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Abstract For any n × p matrix X and n × n nonnegative definite matrix V, the
matrix X(X′VX)+X′V is called a V-orthogonal projector with respect to the semi-
norm ‖ · ‖V, where (·)+ denotes the Moore-Penrose inverse of a matrix. Various
new properties of the V-orthogonal projector were derived under the condition that
rank(VX) = rank(X), including its rank, complement, equivalent expressions, condi-
tions for additive decomposability, equivalence conditions between two (V-)orthogo-
nal projectors, etc.

Keywords General linear model · Weighted least-squares estimator · V-orthogonal
projector · Moore-Penrose inverses of matrices · Rank formulas for partitioned matrix

1 Introduction

Throughout this paper, R
m×n stands for the collection of all m × n real matrices. The

symbols A′, r(A), R(A) and N (A) stand for the transpose, the rank, the range (col-
umn space) and the kernel (null space) of a matrix A ∈ R

m×n , respectively; R⊥(A)

stands for the orthogonal complement of R(A). The Moore-Penrose inverse of A,
denoted by A+, is defined to be the unique solution G to the four matrix equations

(i) AGA = A, (ii) GAG = G, (iii) (AG)′ = AG, (iv) (GA)′ = GA.
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A matrix G is called a generalized inverse (g-inverse) of A, denoted by A−, if it sat-
isfies (i), an outer inverse of A if it satisfies (ii). Further, let PA, FA and EA stand
for the three orthogonal projectors PA = AA+, EA = Im − PA = In − AA+ and
FA = In − PA′ = In − A+A.

Let V ∈ R
n×n be a nonnegative definite (nnd) matrix, i.e., V can be expressed as

V = ZZ′ for some Z. The seminorm of a vector x ∈ R
m×1 induced by V is defined

by ‖x‖V = (x′Vx)1/2.
Suppose we are given a general linear model

y = Xβββ + εεε, E(εεε) = 0, Cov(εεε) = σ 2���, (1)

or in the triplet form

M = {y, Xβββ, σ 2���}, (2)

where X ∈ R
n×p is a known matrix, y ∈ R

n×1 is an observable random vector,
εεε ∈ R

n×1 is a random error vector, βββ ∈ R
n×1 is a vector of unknown parameters, σ 2

is a positive unknown parameter, ��� ∈ R
n×n is a known nonnegative definite matrix.

As is well known, for a given nnd matrix V, the WLSE of βββ under (2), denoted by
WLSEM (βββ), is defined to be

β̃ββ = argmin
βββ

(y − Xβββ)′V(y − Xβββ). (3)

The WLSE of Xβββ under (2), denoted by WLSEM (Xβββ), is defined to be Xβ̃ββ. The
normal equation associated with (3) is given by X′VXβββ = X′Vy. This equation is
always consistent. Solving this equation gives the following well-known result.

Lemma 1 The general expression of the WLSE of βββ under (2) is given by

β̃ββ = (X′VX)+X′Vy + [ I − (VX)+(VX) ]u = (X′VX)+X′Vy + FVXu, (4)

where u ∈ R
p×1 is arbitrary.

For y �= 0, let u = Uy in (4), where U ∈ R
p×n is arbitrary. Then the WLSEs of βββ

and Xβββ under (2) can be written in the following homogeneous forms

WLSEM (βββ) = [ (X′VX)+X′V + FVXU ]y, (5)

WLSEM (Xβββ) = [ X(X′VX)+X′V + XFVXU ]y. (6)

Further, let PX:V denote the matrix pre-multiplied to y in (6):

PX:V = X(X′VX)+X′V + XFVXU, (7)
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V-orthogonal projectors 519

which is called the projector into R(X) with respect to the semi-norm ‖ · ‖V, (see
Mitra and Rao 1974). Because there is an arbitrary matrix U in (7), it is possible to
take the U such that PX:V has some special forms, for example,

PX:V = X(X′VX)−X′V, (8)

PX:V = X(X′VX)+X′V, (9)

PX:V = XX− + X(X′VX)−X′V( I − XX− ), (10)

PX:V = XX+ + X(X′VX)+X′V( I − XX+ ). (11)

It can be seen from (7) that PX:V is not necessarily unique. In addition, P2
X:V = PX:V

and PX:VX = X do not necessarily hold for a given U in (7). Using the notation in
(7), the expectation and the covariance matrix of WLSEM (Xβββ) are given by

E[ WLSEM (Xβββ) ] = PX:VXβββ and Cov[ WLSEM (Xβββ) ] = σ 2PX:V���P′
X:V. (12)

Equations (6) and (12) indicate that the algebraic and statistical properties of the WLSE
of Xβββ under (2) are mainly determined by the projector PX:V in (7). Hence it is quite
essential to know various properties of the projector when applying WLSEM (Xβββ) in
statistical practice, for example, the rank, range, trace, norm, uniqueness, idempoten-
cy, symmetry, decompositions of the projector, as well as various equalities involving
projectors. The projector PX:V in (7) and its special cases have widely been investi-
gated in the literature since 1970s, see, e.g., Harville (1997), Mitra and Rao (1974),
Rao (1974), Rao and Mitra (1971a,b), Takane and Yanai (1999), Tian and Takane
(2007b). In Tian and Takane (2007b), a variety of new properties were derived on pro-
jectors associated with WLSEs by making use of the matrix rank method. As further
extensions of Tian and Takane (2007b), of particular interest in the present paper are
various properties of PX:V when it is unique.

Some rank formulas for partitioned matrices due to Marsaglia and Styan (1974,
Theorem 19) are given below, which can be used to simplify various matrix expres-
sions involving generalized inverses.

Lemma 2 Let A ∈ R
m×n, B ∈ R

m×k and C ∈ R
l×n . Then

r [ A, B ] = r(A) + r [ ( Im − AA− )B ] = r(B) + r [ ( Im − BB− )A ], (13)

r

[
A
C

]
= r(A) + r [ C( In − A−A ) ] = r(C) + r [ A( In − C−C ) ], (14)

where the ranks do not depend on the particular choice of A−, B− and C−.

The results in the following lemma are given in Tian and Styan (2001, Theorem 2.1
and Corollary 2.3).
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Lemma 3 Any pair of idempotent matrices A and B of the order m satisfy the follow-
ing two rank formulas

r( A − B ) = r

[
A
B

]
+ r [ A, B ] − r(A) − r(B), (15)

r( Im − A − B ) = m + r(AB) + r(BA) − r(A) − r(B). (16)

Hence,

A = B ⇔ R(A) = R(B) and R(A′) = R(B′), (17)

A + B = Im ⇔ r(A) + r(B) = m + r(AB) + r(BA). (18)

The result in the following lemma is shown in Tian and Takane (2007a, Lemma 1.3).

Lemma 4 Let A ∈ R
m×n, and let G1, G2, G3 ∈ R

n×m be three outer inverses of A,

i.e., Gi AGi = Gi , i = 1, 2, 3. Also suppose R(Gi ) ⊆ R(G1) and R(G′
i ) ⊆ R(G′

1),

i = 2, 3. Then

r( G1 − G2 − G3 ) = r(G1) − r(G2) − r(G3) + r(G2AG3) + r(G3AG2). (19)

The following result is given in Tian (2004, Corollary 2).

Lemma 5 Let A ∈ R
m×n and B ∈ R

m×k . Then

(PAPB)+ = PBPA − PB(EBEA)+PA. (20)

We also use the following well-known results on Moore-Penrose inverses, ranges
and ranks of matrices:

A = AA′(A+)′ = (A+)′A′A, (A+)+ = A, (A+)′ = (A′)+, (21)

A+ = (A′A)+A′ = A′(AA′)+, (22)

R(B) ⊆ R(A) ⇔ r [ A, B ] = r(A) ⇔ AA+B = B, (23)

R(B) ⊆ R(A) and r(B) = r(A) ⇔ R(B) = R(A), (24)

R(A) = R(AA′) = R(AA+) = R[ (A+)′ ], (25)

R(A′) = R(A′A) = R(A+A) = R(A+), (26)

R(AB+B) = R(AB+) = R(AB′), (27)

R(A1) = R(A2) and R(B1) = R(B2) ⇒ r [ A1, A2 ] = r [ B1, B2 ]. (28)
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Moreover, if V is nnd, then

VV+ = V+V, R(V) = R(V1/2) = R(V+),

R(A′V) = R(A′V1/2) = R(A′V+), (29)

where V1/2 is the nnd square root of V, see, e.g., Ben-Israel and Greville (2003), and
Rao and Mitra (1971a,b).

2 Properties of PX:V when it is unique

We first give a series of equivalent statements on the uniqueness of the projector PX:V
in (7).

Theorem 6 Let PX:V be as given in (7). Then the following statements are equivalent:
(a) PX:V is unique.
(b) R(X′V) = R(X′).
(c) r(VX) = r(X).

(d) R(X) ∩ R(EV) = {0}.
(e) R(X) ∩ R(EVX) = {0}.
(f) r [ EX, V ] = n.

(g) EX + V is positive definite (pd).

In this case, the unique V-orthogonal projector can be written as

PX:V = X(X′VX)+X′V. (30)

Proof From (7), the projector PX:V is unique if and only if X(VX)+(VX) = X, which,
by (23) is equivalent to R(X′V) = R(X′), and to r(VX) = r(X). It is easy to find
from (13) that

r [ X, EV ] = r(PVX) + r(EV) = r(VX) + r(EV) = r(VX) + n − r(V),

r [ X, EVX ] = r(PVXX) + r(EVX) = r(VX) + r(EVX) = n,

r [ EX, V ] = r(EX) + r(PXV) = r(EX) + r(VX) = n − r(X) + r(VX),

r( EX + V ) = r [ EX, V ] = r(EX) + r(VX) = n − r(X) + r(VX)

hold. Hence,

R(X) ∩ R(EV) = {0} ⇔ r [ X, EV ] = r(X) + r(EV) ⇔ r(VX) = r(X),

R(X) ∩ R(EVX) = {0} ⇔ r [ X, EVX ] = r(X) + r(EVX) ⇔ r(VX) = r(X),

r [ EX, V ] = n ⇔ r(VX) = r(X),

EX + V is pd ⇔ r [ EX, V ] = n,

establishing the equivalence of (c), (d), (e), (f) and (g). 
�
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If the projector PX:V in (7) is unique, it is often called the V-orthogonal projector
onto R(X). The following theorem gives a variety of properties of the V-orthogonal
projector PX:V in (30), some of which were given in the literature, see, e.g., Harville
(1997), and Mitra and Rao (1974).

Theorem 7 Let PX:V be as given in (30) and suppose r(VX) = r(X). Then:
(a) PX:VZ = Z holds for any Z with R(Z) ⊆ R(X).

(b) P2
X:V = PX:V.

(c) R(PX:V) = R(X) and R(P′
X:V) = R(VX).

(d) N (PX:V) = N (X′V) and N (P′
X:V) = N (X′).

(e) PX:V can be written in the following nine forms

PX:V = X(V1/2X)+V1/2 (31)

= XX′V(X′VXX′V)+X′V (32)

= X(XX′VX)+XX′V (33)

= PXV(X′VPXV)+X′V (34)

= X(PXVX)+PXV (35)

= (PVXPX)+ (36)

= PXPVX − PX(EXEVX)+PVX (37)

= XX′( XX′ + EVX )−1 (38)

= PX( PX + EVX )−1, (39)

where V1/2 is the nonnegative definite square root of V.

(f) PX:V = PX:VV+P′
X:VV.

(g) PXPX:V = PX:V, PX:VPX = PX and ( PX − PX:V )2 = 0.

(h) PXX′:V, PPX:V, PPX:V:V, PX:(λEX+V) and PX:PVX are unique, and

PX:V = PXX′:V = PPX:V = PPX:V:V = PX:(λEX+V) = PX:PVX ,

where λ is any real number.
(i) P′

X:V = PVX:(EX+V)−1 .

(j) PX:V + P′
EX:(EX+V)−1 = In .

(k) PX:V + P(EX+V)−1EX:(EX+V) = In .

(l) PVX:V+ is unique and PVX:V+ = VPX:VV+.

Proof Parts (a) and (b) are obvious. Parts (c) and (d) are derived by (27). Applying
(22) to (V1/2X)+ gives

X(V1/2X)+V1/2 = X(X′VX)+X′V,
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as required for (31). Denote the eight matrices in (32)–(39) by

Z1 = XX′V(X′VXX′V)+X′V,

Z2 = X(XX′VX)+XX′V,

Z3 = PXV(X′VPXV)+X′V,

Z4 = X(PXVX)+PXV,

Z5 = (PVXPX)+,

Z6 = PXPVX − PX(EXEVX)+PVX,

Z7 = XX′( XX′ + EVX )−1,

Z8 = PX( PX + EVX )−1.

Then it is easy to verify that Z1, . . . , Z5 are all idempotent and that

R(Z1) = R(Z2) = R(Z3) = R(Z4) = R(Z5) = R(X) = R(PX:V),

R(Z′
1) = R(Z′

2) = R(Z′
3) = R(Z′

4) = R(Z′
5) = R(VX) = R(P′

X:V).

In these cases, applying (17) to PX:V, Z1, . . . , Z5 yields PX:V = Z1 = · · · = Z5. The
equality Z5 = Z6 follows from (20). By (13),

r( XX′ + EVX ) = r [ X, EVX ] = r(PVXX) + r(EVX) = r(VX) + r(EVX) = n,

r( PX + EVX ) = r [ PX, EVX ] = r(PVXPX) + r(EVX) = r(VX) + r(EVX) = n.

Hence both XX′ + EVX and PX + EVX are nonsingular. From (a) and (30), we obtain
that PX:VXX′ = XX′, PX:VPX = PX and PX:V(VX)(VX)+ = PX:V, so that

r( PX:V − Z7 ) = r [ PX:V − XX′( XX′ + EVX )−1 ]
= r [ PX:V( XX′ + EVX ) − XX′ ]
= r [ PX:V − PX:V(VX)(VX)+ ]
= 0,

r( PX:V − Z8 ) = r [ PX:V − PX( PX + EVX )−1 ]
= r [ PX:V( PX + EVX ) − PX ]
= r [ PX:V − PX:V(VX)(VX)+ ]
= 0.

Hence PX:V = Z7 = Z8, establishing (e). The result in (f) is straightforward from (30).
The first two equalities in (g) are derived from (a). The third equality in (g) follows
from (b) and the first two equalities in (f). If PX:V is unique, then the five projectors
PXX′:V, PPX:V, PX:(λEX+V), PPX:V:PV and PX:PVX are also unique by Theorem 6. In
these cases, it is easy to verify that

R(PXX′:V) = R(PPX:V) = R(PPX:V:V) = R(PX:(λEX+V)) = R(PX:PVX) = R(X),

R(P′
XX′:V) = R(P′

PX:V) = R(P′
PX:V:V) = R(P′

X:(λEX+V)) = R(P′
X:PVX

) = R(VX).
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Hence the equalities in (h) hold by (17). If PX:V is unique, then EX + V is pd by
Theorem 6(g), so that the projector PVX:(EX+V)−1 is unique, too. In this case,

r [ (EX + V)−1VX, X ] = r [ VX, (EX + V)X ]
= r [ VX, VX ] = r(VX) = r(X). (40)

This implies R[ (EX + V)−1VX ] = R(X) by (24). In these cases, we derive from
(b) that

r(PVX:(EX+V)−1) = r(VX) = r(X),

R(PVX:(EX+V)−1) = R(VX),

R(P′
VX:(EX+V)−1) = R[ (EX + V)−1VX ] = R(X).

Hence applying (17) to the two idempotent matrices P′
X:V and PVX:(EX+V)−1 leads to

(i). Since both PX:V and PEX:(EX+V)−1 are unique, we obtain from (c) that

r(PX:V) = r(X) and r(PEX:(EX+V)−1) = r(EX) = n − r(X).

Thus

r(PX:V) + r(PEX:(EX+V)−1) = n. (41)

On the other hand, (40) is equivalent to EX(EX + V)−1VX = 0 by (13). In such a
case, it is easy to verify that

PX:VP′
EX:(EX+V)−1 = 0 and P′

EX:(EX+V)−1 PX:V = 0. (42)

Applying (18) to (41) and (42) results in (j). Similarly, we can show that

r(PX:V) + r(P(EX+V)−1EX:(EX+V)) = n,

PX:VP(EX+V)−1EX:(EX+V) = P(EX+V)−1EX:(EX+V)PX:V = 0.

Hence we obtain (k) from (18). Since r(V+VX) = r(VX), the projector PVX:V+ is
unique by Theorem 6(c). In such a case, we obtain from (30) that

PVX:V+ = VX(X′VV+VX)+X′VV+ = VX(X′VX)+X′VV+ = VPX:VV+,

as required for (l). 
�
In the remaining part of this section, we give some rank equalities for two projec-

tors and then use them to characterize relations between two projectors. The results
obtained can be used to investigate relationships between two estimators under two
linear models.
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Theorem 8 Let PX:V be as given in (30) and suppose r(VX) = r(X). Then

r( PX:V − P′
X:V ) = 2r [ X, VX ] − 2r(X), (43)

r( PX:V − PX ) = r [ X, VX ] − r(X), (44)

r( PVX − PX ) = 2r [ X, VX ] − 2r(X). (45)

Hence, the following statements are equivalent:
(a) PX:V = P′

X:V.

(b) PX:V = PX, i.e., PX:V is the orthogonal projector onto R(X).

(c) PVX = PX, i.e., PVX is the orthogonal projector onto R(X).

(d) PX:V = PVX:(EX+V)−1 .

(e) PEX:(EX+V)−1 is the orthogonal projector onto R⊥(X).

(f) P(EX+V)−1EX:(EX+V) is the orthogonal projector onto R⊥(X).

(g) R(VX) ⊆ R(X).

Proof Since both PX:V and P′
X:V are idempotent, we derive from (15) that

r( PX:V − P′
X:V ) = 2r [ PX:V, P′

X:V ] − 2r(PX:V)

= 2r [ X, VX ] − 2r(X) (by (28) and Theorem 7(c)),

establishing (43). Also by (15), we find that

r( PX:V − PX ) = r [ P′
X:V, PX ] + r [ PX:V, PX ] − r(PX:V) − r(X)

= r [ VX, X ] − r(X),

and

r( PVX − PX ) = 2r [ PVX, PX ] − r(PVX) − r(X)

= 2r [ VX, X ] − 2r(X),

establishing (44) and (45). The equivalence of (a), (b), (c) and (g) follows from (43),
(44) and (45). The equivalence of (a), (d), (e) and (f) follows from Theorem 7(i), (j)
and (k). 
�

Harville (1997, Sect. 14.2e) investigated relationships between two projectors and
gave some necessary and sufficient conditions for PX:V1 = PX:V2 to hold when V1
and V2 are pd. A general result on the equality PX1:V1 = PX2:V2 is given below.

Theorem 9 Let X1 ∈ R
n×p and X2 ∈ R

n×k, let V1, V2 ∈ R
n×n be nnd with

r(V1X1) = r(X1) and r(V2X2) = r(X2). Then

r( PX1:V1 − PX2:V2 ) = r [ V1X1, V2X2 ] + r [ X1, X2 ] − r(X1) − r(X2). (46)

Hence, the following statements are equivalent:
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(a) PX1:V1 = PX2:V2 .

(b) R(X1) = R(X2) and R(V1X1) = R(V2X2).

Proof Since both PX1:V1 and PX2:V2 are idempotent, we obtain by (15), (28) and
Theorem 7(c) that

r(PX1:V1 − PX2:V2)

= r [ P′
X1:V1

, P′
X2:V2

] + r [ PX1:V1 , PX2:V2 ] − r(PX1:V1) − r(PX2:V2)

= r [ V1X1, V2X2 ] + r [ X1, X2 ] − r(X1) − r(X2),

establishing (46). Also note that

r [ V1X1, V2X2 ] ≥ r(V1X1) = r(X1), r [ V1X1, V2X2 ] ≥ r(V2X2) = r(X2),

r [ X1, X2 ] ≥ r(X1), r [ X1, X2 ] ≥ r(X2).

Thus it follows from (46) that PX1:V1 = PX2:V2 holds if and only if

r [ V1X1, V2X2 ] = r(V1X1) = r(V2X2), r [ X1, X2 ] = r(X1) = r(X2),

both of which are equivalent to the two range equalities in (b) by (23) and (24). 
�
For more relations between PX1:V1 and PX2:V2 without the assumptions r(V1X1) =

r(X1) and r(V2X2) = r(X2), see Tian and Takane (2007b).
Two results on sum decompositions of V-orthogonal projectors are given below.

Theorem 10 Let PX:V be as given in (30) with r(VX) = r(X), and partition X as
X = [ X1, X2 ]. Then:
(a) Both PX1:V and PX2:V are unique.
(b) PX:VPXi :V = PXi :V, i = 1, 2.

(c) r( PX:V − PXi :V ) = r(X) − r(Xi ), i = 1, 2.

(d) r( PX:V − PX1:V − PX2:V ) = r(X) + 2r(X′
1VX2) − r(X1) − r(X2).

(e) PX:V = PX1:V holds if and only if R(X2) ⊆ R(X1); PX:V = PX2:V holds if and
only if R(X1) ⊆ R(X2).

(f) PX:V = PX1:V + PX2:V holds if and only if X′
1VX2 = 0.

Proof Note that R(X′V) = R(X′) obviously implies R(X′
1V) = R(X′

1) and
R(X′

2V) = R(X′
2). Hence both PX1:V and PX2:V are unique, too, by Theorem 6(b).

Also note from Theorem 7(c) that

R(PX:V) = R(X), R(PX1:V) = R(X1), R(PX2:V) = R(X2),

and that

R(X1) ⊆ R(X) and R(X2) ⊆ R(X).
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Hence the results in (b) follow from Theorem 7(a). Since PX:V, PX1:V and PX2:V are
idempotent when they are unique, we obtain from (15) and (28) that

r( PX:V − PX1:V ) = r

[
PX:V
PX1:V

]
+ r [ PX:V, PX1:V ] − r(PX:V) − r(PX1:V)

= r

[
X′V
X′

1V

]
+ r [ X, X1 ] − r(X) − r(X1)

= r(X) − r(X1),

establishing the rank equality in (c) for i = 1. The equality in (c) for i = 2 can be
shown similarly. The rank equality in (d) is derived from (19), the details are omitted.
The results in (e) and (f) follow directly from (c) and (d). 
�

For further results on relations between PX:V in (7) and PX1:V + PX2:V, and their
applications to estimations under (2), see Tian and Takane (2007a).

Theorem 11 Let X, Y ∈ R
n×p, let V ∈ R

n×n be nnd, and suppose r( VX + VY ) =
r( X + Y ), r(VX) = r(X) and r(VY) = r(Y). If X′VY = 0 and XY′ = 0, then
P(X+Y):V = PX:V + PY:V.

Proof It is well known that if X′Y = 0 and XY′ = 0, which are equivalent to
X+Y = Y+X = 0 and YX+ = XY+ = 0, then ( X + Y )+ = X+ + Y+. Hence if
X′VY = 0 and XY′ = 0, then

( V1/2X + V1/2Y )+ = (V1/2X)+ + (V1/2Y)+.

Applying this equality and (29) to P(X+Y):V leads to

P(X+Y):V = (X + Y)[ V1/2(X + Y) ]+V1/2

= (X + Y)[ (V1/2X)+ + (V1/2Y)+ ]V1/2

= X(V1/2X)+V1/2 + Y(V1/2Y)+V1/2

= PX:V + PY:V,

as required. 
�

3 Properties of PX:V when V is positive definite

In statistical practice, the weight matrix V is often assumed to be positive definite. In
this case, the rank equality r(VX) = r(X) is satisfied, and the projector PX:V in (7)
is unique and possesses all the properties presented in the previous section. Because
the inverse of V1/2 exists, the V-orthogonal projector PX:V in (30) can be written as

PX:V = X(V1/2X)+V1/2 = V−1/2(V1/2X)(V1/2X)+V1/2 = V−1/2PV1/2XV1/2. (47)

This result indicates that PX:V is similar to the orthogonal projector PV1/2X.
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In addition, the V-orthogonal projector in (47) can also be expressed through the
weighted Moore-Penrose inverse of X. Recall that the weighted Moore-Penrose inverse
of a matrix A ∈ R

m×n with respect to two pd matrices M ∈ R
m×m and N ∈ R

n×n is
defined to be the unique solution G satisfying the following four matrix equations

(i) AGA = A, (ii) GAG = G, (iii) (MAG)′ = MAG, (iv) (NGA)′ = NGA,

and is denoted by G = A+
M,N. It is well known that the weighted Moore-Penrose

inverse A+
M,N of A ∈ R

m×n can be rewritten as

A+
M,N = N−1/2(M1/2AN−1/2)+M1/2, (48)

where M1/2 and N1/2 are the pd square roots of M and N, respectively: see, e.g.,
Ben-Israel and Greville (2003).

The following result reveals relations betweenV-orthogonal projectors and weighted
Moore-Penrose inverses of matrices.

Theorem 12 Let X ∈ R
n×p, and let M ∈ R

n×n and N ∈ R
p×p be pd. Then

PX:M = XX+
M,Ip

, P′
X′:N−1 = X+

In ,NX, X+
M,N = P′

X′:N−1 X−PX:M. (49)

Proof Applying (30) and (48) to XX+
M,Ip

and X+
In ,NX gives

XX+
M,Ip

= X(M
1
2 X)+M

1
2 = PX:M and X+

In ,NX = N−1/2(XN−1/2)+X = P′
X′:N−1 .

Also by definition and (48)

X+
M,N = X+

M,NXX+
M,N = (X+

M,NX)X−(XX+
M,N)

= (X+
In ,NX)X−(XX+

M,Ip
)

= P′
X′:N−1 X−PX:M.

Hence, the three equalities in (49) hold. 
�
Further properties of PX:V with V pd are given below.

Theorem 13 Let X ∈ R
n×p, and let V ∈ R

n×n be pd. Then:
(a) PX:V + P′

EX:V−1 = In .

(b) PX:V + PV−1EX:V = In, i.e., In − PX:V is the V-orthogonal projector onto
R(V−1EX).

(c) PX:V = XX′( XX′ + V−1EXV−1 )−1 = XX′V( VXX′V + EX )−1V.

(d) PX:V = PX( PX + V−1EXV−1 )−1 = PXV( VPXV + EX )−1V.

(e) PVX:V−1 = VPX:VV−1 = P′
X:V.

(f) PV−1X:V = V−1PX:V−1 V = P′
X:V−1 .
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Theorem 13(a) is called Khatri’s lemma (1966). Its generalization has been given
by Yanai and Takane (1992).

Proof It is easy to verify that

r(PX:V) + r(P′
EX:V−1) = n, r(PX:V) + r(PV−1EX:V) = n,

PX:VP′
EX:V−1 = P′

EX:V−1 PX:V = 0, PX:VPV−1EX:V = PV−1EX:VPX:V = 0.

Hence (a) and (b) follow from (18). It can be seen from (13) that

r [ X, V−1EX ] = r(X) + r(EXV−1EX) = r(X) + r(EX) = n,

r [ PX, V−1EX ] = r(PX) + r(EXV−1EX) = r(X) + r(EX) = n.

Hence the following four matrices

[
X, V−1EX

] [
X, V−1EX

]′ = XX′ + V−1EXV−1,

[ VX, EX ] [ VX, EX ]′ = VXX′V + EXV,[
PX, V−1EX

] [
PX, V−1EX

]′ = PX + V−1EXV−1,

[ VPX, EX ] [ VPX, EX ]′ = VPXV + EX

are nonsingular. In these cases,

r [ PX:V − XX′( XX′ + V−1EXV−1 )−1 ] = r [ PX:V( XX′ + V−1EXV−1 ) − XX′ ]
= r [ PX:VXX′ + PX:VXV−1EXV−1 − XX′ ]
= r( XX′ − XX′ ) = 0,

r [ PX:V − PX( PX + V−1EXV−1 )−1 ] = r [ PX:V( PX + V−1EXV−1 ) − PX ]
= r [ PX:VPX + PX:VXV−1EXV−1 − PX ]
= r( PX − PX ) = 0,

so that

PX:V = XX′( XX′ + V−1EXV−1 )−1 = PX( PX + V−1EXV−1 )−1. (50)

Substituting the following two equalities

( XX′ + V−1EXV−1 )−1 = V( VXX′V + EX )−1V,

( PX + V−1EXV−1 )−1 = V( VPXV + EX )−1V

into (50) gives the equalities in (c) and (d). By (30),

PVX:V−1 = VX(X′VV−1VX)+X′VV−1 = VX(X′VX)+X′VV−1 = VPX:VV−1,

PVX:V−1 = VX(X′VX)+X′ = P′
X:V,

as required for (e). Replacing V with V−1 in (e) leads to (f). 
�
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Theorem 14 Let X1 ∈ R
n×p and X2 ∈ R

n×k, and let V1, V2 ∈ R
n×n be pd. Then

the following statements are equivalent:
(a) PX1:V1 = PX2:V2 .

(b) PEX1 :V−1
1

= PEX2 :V−1
2

.

(c) PV−1
1 EX1 :V1

= PV−1
2 EX2 :V2

.

(d) PV1X1:V−1
1

= PV2X2:V−1
2

.

(e) R(X1) = R(X2) and R(V1X1) = R(V2X2).

(f) R(EX1) = R(EX2) and R(V−1
1 EX1) = R(V−1

2 EX2).

Proof It follows from Theorem 8(a) and (b) and Theorem 13(a), (b) and (e). 
�
When X1 = X2, statements (a) and (e) above are equivalent to Theorem 14.12.18 of
Harville (1997).

Theorem 15 Let X ∈ R
n×p and let V ∈ R

n×n be pd. Then the following statements
are equivalent:
(a) PX:V is the orthogonal projector onto R(X).

(b) PVX is the orthogonal projector onto R(X).

(c) PX:V = PVX:V−1 .

(d) PEX:V−1 is the orthogonal projector onto R⊥(X).

(e) PV−1EX:V is the orthogonal projector onto R⊥(X).

(f) R(VX) ⊆ R(X).

Proof It follows from Theorem 8(b), (c) and (g), and Theorem 13(a), (b) and (e). 
�

References

Ben-Israel, A., Greville, T. N. E. (2003). Generalized inverses: theory and applications (2nd Ed.).
New York: Springer.

Harville, D. A. (1997). Matrix algebra from a statistician’s perspective. New York: Springer.
Khatri, C. G. (1966). A note on a MANOVA model applied to problems in growth curves. Annals of the

Institute of Statistical Mathematics, 18, 75–86.
Marsaglia, G., Styan, G. P. H. (1974). Equalities and inequalities for ranks of matrices. Linear and Multi-

linear Algebra, 2, 269–292.
Mitra, S. K., Rao, C. R. (1974). Projections under seminorms and generalized Moore-Penrose inverses.

Linear Algebra and Its Applications, 9, 155–167.
Rao, C. R. (1974). Projectors, generalized inverses and the BLUE’s. Journal of the Royal Statistical Society,

Series B, 36, 442–448.
Rao, C. R., Mitra, S. K. (1971a). Further contributions to the theory of generalized inverse of matrices and

its applications. Sankhyā, Series A, 33, 289–300.
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