
Ann Inst Stat Math (2009) 61:371–390
DOI 10.1007/s10463-007-0147-z

On a model of sequential point patterns

V. Shcherbakov

Received: 30 January 2006 / Revised: 8 November 2006 / Published online: 10 August 2007
© The Institute of Statistical Mathematics, Tokyo 2007

Abstract A finite point process motivated by the cooperative sequential adsorption
model is proposed. Analytical properties of the point process are considered in details.
It is shown that the introduced point process is useful for modeling both aggregated
and regular point patterns. A possible scheme of maximum likelihood estimation of
the process parameters is briefly discussed.

Keywords Cooperative sequential adsorption model · Finite point process · Local
stability · Maximum likelihood estimation · MCMC methods

1 Introduction

This paper is devoted to studying a finite point process motivated by the cooperative
sequential adsorption (CSA) model. CSA models are widely used in physics and chem-
istry for modeling adsorption processes like chemisorption on single-crystal surfaces,
adsorption in colloidal systems and other similar processes. For the physics–chemistry
background and for surveys of the relevant literature we refer to Evans (1993), Privman
(2000) and references therein. It should be noted that another area of applicability of
such models is biological, ecological and sociological systems (Evans 1993). To imag-
ine the phenomena one can think of some material that attracts particles from the space
around. The main peculiarity of all cooperative sequential adsorption models is that
adsorbed particles change adsorption properties of the material. The dependence on
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372 V. Shcherbakov

previously adsorbed particles can be modeled in various ways. A relatively simple
variant is the one when the adsorption rates at a point depend on a number of previ-
ously adsorbed particles in some vicinity of the point. In lattice setting it is known
in statistical physics as a model of monomer filling with cooperative effects (Evans
1993). The proposed point process directly relates to this CSA model and we call it
CSA point process.

CSA point process might be useful for modeling point patterns in a particular sit-
uation where an interaction between points mimics the inter-particle interaction in
physical CSA models. By this we mean point patterns formed by marked points,
where a point mark is a real non-negative number interpreted as an “arrival time”
and a point can interact only with those points that have lower marks. In this case it
might be technically convenient to represent a point process state by a sequence of
random points. The process distribution is then specified by a density with respect to
a reference measure which corresponds to random point sequences formed by a Pois-
son’s number of points, such that each point is uniformly distributed in a compact set
D ∈ Rd . We use here this approach following recent research by Lieshout (2006a) on
sequential Markov point processes, see also Lieshout (2006b, 2006c) for more details
and examples.

We prove sufficient conditions for existence of a well-defined (integrable) process
density and show that in most interesting (non-degenerated) cases these conditions are
also necessary. Then we briefly discuss Markov properties of the process. In partic-
ular, an explicit formula for a clique interaction function is obtained. It is interesting
to note that the clique interaction functions can be expressed in terms of the well-
known Pascal triangle. For simulation of the process we use the Metropolis-Hastings
and spatial birth-death algorithms adopted in Lieshout (2006a) for sequential Markov
point processes. To ensure the convergence of the algorithms a point process should be
locally stable. In general CSA point process is not locally stable and we construct an
example of that. It is proved that the process is locally stable in all practically important
cases. A formula for the local stability bounds is given in these cases. Moreover, it is
shown that the obtained local stability bounds cannot be improved in general.

We argue that the proposed point process provides a simple and flexible choice
for modeling both aggregated and regular point patterns. The mechanism of clusters
formation is explained and examples of computer simulations are given.

In Sect. 5 we describe a scheme of maximum likelihood estimation for a class of
CSA point processes which seems to be useful in applications.

2 CSA point process

Let D be a compact subset of Rd with positive Lebesgue measure. Denote FD =
∪∞

n=0 Dn the set of finite sequences x = (x1, . . . , xn), xi ∈ D, i = 1, . . . , n, assum-
ing D0 = ∅, and let F D be the standard σ -algebra on FD . By t (x) we denote a
number of points in x. Point y ∈ D is called neighbor of point x ∈ D if the dis-
tance between y and x is not greater than some fixed positive constant R. For any
point x ∈ D and sequence x = (x1, . . . , xk) let n(x, x) be a number of neighbors of
point x in the sequence x. By definition n(x,∅) = 0, where ∅ is an empty sequence.
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On a model of sequential point patterns 373

Given the sequence of points x = (x1, . . . , xk), k ≥ 1 we will denote for short
x<k = (x1, . . . , xk−1), for k ≥ 2 and x<1 = ∅.

Define a reference measure ν on (FD,FD) corresponding to random sequences of
Poisson length with mean 1 and with independent uniformly distributed coordinates
in D. Thus,

ν(F) =
∞∑

n=0

e−|D|

n!
∫

Dn
1{(x1,...,xn)∈F}dx1 · · · dxn, F ∈ FD, (1)

where by |D| we denoted the Lebesgue measure of D. Let {βk, k ≥ 0} be a set non-
negative numbers. Consider a finite point process X on D with probability distribution
specified by the following density with respect to the reference measure ν

f (x1, . . . , xn) = Z−1
n∏

k=1

βn(xk ,x<k ), (2)

where Z is a normalizing constant (partition function)

Z =
∞∑

n=0

e−|D|

n!
∫

Dn

n∏

k=1

βn(xk ,x<k )dx1 · · · dxn .

Note that, the unnormalized process density h can be written as follows

h(x) = h(x1, . . . , xn) =
N̂ (x)∏

k=0

β
tk (x)
k .

where

tk(x) =
∑

xi ∈x

1{n(xi ,x<i )=k}, k ≥ 0, (3)

and

N̂ (x) = max
xi ∈x

n(xi , x<i ) = max{k : tk(x) > 0}. (4)

The point process we have just defined is motivated by physical CSA lattice models
where single lattice sites are filled by particles with intensities depending on states of
neighboring sites. The dependence of reaction rates on existing configuration can be
modeled in various ways. We have chosen a particular case when a reaction rate at a
point depends on a number of the point neighbors. Certainly, other forms of depen-
dence can be taken as well. We call the introduced point process CSA point process
by analogy with statistical physics. Also, we call number R an interaction radius and
the parameters βk, k ≥ 0 are called intensities.
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2.1 Existence of CSA point process

We need to check that the partition function is finite to get a well-defined (integrable)
density (2). It is easy to see that if the intensities are uniformly bounded

sup
n≥0

βn < ∞,

then the partition function is finite. But if the numbers βn, n ≥ 0, increase sufficiently
fast as n → ∞, then the partition function might become infinite. Proposition 1 shows
that if the domain D is not degenerate, then the linear growth of intensities is the
critical one separating these two cases.

Proposition 1 1) Assume that a non-decreasing sequence βn, n ≥ 0, is such that
βn/n → 0 as n → ∞, then the partition function is finite.

2) Assume that βn = β(n + 1), n ≥ 0, for some β > 0 and D is a domain with
non-empty interior. If β is sufficiently large, then the partition function is infinite.

Proof 1). Fix 0 < ε < |D|−1 and let n(ε) be such that βn/n ≤ ε for any n > n(ε).
Represent the partition function as follows

Z =
∑

n≤n(ε)

e−|D|

n!
∫

Dn

n∏

k=1

βn(xk ,x<k )dx1 · · · dxn

+
∑

n>n(ε)

e−|D|

n!
∫

Dn

n∏

k=1

βn(xk ,x<k )dx1 · · · dxn .

The first term in the preceding display is finite. Let us bound the second term. Note
that n(xk, x<k) ≤ k − 1 for any k ≥ 1. Hence βn(xk ,x<k ) ≤ βk−1, since the sequence
βn, n ≥ 0, is non-decreasing. Therefore the product in the integral can be bounded
as follows

n∏

k=1

βn(xk ,x<k ) =
n(ε)∏

k=1

βn(xk ,x<k )

n∏

k=n(ε)+1

βn(xk ,x<k ) ≤ β
n(ε)
n(ε)

εn−n(ε)n!
n(ε)! ,

where we have used that βk ≤ βn(ε), if k ≤ n(ε). Using the bound in the preceding
display we obtain

∑

n≥n(ε)

e−|D|

n!
∫

Dn

n∏

k=1

βn(xk ,x<k )dx1 · · · dxn ≤
(
βn(ε)

ε

)n(ε) e−|D|

n(ε)!
∑

n≥n(ε)

(ε|D|)n,

and the right hand side is finite by choice of ε. Therefore Z < ∞.
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2). In this case D contains a ball B(y, r) of positive radius r < R/2, so one can
bound

Z ≥
∞∑

n=0

e−|D|βn

n!
∫

Bn(y,r)

n∏

k=1

n(xk, x<k)dx1 · · · dxn ≥ e−|D|
∞∑

n=0

|B(y, r)|nβn,

and the last series is infinite provided that |B(y, r)|β ≥ 1. �	

2.2 Examples of CSA point processes

A wide class of CSA point processes that might be interesting in applications is formed
by CSA processes whose densities are specified by a finite number of different inten-
sities, i.e., βk, k ≤ N and βk = γ ≥ 0, k > N for some N ≥ 0. The unnormalized
process density in this case is

h(x1, . . . , xn) = γ s(x)
N∏

k=0

β
tk (x)
k , (5)

where

s(x) = t (x)−
N∑

k=0

tk(x), (6)

is the total number of points that have at least N + 1 neighbors.
An important subclass of the CSA point processes with a finite number of different

intensities is formed by CSA processes with hard core interaction. The last means that
only a finite number of intensities β0, . . . , βN is non-zero. The unnormalized process
density in this case is

h(x1, . . . , xn) = 1{N̂ (x)≤N }
N∏

k=0

β
tk (x)
k . (7)

2.3 Markov property of CSA point process

It is easy to see that f (y) > 0 implies f (z) > 0 for all subsequences z ⊂ y and that
for all sequences y such that f (y) > 0, the ratio

f ((y, u))

f (y)
= λ(u|y) = βn(u,y) (8)

depends only on its neighbors in sequence y. According to the definition in Lieshout
(2006a), the point process X defined by the density (2) is a sequential Markov point
process with respect to the following neighborhood relation ∼ between points: y ∼ x ,
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if Euclidean distance between x and y is not greater than R. Similar to the case of
classical Markov point processes Hammersley–Clifford factorization formula holds
for density f of a sequential Markov point process (see Lieshout 2006a)

f (x) =
t (x)∏

j=1

∏

y⊆x< j

ϕ(x j , y), (9)

where the inner products are over all x j -cliques y, that is all components y ∈ y satisfy
x j ∼ y, and ϕ : D × FD → R+ is some function, such that ϕ(x j , y) = 1, if y is not
an x j−clique. The function ϕ(x j , y) is called a clique interaction function.

Knowing the clique interaction function is necessary if one needs the conditional
distribution of a Markov point process restricted on a subset D′ ⊂ D given the process
configuration in D\ D′. Computing a formula for the clique interaction function might
be difficult, see, for example, Baddeley et al. (1996). Therefore it is interesting to note
that a clique interaction function can be computed explicitly in the case of CSA point
process.

Theorem 1 The clique interaction function ϕ(x, y) of CSA point process is defined
as follows

ϕ(x, y) =
t (y)∏

m=0

β
C(n(y),m)
m , (10)

if y = (y1, . . . , yn) is an x-clique, where

C(n,m) = (−1)n+m
(

n

m

)
, n ≥ m ≥ 0. (11)

Proof Denote ψn = log(ϕ(x, {y1, . . . , yn})), n ≥ 0, where n = t (y) is the number
of points in the x-clique y. Using (8) and (9), one can get that ψ0 = log(β0) and

ψn = log(βn)−
n−1∑

k=0

(
n

k

)
ψk, n ≥ 1.

It can be shown by induction that

ψn =
n∑

m=0

C(n,m)am, (12)

where am = log(βm), m = 0, 1, . . . , n and

C(n,m) =
(

n

m

) n−m∑

k=1

(−1)kk!S(n − m, k), (13)
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On a model of sequential point patterns 377

and S(n,m), n ≥ 1, 1 ≤ m ≤ n, are the so-called Stirling numbers of the second
kind, i.e., the number S(i, j) is the number of ways to partition a set of i objects into
j non-empty groups (Comtet 1974). It remains to note that for the Stirling numbers
of the second kind the following classical identity holds

M∑

k=1

(−1)kk!S(M, k) = (−1)M , (14)

for any M ≥ 1 (Abramowitz and Stegun 1972, Sect. 24.1.4, p. 825). The theorem is
proved. �	
Remark 1 It is easy to see that the coefficients C(n,m) form a table which is nothing
else but the alternating Pascal triangle.

3 Local stability and simulation of CSA point processes

To simulate CSA point process we use Metropolis–Hastings and birth–death sam-
plers adopted for the sequential Markov point processes in Lieshout (2006a). For
the reader’s convenience we briefly recall the basic choices for both of them and
their properties. Consider a sequential Markov process given by its density g(x) with
respect to the reference measure ν. The generic variant of the Metropolis-Hastings
sampler is the following one. Given the current state x the birth and death are pro-
posed equally likely. If birth is proposed, then we choose a position i ∈ {0, . . . , t (x)}
at random, sample a uniformly distributed point ξ ∈ D and accept the new state
si (x, ξ) = (. . . , xi−1, ξ, xi , . . .) with probability

min

{
1,

g(si (x, ξ))
g(x)(t (x)+ 1)

}
. (15)

If death is proposed, then a position i ∈ {1, . . . , t (x)} is chosen at random and the
point xi is removed with probability

min

{
1,

g(x1, . . . , xi−1, xi+1, . . . , xn(x))t (x)
g(x)|D|

}
. (16)

The generic choice of the birth-death sampler is determined by the birth rate

bi (x, ξ) = g(si (x, ξ))
(t (x)+ 1)g(x)

, (17)

for the birth of a new point ξ at position i given the current configuration x, and
di (x) = 1 for the death rate at position i in the current configuration x.

Note that the Markov chains generated by both Metropolis–Hastings and birth–
death algorithm are reversible with respect to the probability distribution specified by
the density g(x). Therefore this distribution is an invariant one for the Markov chains.
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A sufficient condition for geometric ergodicity for both the Metropolis–Hastings and
birth-and-death samplers for a sequential Markov process with density g is the fol-
lowing local stability condition

g(si (x, ξ))
g(x)

≤ C, (18)

uniformly in ξ ∈ D, x = (x1, . . . , xn), g(x) > 0, and i = 0, . . . , n for some C > 0.

3.1 Local stability of CSA point process

The next theorem provides us with local stability bounds for CSA point processes
mentioned in Sect. 2.2.

Theorem 2 Consider a CSA point process with a finite number of different intensities.

1) If βk > 0, k = 0, 1, . . . , N , βk = 0, k > N for some N, then the density (2) is
locally stable with a constant

C1(N , β) = max(β0, . . . , βN )

(
max(β0, . . . , βN )

min(β0, . . . , βN )

)T (d)N

, (19)

where T (d) is the maximal number of points which can be allocated on
d-dimensional sphere with unit radius in such a way that the distance between
any two of them is not less than 1.

2) If βk > 0, k = 0, 1, . . . , N , βk = γ > 0, k > N for some N and γ , then the
density (2) is locally stable with a constant

C2(N , β) = max(β0, . . . , βN , γ )

(
max(β0, . . . , βN , γ )

min(β0, . . . , βN )

)T (d)N

, (20)

where T (d) is the constant defined in part 1).

Proof Let us prove part 1) of Theorem 2. We assume that d = 2, for higher dimensions
the modification is obvious. Note that T (2) = 6. Denote for short

ri (x, ξ) = βn(ξ,x<i )

n∏

k=i

βn(xk ,(x<k ,ξ))

βn(xk ,x<k )

. (21)

For any ξ and x<i we have that βn(ξ,x<i ) ≤ max(β0, . . . , βN ). Let us bound the
product. Note that n(xk, (x<k, ξ))− n(xk, x<k) can be 0 or 1. If n(xk, x<k) = 0 and
‖ξ − xk‖ > R, then n(xk, (x<k, ξ))− n(xk, x<k) = 0 and the corresponding ratio in
the product is

βn(xk ,(x<k ,ξ))

βn(xk ,x<k )

= 1.

123



On a model of sequential point patterns 379

If ‖ξ − xk‖ ≤ R, but n(xk, x<k) = N , then n(xk, (x<k, ξ)) = N + 1 and the corre-
sponding ratio is

βN+1

βN
= 0,

since βN+1 = 0. So, the point ξ can be inserted as the i th coordinate of the vector x
if and only if there are no points in the configuration x ∩ B(ξ, R) that already have
N neighbors. If n(xk, x<k) < N and ‖ξ − xk‖ ≤ R, then the product gains the fac-
tor βn(xk ,x<k )+1/βn(xk ,x<k ) that we bound by max(β0, . . . , βN )/min(β0, . . . , βN ). If
β j+1/β j ≤ 1 for any j = 0, . . . , N − 1, then the bound (18) is obvious and the proof
is finished. In the general case we bound

ri (x, ξ) ≤ max(β0, . . . , βN )

(
max(β0, . . . , βN )

min(β0, . . . , βN )

)mi (ξ,x)

,

where mi (x, ξ) is the number of x components xk, k ≥ i, such that n(xk, x<k) < N
and ‖ξ−xk‖ ≤ R. A simple geometric argument shows that we can bound mi (x, ξ) ≤
6N . Indeed, represent the ball B(ξ, R) as a union of 6 equal disjoint sectors. It is easy
to see that the distance between any two points belonging to the same sector is not
more than R. Therefore there cannot be more than N points of the vector x in any of
these sectors. Indeed, assume there was a sector that contains at least N + 1 points of
the vector x = (x1, . . . , xn), n ≥ N + 1. Let xi be the last arrival in this sector, i.e.,
it is the point that appeared there later than the others. Then xi has already (at least)
N neighbors (other vector points belonging to the sector) and it would have at least
N + 1 neighbors if we inserted ξ at the beginning of the vector but this situation is
forbidden. So, finally

ri (x, ξ) ≤ max(β0, . . . , βN )

(
max(β0, . . . , βN )

min(β0, . . . , βN )

)6N

.

Part 1) of the theorem is proved.
Let us prove part 2) of Theorem 2. Assume again for definiteness and without loss

of generality that d = 2. For any ξ and x<i one can estimate

βn(ξ,x<i ) ≤ max(β0, . . . , βN , γ ).

Bounding the product (21) we consider two cases. If ‖ξ − xk‖ ≤ R and n(xk, x<k) >

N , then the corresponding ratio is trivial

βn(xk ,x<k )

βn(xk ,(x<k ,ξ))

= 1.
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If ‖ξ − xk‖ ≤ R, n(xk, (x<k, ξ)) − n(xk, x<k) = 1 and n(xk, x<k) ≤ N , then the
product gains the factor that might be not equal to 1 and we bound it as follows

βn(xk ,x<k )+1

βn(xk ,x<k )

≤ max(β0, . . . , βN , γ )

min(β0, . . . , βN )
.

So

ri (x, ξ) ≤ max(β0, . . . , βN , γ )

(
max(β0, . . . , βN , γ )

min(β0, . . . , βN )

)li (ξ,x)

,

where li (x, ξ) is the number of components xk ∈ x, k ≥ i, such that n(xk, x<k) ≤ N
and ‖ξ − xk‖ ≤ R. The geometric argument we used in the proof of part 1) gives that
li (x, ξ) ≤ 6N , so we get the bound (20). The theorem is proved. �	
Remark 2 It is well known that the practical implementation of birth-and-death sam-
plers in the locally stable case is based on dependent thinning of transitions of a Pois-
son process with unit death rate and constant birth rate C that dominates any ri (x, ξ):
ri (x, ξ) ≤ C . If C is overestimated, then it leads to very low acceptance probabilities.
Therefore it is desirable to get the bound (18) as small as possible. From this point of
view the bounds we have obtained in Theorem 2 are not satisfactory. We obviously
overestimated the values of mi (ξ, x) and li (ξ, x), since the points of any sector might
have neighbors from other sectors. But in general both bounds (19) and (20) are close
to optimal. Indeed, consider at first the bound (19) in the case when β0, β1 > 0 and
βk = 0 for k ≥ 2. Then following the proof, one gets that the bound for mi (ξ, x) (the
maximal number of points of the configuration x which can contribute the non-trivial
factor in the product (21)) is 6. One would get this number if the configuration shown
in Fig. 1 occurred, where 6 points of the vector x are located at the boundary of the
ball B(ξ, R) such that the distance between the nearest of them is R. Obviously, this
set of configurations has probability 0, since the ball boundary has Lebesgue measure
0 in dimension 2. But the set of configurations shown in Fig. 2 has already a non-zero
probability and gives the value mi (ξ, x) = 5.

Consider now the process with intensities β0 > 0, β1 > 0, βk = γ > 0, k ≥ 2. It
is easy to see that the same “ideal” configuration in Fig. 1 gives the bound (20) with
T (2) = 6 and the configuration in Fig. 2 provides the “lower bound” for the bound
(20) and it is 5 since li (ξ, x) = 5 in this case. The only difference is that now the
points of configuration x which we locate near the ball boundary, cannot have more
than 1 neighbor outside the ball (otherwise the corresponding factor in the product
(21) would be trivial, i.e., equal to 1).

The obtained bounds can be very large even for small N . For instance, if N = 2 and
max(β0, . . . , βN )/min(β0, . . . , βN ) = 10, then the bound is of order 1012. There-
fore we can conclude that the birth-and-death sampler based on thinning is not a good
practical choice for simulating CSA point processes.

Remark 3 It is easy to see that the condition (18) holds for any decreasing sequence
of intensities β0 ≥ · · · ≥ βk ≥ βk+1 ≥ · · · , k ≥ 0, which is not necessarily finite,
since in this case the factor βn(xk ,(x<k ,ξ))/βn(xk ,x<k ) is always bounded by 1.
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Fig. 1 Six points at the surface
with the minimal distance R
between them, R is radius of the
ball. It is assumed that the points
do not have any neighbors
outside the ball

Fig. 2 Five domains with
positive measures near the ball
boundary. The distances between
the domains are not less than the
radius of the ball. A vector x has
a point of intersection with each
of the domains, these points do
not have any neighbors outside
the ball

Remark 4 If the set of intensities is unbounded, then the density (2) may not be locally
stable. Indeed, assume that βi → ∞ as i → ∞. Let the area D contain at least one ball
B(y, r) with radius r < R/2. Consider a configuration x = (x1, . . . , xn) ∈ B(y, r).
Then, for ξ ∈ B(y, r)

r0(x, ξ) = βn(ξ,∅)
n∏

k=1

βn(xk ,(x<k ,ξ))

βn(xk ,x<k )

= β0

n−1∏

k=0

βk+1

βk
= βn,

which is unbounded in n.

4 Modeling repulsion and attraction in point patterns by CSA point processes

In physical CSA models reaction rates might be either enhanced or inhibited by the
reacted neighbors. The former leads to clustering and the latter leads to repulsion
between particles. We are going to demonstrate that these properties are inherited by
CSA point process. An intuitive picture that one may expect is that if β0 ≥ · · · ≥ βk ≥
βk+1 ≥ · · · , then it might result in repulsion between points, and if · · · ≤ βk ≤ βk+1 ≤
· · · , then it is reasonable to expect clustering in a point pattern. Basically, these pre-
dictions hold though there are certain limitations which will be mentioned. All images
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Fig. 3 Formation of the
“linear cluster”
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Fig. 4 CSA patterns with two non-zero intensities. Left: R = 0.03 and β0 = 10, β1 = 2,000. Right:
R = 0.05 and β0 = 500, β1 = 5. Statistics (t0, t1) = (76, 367) and (t0, t1) = (121, 1) respectively

we refer in this section were obtained by the Metropolis-Hastings algorithm. Every
image is supplied with the corresponding process parameters R, βk, k = 0, . . . , N ,
and with values of statistics tk, k = 0, . . . , N (see (3) for the definition). As an exam-
ple we consider the simplest non-trivial situation, when there are only two non-zero
intensities β0 and β1, i.e., a point can have at most one neighbor.

If β0 � β1 and β1 is small, then patterns with repulsion between points are ob-
served, e.g., the right image provided by Fig. 4. Such patterns are similar to patterns
produced by a CSA point process with the same intensity β0 and βk = 0, k ≥ 1.

If β0 � β1, then aggregated point patterns appear, e.g., the left image in Fig. 4. It
is visible that the point clusters are formed by “directed local chains” of points which
approximately have “a local linear structure”. Figure 3 illustrates the mechanism of a
chain formation. Areas labeled by + are the areas where the intensity of point appear-
ance is high, +− areas are the ones which were active but are blocked at the moment.
Point x is the first one, it activates the area in the ball B(x, R). Then point y appears
and immediately the area B(x, R) ∩ B(y, R) is frozen. Point z is the third one, its
appearance blocks the intersection B(z, R) ∩ B(y, R).

It is important to note that if β1 is taken sufficiently large, then it might spoil the
aggregated structure, resulting in high density homogeneous point patterns formed by
pairs of close points. This effect might occur even if β0 is rather small. Without going
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Fig. 5 Left: example of degenerated cluster structure, R = 0.05, β0 = 0.0005, β1 = 500,000, βk =
0, k ≥ 2, statistics (t0, t1) = (1,544). Right: R = 0.03, β0 = 10, β1 = 510, β2 = 1,010, β3 =
1,510, β4 = 2,010, β5 = 2,510, β6 = 3,010, β7 = 3,510, β8 = 4,010, β9 = 4,510, statistics
(t0, . . . , t9) = (79, 254, 236, 179, 146, 134, 111, 86, 72, 43)

into details we briefly sketch an idea of how this effect can be explained analytically. It
is easy to see that in the case of two non-zero intensities the partition function Z is just
a finite linear combination of terms β i

0β
j

1 , i > 0. Let jmax be a maximal power of β1

in the expansion for the partition function. If β0β
jmax

1 → 0 as β0 → 0, β1 → ∞, then
obviously the limit process is trivial, i.e., its distribution is concentrated on the empty
configuration. But if β0β

jmax
1 → ∞, or is just bounded below, and β0β

jmax−1
1 → 0

as β0 → 0, β1 → ∞, then the limit process is non-trivial and its distribution is con-
centrated on the dense packing configurations x (no more points can be placed) with
t0(x) = 1. Apparently the left image in Fig. 5 illustrates this effect.

Similar mechanism of cluster formation works in the case of any CSA point process
with a finite number of non-zero intensities and the same mixed attraction-repulsion
effects can be observed. An image corresponding to a CSA point process with 10
non-zero intensities is provided by the right panel of Fig. 5. The aggregated structure
of this image is apparently stipulated by sufficiently small value of the interaction
radius and substantial growth of intensities.

Another easy to handle choice for modeling cluster structures is provided by CSA
point processes with a finite number of different intensities in case when all of them are
positive. The mechanism of cluster formation is the same as the one explained above.
The only difference is that there are no restrictions on the number of neighbors in this
situation. Density and sizes of clusters can be controlled by making at least one of
the intensities smaller or bigger. By varying the interaction radius one can also reduce
or intensify aggregating effects in point patterns. For example, compare the images
provided in Fig. 6. The aggregated structure can be lost if intensities βk, k ≥ 1, are
taken too large. For instance, the images in Fig. 6 have visible cluster structure, point
clusters are separated one from each other. In the left image of Fig. 7 the clusters
begin coalescing though they still can be recognized. The right image in Fig. 7 gives
an example when clusters have coalesced forming one “connected component”.
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Fig. 6 Left: R = 0.03 and β0 = 5, β1 = 1,000, βk = 500, k ≥ 2. Right: R = 0.02 and β0 = 10, βk =
2,000, k ≥ 1
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Fig. 7 Left: R = 0.03 and β0 = 5, βk = 3,000, k ≥ 2, the total number of points 2971, the maximal
number of neighbors 18. Right: R = 0.07 and β0 = 5, βk = 5,000, k ≥ 1, the total number of points
5,057, the maximal number of neighbors 97

5 MLE for CSA point processes with a finite number of non-zero intensities

In this section we are going to describe a possible scheme of maximum likelihood
estimation (MLE) for CSA point processes with a finite number of non-zero intensi-
ties. This class of CSA point processes seems to be convenient for applications.

In case of a finite number of non-zero intensities the process density is character-
ized by the following parameters: R the interaction radius, N the maximal allowed
number of neighbors (the number of non-zero intensities minus one) and N + 1 inten-
sities β0, . . . , βN . Denoting θ = {θk = log(βk), k = 0, . . . , N } one can write the
unnormalized process density in exponential form

h R,N ,θ (x) = e
∑N

k=0 θk tk (x)1{N̂ (x)≤N }, (22)

where the statistic tk(x), k = 0, . . . , N , is a number of x-coordinates which have
exactly k neighbors and N̂ (x) is a maximal number of neighbors observed in
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x = (x1, . . . , xn) (see formulas (3) and (4)). Given observation x we look for a set of
parameters {R, N , θk, k = 0, . . . , N }, that maximize the log-likelihood

L(R, N , θ, x) =
N∑

k=0

θk tk(x)− log(Z R,N (θ)), (23)

Z R,N (θ) is the normalizing constant corresponding to the parameters {R, N , θ}.
It is easy to see that if the radius R is known, then N̂ is a maximum likelihood

estimator for N . N̂ is a biased estimator of N , since N̂ (x) ≤ N for any realization x.
Assume that a true parameter is N = N̂ +n,where n ≥ 1,which means that the num-
ber of non-zero intensities is N̂ +n+1. It is easy to show that if θ̂k, k = 0, . . . , N̂ +n,
are maximum likelihood estimators, then θ̂k = −∞, or, equivalently β̂k = 0, for
k = N̂ + 1, . . . , N̂ + n − 1. Therefore, given the interaction radius R one can stick
with the model with N̂ + 1 non-zero intensities.

Assuming that the true value of the radius is in a range [Rmin, Rmax] one can
approximate this continuous set by a finite discrete set {Rk, k = 1, . . . ,M}, deter-
mine N̂ = N̂ (Rk, x) for any k = 1, . . . ,M, and compute maximum profile likelihood
estimates

θ(x, Rk, N̂ ) = arg max
θ

L(Rk, N̂ , θ, x),

depending on Rk and N̂ .
Denote now for short hθ = h R,N ,θ the unnormalized density, Pθ the probability

distribution of the process with density hθ and Eθ expectation with respect to Pθ . Since
the log-likelihood is a concave function of θ there exists a unique maximum in the inte-
rior of the parameter space RN+1 (recall that θk = log(βk) ∈ R). Therefore the point of
maximum θ̂ can be found as a unique solution of the maximum log-likelihood equation

∇θ L(R, N , θ, x) = 0,

which is the following set of equations

tk(x) = Eθ tk(X), k = 0, 1, . . . , N . (24)

We cannot solve the system of equations (24) directly, since the partition function
Z(θ) = Z R,N (θ) in (23) cannot be computed. Therefore MCMC approximation to
MLE (MCMCMLE) is required. For detailed description, discussions and applications
of MCMCMLE see Geyer and Thompson (1992), Geyer (1994, 1999) and references
therein. The idea consists in fixing a so-called reference parameterψ = (ψ0, . . . , ψN ),

and maximizing the function

lψ(R, N , θ, x) = L(R, N , θ, x)− L(R, N , ψ, x). (25)

It should be noted that the ratio hθ (x)/hψ(x) is well defined, since the densities hθ and
hψ have a common support. The ratio Z R,N (θ)/Z R,N (ψ) is replaced by its MCMC
approximation and one needs to maximize the function
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lψ,m(R, N , θ, x) = log

(
hθ (x)
hψ(x)

)
− log

(
1

m

m∑

i=1

e
∑N

k=0(θk−ψk )tk(Xi )

)
, (26)

where X1, . . . , Xm is a sample from a reversible Markov chain generated by Metrop-
olis-Hastings algorithm and which has Pψ as its stationary distribution. In the case of
a CSA point process with a finite number of non-zero intensities this Markov chain
is uniformly geometrically ergodic due to the hard-core character of interaction be-
tween points (any point in configuration can have not more than N neighbors). By the
ergodic theorem for Markov chains we get that the MCMC approximation (26) con-
verges to lψ(R, N , θ, x) as m → ∞. By the general results for exponential families
the maximizers θ̂m = (θ̂m,0, . . . , θ̂m,N ) of lψ,m(θ, x) converges to the true maximum
likelihood estimators θ̂ = (θ̂0, . . . , θ̂N ) almost surely as m → ∞.

In addition to reversibility and geometric ergodicity of Metropolis–Hastings sam-
pler one needs to verify some other conditions in order to use MCMCMLE. There are
some smoothness conditions which are easy to check in our case. Another important
condition is positive definiteness of the Fisher information matrix of the model with
known R and N . Note that the set of densities with known R and N is an exponential
family in minimal form (linear independence of sufficient statistics tk, k = 0, . . . , N
can be verified by a direct computation in this case), therefore positive definite-
ness of the Fisher information matrix follows from concavity of the log-likelihood
function.

Having obtained {θ(x, Rk, N̂ ), k = 1, . . . ,M} it remains to determine the point of
a global maximum

R̂ = R̂(x) = arg max
Rk

L(Rk, θ(x, Rk, N̂ ), x). (27)

Finally, MLE estimators are {R̂, N̂ , β̂k = exp(θ̂k), k = 0, . . . , N }.
Consider a numerical example with the real life data in order to mention some spe-

cific simulation details. It should be noted that we are not going to perform a detailed
statistical analysis of the data or to give any interpretation of the model in relation
with the data, these issues are beyond the scope of the paper.

The real life data is provided by Dr. R. Huele, Leiden University, Institute of Envi-
ronmental Sciences (CML) and is given by a sequence of geographical coordinates
of the North Sea points where appearances of harbor porpoises were observed. The
observation window is a subregion of the North Sea which after an appropriate scaling
is given by the interior of a polygon A1 A2 A3 A4 A5 A6 in Fig. 8. The image of the data
in the transformed window is given by a set of labeled points in Fig. 8. The point
coordinates are stored in Table 1.

We decide that the true value of the radius is somewhere in the range [0.001, 0.1]
and we approximate this continuous set by the discrete set {Rk = 0.001 · k, k =
1, . . . , 100}. Table 2 gives the values of canonical statistics and the number of non-
zero intensities for a given value of the interaction radius.

To find the maximizers of the function (26) we simply computed its values for a dis-
crete subset of a parameters θ and took the point where the maximum is taken. We were
making sure that this subset contains the point of maximum (in cases when we got
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Fig. 8 The observation window
and data

Table 1 Data

1 2 3 4 5 6 7 8 9 10

x 0.175 0.152 0.883 0.889 0.507 0.434 0.226 0.524 0.493 0.518

y 0.740 0.777 0.856 0.856 0.454 0.392 0.110 0.460 0.541 0.548

Table 2 Statistics tk and N̂
(formulas (3) and (4)) for
different values of radius

R Statistics tk = tk (R), k = 0, . . . N̂ (R)

0.001, . . . , 0.005 (10, 0) 0

0.006, . . . , 0.018 (9, 1) 1

0.019, . . . , 0.026 (8, 2) 1

0.027, . . . , 0.044 (7, 3) 1

0.045, . . . , 0.087 (6, 4) 1

0.088 (5, 5) 1

0.089, . . . , 0.094 (5, 3, 2) 2

0.095 (4, 4, 2) 2

0.096, . . . , 0.1 (4, 4, 1, 1) 3

the maximum at the boundary of the subset we took a larger one and repeated the
computations). For example, if a value Rk was such that N̂ = 2, we computed
lψ,m(θ, x) at points θ = (θ0, θ1, θ2) corresponding to the following discrete set
described in terms of intensities β: β0 = 0.5k, k = 1, . . . , 30, β1 = 0.5k, k =
1, . . . , 5000, and β2 = k, k = 10, . . . , 500. The finer grid approximation can be
taken to get better approximation. We decide on these sizes of the mesh, compen-
sating it by taking rather fine discrete approximation for the values of the interaction
radius.

The sample Xi , i = 1, . . . ,m in the formula (26) was taken from a reference distri-
bution Pψ corresponding to the hard core model with radius R and non-zero intensities
ψ0, . . . , ψN̂ (R). We took different reference parameters for different pairs (N , R). For
example, for R = 0.49 we had N̂ = 1 and put β0 = 5 and β1 = 180 as reference

123



388 V. Shcherbakov

0.00 0.02 0.04 0.06 0.08 0.10

2
4

6
8

10

R

L

Fig. 9 Plot of L(Rk ) = lψ,m (θ(Rk ), Rk ) for k = 1, . . . , 100

intensities. It is easy to see that the model with the minimal radius and the maximal
number of non-zero intensities can be taken as a common reference model for all
situations considered, since its density support has larger support. Also any Poisson
density can be taken as a reference one for any density hθ . But these choices have the
following disadvantage. Assume that the support of the reference density hψ is larger
than the support of the density hθ . It yields that when computing the function (26) we
have to discard all reference samples Xi such that hθ (Xi ) = 0, hψ(Xi ) �= 0. By the
ergodic theorem the more samples we use the better approximation we have. Hence
we need to be sure that sufficiently many reference samples are left. Practically this
is not convenient to control. It is much more convenient to use the reference model
with the same radius and the same number of non-zero intensities. In this case we “do
not loose” any reference samples and the approximation routine is robust. This is why
we take the hard core model with R = Rk and N = N̂ (Rk) while approximating the
maximizers θ(x, Rk) of the cross-section R = Rk of the likelihood surface.

In all cases we run the Metropolis–Hastings algorithm for 25 × 106 steps sampling
at every 10, 000th step, so 2, 500 reference samples were simulated. Thus, for a fixed
value R we computed the values θm(x, R) that maximize the function lψ,m(θ, x). The
points θm(x, Rk), k = 1, . . . , 100 are themselves approximated by some points from
some discrete sets.

Determine now R̂ (see (27)). To find the point of the global maximum we need
to compare the values of the function (23) at all points of local (profile) maximums.
We do it by computing approximations (26) to the function (25) and at this stage the
common reference model has to be taken. The Poisson model with intensity 20 is
taken as the reference one. The parameter 20 has been taken since we want to have
the reference samples x such that t (x) is comparable 10 and N̂ (x) ≤ 2 as often as
possible. We computed m = 3, 000 samples from the reference model drawing a
sample every 10, 000 steps in a long run of Metropolis–Hastings algorithm. The val-
ues of lψ,m(θ(Rk), Rk), k = 1, . . . , 100 are plotted in Fig. 9. One can see that the
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Table 3 Values of R and β(R)

R Statistics tk , k = 0, . . . N̂ β lm (θ, R)

0.005 t0 = 10 0 β0 = 14 0.750
∗0.006 (t0, t1) = (9, 1) 1 (β0, β1) = (11, 2010) 4.944
∗0.019 (t0, t1) = (8, 2) 1 (β0, β1) = (8.5, 441) 4.235
∗0.022 (t0, t1) = (8, 2) 1 (β0, β1) = (9, 323) 4.511
∗0.027 (t0, t1) = (7, 3) 1 (β0, β1) = (6.5, 367) 7.720

0.046 (t0, t1) = (6, 4) 1 (β0, β1) = (5, 187) 8.851
∗0.088 (t0, t1) = (5, 5) 1 (β0, β1) = (3.5, 83.5) 7.655
∗0.09 (t0, t1, t2) = (5, 3, 2) 2 (β0, β1 β2) = (4, 35, 130) 7.378

0.095 (t0, t1, t2) = (4, 4, 2) 2 (β0, β1 β2) = (2.5, 50.5, 105) 10.224
∗0.096 (t0, t1, t2, t3) = (4, 4, 1, 1) 3 (β0, β1 β2, β3) = (2.5, 51, 40, 158) 9.177

log-likelihood function has clear jumps at those values of the radius where the statistics
N̂ and t ′ks change their values. We put in Table 3 the values of R and β(R) such that
θ(R) = log(β(R)) maximizes the function l(θ, R). For convenience we included in
the table the values of sufficient statistics. Also Table 3 contains the same information
for those values of R where the statistics values change, these rows are labeled by a
star. One can see from this table that the point of the global maximum and therefore
the MLE estimate is (R̂ = 0.095, N̂ = 2, β̂0 = 2.5, β̂1 = 50.5, β̂2 = 105).
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