
Bhn (s + kτ) ∩ Wn

)}∣∣ I(Cn)

)2

.

(94)

By writing the square of the sum in (94) as a double sum
∑

k
∑

j we can, by Fubini’s
theorem, interchange expectation and summation. Next we split the double sum into
two parts, one corresponding to the case of different indices k = j , and the other one
to the case k = j . For sufficiently large n, we can now write the quantity in (94) as

1
(

ln
( |Wn |

τ

))2

∞∑

k=1

∞∑

j =k

1

4h2
nk2

(
E

∣
∣{X

(
Bhn (s + kτ̂n) ∩ Wn

)

−X
(
Bhn (s + kτ) ∩ Wn

)}∣∣ I(Cn)
) × (

E
∣
∣{X

(
Bhn (s + j τ̂n) ∩ Wn

)

−X
(
Bhn (s + jτ) ∩ Wn

)}∣∣ I(Cn)
) + 1

(
ln

( |Wn |
τ

))2

∞∑

k=1

1

4h2
nk2

E
({

X
(
Bhn (s + kτ̂n) ∩ Wn

) − X
(
Bhn (s + kτ) ∩ Wn

)})2 I(Cn). (95)
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Now we see that, for large n, the second term of (95) does not exceed the first term.
Hence, for large n, the quantity in (95) does not exceed

2

⎛

⎝ 1

ln
( |Wn |

τ

)
∞∑

k=1

1

2hnk
E

∣
∣{X

(
Bhn (s + kτ̂n) ∩ Wn

)

−X
(
Bhn (s + kτ) ∩ Wn

)}∣∣ I(Cn)
)2

.

(96)

Then, by a similar calculation as that in the proof of (69), but with assumption (25)
replaced by (30), we obtain that the quantity in (96) is of order o((hn ln |Wn|)−1), as
n → ∞. Hence, we obtain (92). This completes the proof of Theorem 5. ��
In the proofs of Theorems 4 and 5 we require the following lemma. Consider the
assumption (25) and let

An =
{

|τ̂n − τ | ≤ δhn ln |Wn|
|Wn|2

}

.

Lemma 2 Suppose that the intensity function λ satisfies (1) and is locally integrable.
If, in addition, hn ↓ 0 and hn ln |Wn| → ∞, then for any positive integer m we have

E
(

I(An)λ̂2m
c,n(s)

)
= O(1) (97)

as n → ∞, provided s is a Lebesgue point of λc.

Proof First we write

I(An)λ̂c,n(s) = I(An)
(
λ̂c,n(s) − λ̂c,n,1(s)

)
+ I(An)

(
λ̂c,n,1(s) − λ̂c,n,2(s)

)

+I(An)
(
λ̂c,n,2(s) − λ̃c,n(s)

)
+ I(An)

(
λ̃c,n(s) − Eλ̃c,n(s)

)

+I(An)Eλ̃c,n(s) (98)

where λ̃c,n(s), λ̂c,n,1(s) and λ̂c,n,2(s) are given respectively by (5), (65) and (66).
Then, to prove (97) it suffices to check

EI(An)
(
λ̂c,n(s) − λ̂c,n,1(s)

)2m + EI(An)
(
λ̂c,n,1(s) − λ̂c,n,2(s)

)2m

+EI(An)
(
λ̂c,n,2(s) − λ̃c,n(s)

)2m + E
(
λ̃c,n(s) − Eλ̃c,n(s)

)2m

+
(

Eλ̃c,n(s)
)2m = O(1) (99)
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as n → ∞. Now we see that the leading term on the l.h.s. of (99) is (Eλ̃c,n(s))2m .
Because of (64), we can write

(
Eλ̃c,n(s)

)2m = (λc(s) + o(1))2m = (λc(s))
2m + o(1), (100)

which is O(1) as n → ∞. From the proof of (92), but with the set Cn replaced by An ,
we see for the case m = 1 that the first term on the l.h.s. of (99) is o(1) as n → ∞.
This argument can be extended to the case m > 1, and we conclude that this term is
asymptotically bounded. Note that we did not require this lemma in the proof of (92).
For the case m = 1, the second term on the l.h.s. of (99) is nothing but the variance
of λ̃c,n(s). By (63), we see that this term is o(1) as n → ∞. The argument in the
proof of (63) can also be extended to the case m > 1, to conclude that this term is
asymptotically bounded. This completes the proof of Lemma 2. ��

5 Proofs of Corollaries 1 and 2

In this section we derive second order terms for bias and variance of λ̃c,n(s)
(cf. Corollary 1). Similar results for a bias corrected estimator λ̃c,n,BC (s) (cf. Co-
rollary 2) are also established.

Proof of Corollary 1 First we check (38). To do this we follow the argument given in
(50) – (52) and note that

∑∞
k=1 k−2I(x + s + kτ ∈ Wn) = π2/6 + o(1) as n → ∞

uniformly in x ∈ [−hn, hn]. This directly yields that the first term on the r.h.s. of (52)
is equal to

(λc(s) + as)(π2/6)

2hn(ln(|Wn|/τ))2 + o

(
1

hn(ln |Wn|)2

)

(101)

as n → ∞.
The second term on the r.h.s. of (52) is easily seen to be equal to

aτ

2hn ln(|Wn|/τ)
+ aτγ

2hn(ln(|Wn|/τ))2 + o

(
1

hn(ln |Wn|)2

)

(102)

as n → ∞, where we have used the well-known fact that

∞∑

k=1

k−1I(x + s + kτ ∈ Wn) = ln(|Wn|/τ) + γ + o(1) (103)

as n → ∞ uniformly in x ∈ [−hn, hn]. Finally we note that simple computations
show that the second and third term on the r.h.s. of (50) are of lower order. This
completes the proof of (38).
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Next we prove (39). Since λc has finite fourth derivative λ
(iv)
c at s, by (6) and Taylor’s

theorem (e.g. see Theorem B.5 of Dudley 1989, p. 413), we have

1

2hn

∫ hn

−hn

λc(x + s)dx = λc(s) + λ′′
c (s)

6
h2

n + λ
(iv)
c (s)

120
h4

n + o(h4
n) (104)

as n → ∞. In view of (103), (56), (57) and (104), we easily check that the first term
on the r.h.s. of (58) is equal to

λc(s) + λ′′
c (s)

6
h2

n + λ
(iv)
c (s)

120
h4

n + λc(s)γ

ln(|Wn|/τ)
+ o

(

h4
n + 1

ln |Wn|
)

(105)

as n → ∞.
The second term on the r.h.s. of (58) is equal to

a

2hn ln(|Wn|/τ)

∞∑

k=1

1

k

∫ hn

−hn

(x + s)I(x + s + kτ ∈ Wn)dx

+ aτ

2hn ln(|Wn|/τ)

∞∑

k=1

∫ hn

−hn

I(x + s + kτ ∈ Wn)dx . (106)

Using (103), it easily verified that the first term of (106) reduces to

as + asγ

ln(|Wn|/τ)
+ o

(
1

ln |Wn|
)

(107)

as n → ∞. With ζn = (2hn)
−1 ∑∞

k=1

∫ hn
−hn

I(x + s + kτ ∈ Wn)dx − |Wn|/τ (cf. also
Corollary 1) we easily see that the second term of (106) can be written as

a|Wn|
ln(|Wn|/τ)

+ aτζn

ln(|Wn|/τ)
. (108)

The sum of the first term in (107) and the first term in (108) cancels with the second
term on the r.h.s. of (57). Note also that the l.h.s. of (62) and the line preceding it
yields the term −2θ/(ln(|Wn|/τ)) appearing in (39). Combining this with (105), the
second term of (107) and the second term of (108), we obtain the r.h.s. of (39). This
completes the proof of Corollary 1. ��
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Proof of Corollary 2 First we prove (43). Note first that the bias corrected estimator
λ̃c,n,BC (s) given in (42) can be written as

(

1 − γ

ln(|Wn|/τ)

)

λ̃c,n(s)−
(
λ̃c,n,h′

n
(s + 2h′

n) + λ̃c,n,h′
n
(s − 2h′

n) − 2λ̃c,n,h′
n
(s)

)
h2

n

24(h′
n)2

+2θ̂n,b − (γ s + τζn)ân

ln(|Wn|/τ)
. (109)

A simple calculation using (41) shows that Var(θ̂n,b)= a(ln(|Wn|/τ))−1 +
O((ln |Wn|)−2) as n → ∞. This, together with (13), (38) and Cauchy–Schwarz,
easily implies that both the variance of the third term in (109) and the covariances
of this term with the other two terms are of negligible order o(h−1

n (ln |Wn|)−2), as
n → ∞.

It remains to show that the variance of the sum of the first two terms in (109) is equal
to the r.h.s. of (43). To verify this, let An,hn (s) and −Bn(s) denote respectively the first
and second term on the r.h.s. of (5), in other words we write λ̃c,n(s) = λ̃c,n,hn (s) =
An,hn (s) − Bn(s). Then, simple algebra shows that the sum of the first and second
term in (109) can be written as

(

1 − γ

ln(|Wn|/τ)

)

An,hn (s) − An,h′
n
(s + 2hn) h2

n

24(h′
n)2 − An,h′

n
(s − 2hn) h2

n

24(h′
n)2

+ An,h′
n
(s) h2

n

12(h′
n)2 −

(

1 − γ

ln(|Wn|/τ)

)

Bn(s). (110)

From the proof of Corollary 1, we can infer that Var(An,hn (s)) is equal to the r.h.s.
of (38). Similarly, using hn = o(h′

n) as n → ∞ and the fact λc is continuous at s,
we also see that Var(An,h′

n
(s + 2h′

n)), Var(An,h′
n
(s − 2h′

n)) and Var(An,h′
n
(s)) are all

equal to

aτ

2h′
n ln(|Wn|/τ)

+ o

(
1

hn(ln |Wn|)2

)

(111)

as n → ∞. Next we show that the variance of the last term in (110) and the covariances
of this term with all the other terms in (110) are of negligible order o(h−1

n (ln |Wn|)−2),
as n → ∞. To verify this, note that from the proof of Theorem 1 we can infer that
Var(Bn(s)) is of order o(h−1

n (ln |Wn|)−2) as n → ∞ (cf. (55)). From the proof of
Corollary 1 we know that Cov(An,hn (s), Bn(s)) is of order o(h−1

n (ln |Wn|)−2) as
n → ∞. By a similar argument we also see that Cov(An,h′

n
(s + 2h′

n), Bn(s)),
Cov(An,h′

n
(s − 2h′

n), Bn(s)) and Cov(An,h′
n
(s), Bn(s)) are all of order

o(h−1
n (ln |Wn|)−2), as n → ∞. Hence the variance of the last term in (110) and

the covariances of this term with the other terms in (110) are indeed of negligible
order o(h−1

n (ln |Wn|)−2), as n → ∞.
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We can conclude that it suffices now to show that the variance of the sum of the first
four terms in (110) is equal to the r.h.s. of (43). To prove this, we argue as follows: Since
hn is of lower order than h′

n , for n sufficiently large, we easily check that, An,hn (s) and
An,h′

n
(s + 2h′

n), An,hn (s) and An,h′
n
(s − 2h′

n), An,h′
n
(s) and An,h′

n
(s + 2h′

n), An,h′
n
(s)

and An,h′
n
(s − 2h′

n) and also An,h′
n
(s + 2h′

n) and An,h′
n
(s − 2h′

n) are all independent.
The same argument is also valid when hn = h′

n (cf. (45)). A simple calculation shows
that Cov(An,hn (s), An,h′

n
(s)) is equal to the quantity in (111). Hence, the variance of

the sum of the first four terms in (110) is equal to the sum of variances of the first four
terms in (110) plus two times the covariance of its first and fourth term. By (38), we
see that variance of the first term in (110) is equal to the sum of the first and fourth
term on the r.h.s. of (43). Note that the +aτγ coefficient in the second term on the
r.h.s. of (38) is replaced by −aτγ in the fourth term on the r.h.s. of (43). This is
because the variance of the first term in (110) is equal to the r.h.s. of (38) multiplied by
(

1 − γ
ln(|Wn |/τ)

)2
. From the fact that Cov(An,hn (s), An,h′

n
(s)) is equal to the quantity

in (111), it easily seen that two times covariance of the first and fourth term in (110) is
equal to the second term on the r.h.s. of (43). By (111) and the line preceding it, and
by noting that 1

242 + 1
242 + 1

122 = 1
96 , the sum of the variances of the second, third and

fourth terms in (110) is equal to the third term on the r.h.s. of (43). This completes the
proof of (43).

Next we prove (44). Since λc has finite fourth derivative λ
(iv)
c in the neighborhood

of s and h′
n ↓ 0 as n → ∞, a simple calculation using (39) and Taylor’s theorem (e.g.

see Theorem B.5 of Dudley 1989, p. 413), shows that

Eλ̃′′
c,n(s) = λ′′

c (s) + λ
(iv)
c (s)

2
(h′

n)
2 + o

(

(h′
n)

2 + 1

(h′
n)2 ln |Wn|

)

(112)

as n → ∞. A simple calculation using (12) and (40) shows that Eθ̂n,b = θ +
o((ln |Wn|)−1) as n → ∞. Replacing λ̃c,n(s), ân , λ̃′′

c,n(s) and θ̂n,b on the r.h.s. of

(42) by respectively Eλ̃c,n(s) (cf. (39)), Eân (cf. (12)), Eλ̃′′
c,n(s) (cf. (112)) and Eθ̂n,b,

we directly obtain (44). The same argument is also valid when h′
n = hn (cf. (46)).

This completes the proof of Corollary 2. ��
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