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Abstract For the problem of estimating under squared error loss the parameter of a
symmetric distribution which is subject to an interval constraint, we develop general
theory which provides improvements on various types of inadmissible procedures,
such as maximum likelihood procedures. The applications and further developments
given include: (i) symmetric location families such as the exponential power fam-
ily including double-exponential and normal, Student and Cauchy, a Logistic type
family, and scale mixture of normals in cases where the variance is lower bounded;
(ii) symmetric exponential families such as those related to a Binomial(n, p) model
with bounded |p−1/2| and to a Beta(α+θ, α−θ)model; and (iii) symmetric location
distributions truncated to an interval (−c, c). Finally, several of the dominance results
are studied with respect to model departures yielding robustness results, and specific
findings are given for scale mixture of normals and truncated distributions.

Keywords Maximum likelihood estimator · Restricted parameter space · Bayes
estimator · Squared error loss · Dominance · Robustness · Symmetric location
families · Truncated distributions · Exponential families · Scale mixture of normals

Research supported by NSERC of Canada.

É. Marchand (B)
Département de Mathématiques, Université de Sherbrooke,
Sherbrooke, QC, Canada, J1K 2R1
e-mail: eric.marchand@usherbrooke.ca

F. Perron
Département de Mathématiques et de Statistique, Université de Montréal,
C.P. 6128, Succursale Centre-Ville, Montréal, QC, Canada, H3C 3J7

123



216 É. Marchand, F. Perron

1 Introduction

Consider the problem of estimating under squared-error loss, based on an observable
X , the location parameter θ of a spherically symmetric univariate model where θ is
known to be restricted to an interval [a, b]. In their influential 1981 paper, concerned
mainly with minimaxity, Casella and Strawderman (1981) showed for X ∼ N (θ; σ 2),
with known σ 2, that the Bayes estimator associated with the boundary uniform prior
π(a) = π(b) = 1/2 is, not only minimax, but dominates as well the maximum like-
lihood estimator ̂θmle(X) = X I[a≤X≤b] + bI[X>b] + aI[X<a] whenever b − a ≤ 2σ .

More recently, Marchand and Perron (2001, 2005) showed, in multivariate versions
of the above problem, that the Bayes estimator ̂θBU associated with the uniform prior
on {θ : ‖θ − θ0‖ = m} (known θ0) dominates ̂θmle on the restricted parameter space
�(m) = {θ : ‖θ − θ0‖ ≤ m} whenever m ≤ σ

√
p for the models X ∼ σ Z + θ , with

(i) Z ∼ Np(0, Ip), and (ii) Z ∼ multivariate Student with d ≥ p degrees of freedom.
For the univariate case p = 1, their results not only yield Casella and Strawderman’s
result (with θ0 = (a + b)/2), but also give an extension to univariate Student distri-
bution with d ≥ 1 degrees of freedom. Findings concerning the minimaxity of ̂θBU
for small enough m were given by Berry (1990); Marchand and Perron (2002), and
Marchand and Strawderman (2004).

An interesting question is whether similar results hold for other univariate spher-
ically symmetric models, and to describe as explicitly as possible conditions (on the
model and size of the parameter space) for ̂θBU to dominate ̂θmle. Applications in
this direction do follow from general theory presented in Sect. 2; where, starting with
methods used by Marchand and Perron (2001, 2005); Perron (2003), or Moors (1981,
1985), we obtain elegant and simple extensions (e.g., Theorem 2) applicable to a wide
class of spherically symmetric models. But, we actually go beyond in presenting gen-
eral theory that permits to: (i) address situations where the parameter of interest is a
function η(θ) (say) of θ , (ii) to derive dominance results for more general symmet-
ric models, which include truncated univariate symmetric location distributions and
symmetric exponential families, and (iii) to handle cases where the target estimator to
be dominated is more general and not necessarily ̂θmle. Various illustrations are given
in Sects. 3 and 5. The models studied in Sect. 3 include Binomial, Beta, the expo-
nential power family including double-exponential and normal, Student and Cauchy,
a Logistic type family, and scale mixture of normals in cases where the variance is
lower bounded.

As in Marchand and Perron (2005), conditions for which a given estimator ̂θ domi-
nateŝθmle on�(m) simultaneously for all members of a class of spherically symmetric
distributions may be derived from general theory. In Sect. 4, we present with the help
of results in Sect. 2 a development in this direction, and we give a key example where
the boundary uniform ̂θBU estimator associated with the normal model is shown to
dominate simultaneously ̂θmle on �(m) for a large subclass of scale mixture of nor-
mals. This last result stands out from previous results of Marchand and Perron (2005)
as the dominating ̂θ possesses nice properties for the model from which it is derived
(Bayes, admissible, minimax for small enough m), and at the same time is robust in
its dominance of ̂θmle to certain type of departures within the given subclass of scale
mixtures.
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Estimation in symmetric distributions 217

Our final section (Sect. 5) is devoted to symmetric location distributions which are
truncated to an interval (−c, c). An interesting feature of the general theory resides
in the applicability to these types of truncated distributions, which apparently have
not been previously studied in the context of inference in restricted parameter spaces.
A further novelty arises as some of the dominance results are robust to the actual value
of the above truncation value c (see Remarks 5 and 6), providing further examples of
simultaneous dominance. This occurs with the simplicity of the dominance conditions,
as well as from the specific property that the estimator θ̂BU does not depend on the
truncation point c.

2 General theory

In this paper, we shall work with symmetric densities f (·|θ) associated with a sym-
metric measure µ on R. We will assume that f satisfies the following factorization:

f (x |θ) = exp −{h(x − θ)+ κ(θ)}, (1)

for all x ∈ R, θ ∈ �(m) with �(m) = [−m,m], m being fixed. In (1), h is a given
continuous and even function. We are concerned here with the estimation of η(θ)
under squared error loss L(θ, d) = (d − η(θ))2, with η being a nondecreasing odd
function. Hereafter, we will refer to these components h, κ ,µ and η as the components
of our general model.

As illustrated with the next examples, many well known families belong to the
general model either directly or following re-parametrization.

Example 1 (Symmetric location families) Let µ be the Lebesgue measure on R. Con-
sider ξ as a location parameter and assume that ξ ∈ [a, b]. Let Y be a continuous
random variable and suppose that the density of Y evaluated at y is given by g(y − ξ),
g being an even function. By setting X = Y − (a + b)/2, θ = ξ − (a + b)/2,
m = (b − a)/2, and h = − log ◦g, the density of X satisfies factorization (1) with
the function κ being constant. Familiar examples of such families include Normal,
Laplace, Cauchy and Student, Logistic, exponential power, and scale mixtures of nor-
mal distributions.

Example 2 (Truncated distributions) Assume that the density of X satisfies factoriza-
tion criterion (1). Let A be a symmetric set; A = [−c, c] for example. The density
of the conditional distribution of X given that X ∈ A will also satisfy factorization
(1) with the same function h, but with κ not constant as above, and the reference
measure µ being concentrated on A. The class described above is quite general, but
let us nevertheless mention the important case of a truncated normal distribution for
which we provide applications in Sect. 5.

Example 3 (Symmetric exponential families) Consider Y a random variable which
belongs to an exponential family. Let ν be the reference measure. Assume that ν is
symmetric and the density of Y , with respect to ν, depends on a parameter θ and is
given by:

ϕ(y|θ) = exp{θT (y)− c(θ)} ,
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218 É. Marchand, F. Perron

where T is an odd function and θ ∈ [−m,m]. Notice that when θ = 0, Y has a
symmetric distribution. Here, if we set X = T (Y ), then X has a density satisfying
factorization (1) with h(y) = y2/2 for all y, κ(θ) = c(θ)− θ2/2 for all θ ∈ [−m,m],
and

µ(A) =
∫

T −1(A)
exp(T 2(y)/2)ν(dy) ,

for any measurable set A. As an application, consider K ∼ Binomial (n, p) and
set Y = K − n/2. Here, ν is the probability measure associated with the random
variable (K − n/2) when K ∼ Binomial (n, 1/2), T is the identity function, and
θ = log(p/(1 − p)).

The general model in invariant under sign changes, and we will hence only consider
equivariant estimators, that is estimators which are odd functions. The general model
also forces κ to be an even function. This implies that θ̂mle, the maximum likelihood
estimator of θ , is equivariant. A significant portion of our findings concern the com-
parison of the equivariant estimators η(θ̂mle) (i.e., the mle of η(θ)) and η̂(θ)BU, the
Bayes estimator of η(θ) for the uniform prior on the boundary of the parameter space,
i.e., π(−m) = π(m) = 1/2. It is easy to verify that

η̂(θ)BU(x) = η(m)ρh(m, x), x ∈ R, (2)

with

ρh(θ, x) = tanh

{

h(θ + x)− h(θ − x)

2

}

, θ, x ∈ R. (3)

As seen with the following lemma, the function ρh plays a key role as well in the
risk decomposition of equivariant estimators.

Lemma 1 Under model (1), and for an equivariant estimator δ of η(θ), we have

(a) Eθ
[

sgn(X)||X | = r
] = ρh(θ, r); r ≥ 0;

(b) Eθ [(δ(X)−η(θ))2| |X | = r ] = [(δ(r)−η(θ)ρh(θ, r))2]+η2(θ)[1−ρ2
h(θ, r)];

r ≥ 0;
(c) implying that for θ ∈ {−λ, λ}; λ ∈ [0,m];

Eθ [(δ(X)− η(θ))2] ≥ Eθ [(η(λ)ρh(λ, X)− η(θ))2];

in other words, the equivariant estimator given by δ(x) = η(λ)ρh(λ, x) is best
among all equivariant estimators when we know that θ ∈ {−λ, λ}, and this
estimator corresponds to η̂(θ)BU when λ = m.

Taken literally, part (c) of Lemma 1 is of limited use because |θ | is unknown. However,
part (b) will be useful as it reveals that the performance of an equivariant estimator δ,
taking values δ(r) for r > 0, is governed by its proximity to η(θ)ρh(θ, r) as a function
of r . Namely, equivariant estimators taking values that are too large in absolute value
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Estimation in symmetric distributions 219

can be improved upon using Lemma 1. To pursue then, consider ρ̄h(m, r), the upper
envelope of ρh(θ, r) as θ range from 0 to m, i.e,

ρ̄h(m, r) = sup{ρh(θ, r); θ ∈ [0,m]}, r ≥ 0.

Furthermore, for any equivariant estimator δ let

A(h,m, η, δ) = {r ≥ 0 ; δ(r) > η(m)ρ̄h(m, r)}.

We then have the following results, which are inferred from Lemma 1, and which are
similar to Theorems 1 and 2 of Marchand and Perron (2005).

Theorem 1 Suppose thatµ(A(h,m, η, δ0)) > 0. For estimating η(θ) under squared-
error loss, an equivariant estimator δ dominates the equivariant estimator δ0 whenever

2η(m)ρ̄h(m, r)− δ0(r) < δ(r) < δ0(r) , for all r ∈ A(h,m, η, δ0),

and δ(r) = δ0(r) for all r /∈ A(h,m, η, δ0).

Corollary 1 For the general model with a given h, if an equivariant estimator δ0 is
such that µ(A(h,m, η, δ0)) > 0 then, for estimating η(θ) under squared-error loss,

(a) the equivariant estimator δ with δ(r) = (η(m)ρ̄h(m, r)) ∧ δ0(r); for all r ≥ 0;
dominates δ0;

(b) the equivariant estimator δ with δ(r) = η(m)ρ̄h(m, r); for all r ≥ 0; dominates
δ0 whenever η(m)ρ̄h(m, r) ≤ δ0(r) for all r ≥ 0;

(c) the estimator η̂(θ)BU dominates δ0 whenever ρ̄h(m, ·)= ρh(m, ·) and
η(m)ρh(m, r) ≤ δ0(r) for all r ≥ 0.

In order to apply Theorem 1 and Corollary 1 we need to know ρ̄h,m . For many choices
of h and m, the function ρh(·, r) will be nondecreasing for all r ≥ 0, which will
imply ρ̄h(m, ·) = ρh(m, ·). The next lemma provides such key connections linking
the behaviour of ρh to h and m.

Lemma 2 (a) The function ρh(·, r) is nondecreasing on (0,m] for all r > 0 if and
only if h is nondecreasing on (0,∞) and the expression h(θ + r)− h(θ − r) is
nondecreasing in θ on (r,m) for all r ∈ (0,m).

(b) The function ρh(θ, ·) is nondecreasing on (0,∞) for all θ ∈ (0,m] if and only if
h is nondecreasing and convex on (0,∞).

Proof See Appendix.

Remark 1 The necessary parts of Lemma 2 are not necessary per se, but are pre-
sented for sake of completeness and suggest limitations that will arise if one considers
loosening conditions on h. Part (a) of Lemma 2 depends on the condition saying
that h(θ + r) − h(θ − r) is nondecreasing in θ on (r,m), for all r ∈ (0,m). Using
arguments similar to those in the proof of part (b) of Lemma 2, this above condition
forces h to be convex on (0,m), while it is satisfied whenever h is convex on (0, 2m).
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Hence, to summarize, increasing h on (0,∞) and convex h on (0, 2m) constitute a
simple condition for ρ̄h(m, ·) = ρh(m, ·) to hold, and render part (c) of Corollary 1
applicable.

We now pursue with a useful property concerning cases where η(θ) is an
expectation.

Corollary 2 Suppose that S is a nondecreasing odd function. Let η(θ) = Eθ [S(X)].
If h is nondecreasing and convex on [0,∞), then η is nondecreasing and odd for
models in (1).

Proof First, verify directly from (1) that η is odd. Then, it suffices to show that we
have a monotone likelihood ratio to establish the nondecreasing property. Consider
−m ≤ θ0 < θ1 ≤ m. Let � = (θ1 − θ0)/2 and y = x − (θ1 + θ0)/2. We obtain that

f (x |θ1)

f (x |θ0)
=exp{h(y+�)− h(y −�)+κ(θ0)− κ(θ1)} , for y ∈R and �∈(0,m].

Therefore, for any� ∈ (0,m], we need to show that the expression h(y+�)−h(y−�)
is nondecreasing in y on R. In fact, since h is an even function, we need only to verify
that h(y + �) − h(y − �) is nondecreasing in y on (0,∞). And finally, this last
condition follows from the convexity of h.

We will finish this section with a further series of results, consisting of regularity
conditions on h and m, which are useful for applying Theorem 1 and Corollary 1. For
all m > 0, consider the functions φ and ϕm given by

φ(y) = h(y)− log(y), y > 0,

ϕm(y) = {h(m + y)− h(m − y)}/2, 0 < y < m.

For a fixed value of b, b ∈ (0,∞], we introduce the following classes of functions:

CBU(b) = {h : ρ̄h(m, ·) = ρh(m, ·) on (0,∞), for all m ∈ (0, b] }, (4)

Cφ(b) = {h ∈ CBU(b) : φ′(m + y)+ φ′(m − y) < 2φ′(m)
for all y,m such that 0 < y < m < b}, (5)

Cϕ(b) = {h ∈ CBU(b) : ϕ′
m is decreasing on (0,m) for all 0 < m < b}. (6)

Remark 2 The characterization of CBU(b) was previously addressed in Lemma 2 and
Remark 1. Assume now that h ∈ CBU(b). We have h ∈ Cφ(b) implies thatφ′ is concave
on (0, b), while φ′ concave on (0, 2b) implies that h ∈ Cφ(b). Similarly, h ∈ Cϕ(b)
implies that h′ is concave on (0, b), while h′ concave on (0, 2b) implies that h ∈ Cϕ(b).
Hence concave φ′ and h′ further permit quick identifications of members of Cφ(b) and
Cϕ(b) respectively.

Lemma 3 (a) Let δ0 be an equivariant estimator of η(θ) and assume δ0 is nonneg-
ative on (0,∞). We have η(m)ρh(m, r) ≤ δ0(r) for all r > 0 if and only if

h(m + r)− log(η(m)+ δ0(r)) ≤ h(m − r)− log(η(m)− δ0(r)), (7)
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Estimation in symmetric distributions 221

for all r > 0 such that δ0(r) < η(m). In particular, if h′(m) and δ′0(0) exist, then
we must have η(m)h′(m) ≤ δ′(0) for (7) to hold.

(b) Let δ0 be an equivariant estimator of θ with 0 ≤ δ0(r) ≤ m for all r > 0, and
assume η is concave on (0,m). Let δ = η ◦ δ0. If mρh(m, r) ≤ δ0(r) for all
r > 0, then η(m)ρh(m, r) ≤ δ(r) for all r > 0.

Proof (a) The equivalence given by (7) is obtained by working directly with the
inequality η(m)ρh(m, r) ≤ δ0(r) for all r ≥ 0, while the necessary condition
follows by focusing on the neighbourhood of 0 and noticing that

{h(m + r)− h(m − r)} − {log(η(m)+ δ0(r))− log(η(m)− δ0(r))}
2r

→ h′(m)− δ′0(0)/η(m) ,

as r → 0.
(b) First observe that η is concave with η(0) = 0 (η is odd), which implies that

η(t)
t decreases in t ; t > 0. Exploiting this property along with the assumptions

0 ≤ δ0(r) ≤ m and mρh(m, r) ≤ δ0(r), we have indeed

η(m)ρh(m, r)

η(δ0(r))
≤ mρh(m, r)

δ0(r)
≤ 1,

as was to be shown.

Bringing into play several of the above elements, we now pursue with a specific
application of part (c) of Corollary 1 for estimating η(θ) = θ with the target (and
benchmark) estimator given by δ0(r) = m ∧ r , for all r ≥ 0, which corresponds
to the maximum likelihood estimator of θ for unimodal symmetric location families
of Example 1 (i.e, increasing h). Applications however will not be limited to cases
where η is the identity function η(θ) = θ , with further inferences available from the
general theory above (e.g., Corollary 1, Lemma 3) as in Corollary 6, and as illustrated
in Examples 4 and 10.

Theorem 2 Let b ∈ (0,∞] be fixed. If h ∈ Cφ(b) and bh′(b) ≤ 1, then mρh(m, r) ≤ r
for all r ∈ (0,m), m ∈ (0, b]; and consequently θ̂BU dominates θ̂mle on �(m);
m ∈ (0, b].
Proof Following Lemma 3, it is sufficient to show that φ(m + r) ≤ φ(m − r) for all
r ∈ (0,m). Since

φ(m + r)− φ(m − r) = 2rφ′(m)+
∫ r

0
[{φ′(m + t)− φ′(m)}

− {φ′(m)− φ′(m − t)}] dt

≤ 2rφ′(m) (h ∈ Cφ(b))
= 2r(h′(m)− 1/m),

for all r ∈ (0,m), we have the result.
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3 Dominance examples

Example 4 (Binomial(n, p) with |p − 1
2 | bounded; Perron 2003) As in the latter part

of Example 3, pursue by considering K ∼ Binomial(n, p), Y = K − n/2, with
θ = log(p/(1− p)); |θ | ≤ m. Here we illustrate our dominance results for estimating
η(θ) = p − 1/2 = 1

2 tanh(θ/2) (equivalent to estimating p), and for extracting con-

ditions under which the estimator η̂(θ)BU dominates η̂(θ)mle, where by (2) and (3),
η̂(θ)BU(y) = 1

2 tanh(m
2 )tanh(my); and η̂(θ)mle(y) = y

n ∧ η(m); y ≥ 0. Now, observ-
ing that ρ̄h(m, ·) = ρh(m, ·) since h(y) = y2/2 ∈ CBU(∞) (see Remark 1), and
applying part (c) of Corollary 1 with δ0 = η̂(θ)mle, we obtain the sufficient condition
for dominance:

1

2
tanh

(m

2

)

tanh(my) ≤ y

n
; y ≥ 0;

which occurs whenever m
2 tanh(m

2 ) ≤ 1
n (i.e., tanh(z)

z ≤ 1), or equivalently m ≤
c√
n

with c ≥ 2.

Example 5 (A Beta model) Consider Y ∼ Beta(α + θ, α − θ) with |θ | ≤ m < α.
Here is another example of a symmetric exponential family (Example 3) with T (y) =
log(y/(1 − y)), for which we illustrate our dominance results for estimating θ . Since
E(Y ) = 1

2 + θ
2α , a plausible estimator of θ is obtained as the truncation δ0 of the

unbiased estimator onto [−m,m], and given by δ0(t) = (α tanh( t
2 )) ∧ m, for t ≥ 0.

From (2) and (3), we havêθBU(t) = m tanh(mt); and, as above in Example 4, applying
part (c) of Corollary 1, we obtain the sufficient condition:

m tanh(mt) ≤ α tanh(t/2); t ≥ 0;

for ̂θBU to dominate δ0. Pursuing the analysis, it is seen that dominance holds when-

ever: (i) m ≤ 1/2; or (ii) m > 1/2 and m ≤
√

α
2 which follows with the property

tanh(ax)
tanh(bx) (= a

b
(tanh(ax))/(ax)
(tanh(bx))/(bx) ) ≤ a

b (as tanh(y)/y decreases for y ≥ 0), which holds for
x ≥ 0, a > b.

The remaining examples deal with unimodal symmetric location families so θ̂mle will
correspond to δ(r) = m ∧ r for all r > 0. We present applications of Theorem 2 to
various models investigating the conditions on h and m for which θ̂BU dominates θ̂mle.
Basically, given a function h, we wish to identify whether h ∈ CBU(b) (Lemma 2 will
be referred to), whether h ∈ Cφ(b), and we want to find the greatest lower bound on
b such that h ∈ Cφ(b) and bh′(b) ≤ 1.

Example 6 (Exponential Power families) Consider the exponential power family of
distributions (e.g., Box and Tiao 1973; West 1987) with densities

f (x |θ) = β

2σβ1/β�(1/β)
exp

{

− 1

β

( |x − θ |
σ

)β
}

, x ∈ R, (8)
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for parameters θ ∈ �(m), σ > 0, β > 0 (known). Included in such families are
Normal (i.e., β = 2), the Laplace or Double-Exponential (i.e., β = 1), and, for
1 ≤ β ≤ 2, a subclass of scale mixture of normals (see for instance West 1987). We
have

h′(y) = 1

σβ
yβ−1, y > 0.

If β ∈ (0, 1), then h /∈ CBU(b) for all b > 0 as h is not convex (see Remark
1). If β ∈ [1, 2], then h ∈ Cφ(∞) as h′ is concave on (0,∞) (see Remark 2).
Now, let c = (2/{(β − 1)(β − 2)})1/β , β > 2. For β > 2, φ′ is concave on
(0, cσ) and convex on (cσ,∞). Finally, bh′(b) ≤ 1 with b > 0 if and only if
b ∈ (0, σ ]. Therefore, the estimator θ̂BU; which by (2) and (3) is given by θ̂BU(x) =
m tanh{ 1

2βσβ
[(m + |x |)β − (|m − |x |)β ]}; dominates θ̂mle whenever: (i) m ≤ σ , for

β ∈ [1, 2]; and (ii) 0 < m ≤ σ(1∧c/2), for β > 2. Notice that σ(1∧c/2)may not be
the greatest lower bound on b for our sufficient condition of dominance to hold. In fact,
Remark 2 tells us that such a lower bound on b belongs to the interval

(

σ(1 ∧ c/2),
σ (1 ∧ c)

)

.

Example 7 Consider families of distributions with

f (x | θ) = 1

2σ B(α, β)
exp

{

α| x − θ

σ
|
}/ (

1 + exp

{

| x − θ

σ
|
})α+β

, x ∈ R

(9)

with σ, α, β > 0. These families of distributions may be viewed as a generalization
of the Logistic family (α = β = 1), and include the Hyperbolic Secant location-scale
family (i.e., α = β = 1/2) as well as type III Logistic distributions for α = β (e.g.,
Zelterman and Balakrishnan 1992). We have

h′(y) = 1

2σ

{

(β − α)+ (β + α) tanh
( y

2σ

)}

, y > 0.

The function h is nondecreasing on (0,∞) if and only if β ≥ α. The function h is
convex on (0,∞). The function φ′ is concave on (0,∞). Therefore, if β ≥ α, then
h ∈ Cφ(∞). Finally, θ̂BU dominates θ̂mle if β ≥ α and m ∈ (0, b], where b > 0 is
such that bh′(b) = 1.

Example 8 (Student and Cauchy distributions; Marchand and Perron 2005) Consider
families of distributions in (1) with

f (x | θ) = 1

B(ν/2, 1/2)σ
√
ν

{

1 + 1

ν

(

x − θ

σ

)2
}− (ν+1)

2

,
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224 É. Marchand, F. Perron

corresponding to Student distributions with positive scale and shape parameters σ
and ν. For ν = 1, we have the Cauchy distribution. Here, we have

h′(y) =
(

ν + 1

ν

)

y

σ 2

(

1 + 1

ν

( y

σ

)2
)−1

, y > 0.

The function h is nondecreasing on (0,∞), and convex on (0, σ
√
ν), which tells us

that h ∈ CBU(σ
√
ν). Moreover, h ∈ Cφ(σ ) since the function φ′ is concave on (0, 2σ).

Finally, bh′(b) = 1 for b = σ , implying that θ̂BU dominates θ̂mle if m ∈ (0, σ ].
We consider now the applicability of Theorem 2 to the class of scale mixture of

normals, where the distribution of X admits the representation:

X |V = v ∼ N (θ, v−1), (10)

for some positive random variable V having probability measure τ . Such distributions
have densities of the form (1), with constant κ(θ), and

h(y) = − log G(y), with G(y) = E[V 1/2e−y2V/2]. (11)

Notwithstanding the specific cases treated above (i.e., Logistic in Example 5; Exponen-
tial Power families of Example 4 with 1 ≤ β ≤ 2; Cauchy and Student distributions of
Example 8), a general development remains of interest for a fixed h of the form above
(for classes of h’s where simultaneous dominance occurs, see Sect. 5). Although, some
restrictions on the pair (τ, b) do seem necessary and difficult to specify for the general
applicability condition h ∈ Cφ(b) of Theorem 2 to be satisfied, but here are some
simple conditions for cases where the mixing parameter V is bounded above by a
constant.

Lemma 4 For scale mixtures as in (10), we have h ∈ Cφ(b) as long as
P[V ≤ 1

4b2 ] = 1.

Proof See Appendix.

Corollary 3 For scale mixtures as in (10), the condition P[V ≤ 1
4m2 ] = 1 is sufficient

for θ̂BU to dominate θ̂mle.

Proof Lemma 4 paired with the assumption P[V ≤ 1
4m2 ] = 1 tell us that P[V ≤

1
4b2 ] = 1 and h ∈ Cφ(b) for all b ≥ m. The result now follows from part (a) of
Theorem 2 since

bh′(b) = b2 E[V 3
2 e− b2V

2 ]
E[V 1

2 e− b2V
2 ]

≤ b2
(

1

4b2

)

≤ 1.

Remark 3 The general passage from a single observation to several observations with
(X1, . . . , Xn) ∼ f0(x1 − θ, . . . , xn − θ) is not emphasized in this paper; although
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it can be handled: (a) with the sufficient statistic arising with the symmetric expo-
nential families of Example 3, (b) with the persistence of the scale mixture of nor-
mals representation for X̄ whenever (X1, . . . , Xn)|V = v ∼ Nn((θ, . . . , θ), v In) or
Xi |Vi = vi ; i = 1, . . . , n; independent N (θ, vi ), and (c) by using the conditional dis-
tribution of X̄ |T = t where T = (X1 − Xn, . . . , Xn−1 − Xn) is the maximal invariant
and whenever the distributional assumptions are met.

4 Examples of simultaneous dominance

Viewing δ0 and δ as fixed in Theorem 1, the given dominance condition does permit us
to investigate whether it is robust to departures in h. An interpretation is that ones starts
with a dominance result valid for a fixed model h0, and obtains the same dominance
for certain types of departures h from h0. Cases of a normal model h0 are of particular
interest. Here, general results are first given (Corollary 4), while applications to scale
mixture of normals follow. Further simultaneous dominance results are presented in
Sect. 5.

Corollary 4 For the general model with a class H of h functions, an equivariant
estimator δ0, and an upper envelope V (r) ≥ suph∈H {ρ̄h(m, r)}; r ≥ 0; such that
µ{r ≥ 0 : δ0(r) > η(m)V (r)} > 0,

(a) the estimator δ with δ(r) = (η(m)V (r)) ∧ δ0(r) for all r ≥ 0 dominates δ0, as
an estimator of η(θ) under squared-error loss, simultaneously for all h ∈ H;

(b) if there exists h0 ∈ H such that ρ̄h0(m, r) = suph∈H {ρ̄h(m, r)} for all r ≥ 0, then
all three parts of Corollary 1 applied to h0 hold with the dominance occurring
simultaneously for all h ∈ H;

(c) moreover as in (b), and for estimating the location parameter θ of a symmetric
location family as in (1), if h0 ∈ Cφ(b) and bh′

0(b) ≤ 1, then θ̂BU dominates θ̂mle
for all m ∈ (0, b] simultaneously for all h ∈ H.

Proof Part (a) follows from Theorem 1, while part (b) follows from (a) and Corollary 1.
Part (c) follows from part (b) and Theorem 2 (a).

A notable feature of the above, and a key element of the proof, resides in the fact that
the departures h ∈ H in part (c) need not be in Cφ(b). We pursue with an application of
the above Corollary to scale mixtures of normals. The following lemma gives a useful
upper envelope for the multiplier ρ̄h(m, ·) in the case of scale mixtures of normals.
Moreover, the upper envelope corresponds to a multiplier from a normal distribution,
and this is exploited in the corollary subsequent to the following lemma.

Lemma 5 For scale mixtures of normals as in (10) with E(V 3/2) < ∞, we have

ρ̄h(m, r) ≤ tanh
(

mr E(V 3/2)

E(V 1/2)

)

for all (m, r).

Proof From Marchand and Perron (2005), or Marchand (1993), we may write
ρh(λ, r) = E[tanh(tW )] with t = λr , s = (λ2 + r2)/2, and W having density (with
respect to τ ) proportional to w1/2 cosh(tw)e−sw. Now by virtue of the concavity of
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tanh(y); y > 0 ; and Jensen’s inequality, it follows that ρh(λ, r) ≤ tanh(t E(W ))with

E[W ] =
∫ ∞

0 w3/2 cosh(tw)e−swdτ(w)
∫ ∞

0 w1/2 cosh(tw)e−swdτ(w)
= E[Z cosh(t Z)e−s Z ]

E[cosh(t Z)e−s Z ] ;

Z having density (with respect to τ ) equal to r(z) = z1/2

E(V 1/2)
. Now, by observing

that the function b(z) = cosh(t z)e−sz is decreasing in z, and that consequently the
covariance between Z and b(Z) is negative, we infer that ρh(λ, r) ≤ tanh(t E(Z)) =
tanh

(

λ r E(V 3/2)

E(V 1/2)

)

which leads to the desired result as tanh(y) is increases in y.

Corollary 5 For the subclass H of scale mixtures in (10) with E(V 1/2)

E(V 3/2)
≥ �; which

includes all N (θ, σ 2) distributions with σ 2 ≥ �; the θ̂BU estimator associated with
a N (θ, σ 2 = �) distribution (see Example 6 with β = 2), given by θ̂BU(x) =
m tanh(mx/�), dominates simultaneously θ̂mle for all h ∈ H, whenever m ≤ √

�.
On the other hand, if m >

√
�, then δg with δ(r) = (m tanh(mr/�)) ∧ r for r ≥ 0

dominates simultaneously θ̂mle for all h ∈ H.

Proof The result follows directly from Lemma 5 and Corollary 4.

Remark 4 Marchand and Perron (2005) obtain a similar but weaker simultaneous
dominance result to cases where V is bounded above with probability one. On the
other hand, their result is set, and applicable in a multidimensional context where the
mean θ is upper bounded in norm.

Example 9 Consider the subclass of families of Student distributions with degrees of
freedom d ≥ d0, with d0 ≥ 1. Since, Student distributions are scale mixtures of the
form (10) with V ∼ Gamma(d/2, d/2), it is easy to obtain that E(V 1/2)

E(V 3/2)
= d/(d +1).

Hence, Corollary 5 applies with � = d0/(1 + d0). As an example, take d0 = 1 and
� = 1/(1 + 1) = 1/2. Corollary 5 tells us that the estimator m tanh(2m X) dominates
θ̂mle for all N (θ, σ 2) models with σ 2 ≥ 1/2, as well as for Student distribution mod-
els: X − θ ∼ Td , and X − θ ∼ cTd ; c > 1; with d ≥ 1 degrees of freedom under the

constraint θ ∈ [−m,m] , with m ≤
√

2
2 .

5 Truncated continuous distributions

In this section, we focus on the distributions of Example 2 with densities of the form:

f (x |θ) = exp −{h(x − θ)+ κc(θ)} I[−c,c](x), x ∈ R, (12)

for θ ∈ �(m), c ∈ (0,∞], with h even and nondecreasing on (0,∞).
The type of applications obtained here, which seem quite new, arise in part from

the simplicity of the dominance conditions, as well as from the specific property that
the estimator η̂(θ)BU does not depend on the truncation point c.
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Remark 5 If the conditions of Theorem 1 or Corollary 1 are satisfied for a model as
in (12) with c = ∞, then dominance results arising from Theorem 1 or Corollary 1
persist for the same model for all c > 0, as long as µ(A(h,m, η, δ0) ∩ [0, c]) > 0.
Moreover, observe that the Bayes estimator η̂(θ)BU for a model as in (12) does not
depend on c; and matches η̂(θ)BU for the same model with c = ∞. This signifies for
instance that the dominance examples of Section 3 hold not only for c = ∞, but also
simultaneously for all c > 0.

Note that this last remark does not relate to the mle of θ , (or η(θ)) which depends
on c and which we will denote θ̂mle,c. However, the property that the estimator η̂(θ)BU

does not depend on c, along with the ordering of maximum likelihood and θ̂0 estimates,
with θ̂0(r) = m ∧ r , r ≥ 0, established with the next lemma, we obtain straightfor-
ward extensions to all truncated problems in (12). Along with Remark 5 (and also
Remark 6), this adds considerably to the catalog and richness of applications of our
dominance findings, and to the attractiveness of the estimator η̂(θ)BU for cases where
m is sufficiently small.

Lemma 6 For the model given in (12) we have θ̂mle,c(x) ≥ θ̂0(x) for all x, c > 0.

Proof Assume that x > 0 is fixed. Let z(θ) = h(x − θ)+ κc(θ), θ ∈ �(m). It is easy
to see that z(|θ |) ≤ z(θ) for all θ . Let us show that z(x) ≤ z(θ) for all θ ∈ [0, x]. The
function κc is even and

d

dθ
eκc(θ) = exp{−h(θ + c)} − exp{−h(θ − c)} < 0

for all θ > 0. Moreover, h(x − θ) is nonincreasing in θ on [0, x]. Therefore, the
function z is nonincreasing on [0, x], hence the result.

Corollary 6 If h ∈ Cφ(b), bh′(b) ≤ 1 and η is concave on (0,∞), then: (i) η̂(θ)BU

dominates η(θ̂0), and (ii) η(θ̂0) dominates η(θ̂mle,c) for all c > 0.

Proof It follows from Theorem 2 and Remark 5 that ̂θBU dominates θ̂0 for the esti-
mation of θ , and for all c > 0. As well, from Theorems 2, 1, and Lemma 6, we obtain
that θ̂0 dominates θ̂mle,c for the estimation of θ , for all c > 0. Finally, Theorem 1 and
Lemma 3 lead to the result for the estimation of η(θ).

Remark 6 Lemma 6 and Corollary 6 apply as well to cases where c is unknown (and
where η(θ) does not depend on c). In such cases, the maximum likelihood estima-
tor of η(θ) is given by η(θ̂mle,ĉmle) where (ĉmle, θ̂mle) is the maximum likelihood
estimator of (c, θ). This can be proven along the same lines as above, with the addi-
tional observation that the likelihood function is maximized in c, for all θ ∈ �(m),
by ĉmle(X) = |X |. Hence, we have, with the results above, examples of the notable
feature of a dominance result which persists in models where the truncation point c is
unknown.

We now pursue with further analysis relative to cases where the estimand is ηc(θ) =
Eθ,c[X ], and conclude with the specific case of a truncated normal model.
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Lemma 7 We have

(a) ηc(θ) < θ for all c, θ > 0,
(b) if h is nondecreasing and convex on (0,∞), then ηc(θ) is nondecreasing in c on

(0,∞) for all θ > 0;
(c) if h is increasing on (0,∞), then Eθ [(X − ηc(θ))

3] < 0 for all c ∈ (0,∞);
(d) if h(x) = x2/(2σ 2), x ∈ R, σ 2 > 0, then ηc is concave on (0,∞) for all c > 0.

Proof (a) Using the fact that h is even, we have

ηc(θ)− θ = −
∫ c+θ

|c−θ |
u exp{−h(u)− κc(θ)} du < 0

for all c, θ > 0.
(b) Let θ > 0, c ∈ (0,∞] be fixed, and R = |X |. The density of R is given by fθ,c,

with

fθ,c(r) = exp{−κc(θ)}[exp{−h(r − θ)} + exp{−h(r + θ)}], 0 ≤ r < c.

For all 0 < c0 < c1 ≤ ∞, we obtain that

ηc0(θ)− ηc1(θ) = exp{κc1(θ)− κc0(θ)}Covθ,c1(I[0,c0)(R), Rρh(θ, R)) < 0 ,

because the indicator function I[0,c0) is nonincreasing on [0, c1), and the function
ρh(θ, ·) is nondecreasing on [0, c1) by virtue of Lemma 2.
(c,d) See Appendix.

Example 10 (Truncated normal) Let h(x) = x2/(2σ 2), x ∈ R, σ 2 > 0. Let c be
known. We have h ∈ Cφ(σ ), σh′(σ ) = 1, and ηc is concave on (0,∞). Appealing
to Corollary 2, we can apply Corollary 6. Therefore, for the estimation of ηc(θ), the
estimator η̂c(θ)BU dominates both ηc(θ̂0) and ηc(θ̂mle,c), for all m ∈ (0, σ ].

6 Concluding remarks

This paper provides general theory for symmetric models in (1), yielding conditions
for dominating an equivariant estimator of η(θ), θ ∈ [−m,m], with particular atten-
tion paid to the reference estimator η(θ̂mle). Novel features include: (i) applications
to cases where η is not the identity function or defined implicitly as in Corollary 2,
(ii) the large class of models for which the results are applicable (including truncated
distributions), and (iii) robustness results. Here are some perspectives pertaining to
some related questions and ongoing research.

(A) Although the applicable models are quite varied, the case of multivariate param-
eters is not addressed in this paper. For spherically symmetric distributions, as
previously shown by Marchand and Perron (2005), some theoretical elements
and examples have their analogs (e.g., Theorem 1, Corollaries 1 and 5, and
Example 8). But further research is required as some difficulties persist, namely
with the derivation of results analogous to Lemmas 2 and 3.
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(B) In terms of Bayesian dominance results, the focus here is on boundary uniform
priors. But the investigation of other priors, such as a fully uniform on �(m)
which leads to dominance of the mle of a normal mean for sufficiently small m,
is worthwhile, and conditional risk techniques inspired by those introduced by
Marchand and Perron (2001) are currently being investigated.

Acknowledgments The authors thank Idir Ouassou, Amir Payandeh, as well as two anonymous referees,
for useful comments. The support of NSERC of Canada is gratefully acknowledged by both authors.

Appendix

Proof of Lemma 2

Part (a) The function ρh(·, r) is nondecreasing on [0,m] for all r ≥ 0 if and only if
h(|θ + r |)− h(|θ − r |) is nondecreasing in θ on [0,m] for all r ≥ 0.

Suppose that h(|θ + r |)− h(|θ − r |) is nondecreasing in θ on [0,m] for all r ≥ 0.
If 0 ≤ a < b and b − a ≤ 2m then

h(b)− h(a) = h

(∣

∣

∣

∣

b − a

2
+ b + a

2

∣

∣

∣

∣

)

− h

(∣

∣

∣

∣

b − a

2
− b + a

2

∣

∣

∣

∣

)

≥ h

(∣

∣

∣

∣

θ + a + b

2

∣

∣

∣

∣

)

− h

(∣

∣

∣

∣

θ − a + b

2

∣

∣

∣

∣

)

for 0 < θ <
b − a

2
→ 0 as θ → 0

so h is nondecreasing on [0,∞). If 0 < r < θ < m then h(θ + r) − h(θ − r) =
h(|θ + r |)− h(|θ − r |) so h(θ + r)− h(θ − r) is nondecreasing in θ on (r,m) for all
r ∈ (0,m).

Suppose that h is nondecreasing on (0,∞) and h(θ+r)−h(θ−r) is nondecreasing
in θ on (r,m) for all r ∈ (0,m). If θ ≤ r then h(|θ+r |)−h(|θ−r |) = h(r+θ)−h(r−θ)
and the nondecreasing property of h implies that h(|θ+r |)−h(|θ−r |) is nondecreas-
ing in θ on (0, r ] for all r > 0. Finally, if 0 < r < θ < m then h(|θ+r |)−h(|θ−r |) =
h(θ + r) − h(θ − r) and the fact that h(θ + r) − h(θ − r) is nondecreasing in θ on
(r,m) for all r ∈ (0,m) implies that h(|θ + r |)− h(|θ − r |) is nondecreasing in θ on
(r,m) for all r ∈ (0,m).

Part (b) The function ρh(θ, ·) is nondecreasing on [0,∞) for all θ ∈ [0,m] if and
only if h(|θ + r |)− h(|θ − r |) is nondecreasing in r on [0,∞] for all θ ∈ (0,m].

Suppose that h(|θ+r |)−h(|θ−r |) is nondecreasing in r on [0,∞) for all θ ∈ (0,m].
If 0 ≤ a < b and a + b ≤ 2m then

h(b)− h(a) = h

(∣

∣

∣

∣

b + a

2
+ b − a

2

∣

∣

∣

∣

)

− h

(∣

∣

∣

∣

b + a

2
− b − a

2

∣

∣

∣

∣

)

≥ h

(∣

∣

∣

∣

b + a

2
+ r

∣

∣

∣

∣

)

− h

(∣

∣

∣

∣

b + a

2
− r

∣

∣

∣

∣

)

for 0 < r ≤ b − a

2
→ 0 as r → 0
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so h is nondecreasing on (0,m] and h(2θ) ≥ h(0) for all θ ∈ (0,m]. Assume that
m < a < b and b − a < 2m. We obtain that

h(b)− h(a) = h

(∣

∣

∣

∣

b − a

2
+ b + a

2

∣

∣

∣

∣

)

− h

(∣

∣

∣

∣

b − a

2
− b + a

2

∣

∣

∣

∣

)

≥ h(|b − a|)− h(0) because
b + a

2
≥ b − a

2
≥ 0 because b − a ∈ (0, 2m],

implying that h is nondecreasing on (m,∞). If 0 < a < b and b − a < 4m then we
set θ = (b−a)/4, r1 = a +θ and r2 = b−θ . We obtain that 0 < θ < m, 0 < r1 < r2
and

h(a)+h(b)−2h

(

a + b

2

)

=[h(|θ + r2|)−h(|θ − r2|)]−[h(|θ + r1|)−h(|θ − r1|)]
≥ 0.

Since h is continuous, we conclude that h is convex on (0,∞).
Suppose that h is nondecreasing and convex on (0,∞). If r ∈ [0, θ ] then h(|θ+r |)−

h(|θ−r |) = h(θ+r)−h(θ−r) so h(|θ+r |)−h(|θ−r |) is nondecreasing in r on [0, θ ]
for all θ ∈ [0,m]. If r ∈ (θ,∞) then h(|θ+r |)−h(|θ−r |) = h(r+θ)−h(r−θ) but the
convexity of h implies that this expression is nondecreasing in r so h(|θ+r |)−h(|θ−r |)
is nondecreasing in r on (θ,∞) for all θ ∈ [0,m].

Proof of Lemma 4

Since, it is clear from (11) that h(y) is increasing for positive y (without conditions
on V ), it will suffice to establish the stronger conditions (see Remarks 1 and 2) that
h(y) is convex and φ′(y) = h′(y) − 1

y is concave for y ∈ (0, 2b), with the given
boundedness condition on V . By differentiation, we have from (11):

h′′(y) = G ′(y)2 − G(y)G ′′(y)
G2(y)

,

and

∂2

∂2 y

{

h′(y)− 1

y

}

= A(y)+ 2B(y),

with A(y) = G ′(y)G ′′(y)−G(y)G ′′′(y)
G2(y)

and B(y) = − G ′(y)h ′′(y)
G(y) − 1

y3 .

Observe first that G ′′(y) = E
[

(y2V − 1) V
3
2 e− y2V

2

]

, so that the condition

P[y2V ≤ 1] = 1 for all y ∈ (0, 2b); i.e., P[V ≤ 1
4b2 ] = 1; implies the desired

convexity.
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We pursue by showing that both A(y) and B(y) are non positive for y ∈ (0, 2b)
under the given conditions. Turning our attention to A(y), we have

A(y)

yG(y)
= 1

y
[G ′(y)G ′′(y)− G(y)G ′′′(y)]

=
(

E

[

V
3
2 e− y2V

2

]

E

[

(1 − y2V ) V
3
2 e− y2V

2

])

−
(

E

[

V
1
2 e− y2V

2

]

E

[

(3 − y2V ) V
5
2 e− y2V

2

])

≤
(

E

[

V
3
2 e− y2V

2

]

E

[

(1 − y2V ) V
3
2 e− y2V

2

])

−
(

E

[

V
1
2 e− y2V

2

]

E

[

(1 − y2V ) V
5
2 e− y2V

2

])

;

so that a sufficient condition for A(y) to be non positive is

Eε=1/2[(1 − y2W )W ] ≤ Eε=3/2[(1 − y2W )W ] ,

with W having density proportional to wεe−y2w/2τ(w). Since this family of distribu-
tions possesses increasing monotone likelihood ratio in W ; with ε being the parameter;
we will have A(y) ≤ 0 whenever

P

[

∂

∂W
(1 − y2W )W ≥ 0

]

= 1 for all y ∈ (0, 2b).

But this occurs whenever P[W ≤ 1
4b2 ] = 1, or equivalently P[V ≤ 1

4b2 ] = 1.
Turning our attention now to B(y), since G ′′(y) ≤ 0 for y ∈ (0, 2b); as above

under the assumption P(V ≤ 1
4b2 ) = 1; we have h′′(y) ≤

(

G ′(y)
G(y)

)2
, implying

B(y) ≤ (
−G ′(y)

G(y) )
3 − 1

y3 , and telling us that B(y) ≤ 0 as soon as −y G ′(y)
G(y) ≤ 1.

Finally, the result follows since

−y
G ′(y)
G(y)

= y2 E[ V 3/2 e−y2V/2 ]
E[ V 1/2 e−y2V/2 ] ≤ 4b2 E[ V 3/2 e−y2V/2 ]

E[ V 1/2 e−y2V/2 ] ≤ 1 ,

for all y ∈ (0, 2b), given the assumption P[V ≤ 1
4b2 ] = 1.
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Proof of part (c) and (d) of Lemma 7

(c) Let ς(y) = exp{−h(y)} for all y ∈ R, where h is taken from (12). Let c, θ > 0
and η be given implicitly by

∫ c

−c
(x − η)ς(x − θ)dx = 0.

Observe that 0 < η < θ and η < c. We wish to establish that

∫ c

−c
(x − η)3ς(x − θ)dx < 0.

Set

ψ(x) = ς(|η − x | − (η − θ)).

Observe that ψ is a symmetric function about η; ψ(x) = ς(x − θ) for x ≤ η; and
ψ(x) ≤ ς(x − θ) for all x since 0 < η < θ . We have

0 =
∫ c

−c
(x − η)ς(x − θ)dx −

∫ c

2η−c
(x − η)ψ(x)dx

=
∫ c

η

(x − η){ς(x − θ)− ψ(x)}dx +
∫ 2η−c

−c
(x − η)ς(x − θ)dx .

Furthermore, we have 2η − c < η. Set

K =
∫ 2η−c

−c
|x − η|ς(x − θ)dx,

which permits us to write

∫ c

η

(x − η){ς(x − θ)− ψ(x)}dx = K ,

and

∫ 2η−c

−c
(x − η)ς(x − θ)dx = −K .
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Finally,

∫ c

−c
(x − η)3ς(x − θ)dx =

∫ c

−c
(x − η)3ς(x − θ)dx −

∫ c

2η−c
(x − η)3ψ(x)dx

=
∫ c

η

(x − η)2[(x − η){ς(x − θ)− ψ(x)}]dx

+
∫ 2η−c

−c
(x − η)2[(x − η)ς(x − θ)]dx

< (c − η)2 K − ([2η − c] − η)2 K

= 0.

(d) To assess the concavity of ηc on (0,∞) a straightforward differentiation for models
in (12) yields the identity

∂

∂θ
Eθ [Xk] = Eθ [Xk(h′(X − θ)− κ ′

c(θ))],

for all θ ∈ R, and k = 0, 1, 2, . . . In particular for a normal model with h(y) =
y2/(2σ 2), y ∈ R, the above identity yields for k = 0, 1, 2 and θ ∈ :

κ ′
c(θ) = 1

σ 2 (ηc(θ)− θ);
∂

∂θ
ηc(θ) = 1

σ 2 Eθ [X (X − ηc(θ))] = 1

σ 2 Varθ (X);

and

∂2

∂2θ
ηc(θ) = ∂

∂θ
Eθ (X

2)− ∂

∂θ
η2

c (θ)

= 1

σ 2 {Eθ [X2(X − ηc(θ)] − 2ηc(θ)(Eθ [X2] − η2
c (θ))}

= 1

σ 2 Eθ [(X − ηc(θ))
3].

Finally, the concavity of ηc on (0,∞) follows by Lemma 7 part (c), thus establishing
the result.
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