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Abstract Creation of a ranked set sample, by its nature, involves judgment ranking
error within set units. This ranking error usually distorts statistical inference of the
population characteristics. Tests may have inflated sizes, confidence intervals may have
incorrect coverage probabilities, and the estimators may become biased. In this paper,
we develop an exact two-sample nonparametric test for quantile shift between two
populations based on ranked set samples. This test is based on two independent exact
confidence intervals for the quantile of interest corresponding to the two populations
and rejects the null hypothesis of equal quantiles if these intervals are disjoint. It is
shown that a pair of 83 and 93% confidence intervals provide a 5 and 1% test for the
equality of quantiles. The proposed test is calibrated for the effect of judgment ranking
error so that the test has the correct size even under a wide range of judgment ranking
errors. A small scale simulation study suggests that the test performs quite well for
cycle sizes as small as 2.

Keywords Sampling design · Sign test · Ranked set sampling · Judgment ranking ·
Median · Imperfect ranking · Calibration

1 Introduction

Let F and G be two continuous distribution functions with the quantiles of order
p as ξp = inf{x : F(x) ≥ p} and ηp = inf{x : G(x) ≥ p}, respectively. Exact
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236 O. Ozturk, N. Balakrishnan

nonparametric confidence intervals for these quantiles can be constructed from the
order statistics of simple random samples without any further conditions on F and G.
These confidence intervals are available in the literature; see, for example, the books by
Gibbons (1985), Rice (1995) and Arnold et al. (1992). Even though these confidence
intervals are completely distribution-free, they have poor efficiency and so are not
widely used in practice. The efficiency can be improved by using a sampling procedure
that puts more structure in data. One such procedure is the ranked set sampling.

Ranked set sampling methodology creates artificial strata in data so that homo-
geneous observations are grouped together. It replaces independent and identically
distributed observations Xi , i = 1, . . . , N , with independent order statistics. To col-
lect a ranked set sample, one selects Nk units from an infinite population and ran-
domly divides these into N sets, each of size k. In each set, units are ranked without
full measurement from smallest to largest. The i-th judgment ranked unit is fully
measured in ni sets of N so that

∑k
i=1 ni = N . The fully measured observations

X[i] j , j = 1, . . . , ni ; i = 1, . . . , k, are called a ranked set sample. We note that X[i] j

are independent but not identically distributed. If the quality of judgment ranking is
perfect, the ranked set sample consists of independent order statistics and we use stan-
dard order statistic notation (replace square brackets with round one) to denote them
by X(i) j , j = 1, . . . , ni ; i = 1, . . . , k.

Even though the concept of ranked set sampling was introduced almost half a
century ago by McIntyre (1952), literature in ranked set sampling has expanded
rapidly only in the last two decades. Due to recent research interest in this area,
the original paper of McIntyre on ranked set sampling was republished in McIntyre
(2005). Nonparametric inference, in particular, has received considerable attention
in the ranked set sampling methodology. Chen (2000) used independent order statis-
tics in ranked set sample to construct confidence intervals for the population quan-
tiles. Recently, Balakrishnan and Li (2006) and Ozturk and Deshpande (2006) used
order statistics of a ranked set sample to construct exact nonparametric confidence
intervals for population quantiles. These authors showed that the quantile intervals
based on order statistics of a ranked set sample are narrower than those constructed
from independent order statistics in Chen (2000). Deshpande et al. (2006) construc-
ted quantile confidence intervals from a ranked set sample in the finite population
context. Rank-based two-sample inference has also drawn considerable attention in
the literature. Bohn and Wolfe (1992, 1994) introduced two-sample ranked set sample
rank-sum test for the location shift between two populations. Further research on
the two-sample problem are due to Ozturk (1999), and Ozturk and Wolfe (2000,
2001).

Most of these cited research, whether asymptotic or exact, relies on the assumption
of perfect ranking. In absence of this assumption, tests may not have the correct
size, confidence intervals may not achieve the desired coverage probability, and the
estimators may not be unbiased. In this case, it is desirable to develop procedures that
are efficient when we have perfect ranking and valid when we have some ranking
error. Purpose of this paper is to achieve these two goals while making inference on a
location shift between two populations. To achieve this goal, we need to have a valid
imperfect ranking model.
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Any sensible ranking model should be practical and flexible enough to cover a
wide range of situations. There are mainly three classes of imperfect ranking models.
The first model uses the mixture distribution of the actual order statistics to rank the
observations within a set; see Bohn and Wolfe (1994) and Frey (2005). The second
model uses an additive noise model due to David and Levine (1972) and Dell and
Clutter (1972). In this model, units are ranked based on their perceived values that are
tied to unmeasured values through an added noise variable. Finally, the third model
uses the monotone likelihood ratio principle of Fligner and MacEachern (2006). In
this work, ranked set sample observations are generated from Dell and Clutter (1972)
model. In order to generate a ranked set sample from this imperfect ranking model, we
generate two random vectors u and w each of size k, where ui (i = 1, . . . , k) are i.i.d.
from F and wi (i = 1, . . . , k) are i.i.d. from a normal distribution with mean zero and
variance σ 2

w. These vectors are added, v = u+w, and the components of v are ordered
to obtain an ordered set of (v(i), u[i]). In this set, the value in the second component
is taken as judgment ranked order statistics. In this process, for a given probability
model F , the quality of judgment ranking is controlled by the noise variable w. If w

is degenerate, then u[i] = v(i); otherwise, ranking process will contain some error and
the magnitude of this error depends on σ 2

w. For example, the correlation coefficient

(ρ) between u and v is given by ρ = 1/

√
σ 2

F + σ 2
w, where σ 2

F is the variance of
the underlying probability model F . If F is standard normal, then the selection of
σ 2

w = 0, 7/9, 3 produces correlation coefficient ρ = 1, 0.75, 0.5, respectively.
Our goal in this paper is to construct an exact two-sample nonparametric test for the

difference between two population quantiles of order p. The proposed test uses indi-
vidual confidence intervals of the population quantiles and rejects the null hypothesis
if the intervals are disjoint. Section 2 introduces exact quantile intervals for a single
population and discusses their properties. In order to achieve the desired coverage
probability, quantile confidence intervals are constructed by interpolating the adjacent
order statistics. Section 3 uses these interpolated confidence intervals to construct a
two-sample test for quantile shift between the two populations. The test rejects the
null hypothesis of equal population quantiles when the two interpolated confidence
intervals are disjoint. Section 4 shows that the proposed test is robust against judgment
ranking error and preserves the nominal type I error rate for cycle sizes as small as 2.
Section 5 illustrates the test procedure by applying it to a two-sample ranked set data.
Finally, Sect. 6 provides some concluding remarks.

2 One-sample quantile intervals

Let X(i) j , j = 1, . . . , ni ; i = 1, . . . , k, be a ranked set sample from distribution F .
The pdf and cdf of the i th order statistic from a simple random sample of size k are
given by

f(r)(x) = k

(
k − 1

r − 1

)

Fr−1(x){1 − F(x)}k−r f (x),

F(r)(x) =
k∑

j=r

(
k

j

)

F j (x){1 − F(x)}k− j .
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Let X(1:N ) < · · · < X(N :N ) be the ordered ranked set sample. We now seek a similar
expression for the r -th order statistic of the ranked set sample. The ranked set sample
observations are independent but not identically distributed. The derivation of the pdf
and cdf of the r th order statistic in this case is not trivial and are given by (see Ozturk
and Deshpande 2006; Balakrishnan and Li 2006)

f(r :N )(x) =
k∑

i=1

ni

∑

Uk,r−1,i

(
ni − 1

ui − 1

) k∏

j �=i

(
n j

u j

)

F
u j

( j)(x)
(
1 − F( j)(x)

)n j −u j

×Fui −1
(i) (x)

(
1 − F(i)(x)

)ni −ui f(i)(x),

where

Uk,a,i =
⎧
⎨

⎩
(u1, . . . , uk) :

k∑

j=1

u j = a, 0 ≤ u j ≤ n j , 0 ≤ ui ≤ ni − 1, j �= i

⎫
⎬

⎭
,

and

P(X(r :N ) ≤ y) = Fr :N (y) =
N∑

v=r

∑

U∗
k,v

k∏

i=1

(
ni

u∗
i

)

×(Bi,k+1−i (F(y)))u∗
i (1 − Bi,k+1−i (F(y)))ni −u∗

i , (1)

where Ba,b(y) is the cdf of the beta distribution with parameters (a, b) and

U∗
k,v =

{

(u1, . . . , uk) :
k∑

i=1

u∗
i = v, 0 ≤ u∗

i ≤ ni

}

.

In order to construct a 100(1−α)% confidence interval for ξp, we choose two integers
r and s such that 1 ≤ s < r ≤ N . The integers r, s can be determined by the following
equality:

P(X(s:N ) ≤ ξp ≤ X(r :N )) = 1 − α.

This relationship may not determine r, s uniquely. In order to define r, s uniquely, we
use equal tail probabilities so that r, s are uniquely defined by

α/2 = P(X(s:N ) ≥ ξp) =
s−1∑

v=0

∑

U∗
k,v

k∏

i=1

(
ni

u∗
i

)

× (Bi,k+1−i (F(ξp)))
u∗

i (1 − Bi,k+1−i (F(ξp)))
ni −u∗

i (2)
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and

α/2 = P(X(r :N ) ≤ ξp) =
N∑

v=r

∑

U∗
k,v

k∏

i=1

(
ni

u∗
i

)

× (Bi,k+1−i (F(ξp)))
u∗

i (1 − Bi,k+1−i (F(ξp)))
ni −u∗

i ,

(3)

where N = ∑k
i=1 ni . This selection may not produce an interval that has exact

coverage probability of 1 − α due to the discrete nature of the distribution. In order
to approximate the coverage probability, Ozturk and Deshpande (2006) constructed
confidence interval by interpolating adjacent order statistics in an ordered ranked set
sample. By adapting their notation here, we consider two confidence intervals, Is,r =
[X(s:N ), X(r :N )] and I I s+1,r−1 = [X(s+1:N ), X(r−1:N )], where confidence intervals
Is,r and I I s+1,r−1 have confidence levels 1−αI and 1−αI I , 1−αI I < 1−α < 1−αI .
Then the interpolated confidence interval is constructed as

Iε1,ε3 = [Ls, Ur ] = [(1 − ε1)X(s:N ) + ε1 X(s+1:N ), (1 − ε2)X(r :N ) + ε2 X(r−1:N )]

where

ε1 =
[

1 + s{1 − p}(αI I /2 − α/2)

(N − s)p(α/2 − αI /2)

]−1

and

ε2 =
[

1 + (N − (r − 1))p(α/2 − αI I /2)

(r − 1){1 − p}(αI /2 − α/2)

]−1

.

This interval provides a coverage probability close to the nominal value of 1 − α. An
exact confidence interval for ηp can be constructed in a similar fashion.

3 Two-sample exact test

Let X(i) j , j = 1, . . . , ni ; i = 1, . . . , k, N = ∑k
i=1 ni and Y(i) j , j = 1, . . . , mi ; i =

1, . . . , k, M = ∑k
i=1 mi be ranked set samples from distributions F and G, respecti-

vely. We now propose an exact test for hypothesis testing problem

H0 : �p = ξp − ηp = 0 vs. HA : �p �= 0.

Let I x
s,r = [Lx , Ux ] = [X(s:N ), X(r :N )] and I y

s′,r ′ = [L y, Uy] = [Y(s′:M), Y(r ′:M)]
be the two confidence intervals for ξp and ηp with confidence coefficients 1 − αx

and 1 − αy , respectively. We reject the null hypothesis if the intervals I x
s,r and I y

s′,r ′
are disjoint. Note that this testing procedure is distribution-free since the individual
confidence intervals do not require any distributional assumptions. On the other hand,
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the individual confidence coefficients need to be determined to achieve the overall
Type I error rate αO .

The overall Type I error rate is the probability of rejecting the null hypothesis when
it is true. In this case, we reject H0 if the confidence intervals are disjoint. This is
possible when either Ux < L y or Uy < Lx . The Type I error is thus given by

αO = PH0(Ux < L y) + PH0(Uy < Lx )

= PH0(X(r :N ) < Y(s′:M)) + PH0(Y(r ′:M) < X(s:N )).

Theorem 1 Under perfect ranking, for given r, s, r ′, s′, the Type I error is given by

αO =
∫ 1

0
F(r :N )(v)dF(s′:M)(v) +

∫ 1

0
F(r ′:M)(v)dF(s:N )(v),

where

∫ 1

0
F(r :N )(v)dF(s′:M)(v)=

N∑

v=r

∑

U∗
k,v

k∑

t=1

∑

Uk,s′−1,t

∫ {
k∏

i=1

(
ni

u∗
i

)

(Bi,k+1−i (v))u∗
i

×(1 − Bi,k+1−i (v))ni −u∗
i

×mt

(
mt −1

ut −1

)

But
t,q+1−t (v)

(
1−Bt,q+1−t (v)

)mt −ut bt,q+1−t (v)

×
k∏

j �=t

(
m j

u j

)

B
u j −1
j,k+1− j (v)

(
1 − B j,k+1− j (v)

)m j −u j dv

⎫
⎬

⎭

and

∫ 1

0
F(r ′:M)(v)dF(s:N )(v) =

M∑

v=r ′

∑

U∗
q,v

q∑

t=1

∑

Uq,s′−1,t

∫ { q∏

i=1

(
mi

u∗
i

)

(Bi,q+1−i (v))u∗
i

×(1−Bi,q+1−i (v))mi −u∗
i

×nt

(
nt − 1

ut − 1

)

But
t,k+1−t (v)

× (
1 − Bt,k+1−t (v)

)nt −ut bt,k+1−t (v)

×
k∏

j �=t

(
n j

u j

)

B
u j −1
j,k+1− j (v)

(
1 − B j,k+1− j (v)

)n j −u j dv

⎫
⎬

⎭
.

Note that the integrals in the above theorem do not involve any unknown quantity
revealing that the test is still distribution-free. Even though it is possible to expand
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the integral into series of sums, it is easier and convenient to perform the necessary
numerical integration to compute the Type I error.

In practice, to perform the test, one needs to determine two confidence coefficients
for the confidence intervals of ξp and ηp so that the desired Type I error is achieved.
The selection of these confidence intervals (or equivalently selection of s, r, s′, r ′)
is not unique. One way to specify these quantities uniquely is to select confidence
intervals with equal confidence coefficients each having equal tail probabilities. In
order to achieve this, we propose the following algorithm:

I Set αO and then construct confidence intervals for ξp and ηp with confidence
coefficients 1−α0 each having equal tail probabilities, i.e., determine r, s, r ′, s′.

II By using Theorem 1, compute the new Type I error, αN , for r, s, r ′, s′.
III If αN < αO , then update confidence intervals r = r + 1, s = s − 1, r ′ =

r ′ + 1, s′ = s′ − 1 and go to step II. If αN ≈ αO , then use the current r, s, r ′, s′
to construct the test.

For finite samples, due to the discrete nature of the sign statistics, the desired Type I
error rate αO may not be available from this algorithm. In this case, we may select
largest r, r ′ and smallest s, s′ so that αN ≤ αO .

Ozturk (1999) looked at a similar testing procedure for large sample sizes. He
showed that for a 5 and 1% two-sample test, one needs to construct a pair of roughly
83 and 93% confidence intervals. For small cycle sizes, by using the above algorithm,
we also show that 83 and 93% confidence intervals provide roughly 5 and 1% two-
sample median tests.

Table 1 presents coverage probabilities of the individual confidence intervals and
Type I error rates of the proposed two-sample test for perfect and imperfect ranking
without any calibration. All entries in perfect ranking (ρ = 1), except Iε1,ε2 , are exact
and computed from the above algorithm. Entries for imperfect ranking and Iε1,ε2 are
obtained from a small scale simulation study in which the ranked set samples were
generated from the imperfect judgment ranking model of Dell and Clutter (1972) and
David and Levine (1972). Underlying distribution F was taken as standard normal.
The perfect judgment ranked set samples were generated from the Dell and Clutter
model with ρ = 1 and imperfect judgment ranked set samples were generated with
ρ = 0.50, 0.75. Simulation size was taken as 2000.

It is obvious that, under perfect ranking, interpolated confidence intervals provide
coverage probabilities very close to the nominal values (83%) for cycle sizes as small
as 2. This close approximation also provides a Type I error rate αO that is close to the
nominal size (0.05) of the test. Similar results also hold for a 1% test with a pair of
93% confidence intervals, and for brevity the corresponding results are not reported
here. It is important to note here that these coverage probabilities and Type I error
rates are exact and do not rely on asymptotic theory.

Under imperfect ranking (ρ = 0.75, 0.5) with no calibration for the impact of
ranking error, the interpolated confidence intervals provide coverage probabilities that
are smaller than the nominal values. Consequently, the Type I error rates are inflated.
This shows that there is a need to calibrate the effect of imperfect ranking on coverage
probabilities and hence on the Type I error rates. The next section provides a procedure
to calibrate the effect of judgment ranking error on the proposed two-sample test.
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Table 1 Coverage probabilites of median (p = 0.5) confidence intervals and Type I error of the two sample
test under perfect (ρ = 1) and imperfect ranking (ρ = 0.75, 0.5)

ρ = 1 ρ = 0.75 ρ = 0.5

p Cycle Set CI 1 − α αO 1 − α αO 1 − α αO

0.5 2 2 I1,4 0.930 0.010 0.908 0.013 0.891 0.024

I2,3 0.461 0.378 0.407 0.427 0.399 0.465

Iε1,ε2 0.863 0.039 0.823 0.048 0.795 0.075

0.5 3 2 I2,5 0.855 0.038 0.817 0.065 0.789 0.069

I3,4 0.376 0.484 0.342 0.547 0.322 0.546

Iε1,ε2 0.832 0.052 0.799 0.073 0.770 0.089

0.5 4 2 I2,7 0.965 0.003 0.947 0.009 0.940 0.009

I3,6 0.790 0.074 0.744 0.110 0.727 0.117

Iε1,ε2 0.828 0.061 0.786 0.086 0.770 0.087

0.5 5 2 I3,8 0.938 0.008 0.916 0.014 0.897 0.020

I4,7 0.735 0.112 0.699 0.146 0.675 0.184

Iε1,ε2 0.829 0.049 0.805 0.065 0.775 0.094

0.5 2 3 I2,3 0.900 0.020 0.831 0.047 0.807 0.076

I3,4 0.402 0.452 0.365 0.500 0.319 0.571

Iε1,ε2 0.864 0.032 0.780 0.074 0.747 0.110

0.5 3 3 I3,7 0.919 0.014 0.866 0.040 0.835 0.042

I4,6 0.611 0.220 0.544 0.290 0.520 0.319

Iε1,ε2 0.859 0.039 0.792 0.077 0.745 0.101

0.5 4 3 I4,9 0.939 0.008 0.894 0.018 0.876 0.031

I5,8 0.735 0.113 0.676 0.174 0.637 0.197

Iε1,ε2 0.851 0.045 0.785 0.087 0.746 0.109

0.5 5 3 I5,11 0.954 0.004 0.908 0.017 0.891 0.019

I6,10 0.816 0.060 0.742 0.098 0.717 0.131

Iε1,ε2 0.841 0.051 0.757 0.090 0.734 0.118

4 Imperfect ranking

Practical application of ranked set sampling often involves imperfect ranking by the
nature of sampling procedure. Thus, it is essential to study any inferential procedure
based on ranked set sampling under imperfect ranking. Even though the proposed
testing procedure is distribution-free under perfect ranking, this does not imply that
it will still be distribution-free under any judgment ranking scheme. Under imperfect
ranking, the cdf of the r th order statistic in Eq. (1) does not hold in general. The
problem in this case is that under imperfect ranking the cdf of the i th judgment order
statistic can not be written as an incomplete beta function as in the perfect ranking
case. To resolve this problem, we estimate the cdf of the i th judgment order statistic
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and insert this estimate into Eqs. (2) and (3) to construct the confidence intervals.
A natural estimator for the cdf of F[i](ξp) would be the empirical cdf of the i th
judgment class distribution F̂[i](ξp). On the other hand, for small cycle sizes, these
estimators may have undesirable properties that violates the stochastic order relation of
the order statistics, such as F̂[i](ξp) < F̂[i+1](ξp). Recently, Ozturk (2007) developed
an estimator for the cdf of the i th, i = 1, . . . , k, judgment class distribution that does
not violate this stochastic order restriction among the judgment classes, given by

F[i]N (ξp) = min
1≤r≤i

max
i≤s≤k

Ar,s(ξp), (4)

where

Ar,s(ξp) =
∑s

u=r ni F̂[i](ξp)
∑s

u=r ni
,

and F̂[i](ξp) is the empirical cdf of the i th judgment order statistic at the pth quantile
of the underlying distribution.

Ozturk (2007) showed that this estimator has smaller integrated mean square error
(IMSE) and mean square error (MSE) at every point of the support of the distribution
than the IMSE and MSE of the empirical cdf estimators.

To calibrate the effect of imperfect ranking, we compute the individual confidence
intervals from Eqs. (2) and (3) by replacing Bi,k+1−i (F(ξp)) with an appropriate
estimate. For simplicity, let us assume that k = q. In order to estimate ξp, we first center
X - and Y -observations by subtracting their medians. We then estimate the pth quantile
from the combined sample of centered X - and Y -observations. Let ξ̂p be this estimate.
Then, for the estimation of F[i](ξ̂p), we combine the centered i th, i = 1, . . . , k,
judgment class observations, viz., X[i] j − ξ̂p( j = 1, . . . , ni ) and Y[i] j − ξ̂p( j =
1, . . . , mi ), from X - and Y -samples, to obtain Z[i] j ( j = 1, . . . , ni +mi ) and compute
F̂[i](ξ̂p) from this combined sample. Then, the estimator F[i]K (ξ̂p) is obtained from
Eq. (4), where K = N + M .

Even though F[i]K (ξ̂p) has nice properties, for small cycle and set sizes it is pos-
sible that it can be either zero or one which creates computational problem in Eqs. (2)
and (3). To resolve this problem, we introduce a truncated version of F[i]K (ξ̂p). Note
that for any sensible ranking procedure, F[i](ξp) varies between the two extreme
cases of perfect (Bi,k+1−i (p)) and random (p) rankings. Thus, it lies in the
interval [Bi,k+1−i (p), p] for i = 1, . . . , (k + 1)/2 and [p, Bi,k+1−i (p)] for i =
(k +1)/2, . . . , k. By using this property, we introduce a truncated estimator. The trun-
cated estimator, F̃[i]K (ξ̂p), takes the value of F[i]K (ξ̂p) if it is in the interval and the
closest value otherwise:

F̃[i]K (ξ̂p) =
⎧
⎨

⎩

F[i]K (ξ̂p) p ≤ F[i]K (ξ̂p) ≤ Bi,k+1−i (p)

Bi,k+1−i (p) F[i]K (ξ̂p) > Bi,k+1−i (p)

p F[i]K (ξ̂p) < p
(5)
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for i = 1, . . . , (k + 1)/2 and

F̃[i]K (ξ̂p) =
⎧
⎨

⎩

F[i]K (ξ̂p) Bi,k+1−i (p) ≤ F[i]K (ξ̂p) ≤ p
Bi,k+1−i (p) F[i]K (ξ̂p) < Bi,k+1−i (p)

p F[i]K (ξ̂p) > p
(6)

for i = (k + 1)/2, . . . , k.
For the implementation of the proposed two-sample test, we first estimate the pth

quantile of the population and the CDF of the i th judgment class distributions at ξ̂p

for i = 1, . . . , k. We then construct the individual interpolated confidence intervals
for the specified Type I error rate. For example, for a 5% test we construct a pair of
83% interpolated confidence intervals by using Eqs. (2) and (3), where we replace
Bi,k+1−i (p) with F̃[i]K (ξ̂p), i = 1, . . . , k. Finally, we reject the null hypothesis if
these confidence intervals are disjoint.

In order to evaluate the performance of the proposed test procedure, we performed
a simulation study. Ranked set samples in this simulation study were generated from
the Dell and Clutter model with ρ = 1, 0.75, 0.50 and given set (k = 2, 3) and cycle
(n = 2(1)10) size specifications. Each entry was computed from 2,000 Monte Carlo
simulations.

Table 2 presents empirical coverage probabilities (1 − α) of the interpolated confi-
dence intervals and the empirical Type I error rates (αO ) of the two-sample test for
both ranked set and simple random samples when the quantile of interest is the median
(p = 0.5). For efficiency comparison, we also provide average length (AL) of the
interpolated confidence intervals.

From Table 2, it is clear that the coverage probabilities and the Type I error rates
are reasonably close to the nominal values across all ranking qualities for moderately
small set and cycle sizes. For example, the coverage probabilities of the interpolated
confidence intervals are mostly varying between 85 and 81% which yield Type I error
rates around 5% for the test. For the poor ranking quality (ρ = 0.5) and smaller
sample sizes, the coverage probabilities of the confidence intervals tend to be slightly
smaller than 81% when the set sizes are odd. On the other hand, this phenomenon
disappears when sample sizes get large. For example, when ρ = 0.5, and (n, k) are
(3, 3), (5, 3), (7, 3) and (9, 3), the coverage probabilities are 0.791, 0.806, 0.816,
0.808, respectively. These values are smaller than the coverage probabilities for other
(n, k) values, but there is an increasing trend in these coverage probabilities with
increased sample sizes. We believe that the reason for this phenomenon is due to the
way that the truncated estimators of the judgment class distributions are computed in
Eqs (5) and (6). Even with these low values of coverage probabilities, the proposed test
achieves its nominal size reasonably well. Similar results also hold at other quantiles
such as at p = 0.25, 0.75, but they are not presented here for the sake of brevity.

The performance of the proposed test for median quantiles is also evaluated in
terms of its empirical power curves in Fig. 1 when set and cycle sizes are 3 and 4,
respectively. Again the ranked set samples were generated from the Dell and Clutter
model with the correlation coefficient ρ = 1, 0.75 and 0.5. For comparison purposes,
the power curve of simple random sample two-sample median test is also provided.
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Table 2 Simulated coverage probabilities (1−α) of interpolated confidence intervals of population median
and Type I error rates (αO ) of the two-sample test after adjustment for imperfect ranking

n k rss, ρ = 1 rss, ρ = 0.75 rss, ρ = 0.5 srs

1 − α αO AL 1 − α αO AL 1 − α αO AL 1 − α αO AL

2 3 0.870 0.030 1.209 0.825 0.047 1.227 0.802 0.066 1.269 0.824 0.052 1.382

3 3 0.825 0.032 0.947 0.806 0.053 0.989 0.788 0.059 1.020 0.829 0.049 1.161

4 3 0.843 0.037 0.809 0.814 0.057 0.852 0.813 0.061 0.908 0.827 0.048 0.998

5 3 0.841 0.041 0.736 0.809 0.059 0.825 0.806 0.057 0.834 0.824 0.061 0.866

6 3 0.846 0.034 0.671 0.815 0.056 0.711 0.813 0.065 0.748 0.833 0.056 0.794

7 3 0.825 0.043 0.614 0.813 0.054 0.657 0.816 0.052 0.695 0.823 0.053 0.735

8 3 0.858 0.043 0.577 0.826 0.052 0.612 0.821 0.058 0.649 0.830 0.051 0.693

9 3 0.826 0.053 0.547 0.818 0.053 0.581 0.808 0.053 0.623 0.820 0.044 0.653

10 3 0.835 0.041 0.514 0.836 0.049 0.560 0.830 0.049 0.588 0.830 0.063 0.613

2 2 0.863 0.029 1.542 0.831 0.044 1.555 0.820 0.055 1.564 0.840 0.042 1.725

3 2 0.854 0.040 1.303 0.823 0.057 1.300 0.824 0.064 1.321 0.820 0.060 1.366

4 2 0.838 0.044 1.077 0.824 0.057 1.088 0.815 0.067 1.107 0.826 0.048 1.167

5 2 0.854 0.034 0.961 0.831 0.046 0.988 0.828 0.056 1.019 0.827 0.051 1.062

6 2 0.849 0.043 0.879 0.836 0.049 0.913 0.825 0.061 0.935 0.829 0.057 0.987

7 2 0.856 0.037 0.843 0.825 0.051 0.858 0.827 0.049 0.875 0.825 0.049 0.924

8 2 0.845 0.047 0.773 0.834 0.052 0.801 0.834 0.052 0.828 0.832 0.049 0.850

9 2 0.830 0.040 0.729 0.828 0.056 0.750 0.829 0.057 0.768 0.828 0.057 0.792

10 2 0.847 0.046 0.688 0.833 0.049 0.714 0.832 0.054 0.727 0.831 0.049 0.755

The power curves indicate that the size of the test is reasonably close to nominal size
0.05. As expected, the high power of ranked set sample two-sample median test when
compared to the simple random sample two-sample median test is confirmed in this
simulation study even when the correlation is as low as ρ = 0.5.

5 An illustrative example

To illustrate the use of the proposed two-sample median test procedure, we apply the
suggested procedure to a ranked set sample data. The data were generated from Helsel
and Hirsch (2002). This data set contains measurements of uranium concentration (part
per billion) and total dissolved solids (TDS) in ground waters in two different types
of aquifers. The first type aquifer contains ground water with bicarbonate (HCO3)
concentration level of at most 50% while the second type aquifer contains ground
water with bicarbonate (HCO3) concentration level of more than 50%. Here, we would
like to test if the median uranium levels in low and high bicarbonate aquifers are
different. In this setting, precise measurement of uranium concentration is expensive
when compared with the cost of ranking water specimens based on TDS, but these
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Fig. 1 Empirical power of two-sample median test when k = 3 and n = 4

Table 3 Ranked set sample of
uranium concentrations (part per
bilion) from low (≤ 50%) and
high (> 50%) bicarbonate
(HCO3) aquifers

Rank Low High

Cycle 1 2 1 2

1 0.9315 11.9042 4.7360 5.6290

2 1.5674 0.9772 3.0950 11.2724

3 0.4367 10.1142 4.9807 14.6342

4 0.4806 6.0876 1.5291 6.3042

5 0.1473 3.0918 0.9672 2.1568

two variables are highly correlated. Thus, it is appropriate to use ranked set sampling
procedure.

Data set in Helsel and Hirsch (2002) contains 23 and 20 water specimens from
low and high bicarbonate aquifers. The correlation coefficients between the uranium
concentration and TDS are 0.64 and 0.84 for low and high bicarbonate aquifers,
respectively. In order to create a two-sample ranked set sample, we select set size
k = 2 and cycle size n = 5. For each sample, viz., low and high bicarbonate level,
we randomly selected four water specimens and divided them into two sets, each
of size 2. Units in each set is ranked based on TDS measurement. We then use the
uranium concentration from the specimen that has the lowest TDS measurement in
one set and the highest TDS measurement in the other. This process is repeated for five
cycles to obtain ten uranium concentration for each sample. The ranked set sample
thus obtained is given in Table 3.
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Fig. 2 Box plot of uranium concentration data

Figure 2 presents the box plots of the uranium concentrations for low and high
bicarbonate ranked set samples. From a visual inspection of these box plots, it appears
that low bicarbonate water wells contain slightly higher uranium concentrations than
the uranium concentration of the high bicarbonate water wells.

LetµL andµH be the median uranium level of low and high uranium concentrations.
We are interested in testing the hypothesis

H0 : µL − µH = 0 against H0 : µL − µH �= 0.

To perform the test, we first center the low- and high-bicarbonate samples by subtracting
their medians 1.2723 and 4.85835, respectively, and compute F̂[i]20(0) from the com-
bined centered observations, F̂[1]20(0) = 0.85 and F̂[2]20(0) = 0.20. Under perfect
ranking, F(1)(0) = 0.750 and F(2)(0) = 0.250. Thus, the truncated estimates of F[1](0)

and F[2](0) from Eqs. (5) and (6) are F̃[1]20(0) = 0.750 and F̃[2]20(0) = 0.250. Let
X∗

(1) < · · · < X∗
(10) and Y ∗

(1) < · · · < Y ∗
(10) be the ordered ranked set samples from

low- and high-bicarbonate samples. The confidence intervals for these two samples
are constructed as described in Sect. 2. These intervals based on X - and Y -samples
are

{X∗
(3), X∗

(8)} {0.4806, 6.0876} 93.80%
{X∗

(4), X∗
(7)} {0.9315, 3.0919} 73.54%

I x
0.821,0.500 {0.851, 4.590} 83.0%

and
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{Y ∗
(3), Y ∗

(8)} {2.1568, 6.304} 93.80%
{Y ∗

(4), Y ∗
(7)} {3.095, 5.626} 73.54%

I y
0.821,0.500 {2.926, 5.967} 83.0% .

We note that the 83% confidence intervals I x
0.821,0.500 and I y

0.821,0.500 are not disjoint.
Therefore, we fail to reject the null hypothesis at 5% significance level and conclude
that the median uranium concentration in low- and high-bicarbonate aquifers are not
statistically different at 5% significance level.

6 Conclusions

In situations wherein recruiting a unit for a study is substantially cheaper than making
formal measurements, procedures based on ranked set sampling provide substantial
improvement in efficiency over procedures based on simple random sampling. This
improved efficiency results from the additional structure provided by units that are used
in judgment ranking process. Most of the theoretical results in ranked set sampling
heavily depend on the very strong assumption of perfect ranking of this judgment
ranking process. This assumption has a big impact on the efficiency as well as the
validity of the inferential procedures. Thus, it is essential to develop inference based on
ranked set samples that minimizes the effect of judgment ranking error. This problem
is addressed in this research.

We have developed a two-sample nonparametric inference to test the equality of
quantiles of two populations. The proposed test requires to construct a pair of 83
and 93% confidence intervals for a 5 and 1% tests. These confidence intervals are
constructed by interpolating adjacent order statistics to achieve the desired coverage
probabilities. Confidence intervals are also calibrated in order to minimize the impact
of imperfect ranking. The simulation study shows that the proposed test maintains
its nominal size for cycle sizes as small as 2. We have applied the proposed test to a
ranked set sample data to illustrate how it could be used in practice.

An asymptomatic test that uses the similar idea of the present paper in the multi-
sample situation has been discussed in the work of Ozturk and MacEachern (2004),
but an exact test will be worth developing along the lines of the two-sample situation
discussed in the present paper. However, its construction and properties need to be
carefully examined and this will be the subject matter of a future paper.
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