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Abstract We propose a class of nonparametric tests on the Pareto tail index of the
innovation distribution in the linear autoregressive model. The simulation study illus-
trates a good performance of the tests. Such tests have various applications in a study of
flood flows, rainflow data, behavior of solids, atmospheric ozone layer and reliability
analysis, in communication engineering, in stock markets and insurance.

Keywords Empirical process · Heavy tailed distribution · Feigin-Resnick estimator ·
Pareto tail index

1 Introduction

If we are interested in the extremal events such as the extreme intensity of the wind,
the high flood levels of the rivers or extreme values of environmental indicators, then
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580 J. Jurečková et al.

we are rather interested in the tails of the underlying distribution than in its central
part. A goodness-of-fit test does not provide us with a sufficient information on the
shape of tails, because it concerns mostly the central part. It is important to decide
whether the probability distribution function is light- or heavy-tailed. If we decide in
favor of a heavy tail, in the next step we should study more closely the shape of the
tail, and make the pertinent decisions.

Testing the hypothesis on the tail index of a heavy tailed distribution is an alterna-
tive inference to the classical point estimation, surprisingly not yet much elaborated
in the literature, though the tests often work under weaker conditions than the point
estimators, can be easily reconverted into the confidence sets, and have an intuitive
interpretation.

In the present paper, we construct a class of tests on the tail index of the innovation
distribution in the linear autoregressive model. Such tests have applications in the
environmental and financial time series, among others.

Consider the AR(p) model where the observation Xt satisfies

Xt = ρ1 Xt−1 + · · · + ρp Xt−p + εt , t = 0,±1,±2, . . . , (1)

where ρ := (ρ1, . . . , ρp)
′ ∈ R

p is an unknown parameter and εt , t = 0,±1,±2, . . . ,
are independent identically distributed (i.i.d.) random variables with a heavy-tailed
distribution function F satisfying

lim
x→∞

− ln(1 − F(x))

m ln x
= 1 (2)

for some m > 0. The l’Hospital rule and the von Mises condition (see Embrechts et
al. (1997), Chap. 3, Theorem 3.3.7) imply that the distributions of type (2) satisfy

1 − F(x) = x−m L(x), x ≥ x0, (3)

for some x0 > 0, where L stands for a positive function, slowly varying at infinity.
In the sequel, L , with or without a suffix will stand for such a function. Moreover,
we shall throughout assume that the d.f. F is absolutely continuous having Lebesgue
density f .

We shall assume that the time series is strictly stationary. According to Proposition
13.3.2 in Brockwell and Davis (1991, p. 537), a sufficient condition for this is that
1 − ρ1z − · · · − ρpz p �= 0 for |z| ≤ 1. Moreover, then

Xt =
∞∑

t=0

ψ jεt− j , a.s., (4)

with ψ ′
j s such that

∑∞
t=0 |ψ j |γ < ∞, for 0 < γ < 1

m ∧ 1. On the other hand, from
Theorem 3.3.7 of Embrechts et al. (1997), we obtain that under (3), for any finite n,

max
1≤t≤nN

|εt | = Op(N
1
m L1(N )), as N → ∞.
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Testing the tail index in autoregressive models 581

This and (4) in turn imply

max
1≤t≤nN

|Xt | = Op(N
1
m L1(N )), max

1≤t≤nN
‖Yt‖ = Op(N

1
m L1(N )), (5)

where Yt−1 := (Xt−1, . . . , Xt−p)
′, t = 0,±1, . . . .

Let m0 > 0 be a fixed number. The problem of interest is to test either of the
following two hypotheses:

H0 : F is of type (3), concentrated on the positive half-axis, satisfying

xm0(1 − F(x)) ≥ 1, for x > x0,

with hypothetical 0 < m0 ≤ 2 and for some x0 ≥ 0,

against the alternative

K0 : F is of type (3), concentrated on the positive half-axis, and limx→∞xm0

(1 − F(x)) < 1,
or

H1 : F is of type (3) satisfying

xm0(1−F(x))≥1, for x> x0, with hypothetical m0 > 2, for some x0 ≥ 0,

against the alternative
K1 : F is of type (3) satisfying limx→∞xm0(1 − F(x)) < 1, with m0 > 2.

In either of these cases we wish to test the hypothesis that the right tail of F is
the same or heavier than that of the Pareto distribution with index m0 against the
alternative that the right tail of F is lighter. The reason for distinguishing between H0
and H1 is that one needs to use different estimators of autoregressive parameters in
these two cases, which in turn impose different conditions on the model.

Due to (3), the problem of identifying the tails is semiparametric in its nature,
involving a nuisance slowly varying function, hence the hypothesis H1 is the set of
all distribution functions either of the form 1 − F(x) = x−m0 L(x) where L(x) runs
over all slowly varying functions such that L(x) ≥ 1 for x > x0, or of the form
1 − F(x) = x−m L(x) with m < m0 and with a positive slowly varying function L .
H0 is an analogous set of distributions concentrated on the positive half-axis.

Numerous authors have considered the problem of testing the Gumbel hypothesis,
Hg : m = ∞ against m < ∞ : we refer to Castillo et al. (1989), Galambos (1982),
Gomes (1989), Gomes and Alpuim (1986), Hasofer and Wang (1992), Hosking (1984),
van Montfort and Gomes (1985), van Montfort and Witter (1985), Stephens (1977),
Tiago de Oliveira (1984). Others, as Falk (1995a,b), Marohn (1994, 1998a,b), studied
testing the Gumbel hypothesis in the frame of the local asymptotic normality (LAN).
Such tests, when they reject the Gumbel hypothesis in favor of alternative m < ∞,

do not provide any information on the heaviness of the tail of the distribution, while
just that is just the information needed in practical applications.
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582 J. Jurečková et al.

The proposed tests of H0 and H1 are based on the extremes of segments of the
residual empirical process. Tests on the Pareto index for the i.i.d. model were con-
structed by Fialová et al. (2004), Jurečková, and Picek (2001) and by Picek and
Jurečková (2001). Tests on the tail index of errors in the linear regression model, based
on the extreme regression quantiles, were proposed by Jurečková (1999). However,
tests based on the residuals seem to be preferable, and we expect a similar phenomenon
to hold in the linear AR time series.

Because the proposed tests are based on the residual empirical process of the AR
series, in the next section we first analyze the asymptotic behavior of such processes.
The tests and their asymptotic null (normal) distributions are given in Sect. 3, while
Sect. 4 deals with their consistency. Section 5 is a numerical illustration.

2 Residual empirical process

Let n, N be positive integers and let ρ̂N be an estimator of ρ in (1) based on the data
set X1−p, X2−p, . . . , X0, X1, . . . , XnN ; the estimators will be considered later.

Let
ε̂t := Xt − ρ̂′

N Yt−1, t = 1 − p, 2 − p, . . . , nN , (6)

with Yt−1 given in (5).
Now group these residuals in N groups, each of size n, so that the residuals in the

t th group are ε̂(t−1)n−p+1, . . . , ε̂tn−p. Do a similar decomposition of the errors {εt }.
Let

ε̂t
(n) := max

1≤i≤n
ε̂(t−1)n−p+i , εt

(n) := max
1≤i≤n

ε(t−1)n−p+i , t = 1, 2, . . . , N . (7)

The empirical distribution function F∗
N of the maximal errors {εt

(n), t = 1, . . . , N }
is approximated by the empirical distribution function F̂∗

N of the maximal residuals
{̂εt
(n), t = 1, . . . , N }, where

F∗
N (x) := N−1

N∑

t=1

I [εt
(n) ≤ x], F̂∗

N (x) := N−1
N∑

t=1

I [̂εt
(n) ≤ x], x ∈ R. (8)

Put
a(1)N ,m := (nN 1−δ)1/m, 0 < δ < 1 (9)

or alternatively

a(2)N ,m :=
(

nN (ln N )−2+η)1/m
, 0 < η < 1. (10)

The effect of the choice of parameters δ and η is discussed in Sect. 5.
We shall first show that

|F̂∗
N (aN ,m)− F∗

N (aN ,m)| = op(1) as N → ∞ and for a fixed n, (11)
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Testing the tail index in autoregressive models 583

under (3) and with an appropriate estimate ρ̂N of ρ in (6), provided m is the true value
of the tail index.

To prove (11), we need to find an estimate ρ̂N such that, for some sequence of
positive numbers dN → ∞,

dN (̂ρN − ρ) = Op(1). (12)

Possible choices of the estimator are discussed in Sect. 2.1.
If (12) is true, we can write

ε̂t = εt − (̂ρN − ρ)′Yt−1 = εt − d−1
N dN (̂ρN − ρ)′Yt−1.

In view of (5) and (12), for any κ > 0, there is a C < ∞ and an Nκ < ∞, such that
for all N > Nκ ,

P
(‖dN (̂ρN − ρ)‖ ≤ C

) ≥ 1 − κ, P

(
max

1≤t≤nN
‖Yt‖ ≤ C N 1/m L1(N )

)
≥ 1 − κ.

(13)
For ∀ u ∈ R

p, let

F∗
N (a

(ν)
N ,m,u) = N−1

N∑

t=1

n∏

i=1

I
[
ε(t−1)n−p+i ≤ a(ν)N ,m + d−1

N u′Y(t−1)n−p+i

]
, (14)

ν = 1, 2, and consider the behavior of the sequences

D(ν)
N := sup

‖u‖≤C

∣∣∣F∗
N (a

(ν)
N ,m,u)− F∗

N (a
(ν)
N ,m)

∣∣∣ , ν = 1, 2. (15)

For any d.f. G on R, let G−1(u) := inf{x : G(x) ≥ u}, 0 ≤ u ≤ 1. Let

ξN := F−1 (
1 − 1

N

) = N 1/m L1(N ) (16)

be the “population extreme” of F , and let

∆
(ν)
N := F

(
a(ν)N ,m + d−1

N C2 ξN

)
− F

(
a(ν)N ,m − d−1

N C2 ξN

)
, ν = 1, 2,

(17)
AN :=

{
max

1≤t≤nN
‖Yt‖ ≤ C ξN

}
,

with C as in (13). Moreover, let UNi (x) := FNi (x) − F(x), i = 1, . . . , n, where
FNi (x) is the empirical d.f. of {ε(t−1)n−p+i , 1 ≤ t ≤ N }, i = 1, . . . , n. Using the
fact that indicators are monotonic functions of their arguments and bounded by 1, and
the identity

M∏

i=1

ai −
M∏

i=1

bi =
M∑

i=1

[ai − bi ]
i−1∏

k=1

ak

M∏

k=i+1

bk,
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584 J. Jurečková et al.

that is valid for any positive integer M and for any real numbers {ai , bi }M
i=1, we obtain

that an upper bound for D(ν)
N on the set AN ,

D(ν)
N ≤ N−1

N∑

t=1

n∑

i=1

I
[
a(ν)N ,m − d−1

N C2 ξN ≤ ε(t−1)n−p+i ≤ a(ν)N ,m + d−1
N C2 ξN

]

=
n∑

i=1

[
UNi (a

(ν)
N ,m + d−1

N C2 ξN )− UNi (a
(ν)
N ,m − d−1

N C2 ξN )
]

+ n∆(ν)N

= D(ν)
N1 + n∆(ν)N (say), ν = 1, 2. (18)

Using the embedding theorem of Komlós et al. (1975) for empirical process UNi (x),
we find that there are sequences of independent Brownian bridges BNi , i = 1, . . . , n,
N = 1, 2, . . . , such that

D(ν)
N1 = N−1/2

n∑

i=1

[
BNi (F(a

(ν)
N ,m + d−1

N C2 ξN ))− BNi (F(a
(ν)
N ,m − d−1

N C2 ξN ))
]

+O(N−1 ln N ), a.s., ν = 1, 2 (19)

and the differences of the Brownian bridges in (19) are of the orders
(
∆
(ν)
N

)1/2
,

ν = 1, 2. On the other hand, from (3), (9) and (10) follow approximations for density
f of F :

f (a(1)N ,m) ≈ m(nN )
−(1−δ)

(
1+ 1

m

)

L(N )
(20)

f (a(2)N ,m) ≈ m(nN )
−

(
1+ 1

m

)

(ln N )

(
1+ 1

m

)
(2−η)

L(N )

where aN ,m ≈ bN means that aN ,m/bN → 1 as N → ∞. Hence, (16) and (17) imply
that

∆
(1)
N ≈ C2 K m d−1

N ξN f (a(1)N ,m) ≈ C2 K m N
−

(
1−δ m+1

m

)

L(N ) d−1
N ,

(21)
∆
(2)
N ≈ C2 K m d−1

N ξN f (a(2)N ,m) ≈ C2 K m N−1(ln N )
m+1

m (2−η)L(N ) d−1
N

and, regarding (6), we obtain

D(1)
N1 = Op

(
N

−1+ δ
2

(
1+ 1

m

)

L
1
2 (N ) d

− 1
2

N

)
,

(22)
D(2)

N1 = Op

(
N−1(ln N )(1− η

2 )(1+ 1
m )L

1
2 (N ) d

− 1
2

N

)
.
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Finally, (15), (18), (21) and (22) together would lead to the orders for D(ν)
N :

D(1)
N = Op

(
N

−1− δ
2

(
1+ 1

m

)

L
1
2 (N ) d

− 1
2

N

)
+ O

(
N

−1+δ
(

1+ 1
m

)

L(N ) d−1
N

)
,

D(2)
N = Op

(
N−1(ln N )(

1− η
2 )

(
1+ 1

m

)

L
1
2 (N ) d

− 1
2

N

)
(23)

+ O

(
N−1(ln N )

(2−η)
(

1+ 1
m

)

L(N ) d−1
N

)
.

In the next subsection, we shall consider more closely the possible choice of estima-
tor ρ̂N and the associated choice of dN in (12), in order to find the rate of convergence
in (11).

2.1 Estimators of autoregression coefficients

The choice of estimator ρ̂N heavily depends on our hypothetical value m0 of the tail
index. Generally, we should distinguish two cases for the hypothetical distribution of
innovations:

(i) Heavy-tailed distribution satisfying (3) with 0 < m0 ≤ 2;
(ii) distribution satisfying (3) with m0 > 2.

ad (i): For distributions of the first group we find the linear programming estimator
of ρ, proposed by Feigin and Resnick (1994), as the most convenient.
It is defined as

ρ̂L P := argmax
u∈DN

p∑

j=1

u j ,

(24)

DN :=
⎧
⎨

⎩u ∈ R
p : Xt ≥

p∑

j=1

u j Xt− j , t = 1, . . . , nN

⎫
⎬

⎭ .

Feigin and Resnick considered a stationary autoregressive process with positive inno-
vations, whose distribution satisfies the conditions

p∑

j=1

ρ j < ∞, (25)

lim
s→∞

1 − F(sx)

1 − F(s)
= x−α, for all x > 0 and for some α > 0, (26)

IE(ε−βt ) =
∫ ∞

0
u−βdF(u) < ∞, for someβ > α. (27)

Distributions of type (3) satisfy (26) with α = m. As examples of distributions
satisfying condition (27), Feigin and Resnick mention positive stable densities; (27)
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586 J. Jurečková et al.

is satisfied, e.g. by the inverse normal distribution, the Fréchet distribution and the
Pareto distribution with

1 − F(x) =
{

x−m for x > 1
1 otherwise.

Under these conditions, Feigin and Resnick proved that ρ̂L P satisfies (12) with

dN := F−1
(

1 − 1

nN

)
= (nN )

1
m L(N ) = O(N

1
m L(N )). (28)

If the autoregressive process satisfies the Feigin and Resnick conditions and the resi-
duals in (6) are calculated with respect to ρ̂L P , then the bounds in (22) are of the
respective orders

D(1)
N = Op

(
N−1+ δ

2 − 1−δ
2m L1/2(N )

)
+ O

(
N−1+δ− 1−δ

m L(N )
)
,

D(2)
N = Op

(
N

−
(

1+ 1
2m

)

(ln N )(
1− η

2 )
(

1+ 1
m

)

L1/2(N )

)

+ O

(
N

−
(

1+ 1
m

)

(ln N )
(2−η)

(
1+ 1

m

)

L(N )

)
.

Hence, as N → ∞,

N 1− δ
2 D(1)

N = op(1), ∀ δ < 2/(m + 2),
(29)

N (ln N )−1+ η
2 D(2)

N = op(1).

ad (ii): If F belongs to the second group, then we need not to restrict ourselves
to positive innovations. The most convenient estimators of ρ for distributions with
m0 > 2 are either GM-estimators or GR-estimators; we refer to Koul (2002) for their
description and profound study. These estimators are

√
N -consistent, and cover the

popular Huber estimator; the distribution can be extended over all real line and (11)
applies for ν = 1, 2.

3 Construction of the tests

Our procedures are based on the dataset of observations X1−p, X2−p, . . . , X0,

X1, . . . XnN . If we want to test H0 with 0 < m0 ≤ 2, then we calculate the resid-
uals with respect to the linear programming estimator ρ̂L P , defined in (24). If we
want to test H1 with m0 > 2, then we calculate the residuals with respect to GM- or
GR-estimators (see Koul 2002). Let a(1)N ,m0

, a(2)N ,m0
be as in (9), (10), respectively;

calculate F̂∗
N (a

(ν)
N ,m0

), ν = 1, 2, as per the definition (8).
We propose two tests for both H0 against K0 and H1 against K1, respectively,

corresponding to a(1)N ,m0
, a(2)N ,m0

, respectively. The first test is based on the same

123



Testing the tail index in autoregressive models 587

threshold a(1)N ,m0
as the test for i.i.d. observations proposed by Jurečková, and Picek

(2001). The higher value a(2)N ,m0
in the second test is likely to reduce the probability of

error of the first kind, though it leads to a slower convergence to the asymptotic null
distribution.
Test (1): The test of H0 against K0 and of H1 against K1, respectively, rejects the
hypothesis provided

either 1 − F̂∗
N (a

(1)
N ,m0

) = 0,

or 1 − F̂∗
N (a

(1)
N ,m0

) > 0 (30)

and N δ/2
[
− ln(1 − F̂∗

N (a
(1)
N ,m0

))− (1 − δ) ln N
]

≥ Φ−1(1 − α),

where Φ is the standard normal distribution function and α ∈ (0, 1) is the asymptotic
significance level.
Test (2): The test of H0 against K0 and of H1 against K1, respectively, rejects the
hypothesis provided

either 1 − F̂∗
N (a

(2)
N ,m0

) = 0,

or 1 − F̂∗
N (a

(2)
N ,m0

) > 0, and (31)

(ln N )1− η
2

[
− ln(1 − F̂∗

N (a
(2)
N ,m0

))− ln N + (2 − η) ln ln N
]

≥ Φ−1(1 − α).

The following theorems show that the test criteria (30) and (31) have asymptotically
standard normal distributions under the exact Pareto tail corresponding to 1− F(x) =
x−m0 , for x > x0.

Theorem 3.1 Consider the stationary autoregressive process (1).
(I) Assume that the process (1) satisfies the condition (25) and that the innovation dis-
tribution function F is absolutely continuous and of type (3) with tail index m0, 0 <
m0 ≤ 2, concentrated on the positive half-axis and strictly increasing on the set
{x : F(x) > 0}. Let F̂∗

N (a
(1)
N ,m0

) be the empirical distribution function of extreme
residuals of N segments of length n, defined in (8), where the residuals are calculated
with respect to ρ̂L P defined in (24). Then, the following hold.

(i) For every distribution P satisfying H0,

lim
N→∞ P

(
0 < F̂∗

N (a
(1)
N ,m0

) < 1
)

= 1. (32)

(ii) If 1 − F(x) = x−m0 , ∀ x > x0, then

lim
N→∞ P

{
N δ/2

[
−ln(1− F̂∗

N (a
(1)
N ,m0

))−(1 − δ) ln N
]

≤ x
}

= Φ(x), ∀ x ∈ R.

(33)
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588 J. Jurečková et al.

Hence,

lim
N→∞ P

{
N δ/2

[
− ln(1 − F̂∗

N (a
(1)
N ,m0

))− (1 − δ) ln N
]

≥ Φ−1(1 − α)
}

= α.

(34)
(iii) The test is asymptotically unbiased for the family of F satisfying (3) with m <

m0 and for the family of F satisfying (3) with m = m0 and with limx→∞L(x) ≥
1. More precisely, then

limN→∞ P
{

N δ/2
[
− ln(1 − F̂∗

N (a
(1)
N ,m0

))−(1−δ) ln N
]

≥ Φ−1(1−α)
}

≤ α.

(II) Let F be of type (3) with tail index m0, m0 > 2, with a continuous and positive
density on R. Let F̂∗

N (a
(1)
N ,m0

) be the empirical distribution function of extreme residu-
als of N segments of length n, defined in (8), where the residuals are calculated with
respect to a

√
N-consistent estimator of ρ. Then the propositions (i)–(iii) remain true.

Proof We shall prove the part (I) of the Theorem; part (II) is quite analogous.
(i) Convergence (32) was proved in Jurečková, and Picek (2001) for F∗

N (a
(1)
N ,m0

) instead

of F̂∗
N (a

(1)
N ,m0

). Because dN (̂ρN − ρ) takes on positive and negative values, not all

residuals are less than a(1)N ,m0
or all greater than a(1)N ,m0

, with probability tending to 1.
(ii) It follows from (29) that

N
δ
2

[
− ln(1 − F̂∗

N (a
(1)
N ,m0

))+ ln(1 − F∗
N (a

(1)
N ,m0

))
]

= N
δ
2

{
− ln

[
1 − F̂∗

N (a
(1)
N ,m0

)

1 − F∗
N (a

(1)
N ,m0

)
− 1 + 1

]}

= N
δ
2

(
1 − F∗

N (a
(1)
N ,m0

)
)−1 [

F̂∗
N (a

(1)
N ,m0

)− F∗
N (a

(1)
N ,m0

)
]

+ Op

(
N− δ

2

)

= N
δ
2

1 − F∗(a(1)N ,m0
)

1 − F∗
N (a

(1)
N ,m0

)

(
1 − F∗(a(1)N ,m0

)
)−1

op

(
N−1+ δ

2

)
+ Op

(
N− δ

2

)

= op

(
N

δ
2 +1−δ−1+ δ

2

)
= op(1), (35)

while by Theorem 2.1 in Jurečková, and Picek (2001),

lim
N→∞ P

{
N

δ
2

[
− ln(1 − F∗

N (a
(1)
N ,m0

))− (1 − δ) ln N
]

≤ x
}

= Φ(x), x ∈ R. (36)

Hence (33) follows from (35) and from (36).
(iii) If F satisfies (3) either with m = m0 and with limx→∞L(x) ≥ 1, or with m < m0,

then F is ultimately stochastically larger than the distribution with exact Pareto tail;
hence the limiting probability of the event in (34) should not exceed α. If m > m0,

then it is shown in Sect. 4 that test rejects the hypothesis with probability tending to
one, hence> α for N > N0, and the test is asymptotically unbiased. The consistency
of the test is studied in Sect. 4, and the numerical illustration is given in Sect. 5. ��
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The following theorem describes the properties of the second test with the threshold
a(2)N ,m0

.

Theorem 3.2 (I) Let F̂∗
N (a

(2)
N ,m0

) be the empirical distribution function of extreme
residuals of N segments of length n, defined in (8), where the residuals are calculated
with respect to ρ̂L P defined in (24). Then, under the conditions of Part (I) of Theorem
3.1, the following hold.

(i) For every distribution P satisfying H0,

lim
N→∞ P

(
0 < F̂∗

N (a
(2)
N ,m0

) < 1
)

= 1. (37)

(ii) If 1 − F(x) = x−m0 for ∀x > x0, then for ∀x ∈ R,

lim
N→∞ P

{
(ln N )1− η

2

[
− ln(1 − F̂∗

N (a
(2)
N ,m0

))− ln N + (2 − η) ln ln N
]

≤ x
}

= Φ(x), (38)

hence

lim
N→∞ P

{
(ln N )1− η

2

[
− ln(1 − F̂∗

N (a
(2)
N ,m0

))− ln N + (2 − η) ln ln N
]

≥ Φ−1(1 − α)
}

= α.

(iii) The test is asymptotically unbiased for the family of F satisfying (3) either with
m < m0 or with m = m0 and with limx→∞L(x) ≥ 1. More precisely, then

limN→∞ P
{

N 1− η
2

[
− ln(1 − F̂∗

N (a
(2)
N ,m0

))− ln N + (2 − η) ln ln N
]

≥ Φ−1(1 − α)
}

≤ α.

(II) Let F be of type (3) with tail index m0, m0 > 2, with a continuous and positive
density on R. Let F̂∗

N (a
(2)
N ,m0

) be the empirical distribution function of extreme residu-
als of N segments of length n, defined in (8), where the residuals are calculated with
respect to a

√
N-consistent estimator of ρ. Then the propositions (i)–(iii) remain true.

Proof To prove (i), we should first prove the convergence (37) for F∗
N (a

(2)
N ,m0

) : Denote

ε(N ) = max
1≤t≤N

{εt
(n)}

where εt
(n) is defined in (7), t = 1, . . . , N . If F is of type (3) with m = m0 and

L(x) ≥ 1 for x > x0, then

P
(
ε(N ) <a(2)N ,m0

)
=(1−(nN )−1(ln N )2−ηL(N ))nN ≈exp

{
−(ln N )(2−η)L(N )}→0,
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as N → ∞. Similarly, if F is ultimately heavier than Pareto with m < m0, then

P
(
ε(N ) < a(2)N ,m0

)
=

[
1 −

(
nN (ln N )2−η)− m

m0 L(N )
]Nn → 0, as N → ∞.

The fact that F∗
N (aN ,m0) > 0 with probability tending to 1 for the whole hypothesis is

obvious. Hence, P
(

0 < F∗
N (a

(2)
N ,m0

) < 1
)

→ 1, and finally we obtain (38) with the

aid of (12).
Analogously as in the proof of Theorem 3.1, we conclude that with probability

tending to 1 not all residuals ε̂t
(n) are less than a(2)N ,m0

.

(ii) By the embedding theorem of Komlós et al. (1975), there is a sequence of inde-
pendent Brownian bridges BN , N = 1, 2, . . . , such that

F∗
N (a

(2)
N ,m0

)− F∗(a(2)N ,m0
) = N− 1

2 BN (1 − F∗(a(2)N ,m0
))+ O

(
N−1 ln N

)

= Op

(
N−1(ln N )1− η

2 L
1
2 (N )

)
+ O

(
N−1 ln N

)
. (39)

If m = m0 and L(x) ≥ 1 for x > x0, then it follows from (29) and from (39) that,

(ln N )1− η
2

[
− ln(1 − F̂∗

N (a
(2)
N ,m0

))+ ln(1 − F∗
N (a

(2)
N ,m0

))
]

= (ln N )1− η
2

{
− ln

[
1 − F̂∗

N (a
(2)
N ,m0

)

1 − F∗
N (a

(2)
N ,m0

)
− 1 + 1

]}

= (ln N )1− η
2 (1 − F∗

N (a
(2)
N ,m0

))−1
[

F̂∗
N (a

(2)
N ,m0

)− F∗
N (a

(2)
N ,m0

)
]

+Op

(
(ln N )−1+ η

2

)

= (ln N )1− η
2

1 − F∗(a(2)N ,m0
)

1 − F∗
N (a

(2)
N ,m0

)

(
1 − F∗(a(2)N ,m0

)
)−1

op

(
N−1(ln N )1− η

2

)

+Op

(
(ln N )−1+ η

2

)

= op

(
(ln N )1− η

2 −2+η+1− η
2 (L(N ))−1

)
+ Op

(
(ln N )−1+ η

2

)
= op(1).

Moreover,

(ln N )1− η
2

[
− ln(1 − F∗

N (a
(2)
N ,m0

))− ln N + (2 − η) ln ln N
]

= (ln N )1− η
2

[
− ln(1 − F∗

N (a
(2)
N ,m0

))+ ln(1 − F∗(a(2)N ,m0
))

]

= (ln N )1− η
2

{
− ln

[
1 − F∗

N (a
(2)
N ,m0

)

1 − F∗(a(2)N ,m0
)

− 1 + 1

]}

= (ln N )1− η
2

F∗
N (a

(2)
N ,m0

)− F∗(a(2)N ,m0
)

1 − F∗(a(2)N ,m0
)

+ Op

(
(ln N )−1+η) (40)
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If F has exactly the Pareto tail with m = m0, then

(ln N )1− η
2 (1 − F∗(a(2)N ,m0

))−1 N− 1
2 BN (1 − F∗(a(2)N ,m0

)) →d N (0, 1) as N → ∞
(41)

while the left-hand side of (40) is ultimately stochastically smaller than that of (41) if
m = m0 and L(x) ≥ 1 for x > x0. The rest of the proof is analogous to the proof of
Theorem 2.1 in Jurečková, and Picek (2001). ��

4 Consistency considerations

Let 1 − F(x) = x−m L(x), for x ≥ x0 > 0, with m > m0, let F∗(x) = F N (x) be the
joint distribution function of the maximal innovations {εt

(n), t = 1, . . . , N }, and F∗
N

their empirical distribution function. Then

1 − F∗(a(1)N ,m0
) ≤ n

(
a(1)N ,m0

)−m
L(N ) = N

−(1−δ) m
m0 L1(N )

and N (1 − F∗
N (a

(1)
N ,m0

)) has the binomial distribution B(N , pN ) with

pN = 1 − F∗(a(1)N ,m0
) ≤ N

−(1−δ) m
m0 L1(N ).

Hence, E[N 1−δ(1 − F∗
N (a

(1)
N ,m0

))] = O

(
N

−(1−δ)
(

m
m0

−1
)

L1(N )

)
and

N
δ
2

(
− ln(1 − F∗

N (a
(1)
N ,m0

))− (1 − δ) ln N
)

= Op

(
N

δ
2 ln N (1 − δ)

(
m

m0
− 1

)
L2(N )

)
→ ∞. (42)

Thus, for the white noise sequence with the null autoregression we would reject the
hypotheses H0, H1 with probability tending to 1. An analogous statement holds for
1 − F∗

N (λa(1)N ,m0
) with any fixed λ, 0 < λ < 1.

Let now F be concentrated on the positive half-axis and let F̂∗
N be the empirical

distribution function of the maximal residuals {̂εt
(n), t = 1, . . . , N } with respect to

linear programming estimator ρ̂L P defined in (24). Then it follows from (24) to (28)
and from (5) that

εt − Y′
t−1(̂ρL P − ρ) ≥ 0, t = 1, . . . , nN ,

max
1≤t≤nN

|Y′
t (̂ρL P − ρ)| = Op (L(N )) = op(aN ,m0),

0 ≤ ε̂ t
(n) = max

1≤i≤n
ε̂(t−1)n−p+i ≤ max

1≤i≤n
ε(t−1)n−p+i +Op (L(N )) , t = 1, 2, · · · , N.
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This in turn implies that, given an 0 < η < 1, there exists N0 such that for N > N0,

under Pm, m > m0,

P
{

1 − F̂∗
N (a

(1)
N ,m0

) ≤ 1 − F∗
N (λa(1)N ,m0

)
}

≥ 1 − η,

for any fixed λ, 0 < λ < 1, and this together with (42) and the following remark
implies that we reject the hypothesis H0 with probability at least 1 − η for N > N0.

Analogous consideration applies to the hypothesis H1 with hypothetical m0 > 2,
when the innovation distribution, possibly extended on the whole R

1, satisfies 1 −
F(x) = x−m L(x) with m > m0 and with L(·) slowly varying at infinity; then ρ is
estimated either by GM- or by GR-estimator.

5 Simulation study

We study the performance of the test on the Pareto tail index of the innovation distri-
bution in the autoregressive model on the following three simulated time series:

(A) Xt = 0.05Xt−1 + εt , t = 1, 2, . . . , Nn,
(B) Xt = 0.9Xt−1 + εt , t = 1, 2, . . . , Nn,
(C) Xt = 0.6Xt−1 − 0.3Xt−2 + 0.2Xt−3 + εt , t = 1, 2, . . . , Nn,

with the following innovation distributions:

Pareto F(x) = 1 − ( 1
x

)m
, x ≥ 1.

Inverse normal F(x) =
{

2
(

1 −Φ
(

1√
x

))
x > 0

0 x ≤ 0

Student f (x) = 1√
mB

(
1
2 ,

m
2

)
(

1 + x2

m

)−(m+1)/2
, x ∈ R.

For each of these cases, the time series were simulated of the lengths
nN = 200 and 1, 000. (The initial values for the time series were obtained as the last
values of auxiliary simulated time series of length 500 with the same autoregression
coefficients and innovation distribution and initial values 0.)
The computation procedure for each of the above innovation distributions and time
series was as follows:

(1) the autoregressive time series X1, . . . , Xn, Xn+1, . . . , X2n, . . . , X Nn was gen-
erated;

(2) ρ was estimated by ρ̂ (either Feigin and Resnick or Huber M-estimators);
(3) residuals ε̂t := Xt − ρ̂′

N Yt−1, t = 1 − p, 2 − p, . . . , nN were computed;

(4) the maxima ε̂(1)n , . . . , ε̂
(N )
n of the segments were found and the corresponding

empirical distribution function F̂∗
N calculated;

(5) a decision was made about H0 or H1, respectively, based on F∗
N (aN ,m0), with

a(1)N ,m0
= (

nN 1−δ) 1
m0 and a(2)N ,m = (

nN (ln N )−2+η) 1
m , respectively.

(6) The step (5) was repeated for various values m0, δ, η;
(7) the steps (1)–(6) were repeated 1, 000 times.
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Table 1 Numbers of rejections of the null hypothesis among 1,000 tests at level α = 0.05 for a(1)N ,m =
(

nN 1−δ)
1
m and some selected values of m0; N = 50, n = 4, δ = 0.1

Distribution of white noise Time series m0 = 0.25 m0 = 0.4 m0 = 0.5 m0 = 0.6 m0 = 0.75

Pareto m = 0.5 A 987 675 244 38 0

B 987 675 244 38 0

C 987 675 244 38 0

Inverse normal A 990 736 320 79 1

B 990 736 320 79 1

C 990 736 320 79 1

m0 = 0.5 m0 = 0.8 m0 = 0.9 m0 = 1.0 m0 = 1.2

Pareto m = 1 A 992 674 439 246 35

B 992 674 441 246 36

C 992 674 439 245 36

m0 = 2.0 m0 = 2.5 m0 = 2.75 m0 = 3.0 m0 = 3.5

Student m = 3 A 867 569 402 255 66

B 865 565 398 254 63

C 866 564 403 251 69

Table 1 gives numbers of rejections of H0 or H1, respectively, among 1,000 tests at

level α = 0.05 for some selected values m0 and under a(1)N ,m = (
nN 1−δ) 1

m ; δ =
0.1, n = 4, N = 50. Similarly, Table 2 gives numbers of rejections under a(2)N ,m =
(
nN (ln N )−2+η) 1

m ; η = 0.1, n = 4, N = 50.

Remark 1 Notice that the Pareto and Student distributions with tail index m satisfy
H0 (or H1) for m0 = m + ε, ∀ε > 0; the inverse normal distribution satisfies H0 (or
H1) for m0 = 0.5 + ε, ∀ε > 0.

Remark 2 We see that the performance of the test practically depends only on the white
noise and not on the structure of AR series (the time series A, B, C were generated
with the same innovations values under a given distribution).

The frequencies of rejection of H0 or H1 under the Pareto distribution are plotted
against m0 in Figs. 1 and 2. Because of the small difference in behavior between the
series A, B, C, the illustrations are made only for B.

The following Tables 3 and 4 and Figs. 3, 4 illustrate the influence of the choice
of δ on the frequency of rejections of the null hypothesis under some fixed values of
m0. The shape of the graph under m0 close the true m is rather typical. The situation
is similar for the choice of η.
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Table 2 Numbers of rejections of the null hypothesis among 1,000 cases at level α = 0.05 for a(2)N ,m =
(

nN (ln N )−2+η)
1
m ; N = 50, n = 4, η = 0.1

Distribution of white noise Time series m0 = 0.3 m0 = 0.4 m0 = 0.5 m0 = 0.52 m0 = 0.6

Pareto m = 0.5 A 1000 995 83 16 0

B 1000 995 83 16 0

C 1000 995 83 16 0

Inverse normal A 1000 1000 363 158 1

B 1000 1000 363 158 1

C 1000 1000 363 158 1

m0 = 0.8 m0 = 0.9 m0 = 1.0 m0 = 1.02 m0 = 1.1

Pareto m = 1 A 995 645 84 37 1

B 995 645 84 38 1

C 995 645 84 38 1

m0 = 2.5 m0 = 2.8 m0 = 3.00 m0 = 3.05 m0 = 3.5

Student m = 3 A 982 684 283 186 7

B 983 680 282 193 4

C 982 685 281 187 5
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Fig. 1 Number of rejections of H0 (α = 0.05) plotted against m0 for Xt = 0.9Xt−1 + εt and a(1)N ,m =
(

nN 1−δ)
1
m ; εt , t = 1, . . . , nN have the Pareto distribution with m = 0.5 (left) and m = 1 (right);

N = 50, n = 4, δ = 0.1 (solid), δ = 0.5 (dotted)

6 Application to the Czech daily maximum temperatures

The tests described above are applied to a 40-years dataset of daily maximum temper-
atures measured at three meteorological stations in Czech Republic, over the period
1961–2000. The names and coordinates of the three stations are as follows:

Praha-Ruzyně: 50◦06′N , 14◦15′E, altitude 364 m above sea level;
Liberec: 50◦46′N , 15◦01′E, altitude 398 m above sea level;
Brno-Tuřany: 49◦09′N , 16◦42′E, altitude 241 m above sea level.
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Fig. 2 Number of rejections of H0 (α = 0.05) plotted against m0 for Xt = 0.9Xt−1 + εt and a(2)N ,m =
(

nN (ln N )−2+η)
1
m ; εt , t = 1, . . . , nN have the Pareto distribution with m = 0.5 (left) and m = 1

(right); N = 200, n = 5, η = 0.1

Table 3 Numbers of rejections of the null hypothesis among 1,000 cases for various δ under some m0;
α = 0.05, N = 50, n = 4

Distribution of white noise δ

m0 0.01 0.1 0.2 0.3 0.4 0.5 0.6

Pareto m = 1 0.5 995 987 977 1000 1000 1000 1000

0.9 551 422 233 401 404 272 281

1.0 339 211 114 176 132 35 55

Pareto m = 3 2.5 786 694 589 812 894 925 997

2.9 591 512 390 616 727 787 966

3.0 553 469 333 566 681 747 943

Student m = 5 3.5 815 700 535 700 739 686 863

4.0 95 48 15 30 33 29 87

5.0 27 6 0 6 11 6 35

Table 4 Numbers of rejections of the null hypothesis among 1,000 cases for various δ under some m0;
α = 0.05, N = 200, n = 5

Distribution of white noise δ

m0 0.01 0.1 0.2 0.3 0.4 0.5 0.6

Pareto m = 1 0.5 1000 998 1000 1000 1000 1000 1000

0.9 621 440 551 504 482 630 718

1.0 349 251 240 126 73 105 117

Pareto m = 3 2.5 828 706 877 903 957 1000 1000

2.9 567 408 548 574 688 924 998

3.0 483 327 459 487 596 879 995

Student m = 5 3.5 921 828 931 928 928 982 992

4.0 56 11 3 2 0 0 0

5.0 6 1 0 0 0 0 0
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Fig. 3 Number of rejections of H0 plotted against δ; α = 0.05, n = 5, N = 200 and Xt = 0.9Xt−1 +εt ;
εt , t = 1, . . . , 1, 000 have Pareto distribution (m = 1), m0 = 0.5 (solid), m0 = 0.9 (dotted), m0 = 1.0
(dashed)
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Fig. 4 Number of rejections of H0 plotted against δ; α = 0.05, n = 5, N = 200 and Xt = 0.9Xt−1 +εt ;
εt , t = 1, . . . , 1, 000 have Pareto distribution (m = 3), m0 = 2.5 (solid), m0 = 2.9 (dotted), m0 = 3.0
(dashed)

The maximum temperatures were centered and deseasonalized by subtracting the
average maximum temperature computed over the 40 years. The residuals then were
modeled as autoregressive series of order p = 1 (see Hallin et al. 1997).

Table 5 gives results of testing for all three time series for some selected values

m0 and under a(1)N ,m = (
nN 1−δ) 1

m ; δ = 0.1, n = 5. Similarly, Table 6 gives the

conclusions under a(2)N ,m = (
nN (ln N )−2+η) 1

m ; η = 0.1, n = 5.
Hence, describing the summer temperatures residuals as an autoregressive series,

we could work with a heavy-tailed distribution. The results of tests indicate any small
influence of the location of the station. The tests can be also used to estimate the tail
index in the Hodges-Lehmann manner (see Jurečková, and Picek 2004).
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Table 5 Rejection (R) and non-rejection (N ) of the null hypothesis at level α = 0.05 for a(1)N ,m =
(

nN 1−δ)
1
m and some selected values of m0; n = 5, δ = 0.1

Time series m0 = 3.2 m0 = 3.3 m0 = 3.5 m0 = 3.6 m0 = 3.7

Praha R N N N N

Liberec R R N N N

Brno R R R R N

Table 6 Rejection (R) and non-rejection (N ) of the null hypothesis at level α = 0.05 for a(2)N ,m =
(

nN (ln N )−2+η)
1
m ; and some selected values of m0; n = 5, η = 0.1

Time series m0 = 2.5 m0 = 2.6 m0 = 2.65 m0 = 2.7 m0 = 2.75

Praha R R N N N

Liberec R R R R N

Brno R R R R N
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Hallin, M., Jurečková, J., Kalvová, J., Picek, J., Zahaf, T. (1997). Non-parametric tests in AR models with
applications to climatic data. Environmetrics, 8, 651–660.

Hasofer, A. M., Wang, Z. (1992). A test for extreme value domain of attraction. Journal of the American
Statistical Association, 87, 171–177.

123



598 J. Jurečková et al.
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Picek, J., Jurečková, J. (2001). A class of tests on the tail index using the modified extreme regression

quantiles. In J. Antoch, G. Dohnal (Eds.), ROBUST’2000 (pp. 217–226). Prague: Union of Czech
Mathematicians and Physicists.

Stephens, M. A. (1977). Goodness-of-fit for the extreme value distribution. Biometrika, 64, 583–588.
Tiago de Oliveira, J. (1984). Univariate extremes: Statistical choice. In J. Tiago de Oliveira (Ed.), Statistical

extremes and applications (pp. 91–107). Dodrecht: Reidel.

123


	Testing the tail index in autoregressive models
	Abstract
	1 Introduction
	2 Residual empirical process
	2.1 Estimators of autoregression coefficients

	3 Construction of the tests
	4 Consistency considerations
	5 Simulation study
	6 Application to the Czech daily maximum temperatures
	Acknowledgments
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


