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Abstract A flexible nonparametric method is proposed for classifying high-
dimensional data with a complex structure. The proposed method can be regarded
as an extended version of linear logistic discriminant procedures, in which the linear
predictor is replaced by a radial-basis-expansion predictor. Radial basis functions with
a hyperparameter are used to take the information on covariates and class labels into
account; this was nearly impossible within the previously proposed hybrid learning
framework. The penalized maximum likelihood estimation procedure is employed
to obtain stable parameter estimates. A crucial issue in the model-construction pro-
cess is the choice of a suitable model from candidates. This issue is examined from
information-theoretic and Bayesian viewpoints and we employed Ando et al.
(Japanese Journal of Applied Statistics, 31, 123–139, 2002)’s model evaluation crite-
ria. The proposed method is available not only for the high-dimensional data but also
for the variable selection problem. Real data analysis and Monte Carlo experiments
show that our proposed method performs well in classifying future observations in
practical situations. The simulation results also show that the use of the hyperparam-
eter in the basis functions improves the prediction performance.
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1 Introduction

The methods of multiclass classification provide one of the most important tools in
various fields of research, including finance, economics, engineering, artificial intel-
ligence, and bioinformatics. One well-known statistical method of multiclass clas-
sification is based on linear logistic discriminant models (Seber 1984; Hosmer and
Lemeshow 1989), which assume that the log-odds ratios of the posterior probabili-
ties can be expressed as linear combinations of the p-dimensional feature variables
x = (x1, . . . , x p)

T :

log

{
Pr(g = k|x)

Pr(g = G|x)

}
= wk0 +

p∑
j=1

wk j x j , k = 1, . . . , G − 1. (1)

Here G is the number of groups, the categorical variable g ∈ {1, . . . , G} is an indicator
of the class label, and Pr(g = k|x) is the posterior probability of g = k given the feature
variables x. When the unknown parameters {wk j ; j = 0, . . . , p, k = 1, . . . , G − 1}
are estimated by the maximum likelihood method, a future observation is generally
classified into one of several groups that gives the maximum posterior probability.

Although linear logistic discriminant models have become a standard tool for multi-
class classification, this method has some disadvantages. Firstly, linear decision bound-
aries are often too crude for complex data, and therefore nonlinear decision boundaries
would be more attractive (Hastie et al. 1994). Secondly, a large number of predictors
relative to the sample size leads to unstable maximum likelihood parameter estimates.
In addition, the existence of multicollinearity may result in infinite maximum likeli-
hood parameter estimates and, consequently, incorrect classification results.

To overcome these problems, we can replace the linear predictor in (1) with a
linear combination of radial basis functions (Bishop 1995; Ripley 1996; Webb 1999).
Unfortunately, a problem still remains in the construction of the radial basis func-
tions. The previously proposed hybrid learning methods (Broomhead and Lowe 1988;
Moody and Darken 1989; Ranganath and Arun 1997) construct radial basis func-
tions in a completely unsupervised way and do not take class label information into
account. Ando et al. (2002) therefore used radial basis functions with a hyperparam-
eter (Ando et al. 2001, 2005; Konishi et al. 2004). This method can easily be applied
to high-dimensional data and also the variable selection problem. Moreover, a clear
improvement is obtained by the use of the hyperparameter in the radial basis functions.

The unknown parameters are estimated by the penalized maximum likelihood
method, or the regularization method (Green and Silverman 1994; Eilers and Marx
1996), since the maximum likelihood method does not yield satisfactory results for
fitting our model to high-dimensional data with a complex structure. The essential
points in the model-building process are the determination of the number of basis
functions and of the values of the smoothing parameter and hyperparameter. This
problem can be investigated from an information-theoretic (Akaike 1973, 1974) and
also a Bayesian (Schwarz 1978) point of view. Ando et al. (2002) derived tailor-made
versions of the generalized information criterion (GIC; Konishi and Kitagawa 1996)
and the Bayesian information criterion (BIC; Konishi et al. 2004) for evaluating the
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Nonlinear logistic discrimination via regularized radial basis functions 333

goodness of the radial basis function network classification model, estimated by the
penalized maximum likelihood method. The estimated models are evaluated by using
these criteria.

The contributions of the paper are as follows: firstly, since the computational dif-
ficulties caused by high dimensionality were not focused by Ando et al. (2002), the
paper focuses on the high-dimensional data. Secondly, when each feature takes only
0, 1 values, the direct application of k-means algorithm is not suitable in the basis
function construction step, because it works well for continuous data. To solve this
problem, we have introduced a new idea in Sect. 5.3. Thirdly, the variable selection
problem was not focused by Ando et al. (2002). We therefore considered the variable
selection problem.

This article is organized as follows. In Sect. 2, we extend linear logistic discriminant
models to nonlinear models by replacing the linear predictor with a linear combina-
tion of radial basis functions. Section 3 describes the model estimation procedure and
illustrates some characteristics of our modeling procedure. In Sect. 4, we describe
two types of model evaluation criteria. Section 5 conduct real data analysis and Monte
Carlo simulations performed to investigate the performance of our proposed procedure.
The numerical results indicate that the proposed method performs well in practical
situations even when the dimensionality of the feature variables is large. Conclusions
are given in Sect. 6.

2 Radial basis functions for logistic regression models

One of the assumptions made in logistic discrimination is that the log-odds of the
posterior probabilities can be expressed as a linear combination of the p-dimensional
feature variables. However, when high-dimensional data with a complex structure are
analyzed, a suitable decision boundary that separates the data into several different
groups will often be nonlinear. We have therefore extended the class of linear logistic
discriminant models to nonlinear models by replacing the linear predictor with a linear
combination of radial basis functions:

log

{
Pr(g = k|x)

Pr(g = G|x)

}
= wk0 +

m∑
j=1

wk jφ j (x), (2)

where {φ j (x); j = 1, . . . , m} are a set of radial basis functions and {wk j ; j =
0, . . . , m, k = 1, . . . , G − 1} are a set of unknown parameters to be estimated. For a
perspective on radial basis functions, see Girosi et al. (1995), Bishop (1995), Ripley
(1996), Webb (1999), and the references given therein.

For radial basis functions φ j (x) in (2), Ando et al. (2002) used a Gaussian radial
basis with a hyperparameter (Ando et al. 2001):

φ j (x) = exp

(
−||x − µ j ||2

2νσ 2
j

)
, j = 1, 2, . . . , m, (3)
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where µ j is a p-dimensional vector determining the location of the basis function, σ 2
j

is the scale parameter, and ν is the hyperparameter. This basis function avoids several
problems that occur in the previously proposed methods (see for example Ando et al.
2005); these problems are described in Sect. 3.3. As will be shown in Sect. 3.4, the
hyperparameter ν plays an essential role in controlling the smoothness of decision
boundaries.

It may easily be seen that log-posterior-odds models of the form (2) can be rewritten
in terms of the following posterior probabilities:

Pr(g = k|x) = exp
{
wT

k φ(x)
}

1 + ∑G−1
j=1 exp

{
wT

j φ(x)
} , k = 1, . . . , G − 1,

(4)
Pr(g = G|x) = 1

1 + ∑G−1
k=1 exp

{
wT

j φ(x)
} ,

where wk = (wk0, . . . , wkm)T is an (m + 1)-dimensional parameter vector and
φ(x) = (1, φ1(x), . . . , φm(x))T is an (m + 1)-dimensional vector of basis func-
tions. These posterior probabilities Pr(g = k|x) depend on a set of parameters
w = (wT

1 , . . . ,wT
G−1)

T , and so we denote these posterior probabilities as
Pr(g = k|x) := πk(x;w).

We now define the G-dimensional vector y = (y1, . . . , yG)T that indicates group
membership. The kth element of y is set to be one or zero according to whether x
belongs or does not belong to the kth group as follows:

y = (y1, . . . , yG)T = (0, . . . , 0
(k−1)

, 1
(k)

, 0
(k+1)

, . . . , 0)T if g = k.

This implies that y is the kth unit column vector if g = k.
Assuming that the random variable y is distributed according to a multinomial dis-

tribution with probabilities πk(x;w)(k = 1, . . . , G), our model (2) can be expressed
in the following probability density form:

f ( y|x;w) =
G∏

k=1

πk(x;w)yk , (5)

where πk(x;w) are the posterior probabilities given in (4).
The problems are how to construct the Gaussian radial basis functions (3) and how

to estimate the unknown parameter w in the model, which will be discussed in the
next section.

3 Estimation of model parameters

Suppose that we have a set of n independent observations {(xα, gα);α = 1, . . . , n},
where the xα are the vectors of p feature variables and gα are the class labels. Our model
estimation procedure consists of two stages. In the first stage, a set of Gaussian radial
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basis functions {φ j (x); j = 1, . . . , m} are constructed or, equivalently, the centers µ j

and the scale parameters σ 2
j in the Gaussian radial basis (3) are determined. In the sec-

ond stage, the unknown parameter vector w is estimated by the penalized maximum
likelihood method.

3.1 Construction of the Gaussian radial basis

Ando et al. (2002) determined the centers µ j and the scale parameters σ 2
j in the

Gaussian radial basis by using the k-means clustering algorithm (MacQueen 1967).
This algorithm divides a set of observations {xα;α = 1, . . . , n} into m clusters
A1, . . . , Am that correspond to the number of basis functions. The centers and the
scale parameters are then determined by µ j = ∑

α∈A j
xα/n j and σ 2

j = ∑
α∈A j

||xα−
c j ||2/n j , respectively, where n j is the number of observations which belong to the
j th cluster A j . Using an appropriate value of the hyperparameter ν, we then obtain a
set of m Gaussian radial basis functions. Various basis construction procedures have
been proposed, which will be described in Sect. 3.3.

As will be shown in Sect. 3.4, the hyperparameter ν in the Gaussian radial basis
function plays an important role in determining the smoothness of the decision bound-
aries. We can optimize the value of the hyperparameter by using model selection
criteria, which will be discussed in Sect. 4.

3.2 Penalized maximum likelihood estimation

The vector of unknown parameters w is estimated by maximizing the penalized log-
likelihood function

�λ(w) =
n∑

α=1

log f ( yα|xα;w) − nλ

2
wT w, (6)

where yα = (y(α)
1 , . . . , y(α)

G )T indicates the class label of the αth observation, and λ

is the smoothing parameter. For details of the penalized maximum likelihood method,
we refer to Green and Silverman (1994), Eilers and Marx (1996), and references given
therein.

The penalized maximum likelihood estimates ŵ are given by the solution of
∂�λ(w)/∂w = 0, which is obtained by employing a Newton–Raphson algorithm.
Using the first and second derivatives of �λ(w), given by

∂�λ(w)

∂wk
=

n∑
α=1

{
y(α)

k − πk(xα;w)
}

φ(xα) − nλwk, k = 1, . . . , G − 1,

∂�λ(w)

∂wm∂wT
l

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n∑
α=1

πm(xα;w)(1−πm(xα;w))φ(xα)φ(xα)T −nλIm+1, (l = m),

n∑
α=1

πm(xα;w)πl(xα;w)φ(xα)φ(xα)T , (l �= m),
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respectively, we optimize the parameter vector w by use of the following iterative
system:

wnew = wold −
{

∂2�λ(w
old)

∂w∂wT

}−1
∂�λ(w

old)

∂w
,

where Im+1 is an (m +1)×(m +1) identity matrix. The parameter vector w is updated
until a suitable convergence criterion is satisfied.

3.3 Some remarks and previous studies

Generally, a Gaussian radial basis function is given by

φ j (x) = exp

(
−||x − µ j ||2

2σ 2
j

)
, j = 1, 2, . . . , m. (7)

The radial basis functions φ j (x) overlap with each other to capture the information
from the input data. Since the amount of overlap of the basis functions is controlled
by the width parameters, the values of those width parameters play an essential role
in determining the smoothness of the decision boundary.

Unfortunately, the previously proposed hybrid learning methods determine the
width parameters by using a completely unsupervised approach (Bishop 1995;
Broomhead and Lowe 1988; Karayiannis and Mi 1997; Moody and Darken 1989;
Sato 1996; Ranganath and Arun 1997). Such heuristic approaches do not always give
sufficiently good prediction results (Ando et al. 2001, 2005; Konishi et al. 2004). To
construct a more flexible and data-adaptive learning procedure, we have introduced
the Gaussian basis (3). In Sect. 5.2, using Monte Carlo simulations, we compare the
performance of our basis construction approach with that of other methods and show
the effectiveness of our approach.

In low-dimensional (one- or two-dimensional) cases, one approach for determining
the centers is to use a uniform grid (Bishop 1995; Nabney 2002). Unfortunately, in
high-dimensional cases, it is nearly impossible to use this approach, since the number
of basis functions m may become much larger than the sample size n, which we call
overparameterization. Girosi et al. (1995) used the data points {x1, . . . , xn} for the
centers in their numerical studies. However, this approach also causes an overparam-
eterization problem.

Another approach to constructing a Gaussian radial basis is to use fully super-
vised learning that simultaneously optimizes the Gaussian radial basis φ j (x) and the
parameter vector w by maximizing the penalized log-likelihood function (6). Xu et al.
(1995) and Xu (1998) implemented the maximum likelihood method by using the well-
known EM algorithm. However, there are a number of disadvantages. Convergence to
a global minimum cannot be guaranteed, since the problem is nonlinear with respect
to the centers and widths of the basis functions. In fact, Moody and Darken (1989)
reported that fully supervised learning does not guarantee that the basis functions
will be localized well in numerical simulations. In addition, an overparameterization
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problem frequently arises when we regard the centers and the scale parameters as
unknown parameters to be optimized. Consider the situation, for example, when the
number of groups, the sample size, and the dimension of x are G = 3, n = 100, and
p = 10, respectively. In this case, even if we use only a set of m = 5 basis functions,
an overparameterization problem occurs. Furthermore, the computational time for the
fully supervised learning method is much larger than that for hybrid learning methods.
We therefore employed the hybrid learning approach.

3.4 Some characteristics of the proposed model

The purpose of this subsection is to illustrate some characteristics of the proposed
model by means of a simulation study. We show that (a) the smoothness of the deci-
sion boundary is mainly controlled by ν, and (b) the smoothing parameter λ has the
effect of reducing the variances of the parameter estimates ŵ or, equivalently, it con-
trols the stability of the decision boundary.

A set of simulated data {(x1α, x2α, gα), α = 1, . . . , 100} were generated from equal
mixtures of normal distributions with centers (0.3,−0.7) and (0.3, 0.3) in class 1 and
(0.7, 0.2) and (0.7, 0.3) in class 2, with a common covariance matrix 	 = 0.03I2,
where I2 is a two-dimensional identity matrix. Figure 1 shows the true decision bound-
ary obtained from the Bayes rule. As shown in Fig. 1, the Bayes decision boundary
{x; P(g = 1|x) = P(g = 2|x) = 0.5} represents a nonlinear structure. It is clear that
the linear logistic discriminant model (1) cannot capture the true structure well.

We investigate first the effect of the smoothing parameter. The proposed model was
estimated with various values of the smoothing parameter λ. In this experiment, the
values of the smoothing parameter were specified as log10(λ) = −1,−3,−5, and −7,
respectively. We set m = 20 and ν = 10. Figure 2 shows the estimated decision bound-
aries {x;π1(x; ŵ) = π2(x; ŵ) = 0.5} obtained from 50 Monte Carlo simulations.

Fig. 1 The Bayes boundary
(solid line). Samples are marked
by open circles (gα = 1) and
open triangles (gα = 2). As the
posterior probability
P(g = 2|x) becomes larger, the
color becomes green
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Fig. 2 Comparison of the variances of the estimated decision boundaries obtained through 50 Monte Carlo
simulations

It can be seen from Fig. 2 that the stability of our model is closely related to the value
of the smoothing parameter; as the value of the smoothing parameter becomes smaller,
the variance of the estimated decision boundary becomes large. The variance of the
decision boundary can be reduced by using a relatively large smoothing parameter.
However, too large a smoothing parameter leads to a linear decision boundary, which
cannot capture the nonlinear structure well.

Boxplots of the training errors and prediction errors obtained from 50 Monte Carlo
simulations are also shown in Fig. 3. As the smoothing parameter becomes smaller,
the training error becomes small. Note that we cannot use the training error as a mea-
sure of the prediction ability of the estimated model, since we can make the training
error small by using a more complicated model. In fact, the smallest value of the
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Fig. 3 Boxplots of a the training errors and b the prediction errors obtained from various values of the
smoothing parameter log10(λ)

smoothing parameter log10(λ) = −7 gives the smallest median value of the training
error, whereas it does not minimize the median value of the prediction error. On the
other hand, an appropriate choice of log10(λ) = −3 gives the smallest median value
of the prediction error.

We next illustrate the effect of the hyperparameter ν in the Gaussian radial basis
function (3). Using the penalized maximum likelihood method, we fitted the proposed
model (5) with log10(ν) = 0, 1, and 2, respectively. In this simulation, we fixed the
number of basis functions and the value of the smoothing parameter at m = 20 and
log10(λ) = −3. Figure 4 compares the Bayes decision boundary and the estimated
decision boundaries. The estimated decision boundaries in Fig. 4a and c are obvi-
ously undersmoothed and oversmoothed, respectively. We can see from Fig. 4b that
an appropriate choice of ν gives a good approximation to the system underlying the
data.

These simulation studies indicate that the crucial issue in the model building pro-
cess is the choice of λ and ν. Additionally, the number of basis functions m should
be optimized. In the next section, we present two types of model selection criterion,
derived from information-theoretic and Bayesian viewpoints.

4 Model selection

Perhaps the most standard approach to selecting the adjusted parameters λ, ν, and m
would be the minimization of a cross-validated misclassification rate. Unfortunately,
owing to the use of a nonlinear optimization algorithm, the computational cost becomes
larger as the sample size n increases. To overcome this problem, we have constructed
two analytical model evaluation criteria; they are closely related to the misclassifica-
tion rate tested on future observations (unseen data). Hereafter, the estimator ŵ is the
maximizer of the penalized log-likelihood function (6).

4.1 An information-theoretic approach

Akaike (1973, 1974) proposed an information criterion, AIC, as an estimator of the
Kullback–Leibler information (Kullback and Leibler 1951) from a predictive point of
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Fig. 4 The effect of hyperparameter ν. The dashed lines and solid lines represent the estimated decision
boundaries and Bayes decision boundary, respectively

view. However, AIC theoretically covers only the models estimated by the maximum
likelihood method. If the models were constructed by the penalized maximum likeli-
hood method, a problem might arise in the theoretical justification for the automatic
use of AIC. Ando et al. (2002) therefore presented an information criterion for eval-
uating the proposed model, estimated by use of the penalized maximum likelihood
method within the framework of nonlinear discriminant models.

An information criterion is generally constructed by correcting the bias of the log-
likelihood in the estimation of the expected log-likelihood

�∗(ŵ) =
n∑

α=1

G∑
k=1

∫
zk log πk(xα; ŵ)dH(zα|xα),

where the expectation value is taken over the true distribution H(z|x). If the true
distribution is replaced by the empirical distribution function, it follows from (5) that
the log-likelihood of the model is
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�(ŵ) =
n∑

α=1

log f ( yα|xα; ŵ) =
n∑

α=1

G∑
k=1

y(α)
k log πk(xα; ŵ). (8)

The bias of the log-likelihood in estimating the expected log-likelihood is then given
by

b(H) =
n∑

α=1

∫ {
�(ŵ) − �∗(ŵ)

}
dH( yα|xα).

If the bias can be estimated by appropriate procedures and b̂ is obtained, the bias-
corrected log-likelihood is given by �(ŵ) − b̂, which is usually used in the form
IC = −2{�(ŵ) − b̂}.

We use Theorem 2.1 in Konishi and Kitagawa (1996, p. 876), which states that the
bias of the log-likelihood (8) in estimating the expected log-likelihood is asymptoti-
cally given by

b(H) = tr
{

R(H)−1 Q(H)
}

+ o (1) .

Here R(H) and Q(H) are (G − 1)(m + 1)-dimensional matrices, given respectively
by

R(H) = −
∫

∂2{log f (z|x;w) − λwT w/2}
∂w∂wT

∣∣∣∣
w=T (H)

dH(z|x),

Q(H) =
∫

∂{log f (z|x;w) − λwT w/2}
∂w

∂ log f (z|x;w)

∂wT

∣∣∣∣
w=T (H)

dH(z|x),

and T (H) is the statistical functional defined by

∫
∂

∂w

(
log f (z|x;w) − λ

2
wT w

) ∣∣∣∣
w=T (H)

dH(z|x) = 0.

Note that the estimator ŵ can be obtained in this equation by replacing H by the
empirical distribution Ĥ , that is, ŵ = T (Ĥ).

Replacing the unknown distribution H by the empirical distribution Ĥ , we obtain
a tailor-made version of the generalized information criterion (Konishi and Kitagawa
1996) for evaluating the proposed model f ( y|x; ŵ) estimated by the penalized max-
imum likelihood method, as follows:

GIC = −2
n∑

α=1

G∑
k=1

y(α)
k log πk(xα; ŵ) + 2tr

{
R(Ĥ)−1 Q(Ĥ)

}
, (9)
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where R(Ĥ) and Q(Ĥ) are given respectively by

R(Ĥ) = −1

n
(C ⊗ A)T (C ⊗ A) + 1

n
D + λI(G−1)(m+1),

Q(Ĥ) = 1

n
((B − C) ⊗ A)T ((B − C) ⊗ A) − λ

n
ŵ1T

n ((B − C) ⊗ A) ;

A =
G−1︷ ︸︸ ︷

(
, . . . , 
), B = ( y(1)1
T
m+1, . . . , y(G−1)1

T
m+1), C = (π (1)1T

m+1, . . . ,π (G−1) ×
1T

m+1), D = diag{
T diag{π (1)}
, . . . ,
T diag{π (G−1)}
}, 
 = (φ(x1), . . . ,

φ(xn))
T , y(k) = (y(1)

k , . . . , y(n)
k )T , and π (k) = (πk(x1; ŵ), . . . , πk(xn; ŵ))T . Here

the operator ⊗ means the elementwise product (suppose that the arbitrary matrices
Ai j = (ai j ), Bi j = (bi j ) are given; then Ai j ⊗ Bi j = (ai j × bi j )).

We choose the optimum values of the smoothing parameter λ, the hyperparameter
ν, and the number of basis functions m which minimize the value of the information
criterion GIC in (9).

Ando et al. (2001) derived tailor-made versions of GIC for the evaluation of the
radial basis function network Gaussian regression models. GIC for evaluating the
radial basis function network and B-spline generalized linear models were presented
by Ando et al. (2005) and Imoto and Konishi (2003), respectively. Fujii and Konishi
(2006) and Nonaka and Konishi (2005) obtained GIC for the evaluation of wavelets
and local likelihood regression models estimated by the method of regularization,
respectively.

4.2 Bayesian approach

Schwarz (1978) proposed a Bayesian information criterion, BIC. As in the case of
AIC, Schwarz’s BIC covers only models estimated by the maximum likelihood method
(Konishi et al. 2004). Thus, the problem of constructing a Bayesian information cri-
terion for evaluating models estimated by the penalized maximum likelihood method
still remains.

Suppose we are interested in selecting a model from a set of candidate models
M1, . . ., Mr for a given set of n observations Dn = {(xα, gα);α = 1, . . . , n}. In the
proposed model (5), the differences of each model Mk are characterized by the com-
bination of the number of basis functions m, the values of the smoothing parameter λ,
and the hyperparameter ν.

The Bayes approach to selecting a model is to choose the model with the largest
posterior probability from among a set of candidate models:

P(M j |Dn) ∝ P(M j )

∫ n∏
α=1

f ( yα|xα;w)π(w)dw, j = 1, . . . , r, (10)

where π(w) and P(M j ) are the prior distribution of w and the prior probability for
model M j , respectively. A crucial problem in constructing a criterion based on the
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posterior probability of the model is the computation of the high-dimensional integral
(10).

Under certain regularity conditions, Konishi et al. (2004) used the Laplace approx-
imation ( Tierney and Kadane 1986; Tierney et al. 1989; Kass et al. 1990) to compute
this high-dimensional integral and obtained

∫ n∏
α=1

f ( yα|xα;w)π(w)dw = (2π)q/2

nq/2|U (ŵ)|1/2 exp
{
n · u(ŵ, Dn)

} {
1 + Op(n

−1)
}

,

where q is the dimension of w, log π(w) = O(n),

u(w, Dn) = 1

n
log

{
n∏

α=1

f ( yα|xα;w)π(w)

}
and U (w) = −∂2u(w, Dn)

∂w∂wT
,

and ŵ is the mode of u(w, Dn). Taking the logarithm of the resulting formula, Konishi
et al. (2004) extended Schwarz’s BIC to cover the evaluation of models estimated by
the penalized maximum likelihood method.

Concerning the penalized maximum likelihood method, we implicitly specify the
prior distributions π(w) of the parameters of each model to be a (G − 1)(m + 1)-
variate normal distribution π(w) = (nλ)−p/2(2π)p/2 exp{−nλwT w/2}. Substituting
the prior distribution π(w) into u(w, Dn) and taking the first derivative of u(w, Dn),
we find that the estimator ŵ is given by the solution of the following equation:

∂u(w, Dn)

∂w
= ∂

∂w

{
n∑

α=1

f ( yα|xα;w) − nλ

2
w′w + p

2
log

(
nλ

2π

)}

= ∂�λ(w)

∂w
= 0. (11)

This implies that ŵ is the maximizer of the penalized log-likelihood function.
Assuming equal prior probabilities for a model within a set of candidate models

and some regularity conditions for the Laplace approximation, Ando et al. (2002)
obtained a Bayesian information criterion (Konishi et al. 2004) that evaluates the
proposed model estimated by the penalized maximum likelihood method:

BIC = −2
n∑

α=1

G∑
k=1

y(α)
k log πk(xα; ŵ) + nλŵ

T
ŵ

+ log |R(Ĥ)| − (G − 1)(m + 1) log λ, (12)

where R(Ĥ) is the (G − 1)(m + 1)-dimensional matrix given in (9).
The adjusted parameters λ, ν, and m are determined from the minimizer of BIC in

(12).
BIC for evaluating the radial basis function network generalized linear models was

presented by Konishi et al. (2004). Ando et al. (2004) obtained BIC for the evaluation
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of adaptive learning machines. BIC for the evaluation of wavelets regression models
estimated by the method of regularization was proposed by Fujii and Konishi (2006).

5 Numerical results

In this section, we analyze various datasets by applying of the proposed nonlinear dis-
criminant procedure. In the model selection process, we considered a three-dimensional
grid search with regard to the adjusted parameters λ, ν, and m. Since the ranges of the
grids generally depend on the data structure, it is difficult to identify suitable ranges.
Generally, if the data structure is complicated, the optimal number of basis functions
m may be large and the optimal values of λ and ν may be small. If the data structure
is simple, the optimal value of m may be small and those of λ and ν may be large.

5.1 Analysis of benchmark datasets

We have investigated the performance of our proposed method by analyzing wave-
form data (Breiman et al. 1984) and vowel recognition data (Hastie et al. 1994; Ripley
1994). The waveform data consisted of three classes with 21 feature variables, and
were generated from the following probability system:

xk =
⎧⎨
⎩

u H1(k) + (1 − u)H2(k) + εk (g = 1)

u H1(k) + (1 − u)H3(k) + εk (g = 2) k = 1, . . . , 21,

u H2(k) + (1 − u)H3(k) + εk (g = 3)

(13)

where u is uniform on (0, 1), εk are standard normal variables, and Hi (k) are shifted
triangular waveforms; H1(k) = max(6 − |k − 11|, 0), H2(k) = H1(k − 4), and
H3(k) = H1(k + 4). We generated 300 values of training data with equal prior proba-
bility for each class by using the probability system (13). In the same way, 500 values
of test data were also generated to compute the prediction error.

The vowel recognition data consisted of 11 classes with 10 feature variables. This
data contained 528 training observations from eight speakers (four male and four
female) and 462 test observations from seven speakers (four male and three female).

The proposed model (5) was fitted to both datasets by maximizing the penalized
log-likelihood function (6). Figure 5 shows the relationship between the prediction
errors and the values of the model selection criteria GIC given in (9) and BIC given in
(12), obtained through analysis of the waveform data. As the values of our proposed
model selection criteria become smaller, the prediction error also becomes smaller.
This indicates that the proposed model selection criteria are useful for evaluating the
prediction accuracy of the estimated model.

The values of some adjusted parameters θ = (m, log10(λ), ν) were chosen as min-
imizers of GIC or BIC. The number of basis functions ranged from 10 to 30. The
candidates for the smoothing parameter and the hyperparameter for the waveform
data were chosen on a geometrical grid with 50 knots between log10(λ) = −2.0 and
log10(λ) = −6.0, and on a geometrical grid with 50 knots between log10(ν) = 0
and log10(ν) = 1, respectively. For the vowel recognition data, the candidates for the
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Fig. 5 The relationships
between the prediction error and
the values of model selection
criteria
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smoothing parameter and the hyperparameter were chosen on a geometrical grid with
50 knots between log10(λ) = −3.0 and log10(λ) = −7.5 and on a geometrical grid
with 50 knots between log10(ν) = 0 and log10(ν) = 1.75, respectively.

The average values of the adjusted parameters for 10 runs of the waveform data,
selected by use of GIC and BIC, were θ = (15.0,−5.27, 1.71) and θ = (13.2,−4.54,

2.46), respectively. In the case of the vowel recognition data, the use of GIC and
BIC selected the adjusted parameters such that θ = (20,−6.40, 3.16) and θ =
(10,−3.55, 1.50), respectively. Thus the procedure using BIC tends to choose fewer
basis functions and larger values of λ than does the procedure based on GIC.

Table 1 summarizes the prediction errors. The prediction errors for the waveform
data are average values over ten runs. When the results were compared with those of
the previously proposed methods, our method performed very well; it gives the best
prediction error.
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Table 1 Comparison of prediction errors (%). The results, except for those obtained from our modeling
strategy, are due to Hastie et al. (1994, 2001), Ando (2003), and Ando et al. (2004)

Method Waveform Vowel

Proposed model (5) with GIC 14.5 35.0

Proposed model (5) with BIC 14.2 35.9

Linear discriminant analysis 19.1 56

Quadratic discriminant analysis 20.5 67

Classification tree 28.9 56

Flexible discriminant analysis (MARS degree = 1) 19.1 45

Flexible discriminant analysis (MARS degree = 2) 21.5 42

Single-layer perceptron – 67

Multilayer perceptron (88 hidden units) – 49

Gaussian node network (528 hidden units) – 45

Nearest-neighbor – 44

Ando et al. (2004)’s adaptive learning machines 15.6 41

Ando (2003)’s kernel flexible discriminant analysis 15.3 40

5.2 Comparison of basis function construction methods

By means of an analysis of synthetic data (Ripley 1994), we have investigated the
performance of the Gaussian radial functions with a hyperparameter (BFν) given in
(3) with that of ordinary Gaussian radial basis functions (7). The synthetic data con-
sisted of two-dimensional feature variables and a binary class distribution.

A set of ordinary Gaussian radial basis functions was constructed by using the fol-
lowing five unsupervised procedures; these were originally developed in research on
radial-basis-function networks. Moody and Darken (1989) used a k-means clustering
algorithm to position the centers µk while the scale parameters σk were determined
by a “P-nearest-neighbor” heuristic, which uses the averaged Euclidean distance of
the P nearest neighbors from each basis function. We used three such procedures,
based on the first-nearest neighbor (MD1), the second-nearest neighbor (MD2), and
the third-nearest neighbor (MD3). Ranganath and Arun (1997) also used a k-means
clustering algorithm to position the centers µk and calculated the scale parameters by
using the distance from the cluster center to the center nearest to another cluster (RA).
For the scale parameters σ 2

k , Karayiannis and Mi (1997) suggested the use of

s2
k =

√√√√ 1

|Ak |
∑

xα∈Ak

||xα − ck ||, k = 1, . . . , m,

where |Ak | denotes the cardinality of Ak (KM). Broomhead and Lowe (1988) deter-
mined the centers µk by randomly selecting from {xα;α = 1, . . . , n}. The scale
parameters were determined by using the maximum distance between the selected
centers (BL). Note that these methods construct the basis functions in a completely
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Table 2 Comparison of
prediction errors obtained from
various basis construction
methods. The values of the
adjusted parameters were chosen
by use of GIC. The results,
except for RA and KM, are due
to Ando et al. (2001)

Method Prediction error (%) m log10(λ) ν

BFν 9.6 25 −6.45 7.1

MD1 10.0 26 −5.33 –

MD2 10.0 27 −5.33 –

MD3 10.4 23 −5.33 –

RA 10.2 25 −6.27 –

KM 11.3 29 −5.78 –

BL 10.0 19 −7.00 –

unsupervised way and do not take the class label information into account, whereas
our proposed method does. After basis functions were constructed using these meth-
ods, the unknown parameter vector w was estimated by maximizing the penalized
log-likelihood function (6). The values of the adjusted parameters were chosen as the
minimizer of GIC in (9).

Table 2 summarizes the prediction errors and the selected adjusted parameters. The
candidate values of m, log10(λ), and ν were set to be {10, 11, . . . , 30}, a geometrical
grid with 50 knots between log10(λ) = −4 and log10(λ) = −7, and a geometrical
grid with 100 knots between log10(ν) = 0 and log10(ν) = 1, respectively.

It may be seen that our proposed method (BFν) is superior to the other methods, in
the sense that it gives the smallest value of the prediction error. Similar results were
also obtained from the use of BIC (12) instead of GIC. The scale parameters play an
essential role in determining the smoothness of the decision boundaries. Nevertheless,
the previously proposed methods determine the scale parameters heuristically and do
not always give sufficient results. Therefore the use of the hyperparameter ν in the
Gaussian radial basis functions helps us to improve the prediction accuracy of the
classification.

5.3 Character recognition

We have applied our proposed method to the optical recognition of handwritten dig-
its (Alpaydin and Kaynak 1998). Figure 6 shows a set of examples. In the analysis,
32 × 32 bitmaps were divided into nonoverlapping blocks of 4 × 4, and the number
of pixels was counted in each block. As shown in Fig. 7, this handling generates an
8 × 8 feature matrix, where each element is an integer.

We constructed a proposed model (5) using 3,823 values of training data and eval-
uated the prediction performance by using 1,797 values of test data. The model was
estimated by maximizing the penalized likelihood function (6). We then chose the
adjusted parameters by minimizing GIC (9) and BIC (12). The candidate values of m
were in the range from 30 to 100. The candidates for the smoothing parameter were cho-
sen on a geometrical grid with 100 knots between log10(λ) = −5 and log10(λ) = −7.
The candidates for the hyperparameter were chosen on a geometrical grid with 100
knots between log10(ν) = 0 and log10(ν) = 0.8.

As a result, a model with θ = (61,−5.55, 1.84) was selected by use of GIC, and the
corresponding training error and prediction error were 1.77 and 4.61%, respectively.
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Fig. 6 Examples of optical
recognition of handwritten
digits data

Fig. 7 An example of
dimension reduction procedure.
a Preprocessing data.
b A transformed data

Preprocessing data

0 0 6 13 10 0 0 0

0 2 14 5 10 12 0 0

0 4 11 0 1 12 7 0

0 5 8 0 0 9 8 0

0 4 12 0 0 8 8 0

0 3 15 2 0 11 8 0

0 0 13 15 10 15 5 0

0 0 5 13 9 1 0 0

A transformed data.

(b)

(a)

The use of BIC selected a model with θ = (35,−5.10, 3.16), and the corresponding
prediction error was 5.73%.

Table 3 summarizes the classification results for the test data using the model
selected by use of GIC. The (i, j)th element indicates the number of data; the true
number is i and the estimated number is j . So the trace of the matrix indicates the
number of correctly classified data. Table 3 indicates that the accuracy rates for the
characters 7, 8, and 9 are inferior to those for the other characters. Figure 8 shows
some examples that are classified incorrectly. Under the characters, the true label and
the classified label are shown. One reason for misclassification could be that it would
be difficult even for humans to recognize these characters.
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Table 3 Prediction error matrix obtained by the proposed method using GIC

Character 0 1 2 3 4 5 6 7 8 9

0 176 0 0 0 0 2 0 0 0 0

1 0 176 1 0 0 1 0 0 1 3

2 0 2 172 0 0 0 0 2 1 0

3 0 0 2 169 0 2 0 3 1 6

4 0 0 0 0 177 0 0 1 3 0

5 0 0 0 0 1 179 1 0 0 1

6 1 2 0 0 1 0 175 0 2 0

7 0 0 0 0 1 3 0 168 2 5

8 0 8 0 0 0 2 1 1 156 6

9 0 1 0 2 5 3 0 0 3 166

Fig. 8 A set of examples, classified incorrectly. Under the each character, the true label information is
provided. The estimated labels are also shown in parentheses

5.4 Cancer classification using microarray data

Target-specific treatment for distinct cancer types has been recognized as an important
element in improving medical therapy. The use of molecular information from micro-
array gene expression data to predict cancer types accurately has received a large
amount of attention in recent years (Golub et al. 1999; Alizadeh et al. 2000; Dudoit
et al. 2002).

The lymphoma dataset that we used (Alizadeh et al. 2000) consists of gene expres-
sion levels obtained from cDNA experiments involving two molecularly distinct dif-
fuse large B-cell lymphomas: germinal-center B-like (GCB) lymphoma and activated
B-like (AB) lymphoma. The dataset contains 4,682 gene expression profiles from
n = 42 subjects. After deleting those gene expression profiles which had any missing
information, we used p = 2, 041 gene expression profiles.

To measure the prediction accuracy, we used a full leave-one-out cross-validation
procedure. A proposed model was constructed by using n − 1 observations, and its
performance was evaluated by using the remaining observation, which was not used
for model estimation. The basis functions were reconstructed in each cross-validation
run. The unknown parameters were then estimated by maximizing the penalized log-
likelihood function (6). The optimum values of the adjusted parameters were chosen
as minimizers of BIC in (12). It is clear that the identification of marker genes is equiv-
alent to choosing the best set of genes out of all possible gene combinations. Even if
the number of genes p is as small as 100, this is a time-consuming task. We therefore
used the forward stepwise selection method to reduce the search space. The candidate
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Table 4 List of the most important genes for distinguishing between germinal-center B-like and activated
B-like lymphomas

Frequency Gene description

1.00 Unknown; clone = 1268870

1.00 Unknown; clone = 825199

1.00 BCL-6; clone = 712395

1.00 Unknown; clone = 2020

1.00 JAW1 = lymphoid-restricted membrane protein; clone = 815539

0.98 Unknown; clone = 1333557

0.98 Unknown UG Hs.136345 ESTs; clone = 746300

0.98 Protein; tyrosine phosphatase, non-receptor type 4 = MEG1; clone = 1283105

0.98 Cyclin D2/KIAK0002 = 3’ end of KIAK0002 cDNA; clone = 366412

0.98 T-cell protein-tyrosine phosphatase = protein tyrosine phosphatase, non-receptor type 2;
clone = 1370148

0.98 Unknown UG Hs.192047 EST; clone = 1353659

0.98 Deoxycytidylate deaminase; clone = 489681

0.98 RPD3 L1 = homologue of yeast RPD3 transcription factor; clone = 548736

0.95 transcription factor ERF-1; clone = 594372

0.95 Unknown UG Hs.28355 ESTs; clone = 703735

0.95 Deoxycytidylate deaminase; clone = 1185959

0.93 RPD3L1 = homologue of yeast RPD3 transcription factor; clone = 814080

0.86 MCL1 = myeloid cell differentiation protein; clone = 50437

0.86 DNA (cytosine-5-)-methyltransferase; clone = 45941

0.83 Unknown; UG Hs.180562 EST; clone = 1334488

values of m, log10(λ), and ν were set to be {10, 11, . . . , 15}, {10−2, 10−3, . . . , 10−5},
and {1, 5, 10, 20}, respectively.

The accuracy rate of the full leave-one-out cross-validation study was 97.6% (one
observation, with label GCB, was classified into the AB class incorrectly). Table 4
shows a set of genes which are frequently included in models designed using a full
leave-one-out cross-validation procedure. Table 4 includes many important genes. For
example, the genes BCL-6, MCL-1, JAW1, and RPD3 provide useful information for
research on diffuse large B-cell lymphomas (Alizadeh et al. 2000; Shaffer et al. 2002;
Troyanskaya et al. 2002; Zhou et al. 2001). Therefore our method identified the impor-
tant genes for making a diagnostic decision. There are also many unknown genes in
Table 4. We hope that these genes will also be important for cancer classification and
prognosis in clinical practice.

6 Conclusions

In this article, we have described an extension of linear logistic discriminant models
to nonlinear models by replacing the linear predictor with a radial-basis-expansion
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predictor. We have utilized Gaussian radial basis functions with a hyperparameter to
construct basis functions taking the class label information into account, whereas pre-
viously proposed methods could not do this. We have proposed a nonlinear modeling
technique, in which a set of basis functions with a hyperparameter is constructed,
the unknown parameters are estimated by the penalized maximum likelihood method,
and then the estimated model is evaluated to select a suitable one from competing
models. Model selection criteria play an essential role in constructing models. We
have employed two model selection criteria, from information-theoretic and Bayesian
viewpoints, that enable us to evaluate models estimated by the penalized maximum
likelihood method.

As demonstrated by various numerical examples, the proposed modeling strategy
performs very well even when the dimension of the feature variables is very large.
Monte Carlo experiments also showed that the Gaussian radial basis functions with a
hyperparameter improved the prediction accuracy, compared with previously proposed
methods. We would recommend nonlinear multiclass classification by implementing
our proposed method.
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