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Abstract A general approach to Bayesian isotonic changepoint problems is devel-
oped. Such isotonic changepoint analysis includes trends and other constraint prob-
lems and it captures linear, non-smooth as well as abrupt changes. Desired marginal
posterior densities are obtained using a Markov chain Monte Carlo method. The meth-
odology is exemplified using one simulated and two real data examples, where it is
shown that our proposed Bayesian approach captures the qualitative conclusion about
the shape of the trend change.

Keywords Bayesian inference · Change point problem · Isotonic regression · Order
restricted inference

1 Introduction

Changepoint problems often arise in many statistical analysis problems. The literature
on changepoint problems is by now enormous, with applications in virtually every
branch of science. The classical parametric, one dimensional change point problem
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considers testing for the competing hypotheses:

H0 : θ1 = · · · = θn,
(1)

H1 : θ1 = · · · = θτ �= θτ+1 = · · · = θn, ∃1 ≤ τ ≤ n,

from data x1, . . . , xn i.i.d. with distribution Fθ (·) indexed by θ ∈ Θ ⊂ R. A vast liter-
ature exists on this classical problem, both from the frequentist or Bayesian approach,
in an off-line or sequential treatment, parametric or non-parametric. Excellent reviews
can be found in Hinkley et al. (1980), Zacks (1983), Siegmund (1986), Bhattacharya
(1994) and many others.

Here we consider only the so called nonsequential problems. Our focus is on
fully Bayesian parametric approach for inferences on the isotonic changepoint.
Bayesian framework for inferences on changepoint dates back to work by Chernoff
and Zacks (1964) and Shiryayev (1963). Smith (1975), Carlin et al. (1992) and Dey
and Purkayastha (1997) developed different Bayesian approaches including hierar-
chichal Bayesian methods for inferences related to changepoints. However, none of
those papers consider isotonic structure. The rest of the paper is organized as fol-
lows. In Sect. 2, we develop the formulation of the problem using both frequentist and
Bayesian approaches. Sect. 3 is devoted to the study of posterior distributions. In the
last paragraphs of Sect. 3 and in Sects. 4 and 5 we consider one simulated example
and two real datasets to demonstrate our proposed methodology. The description of
the computing algorithm used to fit the models is postponed to the Appendix. For a
general reference, the problem of fitting Bayesian models in constrained parameter
settings is considered extensively in the pioneering article of Gelfand et al. (1992).

In this paper we consider Bayesian estimation of θ1, . . . , θn as well as testing for
H0 in (1) in a situation where the parameters satisfy monotonicity but are otherwise
arbitrary. A similar problem was studied from a frequentist approach by Wu et al.
(2001), which motivated in part our present study. Next we provide a brief review of
the frequentist and Bayesian approaches to the isotonic change-point problem.

2 Formulation of the model

2.1 Frequentist approach

Suppose data X := {X1, . . . , Xn} are independent with Xi
i.i.d.∼ N (µi , σ

2), i =
1, . . . , n. Then the log-likelihood function is

l(µ, σ 2) = − 1

2σ 2

n∑

i=1

(xi − µi )
2 + C, (2)

where C is a generic constant, independent of µ and the parameter space is Ω =
{µ ∈ R

n : µ1 ≤ · · · ≤ µn}. Then the maximum likelihood estimator (MLE)
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µ̂ =argmaxµ∈Ω l(µ) is given by

µ̂k = max
i≤k

min
j≥k

Xi + · · · + X j

j − i + 1

(e.g., Robertson et al. 1988, p. 24). This estimator is affected by the so called spiking
problem in large samples, in that µ̂1 is too small while µ̂n is too large. Instead of (2),
therefore it is customary to consider the corresponding penalized log likelihood func-
tion

l∗(µ, σ 2) = − 1

2σ 2

n∑

i=1

(xi − µi )
2 + r

√
n

σ 2 (µn − µ1) + C, (3)

where the term r
√

n(µn − µ1) penalizes the difference δ := (µn − µ1). Letting
Y1 := X1 + r

√
n, Yn = X1 − r

√
n and Yi = Xi for 1 < i < n, the maximum

penalized likelihood estimator (MPLE) is

µ̃k = max
i≤k

min
j≥k

Yi + · · · + Y j

j − i + 1
. (4)

Under H0, the MPLE is µ̃ = X̄ which suggests a test statistic of the form

Λn,r = 1

σ̂ 2
n

n∑

k=1

(µ̃ − X̄)2,

where σ 2
n is a consistent estimator of σ 2.

This estimator, even though it was developed for independent and Gaussian data,
could be applied to many other scenarios. In particular, for time series data with short
range dependence, the asymptotic null distribution of Λn,r is developed in Wu et al.
(2001).

2.2 Bayesian approach

Now we start by providing the estimator (4) with a Bayesian interpretation, which pro-
vides a natural way to propose useful generalizations. As in the frequentist approach,

suppose the data X := {X1, . . . , Xn} are independent with Xi
i.i.d.∼ N (µi , σ

2), where
it is known that µ1 ≤ · · · ≤ µn . Let σ have Lebesgue measure on R

+ as improper
prior and construct a prior on µ = (µ1, . . . , µn) in three steps: (i) given σ , let µ1 have
Lebesgue measure on R as improper prior; (ii) given σ 2 and µ1, let δ := (µn −µ1) ∼
Exponential(γ /σ 2); and (iii) given σ 2, µ1 and δ, let µ2, . . . , µn−1 be distributed as
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the order statistics from a uniform distribution on (µ1, µn). Under this specification,
the log of the posterior likelihood is

l(µ, σ 2|X ) = − 1

2σ 2

n∑

i=1

(xi − µi )
2 + γ

σ 2 (µn − µ1) + C (5)

on the set Ω (or −∞ otherwise) where C is a constant.
The resemblance between the frequentist penalized log-likelihood function (3) and

the Bayesian posterior distribution is noteworthy, with just r = γ /
√

n. This yields
immediately the following proposition.

Proposition 1 The mode of the posterior distribution (5) is the frequentist estimator
(4) with r = γ /

√
n.

In light of Proposition 1, the frequentist estimator can be interpreted as a special
case of a Bayes estimator. It is the mode of a posterior density with suitably chosen
(uninformative) priors. Instead, in a fully Bayesian treatment, we will allow for wider
prior specifications, more in tune with the objectives of change point detection under
monotonicity. Our methodology thus represents a generalization and extension of the
frequentist change point inference under a non-decreasing constraint. It is also note-
worthy that we believe a Bayesian approach is more natural for this problem. This is
because if we are willing to allow the statistician to choose a penalty constant accord-
ing to how large (s)he thinks the difference δ is, we should as well allow her/him to
provide her/his full set of priors. Of course, it could be objected that in a frequentist
treatment, the penalty constant r need not be subjective as it could, for instance, be
chosen via cross-validation. That idea is alluring, but we ignore of any way to make
it implementable, for what is known is the asymptotic distribution of Λn,r when r is
a constant, but not when r is chosen in a data dependent way.

In a Bayesian set-up, the frequentist penalty γ /
√

n = r takes the form of a
hyperparameter in the distribution of (µn − µ1). Thus, in practical applications it
is natural to choose its value using techniques of prior elicitation whenever possible.
We will illustrate this point with the Argentina rainfall data in Sect. 5. For applications
where it is not possible to adopt a sensible choice for γ , the practitioner is advised to
experiment with a range of values and perform appropriate sensitivity analysis. This
approach will be illustrated with the Global Warming dataset in Sect. 4

2.2.1 The model

We assume our data X = (X1, . . . , Xn) satisfies

Xi = µ + dφi + εi ,

where given µ, δ, σ 2, and φi , 1 ≤ i ≤ n, the disturbances εi
i.i.d.∼ N (0, σ 2). The

conditional distribution of the data is thus Xi
i.i.d.∼ N (µi , σ

2), where µi := µ + δφi

represents the trend and it is subject to a monotonicity constraint specified by δ ∈ R

and −1 = φ1 = φ2 ≤ · · · ≤ φn−1 = φn = 1.
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It is important at this point to interpret the parameters. We note that (i) µ is a location
parameter for the probability distribution of X , representing the overall mean of the
data; (ii) d provides two types of information, its sign indicates whether the trend is
increasing or decreasing and its magnitude indicates by how much; finally (iii) the
multivariate parameter φ := (φ1, . . . , φn) indicates the way the trend changes, some
possibilities are smooth and convex, smooth and concave, abrupt at some isolated
points or any combination of all those. It is noteworthy that in the classical change
point problem referred at the beginning of Sect. 1, we would have −1 = φ1 = · · · =
φτ < φτ+1 = · · · = φn = 1 and δ could be positive or negative.

For our prior specification we propose

µ ∼ N (µ0, σ
2
µ) (6)

δ ∼ N (δ0, σ
2/r2) (7)

(1/σ 2) =: λ ∼ Gamma(a, b), (8)

where in absence of good prior information we would adopt a noninformative version
provided by some choice of the parameters µ0 = 0, σµ “large”, δ0 = 0, r “small”,
a “small” and b “large”. This prior specification also conveys a new meaning to the

frequentist penalty constant r = [Var(ε)/Var(δ)] 1
2 as the variability of the obser-

vations about its trend, relative to the anticipated variability of δ given by the prior
specification. Intuitively, this is saying that there are two situations which deserve a
large penalty: i) when the “true” δ = (µn −µ1) is small; and ii) when there is large var-
iability around the trend, because otherwise there is a danger of spuriously estimating
a large d when in fact δ may be almost nil. This observation is useful for the practic-
ioner when it is aimed at choosing the hyperparameter r via prior elicitation. Note also
that it is straightforward to modify the choice (7) to accommodate for non-decreasing
(or non-increasing) trends: e.g., simply take δ (or −δ) ∼Exponential

(
r/2σ 2

)
.

We construct now a prior for the parameter φ using the following steps. First we
“tie it down” at the endpoints by letting φ1 = φ2 = −1 and φn−1 = φn = 1; next in
order that the intermediate φ’s are nondecreasing and bounded in [−1, 1], we proceed
in two stages: (i) let the (n − 3)-dimensional parameter p := (p3, . . . , pn−1) have a
Dirichlet distribution with parameter α := (α3, . . . , αn−1), i.e., p has an absolutely
continuous density

fp(p3, . . . , pn−1) =
Γ

(∑n−1
j=3 α j

)

∏n−1
j=3 Γ (α j )

n−1∏

j=3

p
α j −1
j (9)

for p in the unit (n − 3)-dimensional simplex ∆ :=
{

p ∈ [0, 1]n−3 : ∑n−1
i=3 p j = 1

}
;

next (ii) construct the intermediate φs by

φi = 2

⎛

⎝
i∑

j=3

α j

⎞

⎠ − 1, for 2 < i < n. (10)
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The above construction, which ensures that φ is non-decreasing and tied-in at the
end points, is appealing on both practical and theoretical grounds. On the practical
side, it is paramount that the specification for φ provided in (9) and (10) allows to
set a prior on the form of the trend, which is very useful for prior elicitation. Some
possibilities are:

Linear: Suppose that the statistician has no prior information on the
type of trend, then it is natural to propose α1 = · · · = αn−1 =
α under which φ will be on average of the line connecting the
points (1,−1) and (n, 1), a noninformative specification.

Convex: If instead it is suspected that the trend has been changing in a
smooth concave fashion we could take αi := i1.2.

Concave: Take for instance αi := i0.8.
Sigmoidal: In some circumstances there are reasons to believe that the rate

of the change in trend was accelerating up to a certain time,
giving way to a deceleration later. Examples of this phenom-
enon abound in marketing; one such example is the market
penetration of novel electronic items. This type of trend could
be obtained in our context by taking αi = i for 1 ≤ i ≤ τ and
αi = n + 1 − i for τ < i ≤ n.

Linear, non-smooth: Taking αi := 1, i �= τ and ατ := 10.
Abrupt change: The φ profiles for an abrupt change at τ which can be obtained

by making the extreme value of ατ in the previous case, i.e.,
taking αi = 1, i �= τ and ατ = 50.

The Bayesian formulation is also appealing because it enables estimation of
(µ + δφ) by credible intervals. Those provide not only an indication of the way
the trend has changed and its magnitude, but it also makes possible to carry out tests
against more general alternative hypotheses than H1 in (1). This will be illustrated for
the Global Warming dataset in Sect. 4, where we use credible bands around φ to assess
whether there has been acceleration in the process of global warming, as represented
by a convex form of trend.

3 Posterior densities

Under the full model specification (6),(7), and (8) with µ0 = 0 and δ0 = 0 we obtain
the following posteriors:

[µ|X , δ, σ 2,φ] ∼ N

(∑n
i=1(Xi − δφi )

n + σ 2/σ 2
µ

; σ 2

n + σ 2/σ 2
µ

)
, (11)

[δ|X , µ, σ 2,φ] ∼ N

(∑n
i=1 φi (Xi − µ)
∑n

i=1 φ2
i + r2

; σ 2

∑n
i=1 φ2

i + r2

)
, (12)

[λ|X , µ, δ,φ] ∼ Gamma

(
n

2
+ a; 1

2

n∑

i=1

(Xi − µ − δφi )
2 + b

)
, (13)
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where λ is the precision parameter λ := (1/σ)2. As for the remaining posterior
distribution [φ|X , µ, δ, σ 2], we show the development next. First, a standard
Jacobian calculation shows that the (joint) density of φ is given by

fφ(φ3, . . . , φn−1) =
Γ

(∑n−1
i=3 αi

)

∏n−1
i=3 Γ (αi )

n−1∏

i=3

(
φi − φi−1

2

)αi −1

(14)

on the set Ωφ , given by −1 ≤ φ3 ≤ · · · ≤ φn−1 = 1. With this, the posterior distribu-
tion of φ given the data and all the other parameters can be stated up to proportionality
by

fφ|(X ,µ,δ,σ )(φ3, . . . , φn−1) ∝ exp

⎧
⎨

⎩−1

2

n∑

i=1

(
φi − Xi −µ

δ

σ/δ

)2
⎫
⎬

⎭

n−1∏

i=3

(
φi − φi−1

2

)αi−1

on the set Ωφ . In particular, under the improper prior with parameters αi = 1 for all i ,

[φ|X , µ, δ, σ ] ∼ N

(
X − µ

δ
; σ 2

δ2

)
1Ωφ

(φ1, . . . , φn), (15)

i.e., an (n − 4) dimensional normal distribution truncated to −1 ≤ φ3 ≤ · · · ≤
φn−2 ≤ 1.

Credible sets will be based on the joint posterior distribution of the parameters
given the sample. This joint conditional distribution [µ, δ, σ,φ|X ] will be obtained
via the Gibbs sampler. We present at this point some motivating examples, leaving
the description of the algorithm which implements the Gibbs sampler as given in the
Appendix. R code is available from the corresponding author upon request.

Our first illustration is a simulated example created to verify the algorithm. We con-
sider our data X1, . . . , Xn to be equal to a deterministic trend T (t) for t = 1, . . . , 50
plus a normal noise with variance (0.8)2. Suppose the deterministic trend has the from

T (t) =
{

25 − √
252 − t2 1 ≤ t ≤ 25

35 + log(t − 25) 25 < t ≤ 50
,

so that it is convex on [0, 25], has a jump between t = 25 and t = 26 and is concave
and fairly flat thereafter. The performance of the Bayes estimator and a comparison
with the frequentist estimator is shown in Fig. 1.

With a Bayesian approach, not only can we obtain different types of point estimators
but also provide confidence intervals about the trend. Figure 2 shows the histograms
of the posterior distributions of µ, σ and δ, as well as the point estimate of the function
φ with bands around it.

Finally, Figure 3 shows the effects of increasing the hyper-parameter r , which is
the analogue of the frequentist penalty constant. While the posterior distributions of
µ and σ 2 remain unaffected as r increases, for the other parameters we notice: (i)
the posterior of δ shrinks towards zero, as expected; and (ii) the function φ becomes
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Fig. 3 Bayesian estimators with different “penalties” r

closer to a straight line. We also notice that increasing r has the effect of widening the
confidence bands about φ̂. This is natural and inconsequential. To see why, consider
the limiting case of δ = 0. In such a case, there is an issue of identifiability because
the distribution of [X , µ, σ 2,φ] is independent of φ, i.e., any pattern of trend change
(φ = φ1, . . . , φn) is consistent with the data. Intuitively speaking, as δ gets smaller
the experiment becomes “less identifiable” and this is reflected in wider confidence
bands for φ. Equivalently, we notice that the shape of the trend change is going to be
easier to estimate when there was a large change between endpoints of the observation
window.

4 Global warming

We consider the time-honored global warming dataset provided by Jones et. al.
(see http://cdiac.esd.ornl.gov/trends/temp/jonescru/jones.html) containing annual
temperature anomalies from 1858 to 2000, expressed in degrees Celsius and are rel-
ative to the 1961–1990 mean. These data are presented in Fig. 4, together with the
Bayesian estimate. We chose a noninformative prior on the form of the trend and we
fit a model with parameters σµ = 100 and a = b = 1, and r = 1. Even though
the global warming data, being a time series, might be affected by serial correlation
e.g., Fomby and Vogelsang (2002), we opted in this paper for simplicity to ignore that
aspect of the data and model it as a sequence of i.i.d. observations. Extensions of the
Bayesian isotonic method to non-i.i.d. setups are being presently studied and it will
be published in follow up articles.
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Table 1 Posterior inference for global warming data

Parameter Mean Median SD 95% credible interval

µ −0.1145 −0.1141 0.0196 −0.1543 −0.0783

σ 0.1761 0.1756 0.0109 0.1563 0.1989

δ 0.3132 0.3115 0.0279 0.2621 0.3700

φ1 −1.0000 −1.0000 0.0000 −1.0000 −1.0000

φ10 −0.9125 −0.9146 0.0273 −0.9584 −0.8505

φ20 −0.8077 −0.8070 0.0360 −0.8732 −0.7371

φ30 −0.7112 −0.7079 0.0395 −0.8133 −0.6412

φ40 −0.6138 −0.6135 0.0397 −0.6996 −0.5389

φ50 −0.5072 −0.5085 0.0368 −0.5697 −0.4384

φ60 −0.3848 −0.3879 0.0483 −0.4718 −0.2809

φ70 −0.2268 −0.2324 0.0626 −0.3395 −0.1001

φ80 −0.0607 −0.0713 0.0676 −0.1851 0.0894

φ90 0.0931 0.0715 0.0756 −0.0412 0.2369

φ100 0.2354 0.2261 0.0849 0.1025 0.3896

φ110 0.3875 0.3830 0.0897 0.2357 0.5638

φ120 0.5542 0.5551 0.0818 0.4167 0.7151

φ130 0.7473 0.7468 0.0577 0.6379 0.8481

φ140 0.9387 0.9426 0.0293 0.8729 0.9839

φ145 1.0000 1.0000 0.0000 1.0000 1.0000

Note: φ shown only partially, one every 10

Table 1 contains the inferences from the posterior distributions, which confirm that
there is a trend increase of about 0.3◦C Celsius in global annual temperature between
1858 and 2000. Figure 5 exhibits the histograms of the posterior distributions for µ, σ
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Fig. 5 Posterior estimates for world annual weather anomalies 1958–2000

Table 2 Sensitivity to
hyper-parameters for the
global warming data

Global warming

r 0.00001 1 0.00001 0.00001

a 10 1 1 20

b 2 1 1 4

τ 2 100 100 10

µ̂.05 −0.1627 −0.1300 −0.1537 −0.1609

µ̂.50 −0.1323 −0.1118 −0.1271 −0.1268

µ̂.95 −0.1019 −0.0940 −0.1077 −0.0930

d̂.05 0.2664 0.2725 0.2695 0.2587

d̂.50 0.3150 0.3173 0.3159 0.3216

d̂.95 0.3645 0.3664 0.3599 0.3838

Convex No Yes No Yes

and δ, together with the estimated function φ. Interestingly, the 45◦ line is above the
confidence bands for φ. This indicates that the change-point pattern is convex, i.e.,
not only the trend but also the rate of trend-change in weather anomalies is increasing
in time. As already discussed in the introduction, the availability of such a qualitative
conclusion about the shape of the trend change is the major strength of the Bayesian
method. In Table 2 we perform a sensitivity analysis by choosing a few diferent sets
of hyperparameters. The results confirm the increase of global temperature by about
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Fig. 7 Posterior estimates for the Argentina rainfall dataset

0.30◦C throughout the series, as d̂0.50 remains fairly stable for the different choices of
hyper-parameters. However, it is not possible to assert that there was acceleration in the
pattern of global warming. That is because for some choices of the hyper-parameters
the estimated φ is not convex.
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Table 3 Posterior inference for argentina rainfall dataset

Parameter Mean Median SD 95% credible interval

µ 977.6547 977.4000 3.1913 971.5213 984.5020

σ 208.0292 207.3307 14.4468 181.9659 237.7382

δ 78.4810 78.2309 33.1194 17.1106 141.1022

φ1 −1.0000 −1.0000 0.0000 −1.0000 −1.0000

φ10 −0.8755 −0.8781 0.0372 −0.9399 −0.7932

φ20 −0.7003 −0.7082 0.0524 −0.7823 −0.5665

φ30 −0.5173 −0.5310 0.0619 −0.6023 −0.3611

φ40 −0.3327 −0.3420 0.0733 −0.4482 −0.1672

φ50 −0.1542 −0.1572 0.0733 −0.2878 −0.0101

φ60 0.0279 0.0288 0.0802 −0.1373 0.1921

φ70 0.2143 0.2116 0.0740 0.0684 0.3500

φ80 0.4057 0.4079 0.0692 0.2733 0.5495

φ90 0.5915 0.5807 0.0678 0.4684 0.7317

φ100 0.7917 0.7949 0.0585 0.6740 0.8996

φ110 0.9806 0.9866 0.0193 0.9280 0.9996

φ112 1.0000 1.0000 0.0000 1.0000 1.0000

Note: φ shown only partially, one every 10

5 Argentina rainfall data

The so called Argentina rainfall data presented in Fig. 6 consists of yearly rainfall
volume in the northwestern argentine province of Tucumán, from 1884 to 1995 (e.g.,
Wu et al. 2001). To carry out Bayesian Inference we have selected the following values
of the hyperparameters: r = 1, a = 0.5, b = 1, 000, σ 2

µ = 106 and αi = 1 for all i ;
this is, except for the precision parameter λ = 1/σ 2, the prior specification is nonin-
formative. The values of a and b are chosen so that the average standard deviation of
the rainfall is about 200 and its standard deviation is about 300 (i.e., it is believed the
total annual rainfall cannot differ for much more than 500 ml between years).

The posterior distributions of µ, δ, and σ are shown in Fig. 7, where the first three
plots are the histograms, while the last panel shows the average of the sampled φs.
The descriptive values for posterior inference are presented in Table 3.

We can immediately state the following conclusions:

1. There is indeed an increase in the trend somewhere along the series so that the
value of the trend at the end is estimated to be about 80 ml above its level at the
beginning of the series.

2. There is no indication of nonlinearity or discontinuity in the pattern of trend change.
In contrast with global warming, the 45◦ line here is very close to the estimated
φ and lies well within the confidence bands. This is as expected since, as seen in
Fig. 6, no trend change at all is apparent.
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Table 4 Sensitivity to hyper-parameters for the Argentina rainfall data

Argentina rainfall

r 1 1 0.00001 0.00001

a 0.5 1 1 0.5

b 1000 1 1 1000

τ 1000000 100 100 1000000

µ̂.05 968.31 928.11 928.02 974.72

µ̂.50 976.48 938.33 937.92 980.56

µ̂.95 979.92 946.58 946.23 987.47

d̂.05 21.06 20.55 29.50 30.11

d̂.50 75.53 75.56 85.94 87.66

d̂.95 130.84 133.09 139.83 140.51

In Table 4 we show the corresponding sensitivity analysis for a few choices of the
hyper-parameters, which confirms the conclusions.

Appendix: Numerical algorithm for the Gibbs sampler

Preliminary estimators: In order to propose initial values of the parameters µ∗, δ∗,
(σ 2)∗,φ∗ to initialize the Markov chain Monte Carlo (MCMC), consider maximizing
the log-likelihood function (i.e., the log of the density of [X |µ, δ, σ,φ]) given by

l(µ, δ, σ 2,φ) = 1√
2π

n
1

σ n
exp

{
− 1

2σ 2

n∑

i=1

(Xi − µ − δφi )
2

}
(16)

for φ ∈ Ωφ . It is maximized simultaneously at

µ∗ = 1

n

n∑

i=1

(Xi − δ∗φ∗
i ) (17)

δ∗ =
∑n

i=1 φ∗
i (Xi − µ∗)

∑n
i=1(φ

∗
i )2 + r2

(18)

(σ 2)∗ = 1

n

n∑

i=1

(Xi − µ∗ − δ∗φ∗
i )2, (19)

and with φ∗ being the isotonization of the vector with components (Xi − µ∗)/δ∗,
re-scaled so that φ∗

1 = −1 and φ∗
n = 1. Because the system of equations provided by

(17–19) and φ∗ is not fully recursive, we obtain them numerically in two steps:
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1. Set as initial estimators µ0 = (
∑n

i=1 Xi )/n and φ0
i = 2(i/n) − 1.

2. Obtain the next iterate by plugging current estimates into the MLE system.
3. Iterate until the value of l(X |µ, δ, σ,φ) fails to increase above some small

threshold. Take those final estimators as µ∗, δ∗, (σ 2)∗ and φ∗.

Gibbs Sampler: It consists of the following steps:

1. Take µ∗, δ∗, (σ 2)∗ and φ∗ as initial draws.
2. Obtain the draws of µ, δ and σ 2 by sampling from (11)–(13) plugging in the

current draws as parameters.
3. To sample from the posterior of φ, not that each of its components is, conditional

on the rest, a truncated normal variate, i.e.,

[φi |X , µ, δ, σ 2, (φ j , j �= i)] ∼ N

(
xi − µ

δ
,
σ 2

δ2

)∣∣∣∣
(φi−1,φi+1).

(20)

Thus we sample φ by iterating draws from (20) in a random order.
4. Iterate for 10,000 times and discard the first 5,000 observations (burn it). Select

for each parameter an independent sample of size 1,000 from the remaining 5,000
observations.

MCMC diagnostics. In order to check the convergence of the Gibbs sampler, two
alternative Markov chains are run, based on the following two different sets of starting
points:

1. Chain 2:

µ∗∗ = 1
n

n∑
i=1

Xi ,

δ∗∗ =
∑n

i=1 φ∗∗
i (Xi − µ∗∗)

∑n
i=1(φ

∗∗
i )2 + r2

,

φ∗∗
i = 2

i

n
− 1, 1 < i < n,

(σ 2)∗∗ = 1

n

n∑
i=1

(Xi − µ∗ − δφ∗
i )2.

2. Chain 3: µ∗∗∗, δ∗∗∗, (σ 2)∗∗∗ and φ∗∗∗ are just random draws from the priors (6)–
(10).
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