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Abstract This article mainly considers the recurrent event process with independent
censoring mechanism through a more flexible varying-coefficient model. The smooth-
ing estimators for the varying-coefficient functions are also proposed via maximizing
the kernel weight version of the log-partial likelihood function with respect to the
coefficients at each time point. For the selection of appropriate bandwidths and the
construction of confidence intervals, the consistent empirical smoothing estimators
for the covariance functions of the estimators and a bias correction method are con-
sidered. As for the baseline effect function of recurrent events in the population, two
different smoothing estimation methods are suggested and investigated. In this study,
the asymptotic properties of the proposed smoothing estimators are derived. The finite
sample properties of our methods are examined through a Monte Carlo simulation.
Moreover, the procedures are applied to a recurrent sample of AIDS link to intravenous
experiences (ALIVE) cohort study.

Keywords Independent censoring · Kernel · Partial likelihood function ·
Rate function · Recurrent event · Smoothing estimator · Varying-coefficient model

1 Introduction

In longitudinal follow-up studies, recurrent event data in which individuals experi-
ence multiple events repeatedly over time have been widely analyzed and studied.
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Statistical analyses for this type of data are required to estimate the occurrence rate
function of the recurrent event process N (t), and to detect the effects of possible
covariates X(t) = (X1(t), . . . , Xk(t))T on the recurrent event process. For the loss
to follow up, the recurrent event process may be terminated at time Y , which is the
censoring time, during the study period [0, T0]. Based on the above setting, the recur-
rent event data, say, {(Ni (·), Yi , Xi (·)); 1 ≤ i ≤ n} are collected from n independent
selected individuals.

Recent statistical methods for the rate function without using the information of
covariates can be tracked back to the non-parametric procedures of Andersen et al.
(1993), Lawless and Nadeau (1995), and Nelson (1995). When covariates are con-
sidered, Pepe and Cai (1993) modeled the recurrent event process with independent
censoring mechanism through the semi-parametric regression model

E[dNi (t)|Xi (t)] = exp(βT Xi (t))dµ0(t), (1)

where βT = (β1, . . . , βk) is a k × 1 time-independent regression parameter vector,
and µ0(t) is an unknown continuous function. Lin et al. (2000) further provided a
rigorous justification of the marginal model through the empirical process theory. For
related research which takes into account informative censoring on the recurrent event
process, it can be referred to the works of Lancaster and Intrator (1998), and Wang
et al. (2001).

Although the semi-parametric regression model (1) was used in many empirical
biomedical and epidemiological cohort studies, the constant effects of covariates
on the recurrent event process are sometimes unreasonable in practical applications.
Motivated by an epidemiological example of detecting some demographical variables
on the frequency of inpatient cares among HIV-negative intravenous drug users, we
consider a more flexible varying-coefficient model for each recurrent event process as

Ei [dNi (t)|Xi (t)] = exp(βT (t)Xi (t))λ0i (t)dt (2)

with

E[dNi (t)|Xi (t)] = exp(βT (t)Xi (t))λ0(t)dt,

where Ei [·|Xi (t)] is the expectation conditioning on Xi (t) and some other random vari-
ables of the i th subject, which can be considered as the random effect or frailty, λ0i (t)’s
are subject-specific baseline effects, and the coefficients β(t) = (β1(t), . . . , βk(t))T

and λ0(t) are assumed to be smooth functions of t . Here, λ0(t) = E[λ0i (t)] is defined
to be the baseline effect of recurrent events at time t in the population. It can be found
that model (2) avoids the complexity of modeling and allows the effects of covariates
to be time-dependent. Under the validity of the above varying-coefficient model, an
independent censoring condition is further assumed in this study for the recurrent
event process:

(A1) Conditioning on Xi (t), Ni (t) is independent of Yi .
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Varying-coefficient model for the occurrence rate function of recurrent events 199

Note that neither of uniformly bounded nor distributional assumptions is made on
the recurrent event process {Ni (t)}. In the theoretical development of this paper, a
very mild condition, the bounded third moment of each recurrent event process, is
assumed. With the above independent censoring assumption on the recurrent event
process, a class of smoothing estimation methods are proposed for the varying-coeffi-
cient functions β(t). In this study, our research efforts will focus on the discussion
of the kernel smoothing estimators. The consistent empirical smoothing estimators
for the covariance functions of the estimators and a bias correction method are also
considered in the bandwidth selection and the construction of confidence intervals.
For the estimation of the baseline effect function λ0(t), two smoothing estimation
methods are considered and are further explored through a theoretical viewpoint and
a practical implementation.

In Sect. 2, the smoothing estimation methods are proposed. A bias correction
method is also suggested for bandwidth selection. Section 3 derives the asymptotic
properties of the smoothing estimators, and proposes the procedures to construct the
approximated confidence intervals for the varying coefficient functions. The finite sam-
ple properties of the estimators and the proposed procedures are investigated through
a Monte Carlo simulation in Sect. 4. In Sect. 5, our methods are applied to the data
set of AIDS link to intravenous experiences (ALIVE) cohort study. Finally, the proofs
are placed in the Appendix.

2 Estimation

In this section, we propose the smoothing estimation methods for the varying-coeffi-
cient functions β(t) and the baseline effect function λ0(t) in (2). Moreover, the con-
sistent empirical smoothing estimators for the covariance functions of the estimators
are suggested. The bias correction method of Schucany (1995) is also extended in this
data setting to estimate the dominant bias terms of the estimators.

2.1 Estimation of β(t)

Let S j (β(t), u) = n−1 ∑n
i=1 Yi (u)X⊗ j

i (u) exp(βT (t)Xi (u)), j = 0, 1, 2,
with X⊗0(u) = 1, X⊗1(u) = X(u), and X⊗2(u) = X(u)XT (u). When the sub-
ject-specific baseline effect functions are set to be equal, model (2) will be reduced to

Ei [dNi (t)|Xi (t)] = exp(βT (t)Xi (t))λ0(t)dt. (3)

Under the validity of model (3), our proposed estimator β̂ht
(t) = (

β̂1ht (t), . . . ,

β̂kht (t)
)T

for β(t) can be obtained by maximizing the kernel weight version of the
log-partial likelihood function

l(β(t); ht ) =
n∑

i=1

∫ T0

0
[βT (t)Xi (u) − ln(nS0(β(t), u))]Yi (u)K2

(
t − u

ht

)

dNi (u),

(4)
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where Yi (u) = 1[Yi ≥u], Kl(
t−u
ht

) = 1
ht

αl(T0,
t−u
ht

)K ( t−u
ht

) is the lth order boundary
kernel function of Gasser and Müller (1978) with adjustment for the boundary time T0,
which satisfies γ0,l(t, ht ) = 1, γ j,l(t, ht ) = 0 for 1 ≤ j ≤ l − 1, and γl,l(t, ht ) < ∞
with γ j,l(t, ht ) = ∫ t/ht

(t−T0)/ht
u jαl (T0, u)K (u)du, ht is a positive valued bandwidth,

and K (·) is a kernel density function. In practical implementation, αl(T0, u) is often
assigned to be the lth order polynomial function of u. Differentiating l(β(t); ht ) with
respect to β(t), the kernel weight score function of β(t) is derived to be

U (β(t); ht ) =
n∑

i=1

∫ T0

0

(
Xi (u) − X̄(β(t), u)

)
Yi (u)K2

(
t − u

ht

)

dNi (u), (5)

where X̄(β(t), u) = S1(β(t), u)/S0(β(t), u). The maximum partial likelihood
smoothing estimator β̂ht

(t) is then defined to be the solution of U (β(t); ht ), i.e.
U (β̂ht

(t); ht ) = 0. Besides the proposed kernel smoothing method, the local polyno-
mial estimation procedure can be developed by using the polynomial functions within
a neighborhood of t to approximate the non-parametric functions β j (t), j = 1, . . . , k,
in (4). Moreover, the smoothing spline estimation method of Zuuker and Karr (1990)
and polynomial splines of Gray (1992), which are applied in the survival analysis, can
be extended to our data setting. Recent research concerning the time-varying coeffi-
cient effects in the Cox model can also track back to the works of Murphy and Sen
(1991), Martinussen and Scheike (2002), Cai and Sun (2003), Winnett and Sasieni
(2003), and Tian et al. (2005). In the succeeding sections, we focus on the discussion
of the kernel smoothing estimators.

Under model (2) and some regularity conditions assumed in the next section, we
will show that the random vector (nht )

1/2
(
β̂ht

(t) − β(t)
)

asymptotically converges
to a multivariate normal distribution with mean vector b(t) and variance–covariance
matrix �(β(t), t)δ2(t, ht ), where

b(t) =
∑

{i+ j=1,i, j>=0}
�(β(t), t)

(

λ
(i)
0 (t)M( j)

11 (β(t), t)+ λ0(t)M
(1)
i+1, j+1(β(t), t)

2

)

γ2,2(t, h),

and

�(β(t), t) =
(

E
[
Z⊗2(β(t), t)Y (t)λ0(t) exp(βT (t)X(t))

])−1

with δ j (t, ht ) = ∫ t/ht
(t−T0)/ht

|α2(T0, u)K (u)| j du,

Mi j (β(t), u) = E
[
Z(β(t), u)Y (u)(β( j)T (t)X(u))i exp(βT (t)X(u))

]
,

Z(β(t), u) = X(u) − x̄(β(t), u), λ(i)(t) and β(i)(t) are separately the i th derivatives
of λ(t) and β(t), M(1)

i j (β(t), u) being the first derivative of Mi j (β(t), u) with respect
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Varying-coefficient model for the occurrence rate function of recurrent events 201

to u, and

x̄(β(t), u) = E[Y (u)X(u) exp(βT (t)X(u))]
E[Y (u) exp(βT (t)X(u))] .

As it is well known, the smoothing estimator β̂ht
(t) is not an unbiased estimator of

β(t). To remedy this problem, the differences of the second order kernel estimator
β̂ht

(t) and the fourth order kernel estimator β̃ht
(t), which is computed from (5) with

the fourth order boundary kernel function K4(·), at some selected bandwidths are used
to estimate b(t). Let b̂(t) be the estimator of b(t). Our bias adjusted estimator for β(t)
is suggested to be β̄ht

(t) = β̂ht
(t) − b̂(t)h2

t . For the covariance functions of β̂ht
(t),

instead of directly estimating the unknown quantities in �(β(t), t), we propose the
empirical consistent smoothing estimators, say, V(β̄ht

(t), t) as

V(β̄ht
(t), t) = n−1V−1

2 (β̄ht
(t), t)V1(β̄ht

(t), t)V−1
2 (β̄ht

(t), t), (6)

where

V1(β̄ht
(t), t) = n−1

n∑

i=1

∫ T0

0

(
Xi (u) − X̄(β̄ht

(t), u)
)⊗2

Yi (u)K 2
2

(
t − u

ht

)

dNi (u),

V2(β̄ht
(t), t) = n−1

n∑

i=1

∫ T0

0
S(β̄ht

(t), u)Yi (u)K2

(
t − u

ht

)

dNi (u),

and

S(β(t), u) =
(

n−1 ∑n
i=1(Xi (u) − X̄(β(t), u))⊗2Yi (t) exp(βT (t)Xi (u))

S0(β(t), u)

)

.

The reason of doing so can be explained from the derivation for the asymptotic prop-
erties of β̂ht

(t) in the next section. Although the well-known bootstrap procedures
can be considered to estimate the covariance functions or approximate the sampling
quantities of β̂ht

(t), it was found to be computational inefficient in implementation
from a practical point of view. This is due to a mass of computation works in the
bootstrap analogues of β̂ht

(t).

2.2 Estimation of λ0(t)

For the baseline effect function λ0(t), two different smoothing estimation methods are
proposed. From the varying-coefficient model (2), we get the equality

E

[
dNi (t)

exp(βT (t)Xi (t))

∣
∣
∣
∣Xi (t)

]

= λ0(t)dt. (7)
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Under the independent censoring assumption (A1), Y·(t) = ∑n
i=1 Yi (t) indicates the

size of a random sample from the risk population which includes subjects who are
still at risk at t . Thus, Wi (t) = Yi (t)/Y·(t) can be treated as the weight function for
the i th recurrent event process Ni (t) in the establishment of an estimation criterion.
Using the property E[Wi (t)|Xi (t)] = n−1 and the independent censoring assumption
(A1), it implies that

E

[
nWi (t)dNi (t)

exp(βT (t)Xi (t))

∣
∣
∣
∣Xi (t)

]

= λ0(t)dt. (8)

By substituting the estimator β̄ht
(t) for unknown parameter function β(t) in (8), the

first smoothing estimator, say, λ̂0ht (t) is proposed to be the minimizer of the following
sum of squares

D1(λ0(t); ht ) =
n∑

i=1

∫ T0

0

⎛

⎝ nWi (u)dNi (u)

exp(β̄
T
ht

(u)Xi (u))du
− λ0(t)

⎞

⎠

2

K2

(
t − u

ht

)

du. (9)

Instead of using the estimator β̂ht
(t) in criterion (9), we do this mainly to avoid the

influence of the dominant bias b(t)h2
t of β̂ht

(t) on the moments of λ̂0ht (t). Differen-
tiating the sum of squares D1(λ0(t); ht ) with respect to λ0(t), λ̂0ht (t) is derived to
be

λ̂0ht (t) =
n∑

i=1

∫ T0

0

Wi (u)K2(
t−u
ht

)dNi (u)

exp(β̄
T
ht

(u)Xi (u))
. (10)

Multiplying both sides of model (2) by Yi (t) and taking expectation, one gets the
equality

E[Yi (t)dNi (t)] = E[Yi (t) exp(βT (t)Xi (t))]λ0(t)dt (11)

By using the above equality and substituting the consistent estimator S0(β̄ht
(t), t) for

E[Yi (t) exp(βT (t)Xi (t))], another smoothing estimator can be obtained via minimiz-
ing the sum of squares

D2(λ0(t); ht ) =
n∑

i=1

∫ T0

0

(
Yi (u)dNi (u)

S0(β̄ht
(u), u)du

− λ0(t)

)2

K2

(
t − u

ht

)

du (12)

with respect to λ0(t). The solution of (12) leads to the smoothing estimator

λ̃0ht (t) =
n∑

i=1

∫ T0

0
K2

(
t − u

ht

)
Yi (u)dNi (u)

nS0(β̄ht
(u), u)

. (13)
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As one can observe, the estimator λ̃0h(t) in (13) can also be computed by smoothing
the Aalen–Breslow type estimator

�̃0ht (t) =
n∑

i=1

∫ T0

0

Yi (u)dNi (u)

nS0(β̄ht
(u), u)

of �0(t) = ∫ t
0 λ0(u)du as below.

λ̃0ht (t) =
∫ T0

0
K2

(
t − u

ht

)

d�̃0ht (u). (14)

When the covariates are not considered, one can derive from the equalities (8) and (11)
that both estimators are the same. Further comparisons between the two estimators
will be made through the asymptotic behaviors and a simulation study.

3 Asymptotic properties

The asymptotic normalities of the estimators for the varying-coefficients β(t) and the
baseline effect λ0(t) are derived in this section. For the asymptotic properties of β̂ht

(t),
we first expand the term X̄(β̂ht

(t), u) as

X̄(β̂ht
(t), u) = X̄(β(t), u) − S(β∗(t), u)

(
β̂ht

(t) − β(t)
)
, (15)

where β∗(t) is on the line segment between β(t) and β̂ht
(t). Under the assumption

(A1) and the following conditions, β̂ht
(t) can be shown to converge in probability to

β(t) by paralleling the proof of Lin et al. (2000).

(A2) λ0(t) and βl(t), l = 1, . . . , k, are twice differentiable and bounded.
(A3) |Xl(0)| + ∫ T0

0 |dXl(u)| ≤ c0 for l = 1, . . . , k, where c0 is a positive constant.
(A4) The elements of �(β(t), u) are continuous with respect to u and �(β(t), t) is

positive definite for t ∈ [0, T0].
By further applying the law of large numbers to X̄(β(t), u) and V2(β(t), t),
U (β̂ht

(t); ht ) and β̂ht
(t) can be expressed as

n−1U (β̂ht
(t); ht ) = n−1U (β(t); ht ) + V2(β(t), t)

(
β̂ht

(t) − β(t)
) (

1 + op(1)
)

= n−1U (β(t); ht ) + �−1(β(t), t)
(
β̂ht

(t) − β(t)
) (

1 + op(1)
)

(16)

and

β̂ht
(t) − β(t) = −�(β(t), t)

(
n−1U (β(t); ht )

) (
1 + op(1)

)

= n−1
n∑

i=1

ξi (t)
(
1 + op(1)

)
, (17)
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where ξi (t) = −�(β(t), t)
∫ T0

0 Zi (β(t), u)Yi (u)K2(
t−u
ht

)dNi (u). Let a = (a1, . . . ,

ak)
T be any constant vector and define β̂aht (t)−βa(t) = aT (β̂ht

(t)−β(t)). It follows
that

β̂aht (t) − βa(t) = n−1
n∑

i=1

ηi (t)
(
1 + op(1)

)
(18)

with ηi (t) = aT ξi (t). By the Berry–Esséen theorem for the triangle array of indepen-
dent random variables, we can get the inequality

sup
z

∣
∣
∣
∣P

(∑n
i=1(ηi (t) − E[ηi (t)])√

nV (ηi (t))
≤ z

)

− 	(z)

∣
∣
∣
∣ ≤ d(t)

(nE[|ηi (t) − E[ηi (t)]|3])
(nV (ηi (t))3/2)

,

(19)

where d(t) is a positive constant independent of n and ηi (t). The moments of ηi (t) in
(19) are derived in Lemma 1 under the following further conditions:

(A5) The elements of M(1)
11 (β(t), u), M12(β(t), u), and M21(β(t), u) are continuous

with respect to u.
(A6) E[d N (u)d N (v)d N (w)|X(u)X(v)X(w)] is uniformly bounded for all u, v, w ∈

[0, T0].
When each recurrent event process is assumed to be uniformly bounded by a positive
constant, assumption (A6) is automatically satisfied.

Lemma 1 Suppose that assumptions (A1) through (A6) are satisfied and
E[Y (T0)] > 0,

E[ηi (t)] = aT b(t)h2
t (1 + o(1)), (20)

V [ηi (t)] =
(

aT �(β(t), t)a
)

δ2(t, ht )h
−1
t (1 + o(1)), (21)

and

E[|ηi (t) − E[ηi (t)]|3] ≤ c1(t)δ3(t, ht )h
−2
t (1 + o(1)), (22)

where c1(t) is a non-negative constant.

Proof See Appendix. �	
From (19), Lemma 1, and the Cramér–Wold device, one can show the asymptotic

normality of β̂ht
(t) in the following theorem.

Theorem 1 Suppose that the assumptions in Lemma 1 are satisfied and ht = n−1/5ht0
for some positive constant ht0. When n converges to infinity,

(nht )
1/2 (

β̂ht
(t) − β(t)

) d→ Nk (b(t), δ2(t, ht )�(β(t), t)) . (23)
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When the recurrent event process is characterized via a non-stationary Poisson pro-
cess or is assumed to be uniformly bounded by a positive constant without placing
any distributional assumption, the asymptotic behavior of β̂ht

(t) in Theorem 1 is still
valid. Using the consistent estimators β̄ht

(t) and V̂(β̄ht
(t), t) in (6) of β(t) and the

covariance of β̂ht
(t), one can construct an approximated (1 − α) confidence interval

with bias adjustment for each coefficient of β(t) via

β̄ j,ht (t) ± Z1−α(V(β̄ht
(t), t) j, j )

1/2, j = 1, . . . , k, (24)

where Z p is the 100p percentile point of a standard normal distribution.

By expanding the exponential term exp(β̄
T
ht

(u)Xi (u)) with respect to β(u) and
applying the law of large numbers, λ̂0,ht can be expressed as

λ̂0ht (t) = 1

n

n∑

i=1

∫ T0

0

Yi (u)K2(
t−u
ht

)dNi (u)

E[Y (u)] exp(βT (u)Xi (u))

(
1 + Op(n

−1/2)
)

−
∫ T0

0
λ0(u)

xyT (u)

E[Y (u)]
(
β̄ht

(u) − β(u)
)

K2

(
t − u

ht

)

du
(
1 + op(1)

)

= 1

n

n∑

i=1

∫ T0

0

Yi (u)K2(
t−u
ht

)dNi (u)

E[Y (u)] exp(βT (u)Xi (u))

(
1 + Op(n

−1/2)
)

−1

n

n∑

i=1

∫ T0

0
λ0(u)

xyT (u)

E[Y (u)]ςi (u)K2

(
t − u

ht

)

du
(
1 + op(1)

)
, (25)

where xy(u) = E[Y (u)X(u)] and ςi (u) is same with the definition of ξi (u) in (17)
except that the fourth order boundary kernel function K4(·) is substituted for K2(·).
Let

ζi (t) = −λ0(t) +
∫ T0

0

Yi (u)K2(
t−u
ht

)dNi (u)

E[Y (u)] exp(βT (u)Xi (u))

−
∫ T0

0
λ0(u)

xyT (u)

E[Y (u)]ςi (u)K2

(
t − u

ht

)

du.

One can re-express λ̂0ht (t) in (25) as

λ̂0ht (t) − λ0(t) = n−1
n∑

i=1

ζi (t)
(
1 + op(1)

)
. (26)

Using the Berry–Esséen theorem and the moments of ζi (t) below, it is straightforward
to show that, when n converges to infinity,

(nht )
1/2 (

λ̂0ht (t) − λ0(t)
) d→ N

(
bλ0(t), σ

2
λ01(t)

)
. (27)
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Lemma 2 Suppose that the assumptions in Lemma 1 are satisfied.

E[ζi (t)] = bλ0(t)h
2
t (1 + o(1)), (28)

V [ζi (t)] = σ 2
λ01(t)h

−1
t (1 + o(1)) , (29)

and

E[|ζi (t) − E[ζi (t)]|3] ≤ c2(t)δ3(t, ht )h
−2
t (1 + o(1)), (30)

where c2(t) is a non-negative constant, bλ0(t) = λ
(2)
0 (t)γ2,2(t, ht ), and

σ 2
λ01(t)= λ2

0(t)

(E[Y (t)])2

(

E

[
Y (t)

λ0(t) exp(βT (t)X(t))

]

+xyT (t)�(β(t), t)xy(t)

)

δ2(t, ht )

+ 2λ2
0(t)

(E[Y (t)])2 xyT (t)�(β(t), t)(xy(t) − E[Y (t)]x̄(β(t), t))δ∗
3(t, ht )

with δ∗
3(t, ht ) = ∫ t/ht

(t−T0)/ht

∫ t/ht
(t−T0)/h α2(T0, u − v)α2(T0, u)α2(T0, v)K (u − v)K (u)

K (v)dudv.

Since the proof for Lemma 2 is similar to that of Lemma 1, it is omitted here.
Similarly, using the expression

λ̃0ht (t) − λ0(t) = n−1
n∑

i=1

ηi (t)
(
1 + op(1)

)
(31)

with

ηi (t) = −λ0(t) +
∫ T0

0

Yi (u)K2(
t−u
ht

)dNi (u)

E[Y (u) exp(βT (u)X(u))]
−

∫ T0

0
λ0(u)x̄T (β(u), u)ςi (u)K2

(
t − u

ht

)

du,

the asymptotic normality of λ̃0ht (t) can be derived, see Theorem 2 below.

Theorem 2 Suppose that the assumptions in Theorem 1 are satisfied. When n con-
verges to infinity,

(nht )
1/2 (

λ̃0ht (t) − λ0(t)
) d→ N

(
bλ0(t), σ

2
λ02(t)

)
, (32)

where

σ 2
λ02(t)=

(
λ0(t)

E[Y (t) exp(βT (t)X(t))] +λ2
0(t)x̄

T (β(t), t)�(β(t), t)x̄(β(t), t)

)

δ2(t, ht ).
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We observe that both of λ̂0ht (t) and λ̃0ht (t) have the same asymptotic bias but
the different asymptotic variances. When the varying-coefficients β(t) are known, the
dominant variances of λ̂0ht (t) and λ̃0ht (t) in (27) and (32) will be reduced separately to

σ ∗2
λ01(t) = λ0(t)δ2(t, ht )

(E[Y (t)])2 E

[
Y (t)

exp(βT (t)X(t))

]

(nht )
−1 (33)

and

σ ∗2
λ02(t) = λ0(t)δ2(t, ht )

E
[
Y (t) exp(βT (t)X(t))

] (nht )
−1. (34)

By using the Hölder’s inequality, we get

E

[
Y (t)

exp(βT (t)X(t))

]

E
[
Y (t) exp(βT (t)X(t))

]
≥ (E[Y (t)])2 ,

and, hence, σ ∗2
λ01(t) ≥ σ ∗2

λ02(t). Since the varying-coefficients β(t) are unknown and
need to be estimated, there is no apparent superiority for either estimators. This phe-
nomenon will also be indicated in the next simulation study. For the consideration of
efficiency in implementation, the estimator λ̂0ht (t) takes this advantage and is slightly
faster in computation speed.

4 Monte Carlo simulation

The simulated recurrent event data are generated from 500 independent individuals
{(Ni (·), Yi , Xi (·))}500

i=1 with

Ei [dNi (t)|Xi (t)] = Zi (t)φ0(t) exp(β(t)Xi (t))dt, t ∈ [0, 5].

Here, the covariate X (t) and the random variable Z(t) are set separately to be time inde-
pendent random variables, say, X and Z with the Bernoulli distribution Bernoulli(0.5)

and the uniform distribution U (0.9, 1.1). Moreover, φ0(t) and β(t) are assigned to be
2.5 + (t − 3)3/27 and −0.3

√
t in the above model. Under the independent censoring

assumption (A1) and the model setting, the baseline effect λ0(t) can be derived to be
φ0(t). As for the censoring time, conditioning on the covariate X , it is designed to be
distributed as the truncated exponential density

fY |X (y|x) = 2 exp(2y)

exp(10) − exp(2 + x)
, y ∈ [1 + 0.5x, 5].

The recurrent event data are repeatedly generated 1,000 times. For each simulated
data, the smoothing estimators β̂ht (t), λ̂0ht (t) and λ̃0ht (t) are computed separately by
the solution of U (β(t); ht ) in (5), (10) and (13). In this numerical study, α2(T0,

t−u
ht

)
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Fig. 1 a The curve β(t) (solid curve), the averages of 500 estimated curves β̂h(t) (dashed curve), ±1.96
standard error bars (dashed line) of β̂h(t), and ±1.96 averages of 500 estimated standard error bars (dotted
line) of β̂h(t). b The nominal level (solid line) and the empirical coverage probability curve (dashed curve)

and K (·) are assigned to be the linear function and the normal density. For the band-
width selection, the local bandwidth selection criterion for β̂ht (t) is obtained via min-
imizing the estimated mean squared errors of β̂ht (t):

̂MSE(β̂ht (t)) = b̂2(t)h4
t + V (β̄ht (t), t). (35)

Moreover, an approximated 95% confidence interval for β(t) can be constructed via
(24).

Figure 1a reveals the true curve, the averages and ±1.96 standard error bars of 1,000
estimated curves, and ±1.96 averages of 1,000 standard error curves, respectively. It
appears that the estimated curves are very close to the corresponding true curves.
The empirical coverage probabilities for β(t) and the horizontal line of 0.95 nominal
level are shown in Fig. 1b. We can see that the estimated coverage probabilities are
around the nominal level with the average of 0.952 at 49 equally spaced time points.
In Fig. 2, no apparent difference in the standard errors of λ̂0ht (t) and λ̃0ht (t) is found.
However, the computation speed of λ̂0ht (t) is slightly faster.
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Fig. 2 The baseline effect curve
λ0(t) (solid curve), the averages
and ±1.96 standard error bars of
1,000 estimated curves λ̂0h(t)
(dotted curve) and λ̃0h(t)
(dashed curve)
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5 Application to the ALIVE cohort study

In this section, we apply the more flexible varying-coefficient model (2) to character-
ize the influence of some demographical variables on the repeated hospitalizations for
HIV-negative intraveneous drug users. The proposed smoothing estimation procedures
are used to evaluate the time-evolution effects of these variables. Here, the analyzed
recurrent event data are mainly collected from the Baltimore site of the ALIVE cohort
study, which involves 451 HIV-negative intravenous drug users who entered study
before August 1, 1993. Details of this study can be found in the work of Vlahov et al.
(1991).

Measurements considered here for each patient consist of the time lengths from
August 1, 1993 to the dates of inpatient admissions and to the last visit, race indicator
for black and non-black people, gender, and age on August 1, 1993. There are about
92% black and 68.3% male patients aged 19.93 to 68.22 with the median of the age
being 39.11. The age group, which is defined to be 0 if he or she is younger than the
median entering age of 39.11 years old and 1 otherwise, will be used in the analysis.
Since there are very low proportion of non-black people among the patients, this var-
iable will not be used in the succeeding analysis. The objective here is to detect the
effects of gender and age on the hospitalization rate.

Based on the varying-coefficient model (2), the time effects of gender and age on the
hospitalization rate at each time point can be computed separately by the solution of
U (β(t); ht ) in (5). As in the simulation study, the bandwidth selection procedure (35)
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Fig. 3 The solid curves represent the estimated effects and the dashed curves show the corresponding 95%
pointwise confidence intervals

and the approximated confidence interval (24) are used to select local bandwidths for
the estimators and to construct a confidence interval for each effect curve. Figure 3a,b
show the estimated curves and the corresponding 95% confidence intervals. It is indi-
cated from Fig. 3a that no significant effect is detected for gender. However, in Fig. 3b,
an older age group tends to have a positive association with the hospitalization rate
and appears to be significant roughly at the first 1.65 years since August 1, 1993 and
a half year before the end of study.
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Appendix

Proof of Lemma 1

Let a∗T (t) = aT �(β(t), t). The expectation of E[ηi (t)] can be expressed as
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E[ηi (t)] = −a∗T (t)E

[∫ T0

0
Z(β(t), u)Y (u)K2

(
t − u

ht

)

dN (u)

]

= −a∗T (t)
∫ T0

0
λ0(u)E[Z(β(t), u)Y (u) exp(βT (u)X(u))]K2

(
t − u

ht

)

du

(36)

By the Taylor expansion and assumptions (A2)–(A4), one can derive that

∫ T0

0
λ0(u)E[Z(β(t), u)Y (u) exp(βT (u)X(u))]K2

(
t − u

ht

)

du

=
∫ t/ht

t−T0/ht

λ0(t − htv)E[Z(β(t), t − htv)Y (t − htv)

× exp(βT (t − htv)X(t − htv))]K ∗
2 (v)dv

=
∫ t/ht

t−T0/ht

E[Z(β(t), t − htv)Y (t − htv)

× exp(βT (t)X(t − htv))(1 − β(1)T (t)X(t − htv)hv

+ (β(1)T (t)X(t − htv))2 + β(2)T (t)X(t − htv)

2
(htv)2)]

×(λ0(t) − λ
(1)
0 (t)htv)K ∗

2 (v)dv

·(1 + o(1))

= ht

∫ t/ht

t−T0/ht

(λ0(t) − λ
(1)
0 (t)htvM11(β(t), t − htv)vK ∗

2 (v)dv(1 + o(1))

+h2
t λ0(t)

∫ t/ht

t−T0/ht

M21(β(t), t − htv) + M12(β(t), t − htv)

2

×v2 K ∗(v)dv(1 + o(1))

= (λ
(1)
0 (t)M11(β(t), t) + λ0(t)

(

M(1)
11 (β(t), t) + M21(β(t), t) + M12(β(t), t)

2

)

·γ2,2(t, ht )h
2
t , (37)

where K ∗
2 (v) = α2(T0, v)K (v). Substituting (37) into (36), (20) is then obtained.

For the variance of ηi (t), it can be derived by considering E[η2
i (t)] which is shown

to be

E[η2
i (t)] = a∗T (t)E

[∫ T0

0
Z⊗2(β(t), u)Y (u)K 2

2

(
t − u

ht

)

dN (u)

]

a∗(t)

+a∗T (t)E

[∫

u �=v

Z(β(t), u)Y (u)ZT (β(t), v)Y (v)λX(u, v)K2

(
t − u

ht

)
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×K2

(
t − v

ht

)

dudv

]

a∗(t)

= a∗T (t)E

[∫ T0

0
Z⊗2(β(t), u)Y (u)K 2

2

(
t − u

ht

)

dN (u)

]

a∗(t)

+a∗T (t)ρ(t, t)a∗(t), (38)

where E[dN (u)dN (v)|X(u), X(v)] = λX(u, v)dudv and ρ(t, t) = E[∫u �=v
Z(β(t),

t −ht u)Y (t −ht u)ZT (β(t), t −htv)Y (t −htv)λX(t −ht u, t −htv)]K2(u)K2(v)dudv.
By assumptions (A5)–(A6), the first term in (38) cab be derived to be

a∗T (t)E

[∫ T0

0
Z⊗2(β(t), u)Y (u)K 2

2

(
t − u

ht

)

dN (u)

]

a∗(t)

= a∗T (t)�−1(β(t), t)a∗(t)δ2(t, ht )h
−1
t (1 + o(1)), (39)

and thus,

E[η2
i (t)] = a∗T (t)�−1(β(t), t)a∗(t)δ2(t, ht )h

−1
t (1 + o(1)). (40)

From (40) and (20), on can show that (21) holds. Finally, along the same lines as the
derivation of E[η2

i (t)], the statement of (22) follows.
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