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Abstract Improved performance in higher-order spectral density estimation is
achieved using a general class of infinite-order kernels. These estimates are asymp-
totically less biased but with the same order of variance as compared to the classical
estimators with second-order kernels. A simple, data-dependent algorithm for selec-
ting the bandwidth is introduced and is shown to be consistent with estimating the
optimal bandwidth. The combination of the specialized family of kernels with the
new bandwidth selection algorithm yields a considerably improved polyspectral esti-
mator surpassing the performances of existing estimators using second-order kernels.
Bispectral simulations with several standard models are used to demonstrate the en-
hanced performance with the proposed methodology.

Keywords Bispectrum · Nonparametric estimation · Spectral density · Time series

1 Introduction

Lag-window estimation of the high-order spectra under various assumptions is known
to be consistent and asymptotically normal (Brillinger and Rosenblatt 1967a,b; Lii
and Rosenblatt 1990a,b). However, convergence rates of the estimators depend on the
order, or characteristic exponent, of the lag-window used. In general, increasing the
order of the lag-window decreases the bias without affecting the order of magnitude
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of the variance, thus producing an estimator with a faster convergence rate. Although
estimators using lag-windows with large orders yield estimates with better mean square
error (MSE) rates, they were overlooked and rarely used in practice mainly because
of two issues. Firstly, in estimating the second-order spectral density, lag-windows of
order larger than two may yield negative estimates, despite the fact that the true spectral
density is known to be nonnegative. This problem only pertains, if ever, to the second-
order spectral density (since higher-order spectra are complex-valued), and is easily
remedied by truncating the estimator to zero if it does go negative [thus improving
the already optimal convergence rates (Politis and Romano 1995)]. Secondly, when a
lag-window has order larger than necessary, the rate of convergence is still optimal,
but the multiplicative constant will be suboptimal (Hall and Marron 1988). The second
problem is encountered when using a poor choice of large order lag-window like the
box-shaped truncated lag-window (Politis and Romano 1995), but there are many
other alternatives with descent small-sample performance. Additionally, when the
underlying spectral density is sufficiently smooth, this second issue is irrelevant since
the lag-window with the largest order performs best. The next section introduces a
family of infinite-order lag-windows for estimating the spectral density and higher-
order spectra.

The use of infinite-order lag-windows is particularly adept to the estimation of
higher-order spectra. Under the typical scenario of exponential decay of the autocova-
riance function (refer to part (ii) of Theorem 1 within), the MSE rates for estimating the
second-order spectral density using a lag-window of order 2 and an infinite-order lag-
window are N−4/5 and (log N )/N respectively. However, when estimating the third-
order spectral density, or bispectrum, the MSE rates become N−2/3 and (log N )/N
respectively. The disparity grows stronger with yet higher-order spectra.

The problem of choosing the best bandwidth still remains. The optimal bandwidth
typically depends on the unknown spectral density leading to a circular problem-
estimation of the spectrum requires estimation of the bandwidth which in turn requires
estimation of the spectrum. There have been many fixes to this problem; see Jones
et al. (1996) for a survey of several methods. Section 3 introduces a new simple, data-
dependent method of determining the bandwidth which is shown to converge to the
asymptotically ideal bandwidth for flat-top lag-windows. An alternative bandwidth
selection algorithm is also included that is designed for use with second-order lag-
windows. This algorithm uses the plug-in principle for bandwidth selection but with
the flat-top estimators as the plug-in pilots.

Particular attention is given to the bispectrum as it is a key tool in several linea-
rity and Gaussianity tests including Hinich (1982) and Subba Rao and Gabr (1980).
The general bandwidth selection algorithm is refined and expanded for the bispec-
trum. Bispectral simulations compare two different flat-top lag-windows estimators of
the bispectrum with accompanying bandwidth selection algorithm to the lag-window
estimator using the order two “optimal” lag-window and plug-in bandwidth selection
procedure as described in Subba Rao and Gabr (1984).

We define the flat-top lag-window estimate in Sect. 2 and derive its higher-order
MSE convergence in Theorem 1 under the ideal bandwidth. In Section 3, a bandwidth
selection algorithm tailored to the flat-top estimate is introduced and is shown to
automatically adapt to the smoothness of the underlying spectral density and converge
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Polyspectral estimation with flat-top lag-windows 479

in probability to the ideal bandwidth. The focus is then shifted to the bispectrum
in Sect. 4 where the most general function invariant under the symmetries of the
bivariate cumulant function is constructed. The bandwidth algorithm is specialized
for the bispectrum, and a separate bandwidth algorithm for second-order lag-windows
is included that is based on the plug-in method with flat-top estimators as pilots.
Simulations of the bispectrum in Sect. 5 exhibit the strength of the flat-top estimators
and the bandwidth algorithms.

2 Asymptotic performance of a general flat-top window

Let x1, x2, . . . , xN be a realization of an r -vector valued sth-order stationary (real va-
lued) time series Xt = (X (1)

t , . . . , X (r)
t )′ with (unknown) mean µ = (µ(1), . . . , µ(r))′.

Consider the sth-order central moment

C ′′
a1,...,as

(τ1, . . . , τs) = E
[
(X (a1)

t+τ1
− µ(a1)) · · · (X (as )

t+τs
− µ(as ))

]
, (1)

where the right-hand side is independent of the choice of t ∈ Z. Stationarity
allows us to write the above moment as function of s − 1 variables, so we define
C ′

a1,...,as
(τ1, . . . , τs−1) = C ′′

a1,...,as
(τ1, . . . , τs−1, 0). For notational convenience, the

sequence a1, . . . , as will be dropped, so C ′
a1,...,as

(τ1, . . . , τs−1) will be denoted simply
by C ′(τ ). Also τs will occasionally be used, for convenience, with the understanding
that τs = 0.

We express the sth-order joint cumulant as

Ca1,...,as (τ1, . . . , τs−1) =
∑

(ν1,...,νp)

(−1)p−1(p − 1)! µν1 · · · µνp ,

where the sum is over all partitions (ν1, . . . , νp) of {0, . . . , τs−1} and µν j =
E
[∏

τi ∈ν j
X (ai )

τi

]
; refer to Jammalamadak (2006) for another expression of the joint

cumulant. The (sth-order) spectral density is defined as

f (ω) = 1

(2π)s−1

∑

τ∈Zs−1

C(τ )e−iτ ·ω.

We adopt the usual assumption on C(τ ) that it be absolutely summable, thus guaran-
teeing the existence and continuity of the spectral density. A natural estimator of C(τ )

is given by

Ĉ(τ1, . . . , τs−1) =
∑

(ν1,...,νp)

(−1)p−1(p − 1)! µ̂ν1 · · · µ̂νp , (2)
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where

µ̂ν j = 1

N − max(ν j ) + min(ν j )

N−max(ν j )∑
k=− min(ν j )

∏
t∈ν j

x
(a j )

t+k .

It turns out that the second-order and third-order cumulants, those that give rise to
the spectrum and bispectrum respectively, are precisely the second-order and third-
order central moments in (1). Therefore, in these cases, we can greatly simplify Ĉ(τ )

to

Ĉ(τ ) = 1

N

N−γ∑
t=1

s∏
j=1

(x
(a j )

t−α+τ j
− x̄ (a j )), (3)

where α = min(0, τ1, . . . , τs−1), γ = max(0, τ1, . . . , τs−1) − α, and x̄ (a�) = 1
N∑N

j=1 x (a�)
j for � = 1, . . . s−1. We extend the domain of Ĉ to Z

s by defining Ĉ(τ ) = 0
when the sum in (2) or (3) is empty.

Consider a flat-top lag-window function λ : R
s−1 → R satisfying the following

conditions:

(i) λ(x) ≡ 1 for all x satisfying ‖x‖ ≤ b, for some positive number b.
(ii) |λ(x)| ≤ 1 for all s.

(iii) For M → ∞ as N → ∞, but with M/N → 0,

lim
M→∞

1

Ms−1

∑
‖x‖≤N

λ
( x

M

)
< ∞.

(iv) λ ∈ L2(R
s−1)

The window λ(x) is a “flat-top” because of condition (i); namely, it is constant in
a neighborhood of the origin. The constant b in (i) is used below in constructing the
spectral density estimate.

Technically, just requiring λ just to be bounded could replace criterion (ii), but there
is no benefit in allowing the window to have values larger than 1. Finally, criteria (iii)
and (iv) are satisfied if, for example, λ has compact support.

Define λM (t) = λ(t/M) and consider the smoothed sth-order periodogram

f̂ (ω) = 1

(2π)s−1

∑
‖τ‖<N

λM (τ )Ĉ(τ )e−iτ ·ω. (4)

There is an equivalent expression to this estimator in the frequency domain given by

f̂ (ω) = �M ∗ Ia1,...,as (ω) =
∫

Rs−1
�M (ω − τ )Ia1,...,as (τ ) dτ ,
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Polyspectral estimation with flat-top lag-windows 481

where �M is the Fourier transform of λM and Ia1,...,as is the (s − 1)th order periodo-
gram; namely,

�M (τ ) =
∫

Rs−1
λM (τ )e−iω·τ dτ

and

Ia1,...,as (ω) = 1

(2π)s−1

∑

τ∈Zs−1

Ĉ(τ )e−iτ ·ω.

However, Eq. (4) is computationally simpler, and it is this version that will be used
throughout the remainder of this article.

The asymptotic bias convergence rate (and thus the overall MSE convergence rate)
of the estimator (4) with a flat-top lag-window λ is superior to traditional estimators
using second-order lag-windows. The convergence rates of our estimator improve
with the decay rate of the cumulant function C(τ )–the faster the decay to zero, the
faster the convergence. The following theorem outlines convergence rates under three
scenarios: when the decay of C(τ ) is polynomial, exponential, and identically zero
after some finite time (like an MA(q) process). Throughout, conditions on the time
series are assumed so that

var
(

f̂ (ω)
)

= O

(
Ms−1

N

)
. (5)

This is a very typical assumption and is satisfied under summability conditions of
the cummulants Brillinger and Rosenblatt (1967a) or under certain mixing condition
assumptions Lii and Rosenblatt (1990a).

Theorem 1 Let {Xt } be an r-vector valued sth-order stationary time series with
unknown mean µ. Let f̂ (ω) be the estimator as defined in (4) and assume (5) is
satisfied.

(i) Assume for some k ≥ 1,
∑

τ∈Zs−1 ‖τ‖k |C(τ )| < ∞ and M ∼ aN c with
c = (2k + s − 1)−1, then

sup
ω∈[−π,π ]s−1

∣∣∣bias
{

f̂ (ω)
}∣∣∣ = o

(
N

−k
2k+s−1

)
(6)

and

MSE( f̂ (ω)) = O
(

N
−2k

2k+s−1

)
.

(ii) Assume C(τ ) decreases geometrically fast, i.e. |C(τ )| ≤ De−d‖τ‖, for some
positive constants d and D and M ∼ A log N where A ≥ 1/(2db), then

sup
ω∈[−π,π ]s−1

∣∣∣bias
{

f̂ (ω)
}∣∣∣ = O

(
1√
N

)
(7)
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and

MSE
(

f̂ (ω)
)

= O

(
log N

N

)
. (8)

(iii) Assume C(τ ) = 0 for ‖τ‖ > q and let M be a constant such that bM ≥ q,
then

sup
ω∈[−π,π ]s−1

∣∣∣bias
{

f̂ (ω)
}∣∣∣ = O

(
1

N

)

and

MSE
(

f̂ (ω)
)

= O

(
1

N

)
.

Remark 1 Equations (6), respectively (7), remain true with the assumptions on M
replaced with Mk+s−1/N → 0, respectively eM Ms−1/N → 0.

Remark 2 Depending on the constant A in part (ii), the bias in (7) may be as small as
O

(
(log N )s−1/N

)
.

Remark 3 We do not assume the mean µ of the time series is known. This adds an
extra term of order O(Ms−1/N ) to the bias; see the proof of Theorem 1 in the appendix
for further details.

Remark 4 Traditional estimators using second-order lag-windows have bias conver-
gence rates of order O(1/M2) regardless of the three scenarios listed in Theorem 1.
However when the spectral density is smooth enough, like in the case of an ARMA
process (where C(τ ) decays exponentially), traditional estimators perform conside-
rably worse. For example, estimation of the bispectrum of an ARMA process has
an asymptotic MSE rate of N−2/3 in the traditional case, but an asymptotic MSE of
(log N )/N using flat-top lag-windows. The distinction is even more profound in esti-
mating higher-order spectra where the best rate achieved is N−4/(3+s) for traditional
estimators and again (log N )/N using flat-top lag-windows. Even in the worst case of
polynomial decay, our proposed estimator still beats, or possibly ties with, traditional
estimators in terms of asymptotic MSE rates.

The asymptotic analysis in Theorem 1 relies on having the appropriate bandwidth
M based on the various decay rates C(τ ). In the next section we propose an algorithm
that, for the most part, automatically detects the correct decay rate of C(τ ) and supplies
the practitioner with an asymptotically consistent estimate of M .

3 A bandwidth selection procedure

For τ ∈ Z
s−1, consider the normalized cumulant function

ρ(τ ) = C(τ )(∏s
i=1 Cai (0)

)1/2
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Polyspectral estimation with flat-top lag-windows 483

with a natural estimator

ρ̂(τ ) = Ĉ(τ )(∏s
i=1 Ĉai (0)

)1/2 .

Let Bx,y (x, y > 0) denote the set of indices in Z
s−1 contained in the half-open

s − 1-dimensional annulus of inner radius x and outer radius y, i.e.

Bx,y = {τ ∈ Z
s−1 : x < ‖τ‖ ≤ y}. (9)

The following algorithm for estimating the bandwidth of a flat-top estimator is a
multivariate extension of an algorithm proposed in Politis (2003).

Bandwidth selection algorithm
Let k > 0 be a fixed constant, and aN be a nondecreasing sequence of positive
integers tending to infinity such that aN = o(log N ). Let m̂ be the smallest
number such that

|ρ̂(τ )| < k

√
log10 N

N
for all τ ∈ Bm̂,m̂+aN . (10)

Then let M̂ = m̂/b (where b is the “flat-top radius” as defined by condition (i)
of a flat-top lag-window).

Remark 5 A norm was not specified in (9) and any norm may be used. The sup norm,
for example, may be preferable to the Euclidean norm in practice since the region in
(9) becomes rectangular instead of circular.

Remark 6 The positive constant k is irrelevant in the asymptotic theory, but is relevant
for finite-sample calculations. In order to determine an appropriate value of c for
computation, we consider the following approximation

√
N

(
ρ̂(τ0) − ρ(τ0)

) ∼̇ N
(

0, σ 2
)

. (11)

This approximation holds under general assumptions of the time series and for any
fixed τ0 ∈ Z

s−1. The variance σ 2 does not depend on the choice of τ0 provided τ0 is
not a “boundary point”; see Brillinger and Rosenblatt (1967b) for more details. Let σ̂

be the estimate of σ via a resampling scheme like the block bootstrap. A approximate
pointwise 95% confidence bound for ρ(·) is given by ±1.96 σ̂√

N
. Therefore if we let

aN = 5, then k = 2σ̂ generates an approximate 95% simultaneous confidence bound
by Bonferroni’s inequality by noting that

√
log10 N ≈ 1.5 for moderately sized N .

The bandwidth selected using the above procedure converges precisely to the ideal
bandwidth in each of the three cases of Theorem 1, as is proved in the following
theorem under the two natural assumptions in (12) and (13) below.
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Theorem 2 Assume conditions strong enough to ensure that for any fixed n,

max
τ∈B0,n

|ρ̂(σ + τ ) − ρ(σ + τ )| = Op

(
1√
N

)
(12)

uniformly in σ , and for any M, that may depend on N, the following holds

max
τ∈B0,M

|ρ̂(σ + τ ) − ρ(σ + τ )| = Op

(√
log M

N

)
(13)

uniformly in σ .

(i) Assume C(τ ) ∼ A‖τ‖−d for some positive constants A and d ≥ 1. Then

M̂
P∼ A0

N 1/2d

(log N )1/2d
,

where A0 = A1/d/(k1/db); here A
P∼ B means A/B → 1 in probability.

(ii) Assume C(τ ) ∼ A ξ‖τ‖ for some positive constant A and |ξ | < 1. Then

M̂
P∼ A1 log N ,

where A1 = −1/(b log |ξ |).
(iii) Suppose C(τ ) = 0 when ‖τ‖ > q, but C(τ ) = 0 for some τ with norm

q, then M̂
P∼ q/b.

Remark 7 Under general regularity conditions, (12) holds as does the even stron-
ger assumption of

√
N asymptotic normality, and (13) holds from general theory of

extremes of dependent sequences; refer to Leadbetter et al. (1983).

4 Bispectrum

Now we will focus on estimating the bispectrum using flat-top lag-windows. The
third-order cumulant reduces to the third-order central moment with estimator given
by (3). It is easily seen that the third-order central moment, C(τ1, τ2), satisfies the
following symmetry relations:

C(τ1, τ2) = C(τ2, τ1) = C(−τ1, τ2 − τ1) = C(τ1 − τ2,−τ2). (14)

Naturally, we would expect the lag-window function, λ(τ1, τ2), in the estimator (4), to
posses the same symmetries. So if a lag-window λ does not a priori have the symmetries
as in (14), we can construct a symmetrized version given by

λ̃ = g (λ(x, y), λ(y, x), λ(−x, y − x), λ(y − x,−x), λ(x − y,−y), λ(−y, x − y)) ,

(15)
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where g is any symmetric function (of its six variables); for example g could be the
geometric or arithmetic mean. It is worth noting that the symmetrized version of λ is
connected to the theory of group representations of the symmetric group S3; see Berg
(2006) for more details.

Several choices of lag-windows are considered in Subba Rao and Terdik (2003)
including the so-called “optimal window”, λopt, which is in some sense optimal among
lag-windows of order 2; refer to Theorem 2 on page 43 of Subba Rao and Gabr (1984).
This lag-window is defined as Saito and Tanaka (1985)

λopt(τ1, τ2) = 8

α(τ1, τ2)2 J2(α(τ1, τ2)),

where J2 is the second-order Bessel function of the first kind, and

α(x, y) = 2π√
3

√
x2 − xy + y2.

Although λopt is optimal among order 2 lag-windows, it is sub-optimal to higher-
order lag-windows, such as flat-top lag-windows. Also, since λopt is not compactly
supported, it has the potential of being computationally taxing.

We detail two simple flat-top lag-windows satisfying the symmetries in (14), but the
supply of examples is limitless by (15). (Fig. 1) The first example is a right pyramidal
frustum with the hexagonal base |x |+|y|+|x −y| = 2. We let c ∈ (0, 1) be the scaling
parameter that dictates when the frustum becomes flat, that is, the flat-top boundary
is given by |x | + |y| + |x − y| = 2c. The equation of this lag-window is given by

λrpf(τ1, τ2) = 1

1 − c
λrp(τ1, τ2) − c

1 − c
λrp

(τ1

c
,
τ2

c

)
,

where λrp is the equation of the right pyramid with base |x | + |y| + |x − y| = 2, i.e.,

λrp(x, y) =
{

(1 − max(|x |, |y|))+, −1 ≤ x, y ≤ 0 or 0 ≤ x, y ≤ 1,

(1 − max(|x + y|, |x − y|))+, otherwise.

The second flat-top lag-window that we propose is the right conical frustum with
elliptical base x2−xy+y2 = 1. As in the previous example, there is a scaling parameter
c ∈ (0, 1), and the lag-window becomes flat in the ellipse x2 − xy + y2 = c2. The
equation of this lag-window is given by

λrcf(τ1, τ2) = 1

1 − c
λrc(τ1, τ2) − c

1 − c
λrc

(τ1

c
,
τ2

c

)
,

where λrc is the equation of the right cone with base x2 − xy + y2 = 1, i.e.,

λrc(x, y) = (1 −
√

x2 − xy + y2)+.
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Fig. 1 Plots of the three lag-windows, λopt, λrpf, and λrcf (with c = 1/2 in the latter two)

Although in both examples the value for b, as defined in property (i) of the flat-top
lag-window function, is smaller than the parameter c, the symmetries (14) permit us
to only consider the region 0 ≤ y ≤ x for which a circular arc of radius c does fit. So
in the two examples above, we take the value of b to be the parameter c.

The bandwidth selection algorithm can be refined in the context of the bispectrum.
The symmetries in (14) allow restriction to the region

{(τ1, τ2) ∈ R
2 | 0 ≤ τ2 ≤ τ1}. (16)

Here is the modified bandwidth selection algorithm for flat-top kernels that is tailored
to the bispectrum:

Practical bandwidth selection algorithm for the bispectrum
Let k̃ = k1 > 0 if n = 1, otherwise k̃ = k2 > 0, and let L be a positive integer
that is o (log N ). Order the points {(τ1, τ2) ∈ Z

2 | 0 < τ2 < τ1} ∪ {(1, 0)} with
the usual lexicographical ordering, so P1 = (1, 0), P2 = (2, 1), P3 = (3, 1),
P4 = (3, 2), and so forth; in general, Pn = (i, j) where i = ⌊( 3

2 + √
2n − 2

)⌋
and j = n − 1

2

(
i2 − 3i

) − 2. Let m̂ be the smallest number such that

∣∣ρ̂ (
Pm̂+�

)∣∣ < k̃

√
log N

N
for all � = 1, . . . , L . (17)

Then let M̂ = (first coordinate of Pm̂) /b =
(⌊(

3
2 + √

2m̂ − 2
)⌋)

/b.

Remark 8 Except for the first point, (1, 0), this algorithm does not incorporate boun-
dary points since the asymptotic variance is larger on the boundary; the first point is
included as there are no interior points with first coordinate equal to 1. The constant k̃
is adjusted to account for the larger variance in the first point by providing a separate
threshold, k1, for this point.

Remark 9 As suggested with the general algorithm, a subsampling procedure should
be used to determine the appropriate constants k1 and k2. However, one should be
careful when choosing a point τ0 for the approximation (11) since high variances at
the origin and on the boundary tend to cause high variances near the origin and near the
boundary in finite-sample scenarios. Therefore an interior point like (6, 3) (as opposed
to (2, 1)) should be used in determining k2, and a point like (3, 0) (as opposed to (1, 0))
should be used in determining k1.
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A modified bandwidth selection procedure is now proposed for use with the sub-
optimal lag-windows of order 2. In this case, we propose using a bandwidth selection
procedure based on the usual “solve-the-equation plug-in” approach Jones et al. (1996),
but with flat-top estimates of the unknown quantities as the plug-in pilots. This will
afford faster convergence rates of the bandwidth as compared estimates based on
second-order pilots as well as solve the problem of selecting bandwidths for the pilots.

The optimal bandwidth at each point in the region (16), when using differentiable
second order kernels, is derived in Subba Rao and Gabr (1984), and is given by

Mλ(ω1, ω2) =
{

π N

‖λ‖L2 f (ω1) f (ω2) f (ω1 + ω2)

(
∂2λ(τ1, τ2)

∂τ1 ∂τ1

∣∣∣∣
τ1=τ2=0

)2

×
∣∣∣∣∣

(
∂2

∂ω2
1

− ∂2

∂ω1∂ω2
+ ∂2

∂ω2
2

)
f (ω1, ω2)

∣∣∣∣∣
2 } 1

6

. (18)

Estimates of the spectral density using flat-top lag-windows is discussed above, and
estimating the partial derivatives of the bispectrum follow similarly. For instance, the
three second order partial derivatives needed in (18) can be estimated by

f̂ωi ,ω j (ω1, ω2) = ∂2

∂ωi∂ω j
f̂ (ω1, ω2)

= 1

(2π)2

N∑
τ1=−N

N∑
τ2=−N

τiτ j λM (τ1, τ2)Ĉ(τ1, τ2)e
−iτ ·ω (i, j = 1, 2).

(19)

By mimicking the proof of Theorem 1, the estimator in (19) has the same asymp-
totic performance as the estimator f̂ (ω) in Theorem 1 but under a slightly stronger
assumption for part (i) that

∑
τ∈Z2 ‖τ‖k+2|C(τ )| < ∞. We construct the estimator

M̂λ by replacing the unknown f and its derivatives in (18) with flat-top estimates. The
next theorem provides convergence rates of the plug-in algorithm with flat-top pilots.

Theorem 3 Assume conditions on ρ̂ such that (12) and (13) of Theorem 2 hold true,
and assume conditions strong enough to ensure

var
(

f̂ωi ,ω j

)
= O

(
Ms−1

N

)
(i, j = 1, 2). (20)

(i) Assume C(τ ) ∼ A‖τ‖−d for some positive constants A and d > s + 2. Then

M̂λ = Mλ

(
1 + Op

((
log N

N

) �d−s−2�
2d

))
.
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(ii) Assume C(τ ) ∼ A ξ‖τ‖ for some positive constant A and |ξ | < 1. Then

M̂λ = Mλ

(
1 + Op

((
log N

N

) 1
2
))

.

(iii) Suppose C(τ ) = 0 when ‖τ‖ > q, but C(τ ) = 0 for some τ with norm q, then

M̂λ = Mλ

(
1 + Op

(
1√
N

))
.

Remark 10 Certain mixing condition assumptions can guarantee (20); see Politis
(2003) for an example.

In many cases, the convergence is a significant improvement over the traditional
plug-in approach with second-order lag-window pilots. For example, the convergence
of the bandwidth for data from an ARMA process would be M(1 + OP (N−2/9))

using second-order pilots and techniques similar to Brockmann et al. (1993); Bühl-
mann (1996), but by using flat-top pilots, the convergence improves to M(1 + OP

(
√

log N/N )).

5 Bispectral simulations

The three lag-windows detailed above—λopt, λrpf, and λrcf—are compared by their
mean square error performance in estimating the bispectrum of four standard time
series models. Three criteria are used to evaluate the performance of the bispectral
estimates. The first two criteria are the estimators performance in estimating the bis-
pectrum at the two points (0, 0) and (2, 1). The bispectrum at the point (0, 0) is
real-valued, and estimates typically have variances significantly larger than estimates
at the interior point (2,1) (exactly 30-times larger, asymptotically, if the second-order
spectrum is flat). The bispectrum at the point (2, 1) is complex valued and perfor-
mance is evaluated based on the estimation of the real part, complex part, and absolute
value. The third criteria of evaluation is a composite evaluation of performance of the
estimators over a rough grid of six points, standardized appropriately (further details
below). The simulations are computed with data from the four stationary time series
models: iid χ2

1 , ARMA(1,1), GARCH(1,1), and bilinear(1,0,1,1). The first two are
linear time series models whereas the last two are nonlinear models. Two sample
sizes, N = 200 and N = 2,000, are used throughout. Each simulation is averaged
over 500 realizations.

The third criteria of evaluation, the composite evaluation is now described in further
detail. The symmetries of C as given in (14) induce the following symmetries in the
spectral density:

f (ω1, ω2)= f (ω2, ω1)= f (ω1,−ω1 − ω2) = f (−ω1 − ω2, ω2) = f ∗(−ω1,−ω2).

The above symmetries in combination with the periodicity of f imply that f can be
determined over the entire plane just by its values in the closed triangle T with vertices
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(0, 0), (π, 0), and (2π/3, 2π/3). So f is estimated at
(n−1

2

) = (n−1)(n−2)
2 equally

spaced points inside T with coordinates ωi j =
(

π(2i+2 j)
3n ,

2π j
3n

)
where i = 1, . . . , n−1

and j = 1, . . . , n − i − 1 (we take n = 5 in the simulations).
The estimates at ωi j are standardized to make them comparable. Since, for (ω1, ω2)

inside T , Subba Rao and Gabr (1984)

var
(

f̂ (ω1, ω2)
)

≈ M2

N

‖λ‖L2

2π
f (ω1) f (ω2) f (ω1 + ω2),

f̂ (ω1, ω2) is standardized by dividing it by
√

f (ω1) f (ω2) f (ω1 + ω2). This leads to
the composite evaluation of f̂ over a course grid of points by the quantity

err(λ) �
n−1∑
i=1

n−i−1∑
j=1

∣∣∣∣∣∣
f̂ (ωi j ) − f (ωi j )√

f (ω
(1)
i j ) f (ω

(2)
i j ) f (ω

(1)
i j + ω

(2)
i j )

∣∣∣∣∣∣

and the empirical MSE is calculated by averaging err(λ)2 over the 500 realizations.
In the tables of MSE estimates below, the first two rows are estimates from the

flat-top lag-windows λrpf and λrcf with the bandwidth derived from the Bandwidth
Selection Algorithm for the Bispectrum, as described above, with parameters L = 5,
c = 0.51, and k determined via the block bootstrap (see Remarks 6 and 9). The third
and fourth rows are estimates using λopt with bandwidths from the plug-in method
with flat-top pilots (f.p.) and second-order pilots (s.p.) respectively. The first column of
each table concerns the estimation of the bispectrum at (0, 0), taking absolute values
if the estimate is complex valued. The next three columns concern the estimation of
the real part, complex part, and absolute value of the bispectrum, respectively, at the
point (2, 1). The last column, labeled T6, concerns the composite evaluation over a
coarse grid of 6 points.

Simulations (based on 1,000 realizations) were conducted to determine the optimal
finite-sample bandwidth with minimal MSE (checking up to a bandwidth size of 20).
In the first three models—IID, ARMA, and GARCH—the optimal bandwidth is one
under each evaluation criterion and for each lag-window considered. The estimators
with best MSE performance in these models were the estimators with the best band-
width selection procedure (the choice of lag-window was somewhat secondary). The
bilinear model, however, had different optimal bandwidths depending on the particular
evaluation criterion and lag-window. The optimal properties of the flat-top lag-window
can easily be observed in this model as the optimal bandwidths are all larger than one.

5.1 IID data

Identical and independent χ2
1 data is generated that has a central third moment µ3 = 8.

Therefore the true bispectrum is f (ω1, ω2) ≡ µ3
(2π)2 ≈ 0.202642. The following

Tables 1, 2, 3, 4 give the empirical MSE calculations of the estimated bispectrum over
lengths N = 200 and N = 2,000 based on 500 simulations.
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Table 1 MSE estimates based on iid data for N = 200 and N = 2,000

| f̂ (0, 0)| Re f̂ (2, 1) Im f̂ (2, 1) | f̂ (2, 1)| T6

N = 200

λrpf 0.02796 0.02061 3.131e−04 0.02093 709.4

λrcf 0.02778 0.02060 3.314e−04 0.02094 709.4

λopt (f.p.) 0.02582 0.02086 3.577e−04 0.02122 709.8

λopt (s.p.) 0.02806 0.02116 7.121e−04 0.02187 715.5

N = 2,000

λrpf 2.887e−03 2.063e−03 1.799e−05 2.081e−03 71.19

λrcf 2.865e−03 2.064e−03 1.875e−05 2.083e−03 71.22

λopt (f.p.) 2.616e−03 2.101e−03 2.085e−05 2.121e−03 71.23

λopt (s.p.) 3.294e−03 2.184e−03 1.039e−04 2.288e−03 71.45

Table 2 MSE estimates based on arma data for N = 200 and N = 2,000

| f̂ (0, 0)| Re f̂ (2, 1) Im f̂ (2, 1) | f̂ (2, 1)| T6

N = 200

λrpf 6.102e−05 2.329e−05 4.468e−06 2.776e−05 313.3

λrcf 6.760e−05 2.435e−05 4.624e−06 2.897e−05 316.5

λopt (f.p.) 4.422e−05 2.172e−05 5.235e−06 2.696e−05 302.8

λopt (s.p.) 1.198e−04 3.088e−05 2.982e−05 6.070e−05 412.0

N = 2,000

λrpf 2.997e−06 2.096e−06 6.896e−08 2.165e−06 24.21

λrcf 3.297e−06 2.137e−06 7.359e−08 2.210e−06 24.59

λopt (f.p.) 3.129e−06 2.132e−06 2.796e−07 2.412e−06 24.74

λopt (s.p.) 2.142e−05 4.222e−06 4.349e−06 8.571e−06 33.53

The flat-top estimators λrpf, λrcf, and λopt (f.p.) all outperform λopt (s.p.) in every
criterion considered. For N = 2,000, the proposed bandwidth procedures perform
extremely well (refer to Sect. 5.5) producing the optimal bandwidth one over 95% of
the time in each case.

5.2 ARMA model

The ARMA(1,1) model

Xt = 0.5Xt−1 − 0.5Zt−1 + Zt

is now considered where Zt
iid∼ N (0, 1). This time series is Gaussian, so both the

bispectrum and normalized bispectrum are identically zero.
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Table 3 MSE estimates based on garch data for N = 200 and N = 2,000

| f̂ (0, 0)| Re f̂ (2, 1) Im f̂ (2, 1) | f̂ (2, 1)| T6

N = 200

λrpf 9.752e−04 5.462e−05 3.92e−05 9.383e−05 113.1

λrcf 1.038e−03 5.800e−05 4.391e−05 1.019e−04 115.1

λopt (f.p.) 6.580e−04 4.345e−05 3.182e−05 7.527e−05 110.1

λopt (s.p.) 3.849e−04 3.488e−05 5.112e−05 8.600e−05 125.1

N = 2,000

λrpf 2.411e−05 2.916e−06 1.555e−06 4.471e−06 7.317

λrcf 2.682e−05 3.050e−06 1.745e−06 4.795e−06 7.401

λopt (f.p.) 1.894e−05 2.528e−06 1.632e−06 4.159e−06 7.026

λopt (s.p.) 5.781e−05 5.577e−06 7.577e−06 1.315e−05 9.021

The flat-top estimators and λopt (f.p.) outperform λopt (s.p.) even more significantly
in this model for every criterion considered. Good performance is again mostly attribu-
ted to good bandwidth selection, but true optimal properties of the flat-top lag-windows
are present and is addressed for the bilinear model.

5.3 GARCH model

We now consider the GARCH(1,1) model

{
Xt = √

ht Zt

ht = α0 + α1 X2
t−1 + α2ht−1

where α = (0.1, 0.8, 0.1) and Zt
iid∼ N (0, 1). The theoretical values of the bispectrum

are unknown, so they are approximated via simulation over 500 realizations with
N = 105 and averaging the four estimators.

For N = 200, λopt (s.p.) performed best at the origin, but considerably worse in
the composite criterion. For the larger N , the flat-top estimators and λopt (f.p.) again
performed significantly better than λopt (s.p.).

5.4 Bilinear model

Finally, we consider the BL(1,0,1,1) bilinear model Subba Rao and Gabr (1984)

Xt = aXt−1 + bXt−1 Zt−1 + Zt

where a = b = 0.4 and Zt
iid∼ N (0, 1). The complete calculations of the bispectrum

have been worked out in Subba Rao and Gabr (1984), however the given equation
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Table 4 MSE estimates based on bilinear data for N = 200 and N = 2,000

| f̂ (0, 0)| Re f̂ (2, 1) Im f̂ (2, 1) | f̂ (2, 1)| T6

N = 200

λrpf 5.8722,3 5.421e−044,5 1.008e−031,2 1.55e−034,5 806.82,5

λrcf 5.9562,3 6.005e−046,5 1.073e−031,2 1.673e−036,5 817.07,6

λopt (f.p.) 4.4012,1 4.608e−044,3 9.654e−041,2 1.426e−034,3 807.15,4

λopt (s.p.) 2.9162,1 3.926e−044,3 8.623e−041,2 1.255e−034,3 791.45,4

N = 2,000

λrpf 1.7554,3 7.734e−054,6 9.867e−051,2 1.76e−044,6 71.762,5

λrcf 1.8914,3 7.792e−056,7 1.012e−041,2 1.791e−046,7 74.696,7

λopt (f.p.) 2.1194,3 6.282e−055,6 9.443e−051,2 1.572e−045,4 71.016,7

λopt (s.p.) 1.3224,3 5.123e−055,6 8.064e−051,2 1.319e−045,4 72.836,7

Table 5 MSE estimates at the origin with bandwidths one through seven and N = 200

N = 200 1 2 3 4 5 6 7

λrpf 2.062 1.389 1.71 2.879 4.216 5.849 7.22

λrcf 2.062 1.390 1.864 3.207 4.848 6.502 8.078

λopt 1.823 1.445 2.013 3.13 4.448 5.733 6.852

for the bispectrum does not match-up with simulated estimates. Therefore theoretical
values of the bispectrum were computed through simulations as done in the GARCH
model. The spectral density equation provided in Subba Rao and Gabr (1984) is correct
and was used.

Whereas the previous three models had an optimal bandwidth of one throughout,
the optimal bandwidths for the bilinear model is typically much larger and depends on
the evaluation criterion considered. The subscripted numbers represent the best and
second best bandwidth for each window (as deduced from simulation).

For this model, the flat-top estimators do not perform as well as the other estimators,
but the superior asymptotics of the flat-top estimators kick in with larger N making all
the estimators mostly equivalent when N = 2,000. The particularly good performance
of λopt (s.p.) at the origin is due to a fortuitous bandwidth selection under sensitive
conditions; this is addressed in more detail below.

The bispectrum corresponding to bilinear model resembles a hill peaking at the ori-
gin Subba Rao and Gabr (1984). This causes the choice of bandwidth to be particularly
delicate when estimating the origin. The following table depicts this delicacy.

The simulations up to this point mostly depict the strength of the bandwidth
selection procedure, and not the general asymptotic optimality of the flat-top lag-
window. However, if we consider MSE estimates for a fixed set of bandwidths, as in
Table 5, the flat-top estimates perform better than λopt which improves with N . Table 6
demonstrates the increased performance at N = 2,000.
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Table 6 MSE estimates at the origin with bandwidths one through eight and N = 2,000

N = 2,000 1 2 3 4 5 6 7 8

λrpf 2.029 0.9465 0.552 0.4687 0.6002 0.8262 1.029 1.237

λrcf 2.029 0.9082 0.5074 0.4917 0.6821 0.9224 1.156 1.346

λopt 1.736 0.8919 0.5444 0.5267 0.6444 0.8001 0.9579 1.099

Table 7 MSE of M̂/M − 1 for bandwidth selection procedures (a)–(e)

IID ARMA GARCH Bilineara

N 200 2000 200 2000 200 2000 200 2000

(a) 3.18 0.792 1.54 0.248 6.36 0.968 0.413 0.182

(b) 0.862 0.276 0.232 .050 2.59 0.292 1.63 0.454

(c) 2.71 0.900 0.866 0.142 4.05 0.552 0.633 0.362

(d) 1.45 3.96 1.27 3.22 1.19 3.49 0.185 0.414

(e) 4.66 12.0 4.04 9.36 4.22 9.82 0.0706 0.0394
a Bandwidths 5 and 6 were selected as theoretical bandwidths for procedure (a), but this is only approximate
as the optimal bandwidth varies. True theoretical bandwidths can be inferred from Table 4

Further illustration of the optimality of the flat-top lag-windows is provided in
Politis and Romano (1995) where second-order spectral density estimation with flat-
top lag-windows is addressed.

5.5 Analysis of bandwidth procedures

Simulations are used to evaluate the various bandwidth selection procedures for the
bispectrum. The five bandwidth selection procedures considered are described below.

(a) Practical bandwidth selection algorithm for the bispectrum of Sect. 4
(b) Plug-in method at the origin with flat-top pilots
(c) Plug-in method at the point (2,1) with flat-top pilots
(d) Plug-in method at the origin with second-order pilots
(e) Plug-in method at the point (2,1) with second-order pilots.

The pilot estimates for (b) and (c) were derived from the flat-top lag-windows λrpf and
the trapezoidal flat-top window Politis and Romano (1995). The bandwidths for these
pilot estimators are derived from the bandwidth selection algorithm of Sect. 3. The
Parzen and optimal lag-windows were used as pilots in (d) and (e) with bandwidths
�N 1/5� and �N 1/6� respectively.

A summary of their performance is tabulated in Table 7.
We see that the simple bandwidth selection algorithm is very effective in producing

accurate bandwidths that are consistent. The bandwidth selection procedure (a) can be
seen to be quite accurate but tends to produce a few relatively large bandwidths. This
error is compounded when squared error loss is used to evaluate the performance. The
plug-in method with second-order pilots on the other hand performs very poorly and
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does not even appear consistent. Histograms of the five bandwidth selection procedures
are available on Politis’ website: http://www.math.ucsd.edu/~politis/PolyspectraHist.
pdf.

6 Conclusions

Flat-top kernels in higher-order spectral density estimation is shown to be asymptoti-
cally superior in terms of MSE to any other finite-order kernel estimators. In addition,
a very simple bandwidth selection algorithm is included that delivers ideal band-
widths tailored to the flat-top estimators. If one chooses not to adopt the infinite-order
flat-top lag-window, then bandwidth selection via the plug-in method with flat-top
pilots demonstrates greatly increased performance and should be used. Finite-sample
simulations show these flat-top estimators were comparable with, and in many cases
outperforming, the popular second-order “optimal” lag-window estimator using the
plug-in method with second-order pilots for bandwidth selection. Simulations show
the estimation of the bispectrum is quite sensitive to the choice of bandwidth, and this
paper delivers the first higher-order accurate bandwidth selection procedures for the
bispectrum.

Appendix A: Technical proofs

Proof of Theorem 1. Using property (iii) of the lag-window and the fact that E[Ĉ(τ )]=
C(τ ) + O(1/N ), the expectation of f̂ (ω) can be expressed as

E[ f̂ (ω)] = 1

(2π)s−1

∑
‖τ‖<N

(
C(τ ) + O

( 1

N

))
λM (τ )e−iτ ·ω

= 1

(2π)s−1

∑
‖τ‖<N

C(τ )λM (τ )e−iτ ·ω + O
( Ms−1

N

)
.

The bias of f̂ (ω) is

E[ f̂ (ω)] − f (ω) = 1

(2π)s−1

∑
‖τ‖<N

(λM (τ ) − 1) C(τ )e−iτ ·ω

︸ ︷︷ ︸
A1

× − 1

(2π)s−1

∑
‖τ‖≥N

C(τ )e−iτ ·ω

︸ ︷︷ ︸
A2

+O
( Ms−1

N

)
.
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By the assumption on the summability of C(τ ), |A2| can be bounded as

|A2| ≤ 1

(2π)s−1

∑
‖τ‖≥N

|C(τ )| ≤ 1

(2π)s−1 N k

∑
‖τ‖≥N

‖τ‖k |C(τ )| = o

(
1

N k

)
.

Now rewrite A1 as

A1 = 1

(2π)s−1

∑
‖τ‖≤bM

(λM (τ ) − 1) C(τ )e−iτ ·ω

︸ ︷︷ ︸
=0

+ 1

(2π)s−1

∑
bM<‖τ‖≤N

(λM (τ ) − 1) C(τ )e−iτ ·ω.

��
Proof of (i). Since |λ(s)| ≤ 1,

|A1| ≤ 2

(2π)s−1

∑
bM<‖τ‖≤N

|C(τ )| ≤ 2

(2π)s−1(bM)k

∑
bM<‖τ‖≤N

‖τ‖k |C(τ )| = o

(
1

Mk

)
.

Equation (6) now follows, and thus MSE( f̂ (ω)) ∼ o(M−2k) + O(Ms−1/N ). ��
Proof of (ii). We have bias( f̂ (ω)) = A1 + O

(
Ms−1/N

)
, where under the assump-

tions of (ii),

|A1| ≤ 2

(2π)s−1

∑
bM<‖τ‖≤N

|C(τ )| ≤ (2) D

(2π)s−1edbM

×
∑

bM<‖τ‖≤N

ed(bM−‖τ‖) = O
(

e−dbM
)

.

Therefore MSE( f̂ (ω)) ∼ O(e−2dbM ) + O(Ms−1/N ) is asymptotically minimized
when M ∼ A log N where A = 1/(2db), and (8) holds for all A ≥ 1/(2db). ��
Proof of (iii). We have bias( f̂ (ω)) = A1 + O

(
Ms−1/N

)
, but under the assumptions

of (iii), A1 = 0. Hence the bias and variance are O(1/N ).

Proof of Theorem 2. Let τm̂ be any element of norm m̂ for which

|ρ̂(τm̂)| > k

√
log N

N
(21)
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and let τ ′
m̂ ∈ Bm̂,m̂+1, so that m̂ < ‖τ ′

m̂‖ ≤ m̂ + 1, and

|ρ̂(τ ′
m̂)| < k

√
log N

N
. (22)

Equations (10) and (13) give

|ρ̂(τm̂)| = |ρ(τm̂)| + op

(√
log log N

N

)
. (23)

In part (i), ρ(τ ) ∼ A‖τ‖−d , so for any ε > 0, we can find τ0 such that

A(1 − ε)‖τ‖−d < ρ(τ ) < A(1 + ε)‖τ‖−d (24)

when ‖τ‖ > τ0. Similarly, for any ε > 0, there exists τ0 large enough such that

(1 − ε)m̂−d < ‖τ‖−d < (1 + ε)m̂−d for all τ ∈ Bm̂,m̂+1 (25)

when m̂ > τ0. Putting Eqs. (21), (22), (23), (24), and (25) together gives, with high
probability,

A(1 − ε)2m̂−d < k

√
log N

N
< A(1 + ε)2m̂−d (26)

up to op(
√

(log log N )/N ), which is negligible as N gets large. Equation (26) is
equivalent to

m̂

(1 + ε)2 <
A1/d N 1/2d

k1/d(log N )1/2d
<

m̂

(1 − ε)2

with high probability. Therefore

m̂
P∼ A1/d N 1/2d

k1/d(log N )1/2d
.

The proof of part (ii) is similar. ��
Now we prove part (iii). Note that m̂ > q only if

max
τ∈Bq,q+aN

|ρ̂(τ ) − ρ(τ )| ≥ k

√
log N

N
(27)

but since C(τ ) = 0 when ‖τ‖ > q, Eq. (13) then shows

max
τ∈Bq,q+aN

|ρ̂(τ )| = op

(√
log log N

N

)
(28)
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since aN = o(log N ). The probability of (27) and (28) happening simultaneously
tends to zero, hence P(m̂ > q) → 0. Now if m̂ < q then

Bm̂,m̂+aN |ρ̂(τ )| = |ρ(τ )| + op

(√
log log N

N

)

shows that (10) must eventually be violated, hence P(m̂ < q) → 0 and the result
follows.

Proof of Theorem 3. Parts (ii) and (iii) follow from Theorems 1 and 2 and the
δ-method; see Politis (2003) for more details. For part (i), first note that

∑

τ∈Zs−1\{0}
‖τ‖α < ∞ if and only if α > s − 1.

In order for
∑

τ∈Zs−1 ‖τ‖k+2 |C(τ )| < ∞, for some k ≥ 1, d must satisfy d −k −2 >

s −1 or d > s +k +1 ≥ s +2. Now the results of Theorem 1 hold for f̂ωi ,ω j in replace

of f̂ (ω1, ω2) for any positive integer k < d − s − 1, in particular for k = �d − s − 2�.
From the proof of Theorem 1, the bias is of order o

(
1/Mk

)
, and since the variance is of

smaller order, the result now follows from substituting M with the rate (N/ log N )1/2d

from Theorem 2 (i). ��
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68(2), 326–356

Jones, M.C., Marron, J.S., Sheather, S.J. (1996). A brief survey of bandwidth selection for density estimation.
Journal of the American Statistical Association, 91(433), 401–407. ISSN 0162-1459.

Leadbetter, M.R., Lindgren, G., Rootzén, H. (1983). Extremes and related properties of random sequences
and processes. Springer Series in Statistics. New York: Springer ISBN 0-387-90731-9.

Lii, K.S., Rosenblatt, M. (1990a). Asymptotic normality of cumulant spectral estimates. Journal of
Theoretical Probability, 3(2), 367–385. ISSN 0894-9840.

123



498 A. Berg, D. N. Politis

Lii, K.S., Rosenblatt, M. (1990b). Cumulant spectral estimates: bias and covariance. In I. Berkes, E. Csáki,
P. Révész (Eds), Limit theorems in probability and statistics (Pécs, 1989). vol. 57 of Colloq. Math.
Soc. János Bolyai (pp. 365–405). Amsterdam: North-Holland.

Politis, D.N. (2003). Adaptive bandwidth choice. Journal of Nonparametric Statistics, 15(4–5), 517–533.
ISSN 1048-5252.

Politis, D.N., Romano, J.P. (1995). Bias-corrected nonparametric spectral estimation. Journal of Time Series
Analysis, 16(1), 67–103. ISSN 0143-9782.

Saito, K., Tanaka, T. (1985). Exact analytic expression for gabr-rao’s optimal bispectral two-dimensional
lag window. Journal of Nuclear Science and Technology, 22(12), 1033–1035.

Subba Rao, T., Gabr, M.M. (1980). A test for linearity of stationary time series. Journal of Time Series
Analysis, 1(2), 145–158 ISSN 0143-9782.

Subba Rao, T., Gabr, M.M. (1984). An introduction to bispectral analysis and bilinear time series models,
Lecture Notes in Statistics, vol. 24. New York: Springer. ISBN 0-387-96039-2.

Subba Rao, T., Terdik, Gy. (2003). On the theory of discrete and continuous bilinear time series models. In
D.N. Shanbhag, C.R. Rao, (Eds.), Stochastic processes: modelling and simulation, vol. 21. Handbook
of Statistics. (pp. 827–870). Amsterdam: North-Holland.

123


	Higher-order accurate polyspectral estimationwith flat-top lag-windows
	Abstract
	1 Introduction
	2 Asymptotic performance of a general flat-top window
	3 A bandwidth selection procedure
	4 Bispectrum
	5 Bispectral simulations
	5.1 IID data
	5.2 ARMA model
	5.3 GARCH model
	5.4 Bilinear model
	5.5 Analysis of bandwidth procedures

	6 Conclusions
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


