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Abstract The prediction problem for a multivariate normal distribution is consid-
ered where both mean and variance are unknown. When the Kullback–Leibler loss is
used, the Bayesian predictive density based on the right invariant prior, which turns
out to be a density of a multivariate t-distribution, is the best invariant and minimax
predictive density. In this paper, we introduce an improper shrinkage prior and show
that the Bayesian predictive density against the shrinkage prior improves upon the best
invariant predictive density when the dimension is greater than or equal to three.

Keywords Bayesian prediction · Kullback–Leibler divergence · Multivariate
normal distribution · Multivariate t-distribution · Right invariant prior · Shrinkage
prior · Star ordering

1 Introduction

Let X(n) = (X1, . . . , Xn) be independent random vectors from a d-dimensional mul-
tivariate normal distribution Nd(µ, σ 2 Id) where µ ∈ R

d and σ > 0 are unknown
parameters, and Y be another independent random vector from the same distribution.
We denote p(x(n)|µ, σ) and p(y|µ, σ) for densities of X(n) and Y , respectively. We
assume n ≥ 2.

Based on the observation X(n) = x(n), we consider the problem of constructing a
predictive density p̂(y|x(n)) for Y . The Kullback–Leibler divergence

L
{
(µ, σ ), p̂(·|x(n))

} =
∫

p(y|µ, σ) log
p(y|µ, σ)

p̂(y|x(n))
dy

K. Kato (B)
Graduate School of Economics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
e-mail: kato_ken@hkg.odn.ne.jp

123



532 K. Kato

is adopted as a loss function, and a predictive density p̂(y|x(n)) is evaluated by its
expected loss or risk function

R
{
(µ, σ ), p̂

} =
∫

p(x(n)|µ, σ)L
{
(µ, σ ), p̂(·|x(n))

}
dx(n).

There are two major methods to obtain predictive densities. One is to construct the
plug-in density p(y|µ̂, σ̂ ), where µ̂ and σ̂ are estimates based on x(n). Another is to
construct the Bayesian predictive density defined as

p̂π (y|x(n)) =
∫∫

p(y|µ, σ)p(x(n)|µ, σ)π(µ, σ )dµdσ
∫∫

p(x(n)|µ, σ)π(µ, σ )dµdσ
,

with a prior π(µ, σ). It follows from Aitchison (1975) that for a proper π , p̂π mini-
mizes the Bayes risk.

For prediction problems in general, many studies have recommended the use of
Bayesian predictive densities rather than plug-in densities (Geisser 1993; Komaki
1996). In the present problem, it can be shown from the arguments in Aitchison (1975)
that the plug-in densities p(y|µ̂, σ̂ ), where µ̂ = n−1 ∑n

j=1 x j and σ̂ is the square root

of the maximum likelihood estimate or the unbiased estimate of σ 2 based on x(n), are
dominated by the Bayesian predictive density p̂R defined below.

When a Bayesian procedure is used, the choice of a prior is an important problem.
Non-informative priors such as Jeffreys priors are often used to construct Bayesian pre-
dictive densities. The Jeffreys prior coincides with the left invariant prior πL(µ, σ ) =
1/σ d+1 in the present setting (Robert 2001). However, as shown in Liang and Barron
(2004), the best invariant and minimax predictive density is given by the Bayesian
predictive density p̂R based on the right invariant prior πR(µ, σ ) = 1/σ . It will be
explicitly verified in the next section that p̂R dominates p̂L , which is the Bayesian
predictive density based on πL .

Although p̂R would be considered as a good default procedure, it has not been
addressed whether p̂R is admissible. From analogous arguments in parameter estima-
tion, it can be conjectured that p̂R is inadmissible when d ≥ 3.

For a d-dimensional multivariate normal distribution Nd(µ, σ 2 Id) with unknown
µ and known σ , Komaki (2001) showed that when d ≥ 3, the Bayesian predictive
density based on the improper shrinkage prior πS(µ) = ‖µ‖−(d−2) dominates the
Bayesian predictive density p̂U based on the uniform prior πU (µ) = 1, which is the
best invariant predictive density with respect to the translation group. George et al.
(2006) and Brown et al. (2007) have obtained several conditions for priors which
yield admissible predictive densities dominating p̂U . Their results suggest fundamen-
tal similarities between the prediction problem under the Kullback–Leibler loss and
the problem of estimating a multivariate normal mean under the quadratic loss.

It should be pointed out that when σ is unknown, the best invariant predictive den-
sity turns out to be a density of a multivariate t-distribution and hence does not belong
to the normal model, which is a difference from the case where σ is known. It is thus
a substantially new task to show the dominance over the best invariant predictive den-
sity when σ is unknown. Of course, from a practical point of view, it is a worthwhile
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challenge to derive an improved predictive density for a multivariate normal model
where both mean and variance are unknown.

In the present paper, we introduce an improper shrinkage prior of the form

πLT (µ, η)dµdη ∝ ‖µ‖−(d−2)σ−1dµdσ,

where η = σ−2, which shrinks the mean vector toward the origin compared with πR .
We show that the Bayesian predictive density based on the introduced prior dominates
p̂R when d ≥ 3. Hence p̂R is shown to be inadmissible. This prior was originally
considered in Lin and Tsai (1973) for estimation of a multivariate normal mean. It
seems interesting that the shrinkage method still leads to an exactly superior predic-
tive distribution when σ is unknown. The method considered here is applicable to the
normal linear model.

The organization of this paper is as follows. In Sect. 2, we first summarize prop-
erties of the predictive densities based on the left and right invariant priors. The main
theorem, Theorem 3, is stated in Sect. 2.2. The proof of this theorem is provided in
Sect. 3. The proof uses a somewhat new technique, namely the star ordering of dis-
tribution functions. In Sect. 3.1, we briefly explain the star ordering and its related
notion, the dispersive ordering, prior to the proof of Theorem 3.

Although only the one-step prediction is discussed in the present paper, our result
holds when we consider to predict m random vectors Y(m) = (Y1, . . . , Ym), where
Y1, . . . , Ym are independently distributed as Nd(µ, σ 2 Id).

2 Main results

2.1 Prediction with the left and right invariant priors

We first consider the left and right invariant priors, and briefly summarize their prop-
erties. The predictive density based on the right invariant prior πR(µ, σ ) = 1/σ is
given by

p̂R(y|x(n)) = Γ (nd/2)

π
d
2 (s2

1 )
d
2 Γ {(n − 1)d/2}

(
n

n + 1

) d
2
{

1 + ‖y − x̄‖2

(
1 + 1

n

)
s2

1

}− nd
2

,

where x̄ = n−1 ∑n
j=1 x j and s2

1 = ∑n
j=1 ‖x j − x̄‖2. Note that p̂R is a density of a

multivariate t-distribution with (n − 1)d degrees of freedom.
In this setting, a predictive density p̂(y|x(n)) is said to be invariant if bd p̂{b(y −

a)|b(x(n) − a)} = p̂(y|x(n)) for any a ∈ R
d and b > 0, where the notation x(n) − a

denotes x1 − a, . . . , xn − a. The next theorem is given in Liang and Barron (2004).

Theorem 1 (Liang and Barron 2004) For n ≥ 2, the Bayesian predictive density p̂R

is the best invariant and minimax predictive density under the Kullback–Leibler loss.

The left invariant prior πL(µ, σ ) = 1/σ d+1 coincides with the Jeffreys prior. The
predictive density based on πL is given by
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534 K. Kato

p̂L(y|x) = Γ {(n + 1)d/2}
π

d
2 (s2

1 )
d
2 Γ (nd/2)

(
n

n + 1

) d
2
{

1 + ‖y − x̄‖2

(
1 + 1

n

)
s2

1

}− (n+1)d
2

,

which in turn is the density of a multivariate t-distribution with nd degrees of freedom.
Although Jeffreys priors are widely used in Bayesian prediction, Theorem 1 implies

that p̂L is not as good as p̂R since p̂L is invariant. In fact, the dominance of p̂R over
p̂L is explicitly shown by a direct calculation as follows:

Let s2
2 = {n/(n + 1)}‖y − x̄‖2. Then,

log
p̂R(y|x(n))

p̂L(y|x(n))
= log

B(nd/2, d/2)

B{(n − 1)d/2, d/2} − log

(
s2

1

s2
1 + s2

2

) d
2

.

Since s2
1/(s2

1 + s2
2 ) is distributed as Beta{(n −1)d/2, d/2}, Jensen’s inequality yields

that the risk difference R
{
(µ, σ ), p̂L

} − R
{
(µ, σ ), p̂R

} = Eµ,σ {log( p̂R/ p̂L)} is
positive.

We summarize this fact as a corollary.

Corollary 1 p̂L is dominated by p̂R under the Kullback–Leibler loss.

2.2 Improved prediction

We introduce an improper shrinkage prior πLT (µ, η) defined as

µ|(η, λ) ∼ Nd

(
0,

1 − λ

λ
η−1 Id

)
,

(η, λ) ∼ η−2λ−2, η > 0, 0 < λ < 1,

where η = σ−2. Note that πLT (µ, η)dµdη ∝ ‖µ‖−(d−2)σ−1dµdσ . This prior was
originally considered in Lin and Tsai (1973) for estimation of a multivariate normal
mean.

Theorem 2 The Bayesian predictive density based on πLT (d ≥ 3) is given by

p̂LT (y|x(n)) = Γ {(n + 1)d/2 − 1}
π

d
2 (s2

1 )
d
2 Γ (nd/2 − 1)

(
n

n + 1

)

×

∫ 1

0
t

d
2 −2

{

1+ n

n + 1

‖y − x̄‖2

s2
1

+ (n + 1)‖ nx̄+y
n+1 ‖2

s2
1

t

}− (n+1)d
2 +1

dt

∫ 1

0
t

d
2 −2

{

1 + n‖x̄‖2

s2
1

t

}− nd
2 +1

dt

.

(1)
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Proof We write p(x(n)|µ, η) and p(y|µ, η) in place of p(x(n)|µ, σ) and p(y|µ, σ),
respectively. The Bayesian predictive density based on πLT is given by

p̂LT (y|x(n)) =
∫∫

p(y|µ, η)p(x(n)|µ, η)πLT (µ, η)dµdη
∫∫

p(x(n)|µ, η)πLT (µ, η)dµdη
, (2)

and we calculate the denominator and the numerator of (2).
First, the denominator of (2) is

∫∫
p(x(n)|µ, η)πLT (µ, η)dµdη

= 1

(2π)
(n+1)d

2

∫∫∫
η

(n+1)d
2 −2λ

d
2 −2(1 − λ)−

d
2 e

− η
2

(
s2
1+n‖x̄−µ‖2+ λ

1−λ
‖µ‖2

)

dλdµdη.

(3)

Making the transformation λ/(1 − λ) = nt/(1 − t) with dλ = ndt/{1 + (n − 1)t}2

and using the relation

‖x̄ − µ‖2 + t

1 − t
‖µ‖2 = 1

1 − t
‖µ − (1 − t)x̄‖2 + t‖x̄‖2,

we can rewrite the right-hand side of (3) as

n
d
2 −1

(2π)
(n+1)d

2

∫ 1

0

∫ ∞

0

∫

Rd
η

(n+1)d
2 −2t

d
2 −2(1 − t)−

d
2 e− η

2

(
s2
1+n‖x̄‖2t

)

× e− nη
2(1−t) ‖µ−(1−t)x̄‖2

dµdηdt

= 1

n(2π)
nd
2

∫ 1

0

∫ ∞

0
η

nd
2 −2t

d
2 −2e− η

2

(
s2
1+n‖x̄‖2t

)
dηdt

= Γ (nd/2 − 1)

2nπ
nd
2

∫ 1

0
t

d
2 −2(s2

1 + n‖x̄‖2t)−
nd
2 +1dt. (4)

Next, note that

p(y|µ, η)p(x(n)|µ, η) =
( η

2π

) (n+1)d
2

e
− η

2

{
s2
1+ n

n+1 ‖y−x̄‖2+(n+1)

∥
∥
∥µ− nx̄+y

n+1

∥
∥
∥

2
}

.

Then, the numerator of (2) is similarly calculated as follows:

∫∫
p(y|µ, η)p(x(n)|µ, η)πLT (µ, η)dµdη = Γ {(n + 1)d/2 − 1)}

2(n + 1)π
(n+1)d

2

×
∫ 1

0
t

d
2 −2

{

s2
1 + n

n + 1
‖y − x̄‖2 + (n + 1)

∥
∥
∥
∥

nx̄ + y

n + 1

∥
∥
∥
∥

2

t

}− (n+1)d
2 +1

dt. (5)
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536 K. Kato

Combining (4) and (5) gives the expression (1). ��
Now, we state our main theorem of this paper. The proof of the theorem is given in

the next section.

Theorem 3 For n ≥ 2 and d ≥ 3, the inequality

R
{
(µ, σ ), p̂R

} − R
{
(µ, σ ), p̂LT

}
> 0

holds for all µ ∈ R
d and σ > 0, i.e., p̂R is dominated by p̂LT and hence inadmissible.

2.3 Simulation studies

It is of interest to investigate the behaviors of the risk differences between p̂LT and p̂R

for several values of d and n. The risk differences R
{
(µ, σ ), p̂R

}− R
{
(µ, σ ), p̂LT

}

for d = 3, 5, 7 and n = 5, 10 are given in Fig. 1a and b.
It can be verified from these figures that the risk gain of p̂LT is larger when d is big

or n is small. The proposed predictive density p̂LT is thus especially recommended in
these situations.

3 Proof of Theorem 3

3.1 Star and dispersive orderings

In this subsection, we introduce some notions of stochastic orderings, known as star
ordering and dispersive ordering, which will be used to prove our main result. For a
distribution function F on R, F−1 denotes its left continuous inverse function.

Definition 1 Let F and G be distribution functions on R. Then,

• F is star-ordered with respect to G (written as F ≤� G) if G−1(p)/F−1(p) is
nondecreasing in p ∈ (0, 1),

• F is less dispersed than G (written as F ≤disp G) if F−1(β)−F−1(α) ≤ G−1(β)−
G−1(α) for all 0 < α ≤ β < 1.

When U and V are random variables with distribution functions F and G respec-
tively, we also write U ≤� V if F ≤� G, and U ≤disp V if F ≤disp G. The next
lemma states a correspondence between the star ordering and dispersive ordering for
positive random variables.

Lemma 1 Suppose U and V are random variables positive in probability 1. If their
distribution functions are continuous with their supports being intervals, then,

U ≤� V ⇔ − log U ≤disp − log V . (6)

Proof Define W = − log U . Let FU and FW be the distribution functions of U
and W , respectively. Then since FW (w) = P(− log U ≤ w) = P(U ≥ e−w) =
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Fig. 1 Risk differences R
{
(µ, σ ), p̂R

} − R
{
(µ, σ ), p̂LT

}
for d = 3, 5, 7 and n = 5, 10. ‘noncentrality

parameter’ denotes ‖µ‖2/σ 2

1 − FU (e−w), we have F−1
W (p) = − log F−1

U (1 − p) for p ∈ (0, 1). Also, define
Z = − log V and let FV nd FZ be the distribution functions of V and Z , respectively.
Again, it follows F−1

Z (p) = − log F−1
V (p) for p ∈ (0, 1).
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538 K. Kato

Now, by the definition of the dispersive ordering, W ≤disp Z is equivalent to

− log F−1
U (1 − β) + log F−1

U (1 − α)

≤ − log F−1
V (1 − β) + log F−1

V (1 − α) for 0 < α ≤ β < 1,

which is equivalent to

log
F−1

V (1 − β)

F−1
U (1 − β)

≤ log
F−1

V (1 − α)

F−1
U (1 − α)

for 0 < α ≤ β < 1. (7)

Since the condition (7) means that F−1
V (p)/F−1

U (p) is nondecreasing in p ∈ (0, 1),
we obtain the equivalence (6). ��

For every function f with domain I ⊂ R and for every c ∈ R, we define the
function fc by fc(u) = f (u − c), u ∈ {v + c; v ∈ I }. The number of sign changes of
f in I is defined by

S−( f ) = sup S− { f (u1), . . . , f (um)} (8)

where S−(a1, . . . , am) is the number of sign changes of the indicated sequence, zero
terms being discarded, and the supremum in (8) is extended over all sets u1 < · · · < um

such that u j ∈ I and m < ∞.
The next theorem given in Shaked (1982) provides a useful tool for proving the

dispersive ordering between two distribution functions.

Theorem 4 (Shaked 1982) Let F and G be two absolutely continuous distribution
functions with support [0,∞) and let f and g be the corresponding densities. If

S−( fc − g) ≤ 2 (9)

for every c > 0, with the sign sequence being −,+,− in case of equality, and if
F(u) ≥ G(u) for all u > 0, then F ≤disp G.

The next lemma, which will be used in the proof of Theorem 3, is a slight extension
of Lemma 1 of Jeon et al. (2006).

Lemma 2 Let U ∼ Beta(α, γ1) and V ∼ Beta(α, γ2) with α > 0 and 1 < γ1 < γ2.
Then, U ≤� V .

Proof From Lemma 1, we need to show that

− log U ≤disp − log V . (10)

The densities of − log U and − log V are

f (u) = 1

B(α, γ1)
e−αu(1 − e−u)γ1−1, g(v) = 1

B(α, γ2)
e−αv(1 − e−v)γ2−1,

for u > 0 and v > 0, respectively.
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First, since
g(u)

f (u)
∝ (1 − e−u)γ2−γ1

is nondecreasing in u > 0, F(u) ≥ G(u) holds for all u > 0.
Let c > 0. For u > c, the sign of fc(u) − g(u) is the same as the sign of

log fc(u) − log g(u) = A + αc + (γ1 − 1) log(1 − ece−u) − (γ2 − 1) log(1 − e−u),

where A = log{B(α, γ2)/B(α, γ1)}. Define

h(w) = A + αc + (γ1 − 1) log(1 − ecw) − (γ2 − 1) log(1 − w)

for 0 < w < e−c and differentiate h to obtain

h′(w) = −(γ1 − 1)
ec

1 − ecw
+ (γ2 − 1)

1

1 − w
.

It is seen that the equation h′(w) = 0 has at most one root in 0 < w < e−c and
h(w) → −∞ as w → e−c since γ1 > 1. Then it is seen that the conditions of
Theorem 4 are satisfied. Therefore the ordering (10) is established. ��

3.2 Proof of Theorem 3

We here provide the proof of Theorem 3. For notational convenience, we write x̄n as
x̄ and x̄n+1 as (nx̄ + y)/(n + 1). Then,

log
p̂LT (y|x(n))

p̂R(y|x(n))

=
(

d

2
− 1

)
log

(
n + 1

n

)
−

(
d

2
− 1

)
log

(

1 + s2
2

s2
1

)

+ log
1

B(d/2 − 1, nd/2)

∫ 1

0
t

d
2 −2

{

1 + (n + 1)‖x̄n+1‖2

s2
1 + s2

2

t

}− (n+1)d
2 +1

dt

− log
1

B{d/2 − 1, (n − 1)d/2}
∫ 1

0
t

d
2 −2

{

1 + n‖x̄n‖2

s2
1

t

}− nd
2 +1

dt. (11)

Applying the change of variables s = (n+1)‖x̄n+1‖2

s2
1+s2

2
t to the second integral in the

right-hand side of (11), we obtain
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∫ 1

0
t

d
2 −2

{

1 + (n + 1)‖x̄n+1‖2

s2
1 + s2

2

t

}− (n+1)d
2 +1

dt

=
{

(n + 1)‖x̄n+1‖2

s2
1 + s2

2

}−
(

d
2 −1

)
∫ (n+1)‖x̄n+1‖2

s2
1+s2

2

0
s

d
2 −2(1 + s)−

(n+1)d
2 +1ds. (12)

Making the transformation s = u/(1 − u) with ds = (1 − u)−2du to the integral in
the right-hand side of (12), we have

∫ (n+1)‖x̄n+1‖2

s2
1+s2

2

0
s

d
2 −2(1 + s)−

(n+1)d
2 +1ds

=
∫ (n+1)‖x̄n+1‖2

(n+1)‖x̄n+1‖2+s2
1+s2

2

0
u

d
2 −2(1 − u)

nd
2 −1du.

Again, applying the changes of variables to the third integral in the right-hand side of
(11) in the similar way, we finally obtain the expression

log
p̂LT (y|x(n))

p̂R(y|x(n))
=

(
d

2
− 1

) {
log(‖x̄n‖2)−log(‖x̄n+1‖2)

}

+ log
1

B(d/2−1, nd/2)

∫ (n+1)‖x̄n+1‖2

(n+1)‖x̄n+1‖2+s2
1+s2

2

0
t

d
2 −2(1−t)

nd
2 −1dt

− log
1

B{d/2−1, (n−1)d/2}
∫ n‖x̄n‖2

n‖x̄n‖2+s2
1

0
t

d
2 −2(1−t)

(n−1)d
2 −1dt.

Now, define

Fn(u) = 1

B(d/2 − 1, nd/2)

∫ u

0
t

d
2 −2(1 − t)

nd
2 −1dt,

and Fn−1 in the same manner. Then, the risk difference is expressed as

R
{
(µ, σ ), p̂R

} − R
{
(µ, σ ), p̂LT

}

= Eµ,σ

{
log( p̂LT / p̂R)

}

=
(

d

2
− 1

) [
Eµ,σ

{
log(‖X̄n‖2)

}
− Eµ,σ

{
log(‖X̄n+1‖2)

}]

+ E

{

log Fn

(
χ2

d,(n+1)‖µ‖2/σ 2

χ2
d,(n+1)‖µ‖2/σ 2 + χ2

nd

)}

− E

{

log Fn−1

(
χ2

d,n‖µ‖2/σ 2

χ2
d,n‖µ‖2/σ 2 + χ2

(n−1)d

)}

,
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where χ2
l,ξ is a random variable having the noncentral χ2-distribution with l de-

grees of freedom and noncentrality parameter ξ , χ2
m is a random variable having

the χ2-distribution with m degrees of freedom independent of χ2
l,ξ .

From Lemma 1 of Komaki (2001), it follows that

Eµ,σ

{
log(‖X̄n‖2)

}
− Eµ,σ

{
log(‖X̄n+1‖2)

}
> 0

for all µ ∈ R
d and σ > 0. Hence it is enough to show

E

{

log Fn

(
χ2

d,(n+1)‖µ‖2/σ 2

χ2
d,(n+1)‖µ‖2/σ 2 + χ2

nd

)}

−E

{

log Fn−1

(
χ2

d,n‖µ‖2/σ 2

χ2
d,n‖µ‖2/σ 2 + χ2

(n−1)d

)}

≥ 0. (13)

Since Fn(u) is a nondecreasing function, it is seen that

E

{

log Fn

(
χ2

d,(n+1)‖µ‖2/σ 2

χ2
d,(n+1)‖µ‖2/σ 2 + χ2

nd

)}

≥ E

{

log Fn

(
χ2

d,n‖µ‖2/σ 2

χ2
d,n‖µ‖2/σ 2 + χ2

nd

)}

,

which implies the inequality (13) holds if

E

{

log Fn

(
χ2

d,n‖µ‖2/σ 2

χ2
d,n‖µ‖2/σ 2 + χ2

nd

)}

−E

{

log Fn−1

(
χ2

d,n‖µ‖2/σ 2

χ2
d,n‖µ‖2/σ 2 + χ2

(n−1)d

)}

≥ 0.

Since this difference can be written as

∞∑

j=0

e−τ τ j

j !
[

1

B(d/2 + j, nd/2)

∫ 1

0
{log Fn(u)} u

d
2 + j−1(1 − u)

nd
2 −1du

− 1

B{d/2 + j, (n − 1)d/2}
∫ 1

0
{log Fn−1(u)} u

d
2 + j−1(1 − u)

(n−1)d
2 −1du

]
,

where τ = n‖µ‖2/2σ 2, it suffices to show that

1

B(d/2 + j, nd/2)

∫ 1

0
{log Fn(u)} u

d
2 + j−1(1 − u)

nd
2 −1du

− 1

B{d/2 + j, (n − 1)d/2}
∫ 1

0
{log Fn−1(u)} u

d
2 + j−1(1 − u)

(n−1)d
2 −1du ≥ 0

(14)

for each j .
123



542 K. Kato

Making the transformation p = Fn(u) with

du = B(d/2 − 1, nd/2)
{

F−1
n (p)

}− d
2 +2 {

1 − F−1
n (p)

}− nd
2 +1

d p,

we rewrite the first term of the left-hand side of (14) as

B(d/2 − 1, nd/2)

B(d/2 + j, nd/2)

∫ 1

0
(log p)

{
F−1

n (p)
} j+1

d p.

Similarly, we can see that the second term of the left side of (14) is expressed as

B{d/2 − 1, (n − 1)d/2}
B{d/2 + j, (n − 1)d/2}

∫ 1

0
(log p)

{
F−1

n−1(p)
} j+1

d p.

Note that both B(d/2−1,nd/2)
B(d/2+ j,nd/2)

{
F−1

n (p)
} j+1

and B{d/2−1,(n−1)d/2}
B{d/2+ j,(n−1)d/2}

{
F−1

n−1(p)
} j+1

are

probability density functions on (0, 1). From Lemma 2, F−1
n (p)/F−1

n−1(p) is nonde-
creasing in p ∈ (0, 1). Since p �→ log p is nondecreasing, we obtain the desired
inequality. Therefore, the proof of Theorem 3 is completed. ��
Acknowledgments The author would like to thank Professor Tatsuya Kubokawa for his encouragement
and helpful suggestions. He also would like to thank the anonymous referee for significant suggestions for
improvement on presentation.

References

Aitchison, J. (1975). Goodness of prediction fit. Biometrika, 62, 545–554.
Brown, L. D., George, E. I., Xu, X. (2007). Admissible predictive density estimation. Annals of Statistics,

to appear.
Geisser, S. (1993). Predictive inference: an introduction. New York: Chapman and Hall.
George, E. I., Liang, F., Xu, X. (2006). Improved minimax predictive densities under Kullback–Leibler

loss. Annals of Statistics, 34, 78–91.
Jeon, J., Kochar, S., Park, C. G. (2006). Dispersive ordering-some applications and examples. Statistical

Papers, 47, 227–247.
Komaki, F. (1996). On asymptotic properties of predictive distributions. Biometrika, 83, 299–313.
Komaki, F. (2001). A shrinkage predictive distribution for multivariate normal observables. Biometrika,

88, 859–864.
Liang, F., Barron, A. (2004). Exact minimax strategies for predictive density estimation, data compression,

and model selection. IEEE Transactions on Information Theory, 50, 2708–2726.
Lin, P. E., Tsai, H. L. (1973). Generalized Bayes minimax estimations of the multivariate normal mean

with unknown covariance matrix. Annals of Statistics, 1, 142–145.
Robert, C. P. (2001). The Bayesian choice (2nd ed.). New York: Springer.
Shaked, M. (1982). Dispersive ordering of distribution. Journal of Applied Probability, 19, 310–320.

123


	Improved prediction for a multivariate normal distribution with unknown mean and variance
	Abstract
	1 Introduction
	2 Main results
	2.1 Prediction with the left and right invariant priors
	2.2 Improved prediction
	2.3 Simulation studies

	3 Proof of Theorem 3
	3.1 Star and dispersive orderings
	3.2 Proof of Theorem 3

	Acknowledgments
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


